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Abstract

A set of sufficient conilitions is obtained for Markov chains to yield upper and lower passage

lime bounds. While obtaining expected passage limes is smelly a numerical procedure for gen

eral Markov chains, the results presented here outline a simple approach to bound expected pas

sage times provided the chains satisfy certain easy to check criteria. The results may be useful

in modelling situations, such as the analysis of algorilhms, where simple ways of obtaining

average complexity estimates arc required.

'" Researcb performed at the Mathematical Sciences SecLion of Oak Ridge Natiooa1 Laboratory under
the atL~pices of the Faculty Research Participation Program of Oak Ridge Associated Universities, and sup
ported by !he Applied Ma!hem;ltical Sciences subprogram of thc Office of Energy Researcb, U.S. DOE,
undcr contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

t Also supponed in parl by lbe National Scicllce Foundation, under award ASC-9002225 and NATO
award CRG 900108.



- 2 -

1. INTRODUCTION

Hitting times in Markov chains are known to be useful in a variety of modelling contexts

such as lhe analysis of algorithms, estimation of system reliability, combinatorial algorithms.

queuing applications. etc. For example, if an algorithm's execution time can be modelled as a

hitting time in a Markov chain, then average complexity bounds for the algorithm can readily be

had by obtaining upper and lower bounds on the expected hitting time to some appropriate ter

mination slate. In this note we demonstrate the existence of a simple set of sufficient conditions

which yield naive logarithmic type asymptotic bounds for hitting times in discrete-time Markov

chains.

Let {Yk;k;::: O} be a discrete-time, homogeneous Markov chain with a finite or countable

slate space S and transition probability matrix P(i, j). For a subset of states A c S, the first hit

ting time T,,(A) to set A from some initial state Yo = 11 E S is defined as

T,,(A) =min {j 2: 0; Yo =", Yj E A}. (1.1)

Let P'IO and E"O denote probability and expectation, respectively, conditional on Yo = 11. We

take P,,(T(A)) and E,,(T(A)) to be notationally equivalent to P(T,,(A)) and E(T"(A)), respec

tively. Assuming a positive-recurrent chain means that E,,(T(A)) < 00, and the expected hitting

times to set A from arbitrary initial states can be determined by solving the system

for fixed A c S.

Ei(T(A))

i E A

(1.2)

An alternative view of the random vadable T,,(A) is as the time to absorption in a Markov

chain. If the stales in A are all lumped together into a single absorbing state, then E,,(T(A))

becomes the expected time to absorption for the chain, given the initial state 11. In the sequel it

is shown Lhat under cenain conditions, simple bounds for Lhis expected time can be obtained

without solving the system in (1.2). The results presented in Seclion 2 are summarized as fol

lows. Let S = {0,1,2, .... }, where state 0 is an absorbing state and all other states are transient.

We assume that S is decomposed and ordered into mutually disjoint sets So = {OJ, S!,

S2,' .. , etc., and define

VS" cS. (1.3)

Thal is, T" is the time required for the chain to reach state 0, given that it starts in some
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arbitrary slate in set Sn_ The selS SI, S2•... , etc. are defined in a specific way. as will be seen

in the results that follow. Note that even though the time to absorption in a Markov chain

depends on the specific initial state Yo that one chooses, the set containing the initial state is

more relevant to our discussion of absorption limes than the specific initial state itself. This is

because our interest lies in obtaining upper and lower bound on expected hitting-times, where

such bounds will hold for all states in a given subset.

Our objective is to provide a set of sufficient conditions which enable us to obtain bounds

of the form

(1.4)

where E[T:l is the mth moment of T'l" The quantities a, b are constants, and .13, v are parame

ters obtained from the transition probability matrix of the chain. More generally, it can also be

shown that for a class of functions Y.

for Ie Y.

2. MAIN RESULTS

f(a log,1l) ,; E(f(T,,)) ,; f(b log,") (1.5)

Let {Yk ; k 2:: O} be a discrete-time, Markov chain with stationary lransitions on a finite or

countable state-space S. We assume that S is decomposed into mutually disjoint sets So= to}.
S I, S2•... , etc. Define {Xk ;k 2:: O} to be a stochastic process associated with the chain

{Yk ; k ;:: O} through the relation

and observe that the hitting-time Tn can allematively be defined as

Til = min {j > 0; X o = II, Xj = O}

(2.1)

(2.2)

for all fl ;;:: O. At any step, the process {Xk } takes on the value j jf the Markov chain {Yk } is in

the set Sj' for j2::0. In the sequel, the sets 51> 52•...• etc. are implicitly defined via condi

tional expectations for tile process {Xd. It turns out that it is easier to work with the associated

process {Xk } and its state-space, which is either S or a subset of S, than it is with {Yk } and the

subsets Sn. ,/2:: 1.
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The subsets So, 51. 52•....• etc. which partition S are defined in the following manner.

Define

N;= {je8 JE(Y"+l I Y,,=j) <i,VlI>Oj (2.3)

be the set of slales in S for which the expected next state is some state less than i. Observing

that Ni cNj for i :f:.j, define

5, =Nj - Ni _l (2.4)

for all i ;;:: 2, with So = {O} and S 1 = N I, If the chain {Yn } is a stable MlGIII queueing chain [1]

describing the number of customers queued in the system at departure epochs. then the above

scheme for defining the subsets would yield Sk = (k} for all k 2:: 1. Here, Til describes the

amount of time required for the queue to become empty, given that 11 customers are found

queued initially, at a departure epoch. In !:his case the associated process {Xk } is a Markov chain

identical to the chain {Yk}.

On lhe other hand. if {Y,r} takes uniformly random trajectories (Le., has a doubly stochas

tic transition matrix) on a finite state space 8/ = (0, 1,2, .... ,n}, then the above scheme yields

SI,: =q> for I:S;:k <L(1l+ I)l2j , and Sl("+l)I2J =8/. In this case, while {Ykl jumps uniformly ran

domly over states in 8/, the associated process (Xkl makes transitions on the space

{O, L(1I+1)l2j }, with state L(n+1)l2j being the initial state, and sLate 0 the absorbing state.

Here, Tl<"+l)I2J describes the amount of time required for {Ykl to hit state 0, given that it starts

in some state in S/. The specific initial state is not important because all the states have been

grouped together and relabelled as state l (lI+I)l2j for the {Xd process, by virtue of the drift

condition in (2.3). In both examples, a bound on the hitting time to state 0 for the {XI,:} process

would give some useful information on the behaviour of the underlying Markov chain {YI,:}'

2.1 Upper Bounds

The first result, presented as a theorem, is one that motivates the results which succeed it

in the text. In essence, it establishes sufficient conditions under which E(T,,) E O(log 11). Note

that a function g is said [3] to be in 0(1) if, for some positive constant c, c g(n) is at most

J (11) for all 11 greater than some integer 11 o. Likewise, if g (It) is at least c/ f (n) for all 11 greater

than some inLeger flO' and some positive constant c/, then g is said to be in n(l). If g belongs

to bOUl 0 (f) as well as n(f), then g is said to be io 8(f).

TIle statement of the following theorem can be found in [5], where it was used to deter

mine a bound on the expected time to absorption in a certain random field. Stavskaya and

Pyatetskii-Shapiro [5] attribute the result to L. G. Mityushin, but however, do not provide a
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proof. The proof given in [4] is briefly recounted here for completeness. In words, if the

expected next state of the chain {Yk } always lies in a subset whose index is less than the index

of the set containing the current state. then a simple upper bound can be obtained for the

hitting-time to state O.

Theorem 1 (Mityushin's Theorem).

If (2.5)

and some P> I, then

E(T") < rlog~"1 +

Proof:

Conditional on Xo = fl, the requirement in (2.5) establishes that

"< -
IV

(2.6)

fOf all j ~ 1. Since P,,(Xj '* 0):5 E,,(Xj ),

so lhat

(2.7)

rlog~1l1

E(T") < L 1 +
j~O

1
-0- = r log~"1 +
p-l

..JL.
~-l .

(2.8)

o

The linear term~ obtained above is different from, and slightly smaller than, the

linear term given in the original statement of the theorem as reported in [5].

Consider, for example, a simple but useful application of Theorem 1. Let {Zk ; k;;:: O} be a

Markov chain on a finite set 8'= (0, 1, 2, ... ,fl}. with state a being the single absorbing state

and all other states transient. Assume that the associated process {Xkl is defined as in (2.1) for

the chain {Zk}, and that the hypothesis of Theorem 1 is satisfied. Using {Zk,I} • {Zk,Z},

... ,{ Zk,m} to denote m independent versions of the chain {Zk}, each version {Zk,j} defines
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an associated process {Xk,j}, for 1 '5.) ~m. Define the hitting-time Tn,j from some initial state in

set Sn to state 0 for the j-th chain as

T",j = min {k >0; X o.j = 11, Xk,j = OJ (2.9)

(2.10)

and let T,l(m)=max (T", I. Til, 2•... , Tn,m) denote the maximum of lhese hitting-times. We are

interested in computing an upper bound for E[Tn(m)], where m :>11.

Let U ,. U2 , .••. J VI/I be independent geometric random variables with parameter p = l-q,

i.e., P(Uj =k) = (1-pt- I P, where p is chosen in such a way that Vj ~st TII,j. [or 1 '5.) '5m. Note

that p is a function of the transition probability matrix for chain {Zk} and the index 1l of the set

•containing the initial state. With Rm = max (U 1••••• Urn), it follows that E [T,,(m)] ::; E [Rm ],

so that by obtaining a bound for the expected maximum of m ii.d geometric random variables

with parameter p we also obtain a bound [or E[TII(m)]. It can be shown [4] that the random

variable R", is the time to absorption in a Markov chain on space S', with a single absorbing

state O. The lranSition probability matrix of this chain is upper triangular, and defined by

P(i,j) = [n pi-i qi

for 1 :::; i :::; m and 0 :::; j :::; i. Since the hypothesis of Theorem 1 is satisfied for this matrix, it fol

lows that

so that E[TuCm)] E O(log m).

[1og m1
log q 1

I+-
I-q

(2.11)

TIle simple arguments used in the proof of Theorem 1 can also be used to obtain more

general forms of Mityushin's inequality, such as upper bounds on moments of Tn, etc. Though

these results generalize Theorem I, !:hey are given below as corollaries to the theorem, since it is

in the original theorem that the essence of the bounding idea lies, linking negative drifts to pas

sage times.

For m > I, let m (k) denote the greatest integer less than or equal to the mth root of k, i.e.,

m(k) ~l klf"'J. Then,

Corollary 1.1.

If "mE(XfIXo =ll) < 'i" :?: I, (2.12)

for some y> I, then there exists a constant c, 0::; c < I, such that
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--L
P-I

where J3 = "(11m, and 1 < a = J3[log~rz/(lOSllII + c)J :::;:; 13.

Proof:

Let the initial state be given by Xo = 11. The inequality in (2.12) yields the recursion

E (X") E,,(X,")· ylII /.:.+1 <

for fixed m > 1. It follows that

and consequently

(2.13)

(2.14)

j31Jl(k)'m
(2.15)

for all k ~ 1. Since PIl(XJ,; :t:. 0) = P,,(Xff' ¢ 0) for each k,

Finally, using the relations

and

E(T;;') ~ L P (T;' > k)
k=O

it follows that

(2.16)

(2.17)

(2.18)

nlll

(2.19)

kl/m = log~1l + C, for 0 S; c < 1. (2.20)
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Defining c = logctll -logJ3l1. for 1 < a.~~, gives

10g.P = I + C

logJlll '
(2.21)

and thus 0.= ~/lo8ll1l/(lo8ll11 + ell. With k = rlog::1l1 from (2.20), the inequality in (2.19) reduces

to

forp~a>1.

rlog:;,,,l
E(T;,n) < L 1 +

o

1

P-I = rlog~'1l1 + ...L
P-I (2.22)

o

The above result can be shown to hold for any invertible function 10 of Tn satisfying

f (k) ?? 1 for all k ?? I, and f (0) = O. Using f(k) to dennte Lf (k)J fnr k ?? I, and " ~r' ,

Corollary 1.2.

If E[f(X,)IXo =n)] < g~,) 'r;f1l ~ I, (2.23)

some p> 1, and an arbitrary function g O. then there exists a constant c, 0 ::;; c < 1 such that

E[f(T,,)] < rf(log.g(n))l + "L
"-I

where 1 < a = I3[lOgpg(II)l(lo~g (tl) + ell:::; 13, f (k) 2:: 1 'if k 2:: I, and f (0) = O.

Proof:

Repeating inequalities (2.13) lhrough (2.15) with J (Xk) and g(ll) in place of XI:' and 1l m.

respectively, one obtains

P(T" >" (k» $ P(T" > h(k) <
g(n)
I3h(k) 1\ 1, (2.24)

for all k;;:: 1. The last inequality in (2.24) uses the fact that J(k);:: 1 for all k 2:: t. Since

II =r1 and

"(k) = log~g (n) + c, o :::; c < 1, (2.25)

if Ule rightmost tcnn in (2.24) must equal unity for all tl above some value. it follows that
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E(f(T.) > k) < L I
o

where 1 < a= p[l(Jg~g(n)/(lo8ll8(/l)+c)l:::;;p.

Remark
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I+ -R- = r f0og.g(1l))1 +
p-I

---.IL
~-I

(2.26)

o

As a special case of the above result, let g Co) be an arbitrary but bounded function, and

f(k)=kfork~O. IfE[f(X,)IXo] < g~,) forall1l ~ I andsoDle~>I, thenitfollowslhat

E(T,,) < r log~g(1l)l + ~ (2.27)

o

It should be clear lhat if lhe negative drift condition for Ute process {Xk } (or equivalently,

(Yk }) was violated for all initial slates Il, then E(T,,) would be infinite, However, what should

one expect if the negative drift condition was violated for only a finite number of states H?

Intuitively. one would expect that a finite set H should not effect the form of the upper bound,

and indeed, it can be shown that lhe logarithmic upper bound can still be had in such a situa

lion. TItis result is given as a tllcorem below. and it should be recognized that the corollaries

to Theorem 1 can be generalized via the following theorem.

Let H be a subset of S satisfying

'rIj E H (2.28)

where ~ > I and gO is a bounded function. Using the transition probability matrix P, define

Pi ~ L P(i, j)
je H

Vi E S (2.29)

and set p = max Pi. That is, the quantity P describes the maximum probability that the process
ie S

{Xd will next visit a state in H, given that it is currently in any state in S. For convenience,

assume (initially) that O<p < 1.
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Theorem 2.

If 'il1/ E S - H (2.30)

where H is a finite subset of S, lhen

a
a-I

where I < a ~~ < p, and p is defined throngh (2.29).
l+p(,,--I)

Proof:

Conditional on X 0 = 11, combining (2.28) and (2.30) gives

whence the recursion

E(X,) <

(l-p) g(lI)
P

\fk ~ 1

(2.31)

(2.32)

is obtai ned, for a; = -,----"P,=-,.,
l+p(j}-I) .

Applying the steps shown in (2.6) through (2.8) yields

E (T,,) < rlogag (11)1 + a
a-I

Remarks:

(2.33)

o

1. The assumption that 0 < p < 1 can be dropped. The case p = 0 is merely Theorem 1. If

p = I, then transitions from certain states in S take the process {Xd to a state in H with

probability 1. However, since {Yd is an absorbing chain with a finite expected time to

absorption, the average number of steps required for {Xk } to leave H once it enters this set

is finite. That is, since H is finite, the absorbing chain can exhibit nonnegative drift for

only a finite number of steps before leaving H to reach a state in S-H which yields nega

tive drift. Denoting the smallest integer greater than or equal to this finite expectation by

f, it follows that (2.31) generalizes to

\fk ~ 1 (2.34)
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with a= p, so that

E(T,,) < r r]og.g(n)l + a
a-I

(2.35)

2. For 0 < p .:s;; 1, Theorem 2 can be generalized to yield results similar to those shown in

Corollaries 1.1 and 1.2. Thus the logarithmic upper bound remains, in spite of the nega

tive drift violation over a finite subset of S.

3. The above result can also be used to generalize the example, shown below Theorem 1,

involving lhe maximum of m U.d hilting-times.

o

2.2 Lower Bounds

In the case of lower bounds on expected times to absorption, similar logarithmic type

bounds can be obtained, but only at the expense of sufficient conditions of a somewhat different

form. Instead of working wilh drift, actual lIansition probabilities come into play. Consider

first an analogue of Theorem 1 for a lower bound on time to absorption. Define

T,l, k = [Pn(Xk =0)]1//1 for each 11 > 0 and k::::: 1. Then,

Theorem 3.

If TII,k <1
(1-6') - , 'tk" 1, 0 < 1) < I, (2.36)

and given 1/, then Ulere exist constants e > 0, 0 < a < I, such that 'r;;f1l > rI O. flO an integer,

where v = [ ~J

Proof:

(1-£)(I-a)
>1.

E(T,,) ;;:; logvll (2.37)

If the transition matrix P is such that (2.36) is satisfied, then

(2.38)

implying that 'tk " I. (2.39)
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Equivalently,

P(T. > k) = p.(X,,, 0) > 1 - (I - 5')·

Observing that rn,k is nondecreasing in k,

'tk> 1. (2.4Q)

for all k ;:; 1. Setting

E(T.) > i: [1 - (1 - 5')"] ~ k [ 1 - (1 - 5')' J
k=O

(2.41)

yields

k = (l-a)log"
log 8-1 o <a<l. (2.42)

~ (l-a)(I-E) log"
log 0-1

for any E > 0 and fI > 11 0 satisfying

(2.43)

(2.44)

Finally, defining v = [ ~J (I-£)(I-a)
puts (2.43) in the required form (2.37).

o

Granted that ascertaining (2.36) for a given Markov chain requires more work than verify

ing (2.5), it is worthwhile pointing out lhat one needs to check (2.36) only for state n, given that

Xo = n. This is done by taking powers pi: of the transition matrix to determine if pk(n, 0) is

bounded from above by (1 - ak
)", for somc appropdately chosen 6. 0 < 0 < 1. Again, as was

the case with the upper bound, a similar argument can be used to obtain lower bounds for

higher order moments of Tn- In tltis case let m [k] denote the smallest integer greater than or

equal to the mth root of k, Le., m[k 1= rk 111/11. For each m ;;:: 1 define r: k = [P'I(X%, =O)]lfn,

where 1l;;:: I, and k;;:: 1. Under the condition

r::'k
::;; 1 'rJk;;:: 1, 0 < B < I,

(1 - 5')

which is an obvious extension of requirement (2.36), one obtains

(2.45)

(2.46)
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Since P (Til> k 1/1/1) ;?: peT" > m (k»,

EeT;') ;;:: k [1 - (1 - fl''"y' ] '1k ~ 1. (2.47)

Setting kl/m = (1-a) log II

log 0-1
and rcpeating previously used arguments gives

where v = [ ~J

Corollary 3.1.

(H:)(I ........)'"

(2.48)

If
m_.:.r.!?",,,,,c,...

~ 1 '1k ~ I, 0 < 5 < 1,
(1 - 5')

then there exist constants e > 0, 0 < a < 1 such that "In > "Q. flO an integer,

EeT,':') ;;:: log ~r1l

willi v = [ ~J (I-£)(l-a)"'
>1.

o

In order to oblain a lower bound analogous to that provided by Corollary t .2, let f (-) be

any invertible function of Til satisfying f(O) = O. Using f(k) to denote rjCk)l here, for k;;:: 1,

andh =r',

Corollary 3.2.

'1k ~ 1,0 < 5 < 1, (2.49)

then there exist constants E > 0, 0 < a < 1 such that "Ill > II O. IlO an integer,

E(f(T,,» ~ JOog,lI) (2.50)

willi v = [ ~J
(1 £)(1 ........ )

> 1.
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Proof:

Arguing along the same lines as before,

P,,(Xh(k) '* 0) ~ 1 - (I _15h(k)t

;:: 1 - (1 - r/,Ck»".

Since P(T" > II (k)) ~ peT" > h(k)),

E(j(T,,)) ~ k [I - (I-li"('))"], 'Ik ~ 1.

(2.51)

(2.52)

Setting 11 (k) = (l-a) log 11 I and following steps (2.42) through (2.44) gives
lng 0-

E(j(T,,)) ~ tOng,lI) (2.53)

(H:)(I-a)
>1.

o

A lower bound analogous to lhe upper bound given in the example following Theorem I

is easily had. Let {Xk. 1}, {Xk,z}, ... , {Xk,m} be independent processes, with lhe same law as
A

the process {XkJ, and define Xk(m)=max eXk, I •... ,Xk,m). for k~ 1. Note that T",j is defined

as in (2.9) for 1 '5:j'5:.m, and TIl (m)=max(T,'.l,T,r.2, .... , T,l,m) is the maximum hitting-time to

the absorbing state over all m independent processes.

Corollary 3.3.

If [P(X,(m) = OIXo(m) = 11)]11" ,;; (I_li')rn 'Ik ~ I, 0 < Ii < I (2.54)

"0then there exist constants E > 0, 0 < a < I, such that 'ifm > -, Ito an integer.
II

E(TIl(m» ;;:: logvmll (2.55)

wlili v = [ ~J

Proof;

(1 £)(J-a)
>1.
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The inequality (2.54) implies that

P (X ( ) 0) _< (1 - ',)"'11" ,m = u

Using the same arguments as before,

E(T,,(m)) ;, k [1 - (1- B')]"· '<tk ;, I,

(2.56)

(2.57)

and setting k = (l-a)logl/m . [ 1J
I • one obtams, for v = s;-

log 0- u

(1-£)(1-0)

"0for E > 0 and m > - satisfying

"
(1 0-1 )/loln

-IlO < E

3. APPLICATIONS

3. Geometric random variables

(2.58)

(2.59)

o

Let {Yd be a Markov chain on the space {O, I}, wilh transitions defined by

P(Yk+l = 1 I Yk= l)=q = I-p > 0, and P(Yk+l =0 I Yk=0)= I for k;::: O. With state 1 as transient

and state 0 as absorbing, So = {O}, and S 1 = {I}. Define the process (Xl.:) as in (2.1), and notc

Lhat T I is a geometric random variable with parameter p. Let T 1,1' T 1,2, ....• T I,m be m i.i.d ran

dom variables with the same law as T 1, and let T,,(m) denote the maximum of these m random

variables.

As indicated in lhe example following Theorem I, the random variable T1J(m) is the time

to absorption in an (m +I)-state Markov chain with absorbing state 0 and transition matrix given

by (2.10). Using Corollary 3.1, or Corollary 3.3 (in which case II = 1), it follows that

and from Corollary 3.1,

E(T,,(m)) E QQog,m), (3.1)

(3.2)
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Vk:=:: 1. Applying Corollary 1.1 to the same Markov chain.

E(T~(m)) E O(lOg~'l)

'Vk :=:: 1, so that

E(T~(m)) E 8(log"m).

(3.3)

(3.4)

b. Coupon collector's problem

Consider the following simple sequential occupancy problem known as the coupon

collector's problem 12]. Assume an urn contains N balls, labelled as 1 through N. If one ball is

randomly drawn at a time, with replacement, let TN denote the number of draws required until

each ball has been drawn at least once. How does E(TfJ') behave for large N?

Defining the sets Sk={k} for k:;?:O, it follows that the process {Xd defined via (2.1) is

also a Markov chain, identical to Ule process {Yk }. The random variable TN is the hitting-time

to the absorbing state a in the (N+l)-statc Markov chain {Xk }. The transition probability matrix

P for this chain is given by

P(Xk+1 =j IXk = i) =

N-i
N

i
N

a

j = i

j=i-l

olherwise

(3.5)

for 1 s: i s: N -1 and k ~ 1. Here Xk describes the number of balls that have not been sampled

at the end of the kth draw. Given X0 = N, the first draw must sample a ball, so that

P(X 1=N-1IXo=N)~1.

By Theorem 2, we may ignore the (negative) drift condition satisfied by row N without

affecting the logarithmic form of the upper bound. Since,

-m

E(Xf'IXo=J) < Jp

for 1 s: j s: N-1 and 1 < J3 s .-!:!..-, Corollary 1.1 yields,
N-1

(3.6)

E(T7J) < ..L logmN ..L
log';!}N + R = Imt"N + c 7"'--:-':- + ,

• p-1 • logpN P-1
(3.7)
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where a= p[log~NI(\OSllN+<:)]. 0 ~ c < 1. Finally, since 1 < p::;; --..!!...- and log"(~) ;;:: ...!..., for
N-I "N-I N

E(T}!/) < c N logaW + DeN),

so that E(T7/) E OeN logmN).

For the lower bound, using s= eN -l)/N and Corollary 3.1,

E(TK/) ~ log~W

for N sufficiently large. With the relation

(3.8)

(3.9)

I
log v

[orO<£< 1 andO<a < 1,

= 5(I-e)(I-a) = (I-e)(I-a)[ N,::;I]

E(TfJ) :?: c'N log'IlN

(3.10)

(3.11)

for some constant c/, so that E(TlJ) E Q(N Iog'/'N) and thus

E(T'/i) E eOog"'N). (3.12)

Consider now a simple variant of the coupon collector's problem. Suppose that at each

step k, k> 1, if the state (i.e., number of balls not yet sampled) of the chain {Xn } is neither 0

nor N, then there is a nonzero probability that the next state is N. In other words, if the number

of balls sampled before the kth draw is neither 0 nor N, then there is a nonzero probability that

lhe slate at step k is "forgotten", so that the process must start allover again from state N at step

k+I,fork>l.

Given that the chain is in state i before draw k, I5:i:5N -I, let 11; be the probability that

on draw k the state of the chain is forgotten and it lands back in state N, for k > 1. The transition

probability matrix for {XII} becomes

P(Xk+1 = j IXk = i) =
N

1],

j = i

j = i-I

j=N (3.13)

o otherwise
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for 0 < i < N, and k> 1. If Xk = N for any k, then P(Xk+1=N -1) = 1, as before. What can we

expect of E(TN) for this memory·loss type coupon collector's problem? By placing the resmc

lion that

N [ N -i ] . i (. 1) i
11;+ N-11; l+ N l- < P

for 0 < i <N, Doe obtains a condition on 11; that preserves (2.5), ensuring E(TN) E D(logn). At

an extreme, iflli =11 for 0 < i <N, then (3.14) reduces to the requirement

1 1
(N-I)(n+-) < -

N P (3.15)

where we use the factlhat J3 is defined by Ule comes in row 1 of P, since this row exhibits the

smallest negative drift in this case. For the lower bound, DOC need only nole the fact that the

"forgetfulness" of the process must increase the expected time to absorption, so that

E(TN) E .Q(log,,), as before.

c. A single server queue

Consider a single server queue where customers arrive according to a Poisson process of

rate A> O. Service Limes are assumed to be independent with some common distribution func

tion F(·). The process {Yk;k;?: O} describing queue size at service completion epochs is a

well-known [I] Markov chain, with transition matrix P = [Pi• j ].

p . .={f"J

e-"'J.J()"tY-i+l

U - i + 1)1

o

dF(t) (j ;0, i-I, i;o, 1)

(j < i-I, i;?: I) (3.16)

Defining Sk = {k} for k;?: O. as done earlier, it follows that the process {Xk } is stochasti

cally identical to the process {Yd. Hence {Xd is a Markov chain with transition probability

matrix P defined above. Let Tn denote the time it takes the server to empty the queue, given

that the queue initially contains 1/ customers. The random variable Tn is a passage time which

has a complicated distribution in general. For a stable queue, the chain {Xn } will exhibit nega

tive drift, so that the upper bound results of Section 2 are applicable. That is,

E[X1IXo=n] = n-p 'V It;?: 1 (3.17)

for p = L p o.j • with 0 < P < 1. Choosing /3,
j=O

satisfied, and

11
I < /3 < --. the requirement in (2.5) is

It - P
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(3.18)

for 1 < j.l < [ -'-'-J n Using 0= I-ko in (2.36),
n-p

(3.19)

where v is defined in TIleorem 2. Asymptotic bounds for higher order moments can also be had

from the results of Section 2.

Acknowledgements

I am grateful to Professor Prem Puri for the many helpful, pleasant and memorable discussions

on these and various aspects of probability. His untimely death in Augusl 1989 deprived us of

a most valued probabilist, colleague and a dear friend. I am also indebted to Professor Burgess

Davis of Purdue and Dr. Uppuluri RelO of ORNL for their mosl helpfUl comments.

References

[1] Gross, D., and Harris, C. M., FfmdameTltals of Queueing Theory, John Wiley & Sons Inc.,

N. Y., 1985.

[2] Johnson, N. L., and KolZ, S., Um Models wid 71,ei, Applicatiofl, John Wiley & Sons Inc.,

N. Y.• 1977.

[3] Knuth, D. E., "Big omicron and big omega and big theta," SIGACT News, vol. 8. no.2,

pp. 18-24, April-June, 1976.

[4] Rego, V., "A Band and Bound Technique for Simple Random Algorithms," Probability

ill tile Etlgilleeri1lg Wid I"formatiollal Sciellces, Vol. 4, pp. 333-344, 1990.

[5] Stavskaya. O. N., and Pyatetskii-Shapiro, I. I., "On certain properties of homogeneous

nets of spontaneously active elements," Problemi Cibemetiki, 20, M. Nauka, pp. 91-106,

1968.


	Naive Asymptotics for Hitting Time Bounds in Markov Chains
	Report Number:
	

	tmp.1307986960.pdf.6i0pl

