
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1991

Experiments in Concurrent Stochastic Simulation: The EcliPSe Experiments in Concurrent Stochastic Simulation: The EcliPSe

Paradigm Paradigm

Vernon J. Rego
Purdue University, rego@cs.purdue.edu

V. S. Sunderam

Report Number:
91-005

Rego, Vernon J. and Sunderam, V. S., "Experiments in Concurrent Stochastic Simulation: The EcliPSe
Paradigm" (1991). Department of Computer Science Technical Reports. Paper 854.
https://docs.lib.purdue.edu/cstech/854

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

EXPERIMENTS IN CONCURRENT STOCHASTIC
SIMULATION: THE ECLIPSE PARADIGM

Vernon J. Rego
V. S. Sunderam

CSD-TR-91-005
January 1991

(Revised May 1991)

Experiments In Concurrent Stochastic
Simulation: The Ecli~ Paradigm*

Vernon J. Regot

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

V.S. Sunderam
Department of Math and Computer Science

Emory University
Atlanta, GA 30322

Abstract

This paper presents results on the performance of a novel and flexible concurrent
simulation environment known as &lj~. The paradigm we advocate is based on the
premise that replication based simulations, either non-distributed or minimally dis
tributed, yield excellent speedups. The approach used makes concurrent simulation
easily accessible to researchers because its use does not require knowledge of paral
lel programming. The experiments we report include Monte-Carlo type simulations
(e.g., estimating integrals, order-statistics), Markov-chain simulations (hitting-times,
distributed algorithms), and discrete-event simulation (e.g., tail probabilities in queues,
FOOl token ring performance, and simulations of high performance software testing
techniques on SIMO machines).

'This research was performed at the Mathematical Sciences Section of Oak Ridge National Laboratory
under the auspices of the Faculty Research Participation Program of Oak Ridge Associated Universities,
and supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.
DOE, under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

'Also supported in part by the National Science Foundation, under Grant No. ASC-9002225

1

1 Introduction

Since its use at Los Alamos during World War II, stochastic simulation [43] has gained
increasing acceptance as a viable tool for understanding the behavior of complex phenomena.
In a recent article on High Performance Computing [2], Gordon Bell describes "Large-Scale
Scientific Experiments Based on Simulation," to be one of six key application areas. Nobel
Laureate Ken Wilson characterizes [2] computer simulation as the third paradigm of science,
supplementing theory and experimentation, a paradigm shift that will transform every facet
of science, engineering and mathematics.

Stochastic simulation is presently used in a variety of applications such as

• molecular dynamics methods in chemical physics [49]

• computationally intense lattice theory problems [15, 16] in statistical physics,

• computation of Feynman path-integrals [12, 49],

• Monte Carlo methods in the study of liquids [3, 25],

• placement of VLSI circuit components [18],

• global optimization and random search [44],

• Markov random field texture models [9],

• stochastic models of computer and communication systems [11,29],

• battle management models [33],

• belief networks and influence diagrams in AI [36],

• genetic algorithms [19] and simulated annealing [1, 26], and

• Monte Carlo solutions to matrix problems [44].

to name just a dozen select applications.

In essence, stochastic simulation is a technique that allows an analyst to mimic a stochas
tic process of interest. Using pseudo random numbers, a high speed computing machine can
be made to yield realizations of a random process several times faster than working directly
with a physical process. In many instances speed is not the only factor since the cost of
working with a physical process may be prohibitive. Stochastic simulation is therefore an
invaluable aid in studying stochastic phenomena, a tool that is likely to grow in importance

2

with the complexity and size of problems which, not yielding to deterministic methods.
must be solved via sampling.

Even though the speeds of modern uniprocessors now make possible simulations that
were either too time-consuming or simply impossible to conduct a decade ago, there is an
ever present need for reducing model execution time. Over the past decade, a significant
amount of attention has been devoted to distributing a model over a number of processors in
order to speed up the generation of sample paths, in particular for discrete-event simulations
[17J. This paper attempts to address a broader class of simulation models, loosely called
concurrentizable stochastic simulation models, which can benefit substantially from the
power of multiprocessing.

We define a stochastic simulation model to be concurrentizable if either independent or
dependent replications of the model can be executed concurrently. As a simple example in
the independent case, consider a simulated annealing model [lJ operating on a domain D.
If the domain D can be partitioned into disjoint subdomains, say Db D 2 , ... ,DN, where
D = D1UD2U.. .UDN, replications of the same model can be made to execute independently
on independent processors or sets of processors with the intention of determining that
specific region D k containing the global optimum. Observing that each subdomain is being
operated on independently, this kind of concurrency is otherwise termed data parallelism
[15J. Dependence between processors can be induced in the following manner. In looking
for the global optimum in D, processors can be required to exchange information about
their domains, converge on the "best" subdomain Dj, subdivide it for data parallelism,
and then repeat the annealing algorithm on their respective subdivisions of domain Dj.
This algorithm would terminate either when a certain cost has been exceeded or when
the optimum has been found. In both the independent as well as the dependent case, the
replicated simulations execute concurrently. This concurrentizing strategy works equally
well for a variety of stochastic simulations, as will be shown in Section 5.

In our notion of concurrent simulation, no restriction is placed on the number of pro
cessors required to execute a single modeL The emphasis is on model replication to achieve
natural parallelism, and model distribution is of secondary importance. Whenever possible,
the entire model is made to execute on a single processor; and whenever a model is required
to be distributed across processors, the number of processors involved in executing the
model is kept to a minimum. Various theoretical and practical problems arise in such repli
cation based concurrency (e.g., see [21, 46]). For example, care must be taken in ensuring
that the estimators constructed by the different sampling processors yield unbiased esti
mates; obvious uniprocessor estimators are known to possess poor convergence properties
[21 J in multiprocessor settings. Perhaps such pitfalls are reasons for a conspicuous absence
of rigorous empirical research in, or the development of a tool for, concurrent simulation
systems.

In this paper, we report the performance of a high performance replication based con-

3

current simulation system, known as Ecli~, on a suite of eight simulation experiments
drawn from various application domains. EcliP~ was designed and implemented mainly for
stochastic simulation applications, and we emphasized ease of software system use in its
construction. Ecli~ takes as input a sequential simulation model, along with user-defined
constructs such as routines for pooling statistics, and replicates the sequential model across
processors; the toolkit's flexibility lies in its ability to cater to a variety of simulation
problems (e.g., Monte Carlo, discrete-event simulation, stochastic optimization), a variety
of multiprocessing schemes (e.g., replication, distribution, hybrids), and a variety of sup
porting architectures (e.g., shared memory, distributed memory, heterogeneous wide area
networks). Though still in its infancy, we believe that the EcliP~ system [46] is a promising
step in the direction of concurrent simulation software.

The remainder of this paper is organized as follows. In Section 2 is presented a brief
commentary on related work in the area of multiprocessor simulation. In Section 3 is
presented our motivation for designing and implementing the EcliP~ system the way we
have, and Section 4 contains some of the salient design aspects of the system - summarizing
details given in [46]. In Section 5 we outline several simulation experiments that were run
using Ecli~. In each case, programming ease, portability and near-linear speedup gave
ample proof of the high-performance characteristics of the toolkit; some of this is apparent
from the timing results given in the same section. Section 6 contains a brief conclusion.

2 Related research

In recent years, researchers have suggested various ways of using shared and distributed
memory MIMD machines for performing simulation. The computer scientists' approach
has been to focus on discrete-event simulation problems requiring model distribution [17],
where a model is functionally decomposed and executed across several processors. As a
result, the model replication aspect appears to have been largely neglected. Apart from
more theoretical studies [4, 21] on model replication, there has been little experimental
work measuring performance and virtually no empirical work on software systems reported
in the literature for replication based simulation models. Though it has been suggested [17]
that replication is practical only for largely stochastic models, there is no empirical evidence
to support this view. In addition this view can be misleading because a metric of model
stochasticity is generally not a concern, and a variety of models including discrete-event
models may be set in a purely stochastic framework.

There are many unresolved issues in realizing effective distributed simulation software
systems, even though there has been prolific research in the more theoretical aspects of such
simulation systems. While this phenomenon is not surprising, especially considering the rich
nature of problems relating to simulation on distributed systems, there is a noticeable lack

4

of software available to the user community for performing distributed simulation.
An important reason for viewing model distribution very favorably is that there is no

alternative when the model to be run exceeds the capacity of a single host processor. Never
theless, present-day processors are individually capable of hosting enormous problems and,
for such problems, are likely to make replication based simulation a viable strategy. In
addition, even if a model has to be distributed across a set of processors, one can still repli
cate the distributed model across several sets of processors, so that the two strategies may
complement one another. The last point becomes especially important when one observes
that that there is a limit to how much a given model can be distributed without an adverse
effect on system performance. Consider for example a token ring model with N stations. A
logical approach to distributing the model would be to place each station on a processor, or
perhaps two processors if station functions warranted additional processing power. 'When
N = 50, distributing the model across 1024 available processors of a hypercube would leave
between 90% and 95% of the multiprocessing power unused.

Another important reason for pursuing model distribution is positive speedup, but it
is shown here that our concurrent stochastic simulation approach yields excellent speedups
with added advantages such as ease of model implementation and ease of portability across
machine architectures. Fujimoto [17] gives a good survey of techniques and problems as
sociated with distributed simulation. It is interesting to note that the state-of-the art in
distributed simulation invariably involves discrete-event simulation problems, in particu
lar queueing network problems, and MIMD architectures with either shared memory or
distributed memory, but not both architectures treated together.

Queueing network abstractions of computer systems and computer network problems
have always been a focal point in the performance modelling community, and it is per
haps this reason even more than its discrete-event nature that has brought queueing into
the distributed simulation application domain. Queueing network problems are excellent
candidates for testing out ideas in model distribution. Unfortunately, there are many sim
ulation problems that do not lend themselves to queueing abstractions, and consequently
the excessive emphasis on distributed queueing network simulation is perhaps misdirected.
Though not queueing network abstractions, several of the application areas mentioned in
Section 1 can be viewed as discrete-event problems but are largely ignored by research in
distributed simulation.

Much of the current work in distributed simulation favors MIMD architectures, and
apparently more so the distributed memory architectures than the shared memory archi
tectures. There have been some negative reports on the performance of shared memory
machines for distributed simulation [38, 39]. We speculate that a possible reason for less
attention being given to them is the limited number of processors that are available on
such machines (e.g., Sequent). On the other hand, the distributed memory hypercubes or
networks of workstations have a much larger processing and expansion capability (e.g., Intel

5

iPSCj860).
There has been some recent work which attempts to correct some of the negative views

of using shared memory machines for distributed simulation [48]. Proposed distributed
simulation systems (e.g., [8], or Synapse [48]) usually choose either shared or distributed
memory architectures as underlying environments, but not both. In contrast, the EcliP~

toolkit for replication based simulation can be adapted to shared memory architectures (e.g.,
Sequent), distributed memory architectures (e.g., Intel i860, local networks of workstations,
wide area networks) as well as hybrid environments (e.g., a combination of iPSe i860, local
networks of workstations and Sequents) and performs well on each environment. Except
for [28J, we are unaware of any distributed simulation research based on the use of SIMD
machines. Our ongoing research suggests that replication based simulation can perform
favorably on SIMD machines [41J as well.

3 Issues motivating design

We began our research in concurrent stochastic simulation strongly motivated by the need
to model certain problems in the average case analysis of algorithms and the performance
of communication systems. Though research in multiprocessor based simulation has been
going on for roughly a decade, we are not aware of a portable tool based on our concurrency
approach. As mentioned in the previous section, the currently available tools are chiefly
devoted to queueing network based simulations and geared towards execution on specific
archi tee tures.

Originating from our need for a flexible tool, our research investigations into concurrent
simulation strategies were triggered by a very basic question. As researchers who are

(a) interested in using stochastic simulation for some application, and

(b) have access to an arbitrary and flexible multiprocessor configuration,

how do we go about getting a fast, tunable, and efficient model to execute on the multi
processor system without having to devote time and effort to parallel programming issues
such as synchronization, deadlock, distributed termination, etc. ?

We attempted to respond to the question with a host of designs for multiprocessor sim
ulation systems, some of which we experimented with by coding parallel programs on a
128-node Intel i860 hypercube. The amount of effort that went into developing a working
piece of parallel simulation code was of the order of 30-80 hours; changing code to accom
modate design variations required several additional hours. In contrast, we found that after
we had developed an EcliP~ prototype, we could get a concurrent stochastic simulation
running within at most an hour of coding effort, given the original uniprocessor simulation

6

program. We are thus well aware of the frustration experienced by an analyst who is solely
interested in model results and has little time to spend on learning to program specific
multiprocessors or distributed systems of networked processors.

The design of EcliPEk began with the following four simple rules:

1. A user is required to write only a sequential program. This program is to be concur
rentized by EcliPEk.

2. The emphasis is to be on replicating identical models across processors. The reasoning
behind this is that N processors can independently compute samples up to N times
faster than a single processor can.

3. A model that is too large for one processor is to be distributed across as small a
number of processors as possible. The resulting distributed model is to be replicated.

4. Statistics from each processor or set of processors executing a model must be combined
carefully, to eliminate problems of bias and maximize potential for speedup.

From a parallel processing view, the first point has three important benefits. The sequen
tial model of computation reduces model development effort, simplifies task partitioning,
and makes easy the job of automating the structured task interactions. The second point
differentiates EcliPEk from other multiprocessing simulation software, since it emphasizes
replication rather than distribution. The third point brings us closer to distributed sim
ulation research though minimal distribution is advocated whenever model distribution is
unavoidable due to problem size. The last point is unique to EcliPEk since distributed simu
lation software systems focus on executing a single sample path of a stochastic process at a
time, whereas EcliPEk simulates several sample paths concurrently. It is our experience [46]
that the above four conditions are sufficient to give the research community an easy-to-use
and powerful tool for solving a variety of simulation problems.

4 The Ecli~ Toolkit

The EcliPEk toolkit enables straightforward development of stochastic simulation applica
tions that may execute on a variety of concurrent environments. To use the toolkit, an
applications developer first specifies the basic control structure of the simulation using util
ities and programming abstractions provided by the EcliPEk system. Special data structures
and simulation dependent parameters are also described in this phase of the development
process. This specification, which takes the form of a procedural language description, is
pre-processed by an EcliPEk translator. The translation process involves the incorporation

7

of architecture specific mechanisms and constructs for specific target concurrent environ
ments, and produces source language code that may be directly compiled. Finally, this
code is bound to appropriate Ecli~ libraries, which contain a variety of random number
generators, termination detection mechanisms, statistics combining routines, and auxiliary
support for graphical interaction and display.

The three-phase approach of specification, translation, and run time libraries adopted by
the Ecli~ system has proven to be highly effective in concurrentizing a number of stochastic
simulation applications. In particular, users are able to achieve excellent speedup levels,
with the barest minimum of effort. The flexibility provided by Ecli~, both in terms of
machine independence as well as parallel computing paradigms, is very valuable, as are the
added advantages of graphical interfaces and resilience to failures in some environments. A
detailed description of the design features and implementation strategies of the system may
be found in [46] ; in this section, we present a brief overview of the toolkit and highlight
some of the salient facilities supported by the toolkit.

4.1 Parallelism Transparency

One of the primary design goals in Ecli~ was to enable users to specify simulation appli
cations using a completely sequential description. This eliminates the burden of selecting
an appropriate parallel computing model, dealing with synchronization and communication
details, and the associated tasks of parallel coding and debugging. Such a strategy is pos
sible due (in part) to the philosophy of maximal data parallelism and minimal functional
decomposition, and to the inherent structure of stochastic simulation applications. In the
simplest case, Ecli~ essentially performs automatic data partitioning based on the notion
of multiple random number streams. The user thus describes a simulation in terms of a
single random number stream, which is transparently partitioned by the translator and run
time libraries to enable independent, concurrent executions on multiple processing elements.
Effective statistics combination routines are used to coalesce the partial results from each
of these independent computations, thereby achieving transparent concurrency.

For example, one way of achieving independent, concurrent executions is by predefining
random number seed headers for different random number streams. Separating these seed
headers by random number cycles of length at least 200 million (or some sufficiently large
number) would allow a variety of models to execute independently without the danger of
using corrupted random numbers. More general and more elaborate schemes for obtaining
independence between random numbers are possible. It must be pointed out that inde
pendence between executions is not a requirement and indeed, in some instances, must be
violated. One example of this occurs when processors need to exchange information (e.g.,
in finding the best solution through a series of searches on disjoint domains), and another

8

example involves inducing negative correlations between the different sampling processors
in order to reduce the variance of the final estimate.

The strategy described above works well for a large number of simulation applications.
However, there may exist some applications that do not fit well into such a framework; the
toolkit contains provisions to cater to these applications. The toolkit allows the specifica
tion of a simulation at different levels of abstraction, with the highest level corresponding
to a purely sequential specification. At lower levels, the existence of multiple processes in a
concurrent simulation application become visible to the developer. Thus, an end-user may
explicitly partition an application into different modules, assign specific subtasks or random
number streams of a simulation to each, and even control interaction between modules. At
the lowest level, applications may be directly written in (concurrent) machine dependent
terms, while using the random number generators, statistics combination, termination de
tection, and graphical interface libraries provided by EcJj~. By designing an application
interface that is flexible when necessary, the toolkit enables parallelism transparency while
retaining the ability to handle special requirements.

4.2 Application Program Structure

In the Ecli~ system, an application. consists of a driver or controlling program within which
the primary control structure of the simulation and a few key parameters are described.
The generic driver consists of procedural language control flow statements, declarations for
certain Ecli~ related and application related data structures, and constructs that encapsu
late concurrency and simulation related activities. The generic driver is modeled after the
typical structure of most stochastic simulation applications, Le. repeated sample genera
tion followed by statistics combination and tests for termination such as by using confidence
intervals. To construct a driver, the user modifies a standard template by providing the
names of application specific sample generators, combination and termination routines, and
parameters such as random number stream cycle lengths, computation grainsize, and seed
headers. In several cases, generation of a driver may be accomplished through the use of
an interactive tool supported by Ecli~, although manual editing may be necessary when
an application does not conform closely to the standard template. The driver specification
for a stochastic simulation to perform multidimensional integration using the sample mean
method is shown below:

double alpha, prec, lthresh, uthresh, grainsz, 000

/* Built-in F.cliFti= declarations */
double cur[3], dseed[2], 000

/* Application specific declarations */

9

setoptions(AUTOPROCS, 10,3,0)
1* EcliF"Ek: indicates run time determination of number of processes,

combine every 10 samples, each sample contains 3 values etc. *1
inputdata(FROMFILE, "infile1", "%f %f\n%d %d\n %d" l prec, alpha, ...)

1* EcliF"Ek: specifies file and format for simulation input data *1

inputcontrol(FROMFILE, "infile2", SEEDHEADS, dseed)
1* EcliF"Ek: file with initial seed values for many streams *1

term=O; totsample=O; for (i=0;i<3;i++) cur[i] = 0.0;
1* Application dependent initialization *1

simulate {
samplegen(getintegral(dseed, totsample, cur, ...))

1* EcliF"Ek: specifies sample generator and arguments *1
combine(genericcombine(cur,totsample))

1* EcliF"Ek: specifies statistics combination routine *1
graphics(PLOTSAMPLE, PLOTSAMPLERATE)

1* EcliF"Ek: built-in plot of sample value and generation rate *1
termcheck(confid(cur,left,right, ...))

1* EcliF"Ek: termination check by confidence interval method *1
}

if ((term> 0) && (totsample < uthresh)) {
1* User specified condition *1

report(NORMAL, "Est. of integral = %f variance = %f' ,mean,var) }
1* Report results *1

else {
report(ABNORMAL)

1* Report abnormal termination *1
}

terminate()
1* EcliF"Ek: epilog activities *1

The driver shown above is an example of an Ec1iP~ simulation application at the high
est level of abstraction supported by the toolkit. In the simplest applications, a "central
monitor" model may be used. Here multiple sample generator processes produce simulation
samples or sample paths, while a single monitor process collects and combines them. The
number and location of the multiple sample generators are determined by the system during
the translation process and at execution time, and may optionally be influenced by user
input during either phase.

Several other concurrent models are supported by the Ec1iP~ system. Almost all details
regarding the control structure of the simulation are specified within the driver by using

10

appropriate EcliP~ constructs and/or appropriate arguments to these constructs. Some
examples of the other paradigms supported are:

• Replicated monitor model, where multiple monitors collect statistics and compute
results; this increases fault tolerance for long running simulations.

• Multiple monitor model, where different monitors compute different statistics based
on the same or different sets of samples.

• Minimal distribution model. In this paradigm, Ecli~ provides for minimal functional
decomposition, by permitting a small number of drivers to be specified for one ap
plication, where each driver corresponds to a functionally decomposed portion of the
application. Facilities are provided for interaction and for the exchange of samples and
statistics between functional modules. Each set of functional modules is replicated
and executed concurrently where possible.

Almost all the effort required to use the toolkit is therefore localized to the driver gen
eration phase, which is in itself straightforward. Sample generation routines are supplied
by the user; existing sequential routines may be directly used by adding a single Ecli~

construct. In several cases, Ecli~ provided sample generators may be used, or application
specific generators may be constructed by assembling modules from the toolkit repertory.
Similarly, statistics combination routines, random number generators, and termination de
tection routines may be selected from the toolkit, supplied by the user, or both.

4.3 Translation and Execution

The driver and other source level components of a simulation application are preprocessed
by the translator in a manner dependent upon the targeted execution environment. The ex
ecution environments currently supported are uniprocessors, loosely coupled heterogeneous
networks of scalar machines, distributed memory multiprocessors, and shared memory par
allel machines. During the translation phase, the Ecli~ constructs are converted to re
flect the computing model supported by the target hardware platform, without introducing
machine or operating system specifics. For example, message transmission and reception
abstractions are substituted when the target environment is a loosely coupled network or a
distributed memory multiprocessor. For loosely coupled networks, predefined modules are
incorporated that permit continued execution when processing elements or interconnection
links fail. In addition, environment dependent Ecli~ initialization routines and source code
for certain run-time actions are added. The output of the translation phase consists of a
collection of compile-ready source code files. If desired, options that will take effect during

11

execution may be specified during translation; examples include upper and lower limits on
the number of concurrent processes to be used, the location and formats of simulation input
data, and graphical interface routines for interactive monitoring of the simulation.

The source level outputs of the translation phase are compiled for specific machines
and linked against architecture-dependent, Ecli~ provided, libraries. During this phase,
communication and synchronization abstractions in the preprocessed code are bound to
machine dependent system calls and library routines. Certain other housekeeping functions,
such as shared address space management routines for shared memory multiprocessors, are
also included during the compilation and linking phase. The simulation object code that is
produced may directly be executed. During execution, EcJj~ inputs as well as application
inputs may be necessary, depending upon the options specified in the driver. Examples
of the former are the number of processes to be used, the number of replicated monitors
required, and the grainsize (Le., the number of samples to be generated before statistic
combination is performed). Examples of simulation application input include initial seed
values, and precision and confidence interval ranges.

4.4 Run Time Environment

As explained briefly earlier, concurrency in Ecli~ is achieved primarily by parallel pro
cessing of separate seed streams. The run time routines place multiple sample generator
processes on different processing elements; and samples are routed by Ecli~ libraries to
the appropriate monitor process(es) based upon the model in use. For the functionally
decomposed model, EcJj~ routines set up interaction channels between different functional
modules, as dictated by the distribution structure specified in the driver and other mod
ules. Monitor processes collect statistics, combine samples, and check whether simulation
termination conditions have been met. In addition, auxiliary routines assist in other tasks
such as monitoring load imbalances or processor failures, managing memory and secondary
storage space containing sample values, accepting certain forms of interactive user input,
and displaying graphical information regarding the status of the simulation.

The graphical interface component of the toolkit is a very valuable facility. These
graphics routines provide the ability to monitor a simulation run while in progress, and
based upon this a user may decide to alter the run or provide additional input. EcJjP~

supports several built-in graphics displays, primarily consisting of two-dimensional plots of
sample values, generation rates, convergence behavior, and load balance. These rotuines are
automatically invoked and execute while the simulation is in progress, provided that such
a display option was selected in the driver specification. In addition, EcliP~ constructs are
provided whereby user-written portions of the simulation may periodically feed values to
graphics routines that display the information as the simulation proceeds. At present, only

12

simple plotting facilities are supported, but enhancements are under development. This
facility also permits the user to define conditions under which simulation parameters are
modified at run time based on user input. For example, the application may specify the
need for fresh input if termination is not achieved with one million samples. When this
condition is detected, the system requests interactive user-input for various parameters,
(e.g., a wider confidence interval, additional or fewer processing elements, larger grainsize).

4.5 Status and Ongoing Work

The toolkit has been implemented on a variety of machines including the Intel iPSCj860
and iPSCj2 hypercubes, Sequent shared memory multiprocessors, IBM RIOSj6000 work
stations, Sun servers and workstations, and heterogeneous networks of the above. From our
experiences with these implementations, it appears that porting the toolkit to other archi
tectures will be straightforward. In our experiments as well as during use by others, we
have encountered few difficulties either with the use of Edi~ or its performance and over
heads. Indeed the versatility provided by the system, its ease of use, and good concurrent
performance are significant and valuable for a variety of stochastic simulation applications.

Several aspects of the toolkit however, require further research and development, and
some of these enhancements are ongoing while others are planned for the future. One area
that is only minimally exploited by Ecli~ currently is the semiautomatic generation of the
driver and other parts of the simulation specification. We are working on an interactive
graphical tool that will permit the assembly of a simulation specification with little or
no coding required of the user. Along the same lines, the run-time graphical displays
and interaction environment are being enhanced to permit greater flexibility and generality.
From the simulation viewpoint, our efforts will be concentrated on more natural specification
and development for functionally decomposed distributed simulation.

5 Empirical Results

We report some timing results on a suite of eight simulation experiments which were per
formed using the EcJj~ toolkit. Each of these experiments was independently conducted
in the various execution environments described in the previous subsection, and only makes
use of the simple replication feature of Ecli~. That is, in each experiment it was possible to
fit the entire model on a processor and replicate models across a set of available processors.
In addition, though multiple monitors are allowed by Ec1iPfiJ, a single monitor is used in
these experiments.

Given a model M that is to be executed on an environment with N processors, Ecli~
replicates M on each of the N processors, ensuring that each processor j utilizes a specific

13

random number stream Rj for the replica /0. j that it hosts, for 0 ::; j ::; N - 1. In
general, replica Mj on processor j generates statistics that are independent of statistics
generated on processor k, for j 1=- k, although variations of this random number stream
allocation for the purposes of variance reduction or comparison of multiple alternatives are
allowed. A unique processor, say processor 0, is arbitrarily selected to perform the monitor
function, while each processor j executes replica Mj, for 1 ::; j ::; N - 1. While the monitor
mayor may not execute replica M o, depending on the strategy used, it is the monitor's
responsibility to receive incoming statistical data from the executing processors and pool
these data together to create a single set of statistics. In the following experiments, the
monitor was used solely for the purpose of pooling statistics and not for executing replica
M o, except in the case N = 1, where the monitor was forced to perform both functions.
Since monitoring eliminates one processor from the sampling pool, the speedup obtained
when m processors are used is always bounded from above by m - 1, for 1 < m ::; N.

5.1 Pooling statistics

During its execution, each replica Mj generates a running vector or matrix of statistics
which is application dependent. For example, using regenerative simulation [7] for a network
of J(queues, the vector would contain running estimates of the first and second moments of
the number of customers served and the total waiting time in each regenerative cycle seen
at each queue. At appropriate, user-defined times controlled by a "grainsize" parameter,
the current statistics vector is reported to the monitor, which then proceeds to combine this
data with data already received from other processors. Each time it obtains an estimate,
the monitor calls a user-defined termination procedure, for example a confidence interval
building routine, in order to determine if a termination condition has been met. The
process continues until the termination condition is satisfied, and the monitor terminates
the concurrent simulation.

There are a variety of techniques that can be used by the monitor for combining statis
tics sent from the different executing processors. These techniques are dependent on the
properties of estimators used by the executing model and precisely what one expects of the
estimate constructed by the monitor. For example, one method (e.g., [21]) for constructing
an unbiased estimate is to take an equal number of samples from each processor in con
structing the final estimate. The naive strategy of computing the final estimate using an
arbitrary number of samples from each processor is known to produce a biased estimate.
In the following experiments the monitor pools statistics by combining an equal number
of samples from each processor. It should be clear that this statistic-combining method
can be improved for various models, so that the timings reported here are to some extent
pessimistic; they are determined by the "slowest" processor to complete the estimate that
is used by the monitor to effect termination.

14

A set of at least five parameters is used to control each of the following experiments.
Each model Mj, executing on processor j, is required to compute a minimum of It (lower
threshold) samples before reporting the current estimate vector or matrix to the simulation
monitor. The interval of computation between consecutive reports is controlled by a grain
size parameter called gsize. This parameter controls the overall amount of communication,
usually being assigned large values for models with high sampling rates, and smaller values
for models with low sampling rates. If a user is unable to define an appropriate value of
gsize, Ecli~ is capable of selecting and dynamically adjusting this parameter to control load
on the monitor and optimize performance. A ut (upper threshold) parameter defines an
upper bound on the total number of samples generated before abnormal model termination.
Under normal conditions, the monitor begins to call a user-defined termination routine (or
one of several confidence interval building routines in the EcliP~ library) after each sam
pling process has reported in It samples. and thereafter in multiples of gsize samples. This
enables the monitor to test if a specified termination requirement has been met. In each
of the following experiments model termination is achieved using a (1 - a)% confidence
interval based on the Student t-distribution. The half-width of the interval relative to the
absolute value of the quantity being estimated is controlled by a precision parameter I,
o< 1 < 1, where smaller values of 1 result in larger execution times.

5.2 Interpretation of results

Following a description of each experiment, a pair of tables containing timing information
for the experiment on various architectures and varying numbers of processors is shown.
For each machine environment displayed in the tables, the first row of numbers represents
the time (in cpu seconds) required to execute the model with normal model termination,
and the second row of numbers represents the total number of samples generated. For the
latter, a "k" or an "m" alongside any number denotes sample-size in units of a thousand,
or a million, respectively.

In each of the following experiments timing measurements are made on the monitor,
essentially capturing the amount of time elapsed from the start of the run until termination.
The reported measurements are accurate on the hypercubes, where processors devote all
their attention to the simulation application. On the other architectures, transient system
load (due to other applications) on sampling processors during the simulation increases the
timing measured on the monitor, making our measurements conservative.

The speedup obtained for a given model when using n processors can be computed as
the ratio of the time taken by a single processor and the time taken by n processors to run
the model. When each of EcliP~'s instances executes on a different processor, simulation
speedup will be bounded from above by (n -1), because one processor will have to dedicate
itself to the task of monitoring the simulation experiment. This situation arises, for example,

15

when Ecli~ runs on the hypercubes, but not on the other architectures where the monitor
behaves as just another process. This explains why speedup is roughly unity when n = 2 for
the hypercube based experiments in the tables given below. When n = 1, EcliP~ forces the
single executing instance to perform both functions, that of sampling as well as monitoring
the simulation run.

The first table shown after the description of each experiment exhibits timings on a
128-node Intel i860, where each node supports up to eight Mb of memory, and a 64-node
iPSC/2 with nodes supporting one Mb of memory each. The second table in each experi
ment exhibits timings on an 8-processor Sequent Symmetry (at Purdue University), a local
network of eight IBM RIOS workstations (RIOS LN, at Oak Ridge), a local network of eight
SUN4 workstations (SUN4 LN. at Emory University), and finally a heterogeneous wide-area
network (H\VAN). The machines making up the various sized HWAN configurations are ex
plained in the table, where the notation S(Sun), R(Rios), Q(Sequent), E(Emory University),
P(Purdue University), and O(Oak Ridge National Laboratory) is self-explanatory. Table
(lb) defines defines the makeup of the HWAN environment as the number of processors is
varied.

The timings exhibited for the HWAN experiments deserve some explanation. Depend
ing on the number of processors used, the heterogeneous machines defining the HWAN
environment varied, as mentioned in the previous paragraph. Since the monitor waits for
an equal number of samples from each executing model before computing a new estimate,
slower executing processors are certain to slow down the entire simulation process. These
slower processors either operate at a slower rate (e.g., a processor on the Sequent Symme
try is slower than a SUN4, which in turn is slower than an IBM RIOS processor), or are
loaded with some other application which causes them to report statistics to the monitor
at a delayed pace. This phenomenon is clearly seen, for example, in the second, third, and
fourth columns of each table containing timings for the HWAN configuration.

The timings shown in the tables suggest that there is a discrepancy between speedup
results for some experiments on the two hypercubes (e.g., Experiment 3). This is due to the
fact that either the problem sizes, or some parameter values in the model or the simulation
environment are different when the model is run on the hypercubes. For example, in the
case of Experiment 3, the problem size on the iPSC/2 is smaller than on the i860 (Le., 500
states versus 1000 states), and the grainsize parameter is larger on the iPSC/2 than on
the i860 (Le., 10 samples per combination versus 1 sample per combination). The larger
problem size ensures that there is a much larger variation in the sample generation rate on
the i860 in comparison to the iPSC/2. Using grainsize = Ion the i860 forces every processor
to report each new sample it obtains to the monitor. In combination, these factors increase
communication overhead and effectively reduce the rate at which the monitor operates. For
n ~ 64, the results indicate that the effects are sufficient to limit estimation rate, causing
the speedup for iPSC/860 to drop considerably.

16

Experiment 1: Multidimensional Integration

It is well known that the problem of computing integrals in higher dimensions can
require a tremendous amount of calculation. Monte Carlo methods are known [14] to be
more efficient than analytical techniques when the number of dimensions is beyond seven.

A classical Monte Carlo technique for estimating multidimensional integrals is the sample
mean method. For ease of explanation, we assume the function hex) to be integrated is
bounded and non-negative over domain Rh of vector x in a (d - 1) dimensional space. In
order to estimate

1= r h(x)dx
JRh

(1)

we begin by choosing a density function f(x) defined over Rh. Then I can be expressed as

r [he x)] [h(X)]
1= JR

h
f(x) f(x)dx = E f(X) (2)

where X is a random vector whose density is f('), and E[·] denotes expectation.
A sampling process selects a certain number n of points {xU); 1 ~ j ~ n} randomly

from Rh, according to the density f(·). An estimate i of I is thus obtained as the sample
mean of n observations of h(·), where

i = .!:. t h(xU»)
n j=l f(xU»)

(3)

In this experiment we constructed an estimate of a multi-dimensional integral of an
exponential in the positive quadrant. The performance results for this experiment are
shown in Tables 1a and lb. For all the environments, parameters were fixed at it = 100,
ut = 5 X 106 , gsize = 5000, Q = 10-4 and I = 10-3 •

As explained in the previous subsection, the apparently haphazard timings for the
HWAN experiment are strictly a result of the statistic-combining strategy and the varying
speeds of processors being used in defining the HWAN. Timings will improve dramatically
through an improvement in combining strategy. The haphazard nature of the timings can
be changed to yield numbers which decrease, as the number of processors increases, if
processors are added to the HWAN in order of nondecreasing speeds.

Experiment 2: Order Statistics

In many Monte Carlo studies the random quantities of interest are the extremes of a
sample. One example is the maximum (or minimum) of a set of random variables, such
as in a PERT simulation, where an event is realized only after all preceding activities are

17

Hypercubes

1 2 4 8 16 32 64 128

RX 745 770 275 118 56 27 13 7

27.35m 27.35m 27.42m 27.15m 27.24m 27.17m 27.32m 27.44m

IPSe 12521 12726 4252 1811 851 411 202 NA

27.3m 27.3m 27.5m 27.54m 27.2m 27.32m 27.44m NA

Time/Sample-size for Integral estimation (Intel Hypercubes)
Table (la)

Other

2 3 4 5 6 7 8

SEQUENT 6419 3213 2141 1615 1286 1073 921

27.35m 27.44m 27.15m 27.32m 27.25m 27.32m 27.8m

RIOS LN 531 266 180 138 107 91 79

27.92m 27.35m 27.35m 27.42m 27.28m 27.35m 27.42m

SUN4 LN 1492 783 512 392 346 292 265

27.31m 27.40m 27.36m 27.35m 27.39m 27.8m 27.61m

HWAN 1498 620 2017 1496 1149 962 780

27.34m 27.6m 27.39m 27.2m 27.15m 27.18m 27.24m

2S(E) 2S(E) 2S(E) 2S(E) 3S(E) 4S(E) 4S(E)

+ R(O) + R(O) + 2R(O) + 2R(O) + 2R(O) + 3R(O)

+ Q(P) + Q(P) + Q(P) + Q(P) + Q(P)

Time/Sample-size for Integral estimation (Sequent, Local-Nets, Wide-area Nets)
Table (lb)

18

Hypercubes

1 2 4 8 16 32 64 128

RX 462 465 189 81 39 19 10 4

1.72m 1.72m 1.75m 1.79m 1.72m 1.79m 1.66m 1.52m

IPSC 6797 6841 2844 1226 565 296 153 NA

1.72m 1.72m 1.75m 1.73m 1.72m 1.79m 1.05m NA

Time/Sample-size for Order-statistic estimation (Intel Hypercubes)
Table (2a)

complete. In this experiment, we use a selective inversion technique to generate samples and
estimate the expected value of the maximum ofa set of independent, possibly non-identically
distributed random variables.

Let Xi be a random variable with cumulative distribution function (cdf) Fi(')' 1 ::; i ::;
m, and assume that the Xi'S are independent. We are interested in obtaining

(4)

which is the expected value of the maximum order statistic of this set of random variables.
In general, computing E[MJ analytically is a difficult proposition indeed for large m. A
simple Monte Carlo approach to obtaining an estimate E[MJ of E[MJ would be to repeatedly
generate samples xlj

), •• • , xW of the random variables XI, ... , X m , for each j, up to some
number n > O. Our required estimated would be given by

" 1 2:n (")E[MJ = - x J
n" max

J=1

(5)

where x~lx = max{xlj
) , ••• ,xW}. The direct approach to obtaining x~x is an Oem) oper

ation, with m steps required for generating the quantities xP), .. .,xW, and some number
of steps required for finding the maximum.

In this experiment, we use a technique developed by Schmeiser [45J to generate values

of x~~lx at a cost less than Oem). Assuming that the values of the Xi'S are generated using
the inverse transformation technique

19

Other

2 3 4 5 6 7 8

SEQUENT 5165 2614 1796 1342 1104 895 792

1.72m 1.73m 1.74m l.73m 1.74m 1.73m 1.79m

RIOS LN 475 249 168 130 110 94 82

l.71m 1.73m 1.78m 1.74m 1.73m 1.73m 1.74m

SUN4 LN 1331 685 472 346 295 247 210

1.74m 1.76m 1.75m 1.78m l.74m 1.74m 1.73m

HWAN 1342 684 1822 1239 982 798 693

l.73m 1.73m 1.74m l.73m 1.75m 1.74m l.73m

Time/Sample-size for Order-statistic estimation (Sequent, LNs, HWANs)
Table (2b)

(6)

where u is a uniform (0,1) random value (as is the case for the Weibull, Poisson, binomial,
geometric, and arbitrary histograms [13]), Schmeiser's method requires partitioning the

(0,1) interval into m pieces. For each j, the quantity x~x is obtained by generating only

those x~j), 1 S; i S; m, that are likely to be candidates for x~. In this way significant
savings in computational effort can be had, especially for large m.

In this experiment we estimate the expected value of the maximum of a set of m

Weibull random variables, for m = 20. Increasing m increases the timings but improves
the speedups. The performance results for this experiment are shown in Tables 2a and 2b.
Except for gsize, parameters for all environments were fixed at it = 100, ut = 3 X 106,

a = 10-4 , and 'Y = 10-3 • For the i860 and RIOS environments, gsize = 6000, while for the
others, gsize = 5000.

Experiment 3: Hitting-Times in Markov chains

Markov chains are known to be useful in a variety of modeling contexts, such as the
analysis of algorithms [40], system reliability [47], queueing applications [34] and Monte

20

Hypercubes

8 I 16 I 32 I 64 I 128 I421

RX 2407 2486 1001 553 290 150 91 57

1000x 1000 4224 4224 4263 4295 4301 4278 4215 4191

IPSC 270 277 93 41 22 14 6 NA

500x500 4490 4490 4410 4410 4500 4650 4580 NA

Time/Sample-size for Hitting-time estimation (Intel Hypercubes)
Table (3a)

Carlo based optimization [44J. In this experiment, we focus on a discrete time Markov
chain {Ym ; m 2: O} operating on a finite state space S = {O, 1,2,3, ... ,k}.

Let {Ym ; m 2: O} make time-homogeneous transitions according to a given transition
probability matrix P = [Pi,i]. For a subset of states A C S, the first hitting time TA is
defined as

TA = min{j 2: 0; Yj E A} (7)

UsingEr (·) to denote expectation conditional on Yo = T, assuming a positive recurrent
chain means Er(TA) < 00, and the expected hitting-times can be determined by solving a
system

(8)

for fixed A C S. An alternate view of the random variable TA' known as a phase-type
random variable [34J, is as the time to absorption in a Markov chain. If the states in A are
all lumped together into a single absorbing state, then Er(TA) becomes the expected time to
absorption for the chain, given the initial state is Yo = T. In either case, obtaining Er(TA)
requires the inversion of the matrix (I - Q), where Q is a special submatrix of P. Clearly,
when k is large (say of the order of 103 or 106), obtaining the fundamental matrix (1- Q)-l
of Q is computationally prohibitive via direct computation. Alternatively, using T as the
initial state for the chain {Ym }, we can simulate a sequence of independent realizations
Yl, Y2,·· ., Yn of the hitting-time. That is, Yi is defined as the number of steps required to

21

Other

2 3 4 5 6 7 8

SEQUENT 239 132 95 69 55 45 39

500x500 4490 4330 4510 4420 4350 4290 4460

RIOS LN 5910 3392 2315 1715 1388 1371 1146

1000x 1000 4360 4240 4140 4190 4230 4360 4330

SUN4 LN 53 27 19 14 11 9 8

500x500 4420 4350 4380 4410 4510 4420 4530

HWAN 56 32 78 55 48 36 29

500x500 4420 4490 4500 4320 4350 4300 4410

Time/Sample-size for Hitting-time estimation (Sequent, LNs, HWANs)
Table (3b)

take the chain from state r to the set A on the jth attempt. In this way, we can construct
the estimate

(9)

of the expected hitting-time Er(TA)'
In this experiment we estimate the expected hitting-time of a Markov chain with k + 1

states, where k = 1000 for the i860 and RIOS environments, and k = 500 for the others. In
each case the Markov chain was started in state k, and forced to terminate in absorbing state
O. Both situations required roughly 4200 samples for model termination. The performance
results for this experiment are shown Tables 3a and 3b. For the i860 and RIOS environments,
lt = 30, ut = 105

, gsize = 1, a = 10-3
, and I = 0.05. For the others, lt = 50, ut = 105 ,

gsize = 10, a = 10-3 , and I = 0.05.

Experiment 4: Dijkstra's Self-Stabilization Algorithm

Distributed algorithms are known to pose formidable problems to analysts interested in
measuring algorithmic complexity, in particular, average complexity [22]. These analytic
difficulties stem largely from multidimensionality and related enumeration problems. A

22

good example of a distributed algorithm whose average run-time complexity can be hard
to measure is the J(-state algorithm of Dijkstra [10].

The J(-state algorithm is one of several algorithms developed by Dijkstra [10] for effect
ing a self-stabilization mechanism for M processors on a unidirectional ring. Each processor
j, 1 ::; j ::; M, initially possesses a label £(j), 1 ::; £(j) ::; J(, with J(> M. We take
processor 1, called the END-processor, to be a unique processor which functions differently
from the others when executing the algorithm.

Assuming that messages travel from lower numbered processors to higher numbered ones
(and from processor M to the END-processor), each processor j examines label information
it receives from its upstream neighbor and accordingly updates a local boolean variable f(j),
1 ::; j ::; M. For the END-processor,

£(1) = £(M) => f(l) = 1

£(1) i= £(M) => f(l) = 0

and for each processor j, 2 ::; j ::; M,

£(j) = £(j - 1) => f(j) = 0

£(j) i= £(j - 1) => f(j) = 1

(10)

(11)

(12)

so that at any given instant, the boolean count is given by

M

C = Lf(j)
i=l

where 0 < c ::; M. If c > 1, the distributed system is said to be in an unstable state.
Whenever the system enters an unstable state, the J(-state algorithm brings the system
back into a stable state by defining asynchronous processor actions as follows. For the
END-processor,

if (f(1) = 1) then £(1) = £(1) mod J(+ 1

and for each processor j, 2 ::; j ::; M,

if (f(j) = 1) then £(j) = £(j - 1)

(13)

(14)

It is easy to see that when c = 1, the system continues to operate in the stable state in
definitely. However, should some erroneous condition arise (e.g., message error or processor
malfunction) the J(-state algorithm takes over immediately to bring the system back into

23

Hypercubes

1 2 4 8~
RX 635 639 216 99 42 21 10 5

840 840 840 882 830 804 756 762

IPSC 9830 9835 3286 1477 646 321 157 NA

850 850 860 842 882 810 844 NA

Time/Sample-size for Dijkstra's algorithm (Intel Hypercubes)
Table (4a)

a stable state. Our interest is in determining the average number of steps required for
self-stabilization as a function of](and M, given an initial boolean count of c > 1.

In this experiment we estimate the expected run-time of Dijkstra's](-state algorithm
for a system with M = 1000 processors and](= 6000. The algorithm is made to reduce
the boolean count c, initially set at c = 100, to c = 1. The performance results for this
experiment are shown in Tables 4a and 4b. For all the environments, the parameters were
fixed at it = 4, ut = 106 , gsize = 2, a = 0.05, and 'Y = 0.01.

Experiment 5: Estimating Unknowns in a Linear System

There are a variety of deterministic methods for solving systems of the form

Ax= b (15)

where A is a given order n matrix, and b is a given order n vector. Considerable attention
has been given to extending these methods for efficient execution in multiprocessor envi
ronments (e.g., [20]). From the viewpoint of analysts interested in solving very large, dense
systems, these deterministic methods all suffer from an inherent drawback in that there is a
limit to the extent of possible decoupling between subtasks in their algorithms. As a result,
communication between subtasks executing on different processors is required. This tends
to limit speedup as the number N of available processors increases. Another disadvan
tage of deterministic methods is the intricate pattern of communication and computation
which must be maintained between processors, thus entailing a high degree of complexity
in programming.

In principle, it is always possible [43] to put (15) in the form

24

Other

2 3 4 5 6 7 8

SEQUENT 18376 9215 6164 4622 3773 3086 2633

890 890 872 844 858 878 898

RIOS LN 3853 1967 1297 998 807 763 703

850 850 840 880 848 880 890

SUN4 LN 10788 5527 3709 2753 2291 2136 1996

882 844 820 840 844 842 840

HWAN 10794 4368 14829 10495 7652 7028 5869

820 842 844 836 842 840 850

Time/Sample-size for Dijkstra's algorithm (Sequent, LNs, HWANs)
Table (4b)

x =Cx+ b

where C= I - A and IICII < 1. Here we take II . II to be

n

IICII = m~x L Icijl
I j=l

(16)

(17)

In accordance with stationary linear iterative schemes for solving (15), assuming that x(O) ==
o and CO == I, it can be shown [23] that

and in the limit

k

x(k+l) = L CTb
T=O

lim x(k) = (I - C)-lb = A-1b = x
k_=

(18)

(19)

for A nonsingular. In order to estimate [CTb]i, which is the ith-component of the vector
CTb, we proceed as follows. We choose numbers Pij and Zij, Pij ~ 0, Lj Pij = 1, such that

25

Hypercubes

1 2 4 8 16 32 64 128

RX 209 212 72 31 14 8 4 2

1000x1000 282k 28l.2k 280.0k 28l.2k 286.7k 285.0k 285.7k 284.5k

IPSe 572 193 82 36 19 10 5 NA

500x500 76.1k 76.2k 75.2k 78.4k 77.5k 76.1k 76.4k NA

Time/Sample-size for Linear System estimation (Intel Hypercubes)
Table (5a)

Cij = ZijPij, 1 ~ -i,j ~ n. That is, [Pij] is taken to be the transition probability matrix
of a Markov chain {Xm ; m 2: O} such that the random variable X = ZXO,Xl • ZXl,X2 ••••••

zXr_l,Xr • bxr possesses the property

(20)

The conditional expectation in (20) is obtained by simulating realizations of sample paths
of length r in the chain {Xm }. Since sample paths oflength r are contained within sample
paths of length k, for 0 ~ r ~ k, it is clear that the ith component of x(k+l) in (18) can
be computed via (20) and sample paths of length k. Details of such a computation can
be found, for example, in [43]. In order to compute all the components of x(k+l) in (18)
simultaneously, we proceed as follows. Let S = {I, 2, ... , n} and H j = {Xo, Xl> ... , Xj} for
j 2: O. Defining

T = min{jlS n Hj = S} (21)

to be the covering time of chain {Xm }, we sample realizations of length (T +k) with initial
state Xo chosen randomly from S. Given that {Xm } is ergodic, E[T] < 00 almost surely,
and paths of length k are constructed from a single path of length (T +k) for each state in
S.

In this experiment we estimate the value of unknown XIOO in an order n system, where
n = 1000 for the i860 and RIGS environments, and n = 500 for the others. In both cases, the
length of the covering path was set at k = 30. The performance results for this experiment
are shown in Tables 5a and 5b. For the i860 and RIGS environments, parameters were set
at it = 1000, ut = 106 , gsize = 250, and a = I = 0.01. For the others, parameters were

26

Other

2 3 4 5 6 7 8

SEQUENT 880 451 298 219 178 151 128

500x500 76.2k 77.4k 77.2k 77.4k 76.8k 78.1k 76.4k

RIOS LN 223 114 79 60 46 37 35

1000x 1000 76.4k 77.2k 77.2k 76.8k 77.4k 78.2k 78.2k

SUN4 LN 622 314 170 158 125 109 91

500x500 77.4k 76.8k 76.6k 77.0k 77.0k 76.4k 78.0k

HWAN 625 249 663 603 390 341 262

500x500 77.4k 77.2k 77.8k 77.2k 77.2k 77.4k 77.0k

Time/Sample-size for Linear System estimation (Sequent, LNs, HWANs)
Table (5b)

set at lt = 1000, ut = 106
, gsize = 100, and a = , = 0.01. It is remarkable that one can

estimate at least one unknown of an order 1000 system, to within three to four decimal
places of accuracy, within two cpu seconds on an i860.

Experiment 6: Tail Probabilities in Queues

Queuing systems are known to be useful in modeling computer and communication
systems [34]. However, as is often the case with random phenomena, obtaining information
concerning transient or rare behavior in queues is a subject of considerable difficulty. While
these phenomena present themselves in a variety of queueing systems, for convenience we
will focus our attention on single server queues.

Consider a single server queue where customers are served in the order of their arrival,
and interarrival times and service times are arbitrarily distributed random variables. Let
{L m ; m ~ O} be the discrete process representing the queue size at customer departure
instants. The stochastic equation governing successive queue sizes at departure instants is
given by

(22)

where L m is the number of customers queued at the mth departure and A m+1 is the number
of arrivals during the service time of the (m + l)st customer. Assuming a stable system,

27

we are interested in estimating the probability P[L > k], where L is the stationary queue
length random variable and k is some nonnegative integer. Clearly, the events {Lm > k}
are rare events for sufficiently large k, and thus tend to make such simulations expensive.

There has been considerable interest in techniques for speeding up the estimation of
P[L > k] using large deviations and importance sampling via an optimal change of measure.
These attempts have been successful (e.g., see [37]) for the M/M/1 queue, open Jackson
networks, and the GI/GI/1 queue. While these techniques are undoubtedly useful and
important, in the absence of a general enough framework that handles various systems,
there will always be a strong motivation for using direct Monte Carlo methods and parallel
simulation for obtaining information about rare events.

A good example of a queueing system that does not succumb easily to the change
of measure techniques described above, is the GI/SM/1 queue, a variation of the M/SM/1
queue introduced by Neuts [35]. While customer interarrival times remain a renewal process,
each customer is one of several, say N, types. A customer of type j is followed by a customer
of type i with probability Pij, so that a matrix [pij] is required to describe how arrivals of
different types occur, 1 :S i,j :S N. Upon receiving service, a customer of type i requires a
service time depending on his type, 1 :S i :S N.

A straightforward regenerative simulation approach to obtaining an estimate of P[L > k]
would be as follows. We simulate a sequence {em} of regenerative cycles, where each
regenerative cycle (see [7]) is a busy period plus the following idle period, for m 2: O. Using
IEml to denote the amount of time the queue size exceeds k in the mth regenerative cycle,
we take

P[L> k]

to be an unbiased estimator of P[L
condition.

2::j=1I Ej!/r
2::j=1ICjl/r

> k] for an r that satisfies

(23)

the desired termination

In this experiment we estimate the queue tail probability for an GI/SM/1 queue with
ten customer types, with k = 64 for the Intel i860 and RIOS experiments, and k = 32 for
the others. The performance results for this experiment are shown in Tables 6a and 6b.
For the i860 and RIOS environments, it = 4000, ut = 50 X 106 , gsize = 500, Q = 0.05, and
1=0.075. For the others, it = 2000, ut = 50 X 106 , gsize = 100, Q = 0.05, and, = 0.075.

Experiment 7: Simulating Unified Mutant Execution on SIMD Machines

Program unification has recently been recognized as a viable technique for obtaining
speedup across program execution [42]. Clearly, a program that vectorizes poorly cannot
exploit the functional units of a vector machine (e.g., Alliant FX/80, Cray Y /MP). If
such a program is required to be executed on several data sets (e.g., computing an integral

28

Hypercubes

1 2 4 8 16 32 64 128

RX 4492 4560 1499 659 308 151 76 38

tail-size = 64 1.059m 1.059m 1.056m 1.054m 1.057m 1.062m 1.095m 1.071m

IPSe 3314 3337 1142 479 236 124 69 NA

tail-size = 32 137.2k 137.2k 139.6k 134.2k 139.6k 136.8k 138.2k NA

Time/Sample-size for tail probability estimation (Intel Hypercubes)
Table (6a)

Other

2 3 4 5 6 7 8

SEQUENT 6167 3096 2104 1563 1249 1052 894

tail-size = 32 137.6k 139.2k 138.6k 139.6k 138.4k 137.8k 138.4k

RIOS LN 15788 7899 5275 3956 3219 2834 2358

tail-size = 64 1.055m 1.059m l.056m 1.054m 1.057m 1.062m 1.095m

SUN4 LN 3620 1842 1222 921 746 634 560

tail-size = 32 136.2k 137.4k 137.2k 138.4k 136.4k 139.2k 140.2k

HWAN 3626 1455 4462 3469 2479 2094 1575

tail-size = 32 136.2k 137.8k 138.4k 138.4k 139.2k 137.4k 137.8k

Time/Sample-size for tail probability estimation (Sequent, LNs, HWANs)
Table (6b)

29

(START)

0.7

0.8

Figure 1: Flow graph of a five-node program

(END)

numerically for several values of a parameter), it is possible to create a single program which,
when executed, will realize all possible executions of the original program on the different
data sets. Such a unified program is obtained through an elementary transformation process
[42] and can be shown to be highly vectorizable.

Consider the flow graph shown in Figure 1 representing a simple five-node program P. If
each program block is viewed as an urn, and each arc (with associated probability) represents
a possible execution path, then one can mentally simulate this program's execution by
imagining a single ball, originally placed in Urn 1, moving through the flow graph randomly,
until it finally reaches Urn 5 and terminates.

Unification may easily explained through the above urn model. Instead of working with
a single ball, one thinks of N balls initially in Urn 1 (where each ball represents a program
working on its own data set). Due to vectorization, the amount of time spent by m balls
in any urn is less than m times the amount of time spent by a single ball in any urn, for
1 < m ::; N. The savings to be had by executing m identical program blocks together
increases with m, though with diminishing returns. Nevertheless, the savings are sufficient
to yield speedup, and this is the key idea behind program unification.

The N balls are made to move randomly through the program graph. The intention is
to get all N balls into urn 5 and to completion as fast as possible. Since different balls may
traverse different paths, actively reflecting program paths determined by different data, it
becomes necessary to choose a specific urn (for a vector uniprocessor) or set of urns (for

30

Hypercubes

1 2 4 8 16 32 64 128

RX 31216 31814 10410 4512 2394 1169 616 330

30.15k 30.15k 30.09k 30.26k 30.35k 30.60k 30.75k 30.90k

IPSC 11142 11214 3842 1946 885 496 297 NA

2690 2690 2660 2690 2730 2710 2820 NA

Time/Sample-size for SIMD Testing experiment (Intel Hypercubes)
Table (7a)

a vector multiprocessor) to move balls from at each step. This is precisely a scheduling
problem. If we choose to throw those balls currently in some urn, say Urn j, then the
vector uniprocessor being modelled currently executes those program components of the
unified program which are residing in block j of the original program.

The unification idea can be extended to enhance the execution of so called program
mutants in software testing, as proposed in [32]. Mutation analysis [5] is a fault based
testing technique which creates program mutants Pl through PN of a given program P,
via an application of mutant operators [30]; each of these mutants is syntactically different
from P. In brief, if a set of test cases can distinguish these mutants from P, and if P works
correctly on these test cases, it is assumed that P is reliable.

The N mutants are programs almost identical to one another except for a small seg
ment of (mutated) code in each which differentiates them from P. Certain computational
problems arise in executing these mutants against given test cases. Due to the tendency of
mutants to execute almost identical paths when fed identical test data, it was found that
a simple variant of the unification idea described above performs favorably for achieving
efficient mutant execution on SIMD machines. Details of the technique are beyond the
scope of this paper and can be found in [31, 32].

In this experiment we simulate the execution of the mutant-unification algorithm on
an SIMD machine. The operation of a fourteen block text-formatting program (see [32]) is
simulated via the urn model, with number of balls ranging from 32 to 128, in steps of 32 (and
hence each simulation experiment is made up of four sub-simulations). This experiment was
considerably time-consuming, requiring more than eight and a half hours of cpu time on
a single processor of the i860. In contrast, using all 128 processors of the i860, the entire
simulation took only 5.5 minutes. The performance results for this experiment are shown in

31

Other

2 3 4 5 6 7 8

SEQUENT 13828 7285 4284 3546 2796 2364 1985

2690 2710 2730 2690 2720 2690 2720

RIOS LN 30496 15327 10365 7826 6120 5165 4367

30.09k 30.15k 30.70k 31.00k 30.20k 30.15k 30.09k

SUN4 LN 8118 4379 2887 2122 1705 1609 1364

2690 2710 2660 2680 2720 2690 2690

HWAN 8240 3461 10145 8105 5596 5127 4451

2690 2720 2660 2720 2690 2690 2700

Time/Sample-size for SIMD Testing experiment (Sequent, LNs, HWANs)
Table (7b)

Tables 7a and 7b. For the i860 and RIOS environments, parameters were fixed at lt = 30,
ut = 106 , gsize = 10, a = 0.01, and ,= 0.01. For the others, lt = 30, ut = 106 , gsize = 10,
a =0.04, and I =0.05.

Experiment 8: Simulating an FDDI Token Ring Network

The Fiber Distributed Data Interface (FDDI) token ring [11] is, in essence, a token ring
[6, 27] with a key additional parameter known as the target token rotation time (TTRT)
which is a constant for the ring. Viewed as a queueing system, the FDDI ring is a multiqueue
with a single cyclic server. While the token ring allows queues to have a service discipline
that is independent of the token's cycle time [6], the FDDI ring requires that the token
spend only a limited amount of time at a station. The FDDI ring has a built-in priority
mechanism that handles two types of traffic, the high-priority synchronous traffic, and the
low priority asynchronous traffic with up to eight priority levels in the latter. Through use
of the TTRT, the FDDI medium access control protocol limits the number of data frames
transmitted by a station on any cycle in order to guarantee service to synchronous traffic
at stations.

The operation of the protocol is brieflY described as follows. The station in possession
of the unique token is allowed to transmit data frames for a certain amount of time which
depends on network parameters. During its transmission, other stations merely forward

32

incoming frames downstream. The sending station finally removes its returning frames
from the ring and passes the token on, immediately after its last frame has been sent, to
the next station on the ring where the process just described is repeated if the station
has frames to transmit. During ring initialization stations negotiate a satisfactory common
TTRT value. The TTRT is defined to be the maximum average cycle-time of the token.
It is known [24] that the maximum cycle-time of the token is bounded from above by twice
the TTRT value; stations with stringent cycle-time requirements can negotiate accordingly.
The TTRT decided upon finally is the smallest TTRT value requested by a negotiating
station.

Each station utilizes a local timer, called a token-rotation timer (TRT), to measure the
time between consecutive visits of the token. On each visit of the token, the TRT is reset
so as to measure the next cycle-time of the token. Each time that a station determines that
the token is late, which is the case if it finds TRT > TTRT, it computes the amount of
time by which the token is late and adds this amount to its next TRT so as to accumulate
the effects of late token arrivals.

On each visit of the token, a station may transmit an amount of synchronous traffic
limited to some predetermined fraction of the bandwidth, where this fraction is obtained
from the station management entity. Following this, each station utilizes another local
timer, called a token-holding timer (THT) to control the amount of time allocated to the
transmission of asynchronous frames. Each of the eight classes of asynchronous traffic is
allocated a certain amount of transmission time. The THT, which is initially loaded with
the value of (TTRT - TRT) when the token is early, is decremented appropriately as each
priority class consumes its share of transmission time. When its THT expires, a station
passes the token on to the next station on the ring. If the token arrives at a station late,
the station merely transmits its synchronous traffic and relinquishes the token.

In this experiment we use regenerative methods to simulate an FDDI token ring with
five-hundred nodes on the i860 and RIDS environments, and fifty nodes on the other envi
ronments. The simulation model measures message queueing delay at each station. Once
again, parameters were set so that the resulting simulation was time-consuming. The per
formance results for this experiment are shown in Tables 8a and 8b. For the i860 and RIDS
environments, parameters were fixed at It = 10, ut = 105

, gsize = 10, a = 0.01, and
, = 0.01. For the others It = 10, ut = 105 , gsize = 10, a = 0.01, and, = 0.025.

33

Hypercubes

1 2 4 8 I 16 I 32 I 64 I 128 I

Other

RX 35006 35210 12240 5346 2510 1280 630 332

31.8k 31.8k 32.8k 31.8k 31.6k 32.2k 32.2k 32.4k

IPSe 32400 32410 10814 4620 2082 1066 586 NA

28.5k 28.5k 28.2k 26.6k 27.2k 28.2k 28.0k NA

Time/Sample-size for FDDI Token Ring (Intel Hypercubes)
Table (Sa)

2 3 4 5 6 7 8

SEQUENT 43416 22843 14566 10963 8684 7327 6200

28.4k 28.2k 28.2k 27.8k· 28.2k 28.0k 27.2k

RIOS LN 34325 17240 12224 8590 6990 5810 5010

32.4k 31.8k 31.8k 31.8k 32.2k 31.8k 32.4k

SUN4 LN 36520 19100 12200 9310 7386 6112 5210

28.4k 28.4k 28.2k 28.2k 26.5k 27.4k 27.2k

HWAN 35640 19800 39680 36100 26590 21200 18450

28.1k 28.4k 28.4k 28.2k 28.4k 28.2k 28.4k

Time/Sample-size for FDDI Token Ring (Sequent, LNs, HWANs)
Table (Sb)

34

6 Conclusion

Our initial experiences with the EcliP~ toolkit have been more than satisfactory. We find it
amply rewarding to be able to take a simulation program written for a sequential machine
and execute it, with the help of the toolkit, on a multiprocessor environment. The resulting
execution time is usually a small fraction of the model's execution time on a uniprocessor.
For example, the five-hundred station FDDI token ring simulation (Experiment 8) required
roughly 9.7 hours on a single processor, and as little as 5.5 minutes using all 128 processors
of an Intel i860 hypercube.

Let us conclude by saying that the data-parallel programming paradigm for concurrent
simulation has demonstrated potential benefits and related problems that are worthy of
detailed investigation. These investigations could involve schemes for improving speedup in
situations where sampling times are highly variable (e.g., Hitting-times in Markov chains),
methods for adding/deleting processors when necessary, improving fault-tolerance of long
running simulations, methods for constructing efficient estimators, techniques for efficient
minimal functional decomposition of large models, etc. It is hoped that our research in this
direction will stimulate further work, to make careful but compute-intensive simulating a
routine part of an experimental scientist's repertoire.

Acknowledgement

The authors are indebted to Aditya P. Mathur, poet, composer, friend, and teacher,
for providing the motivating ideas and encouragement for this work, and without whose
most recently acquired penchant for typesetting, we may have forever been lost in the
austere world of fonts. We are also grateful to Mike Heath for his continued support and
encouragement.

35

References

[1] Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines, John Wiley
and Sons, 1989.

[2] Bell, G., "The Future of High Performance Computers in Science and Engineering,"
CACM, Vol. 32, No.9, pp. 1091-1101, September, 1989.

[3] Bhavsar, V., and Isaac, J., "Design and Analysis of Parallel Monte Carlo Algorithms,"
SIAM J. Sci. Stat. Comput., Vol. 8, No.1, pp. 73-95, 1987.

[4] Biles, W., Daniels, D., and O'Donnell, T., "Statistical considerations in simulation on
a network of microcomputers," Proceedings of the 1985 Winter Simulation Conference,
pp. 388-393, December 1985.

[5] Budd, T. A., Mutation Analysis of Program Test Data, Ph.D. Thesis, Yale University,
New Haven, CT, 1980.

[6] Bux, W., "Local Area Subnetworks: A Performance Comparison," IEEE Transactions
on Communications, Vol. 29, No, 10, pp. 1465-1473, October 1981.

[7] Crane, M., and Iglehart, D., "Simulating Stable Stochastic Systems, III: Regenerative
processes and discrete event simulations," Operations Research, Vol. 23, pp. 33-45,
1975.

[8] Chamberlain, R., and Franklin, M., "Hierarchical discrete-event simulation on Hyper
cube Architectures," IEEE Micro, pp.l0-20, August 1990.

[9] Cross, G., and Jain, A., "Markov random field texture models," IEEE Trans. PAMI-5,
pp. 25-39, 1983.

[10] Dijkstra, E., W., "Self-stabilizing systems in spite of distributed control," CACM, Vol.
17, No.11, pp. 643-644, 1974.

[11] Dykeman, D., and Bux, W., "An investigation of the FDDI media-access control pro
tocol," Proceedings of the Fifth European Fibre Optic Communications and Local Area
Networks Exposition, June 3-5, 1987.

[12] Feynman, R., and Hibbs, R., Quantum Mechanics and Path Integrals, McGraw-Hill,
N.Y., 1965.

[13] Fishman, G., Concepts and Methods in Discrete Digital Simulation, Wiley, New York,
1973.

36

[14] Fok, D. S., and Crevier, D., "Volume Estimation by Monte Carlo Methods," Journal
of Statistical Computation and Simulation, Vol. 31, pp. 223-235, 1989.

[15] Fox, G., "Parallel computing comes of age: supercomputer level parallel computations
at Caltech," Concurrency: Practice and Experience, Vol. 1, No.1, pp. 63-103, 1989.

[16] Fox, G., and Messina, P., "Report for 1988 on the Caltech Concurrent Computation
program", Annual Report C3P-685, California Inst. of Technology, Dec. 1988.

[17] Fujimoto, R., "Parallel Discrete Event Simulation," CACM, Vol. 33, No. 10, pp.30-53,
October 1990.

[18] Gay, J. et aI, "Component Placement in VLSI Circuits Using a Constant-Pressure
Monte Carlo Method," Integration, the VLSI Journal, No.3, pp. 271-282, 1985.

[19] Goldberg, D., Genetic Algorithms, Addison Wesley, 1989.

[20] Heath, M. T., Ng, E., and Peyton, B. W., "Parallel algorithms for sparse linear sys
terns", SIAM Review, Vol. 33, to appear, 1991.

[21] Heidelberger, P., "Discrete Event Simulations and Parallel Processing: Statistical Prop-
erties," SIAM J. Statist. Comput., Vol. 9, No.6, pp. 1114-1132, 1988.

[22] Hofri, M., Probabilistic Analysis of Algorithms, Springer-Verlag, 1987.

[23] Householder, A., S., Principles of Numerical Analysis, McGraw-Hill, New York, 1953.

[24] Johnson, M. J., "Proof that Timing Requirements of the FDDI Token Ring Protocol
are Satisfied," TR 85.8, RIACS, NASA Ames Research Center, August 1985.

[25] Kalos, M., and Whitlock, P., Monte Carlo Methods, Wiley, N. Y., 1986.

[26] Kirkpatrick, S., Gelatt, C., and Vecchi, M., "Optimization by Simulated Annealing,"
Science, No. 220, pp. 671-680, 1983.

[27] Kuehn, P. J., "Multiqueue Systems with Nonexhaustive Cyclic Service," Bell Systems
Technical Journal, Vol. 58, No.3, pp. 671-698, March 1979.

[28] Lubachevsky, B., "Efficient distributed event-driven simulations of multiple-loop net
works," CACM, Vol. 32, pp. 111-123, January 1989.

[29] MacDougall, M., Simulating Computer Systems, MIT Press, 1987.

[30] Mathur, A. P., et aI, "Design of Mutant Operators for the C Programming Language,"
SERC-TR-41-P, Purdue university, 1989.

37

[31] Mathur, A. P., Krauser, E., and Rego, V., "Mutant Unification: A New Method for
Mutation Testing On SIMD machines," Proceedings of the International Conference on
Software Engineering, Toulouse, France, December 3-7, 1990.

[32] Mathur, A. P., Krauser, E., and Rego, V., "High Performance Software Testing on
SIMD Machines," IEEE Transactions in Software Engineering, to appear, 1991.

[33] Meier, D. et ai, "A general framework for complex time-driven simulations on hyper
cubes," Caltech TR C3P-71, CIT, March 1989.

[34] Neuts, M. F., Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Ap
proach, The Johns Hopkins University Press, 1981.

[35] Neuts, M. F., "Some explicit formulas for the steady-state behavior of the queue with
semi-Markovian service times," Adv. Appl. Prob., Vol. 9, pp. 141-157, 1977.

[36] Pearl, J., Probabilistic Reasoning In Intelligent Systems, Morgan Kaufmann, 1988.

[37] Parekh, S. and Walrand, J., "A Quick Simulation Method for Excessive Backlogs in
Networks of Queues," IEEE Trans. on A utomatic Control, Vol. 34, No.1, pp. 54-66,
January 1989.

[38] Reed, D., et al, "Parallel Discrete Event Simulation: A Shared Memory Approach,"
Proc. SIGMETRICS, pp. 36-38, 1987.

[39] Reed, D., et al, "Parallel Discrete Event Simulation Using Shared Memory," IEEE
TSE, Vol. 14, No.4, pp. 541-553, 1988.

[40] Rego, V., "A Band and Bound Technique for Simple Random Algorithms," Probability
in the Engineering and Information Sciences, Vol. 4, pp. 333-344, 1990.

[41] Rego, V., Chuang, 1., and Mathur, A. P., "Concurent Stochastic Simulations: Experi
ments with Unification," Proc. Fifth Canadian Supercomputing Symposium, June 3-5,
Fredericton, N.B., Canada, 1991.

[42] Rego, V., and Mathur, A. P., "Exploiting Parallelism Across Program Execution:
A Unification Technique and Its Analysis," IEEE Transactions on Parallel and Dis
tributed Systems, Vol. 1, No.4, pp. 399-414, October 1990.

[43] Ripley, B., Stochastic Simulation, Wiley, N.Y., 1987.

[44] Rubinstein, R., Simulation and the Monte Carlo Method, Wiley, N.Y., 1981.

38

[45] Schmeiser, B., "Generation of the Maximum (Minimum) Value in Digital Computer
Simulation," J. Statist. Comput. Simul., Vol. 8, pp. 103-115, 1978.

[46] Sunderam, V., and Rego, V., "Ecli~: A System for High Performance Concurrent
Simulation," to appear in Software Practice and Experience, 1991.

[47] Trivedi, K. S., Probability and Statistics with Reliability, Queueing, and Computer
Science Applications, Prentice-Hall, 1982.

[48] Wagner, D., and Lazowska, E., "Parallel Simulation of Queueing Networks: Limitations
and Potentials," Proceedings of ACM SigmetricsjPerformance '89, pp. 146-155, May
1989.

[49] Wallquist, A. et al ,"Exploiting Physical Parallelism Using Supercomputers: Two
Examples from Chemical Physics," IEEE Computer, Vol. 2, No.5, pp. 9-21,1987.

39

	Experiments in Concurrent Stochastic Simulation: The EcliPSe Paradigm
	Report Number:
	

	tmp.1307986960.pdf.sGkcn

