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Abstract

In generative, constraint-based design, users graphically select shape
elements of design instances in order to specify shape operations that have
generic intent. We discuss techniques for naming algorithmically and gener-
ically the identified geometrie instance, and report on our experience with
implementing these techniques. In a companion paper, we give algorithms
for matching the names when editing designs.

1 Introduction

A new generation of CAD systems has become available in which geometric
and dimensional constraints can be defined and solved. Such systems allow
the user to instantiate generically defined models from user-supplied dimension
values and constraints, and permit easy editing of the design in order to derive
design variants, for example by changing dimension values. But the automatic
generation of designs from constraints causes many semantic problems, [7, 8, 13).
Specifically, the user executes some design gestures that graphically interact
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Figure 1: Persistent naming error in design variant.

with the currently instantiated geometric design. The system is then expected
to abstract those gestures and produce from them a generic description of the
geometric elements the user referred to.

For obvious reasons, design interfaces are centered around visual design ges-
tures. While visual design gestures interact with images that are representations
of instances of a generic model, their intent is to modify the generic model itself.
However, geometric elements identified visually need not correspond explicitly
to design gestures ever made, and to capture design intent on the basis of the
explicit gestures is a profound challenge. Consider for example Figure 1 show-
ing a design and its variant prepared with Pro/ENGINEER, Version 12.0. The
shape shown there has been designed in three steps:

1. A block has been created by drawing a rectangular profile and extruding
it by a specified depth.

2. A round slot has been cut by extruding a circular profile across the block.

3. An edge round of constant radius has been defined by visually identifying
one edge and specifying a radius for the round.

After so defining the model on the left, the dimension value locating the center
of the slot profile is changed. On regeneration, the edge round “jumps” to a
different edge.

The basic problem is to identify the correct edge so as to record and retrieve
it to/from design history persistently. The edge that was identified on the left
corresponds implicitly to the intersection of the slot surface with the top of the
block. Both surfaces, in turn, are the trajectory of explicitly drawn geometric
elements, and so can be represented generically. However, the edge on the
right, to which the blend jumps after relocating the slot center, is also the
intersection of the two surfaces. No generic way is immediately evident that
could be executed automatically and distinguish algorithmically between the
two edges. Since regeneration of the slot must precede the existence of the two




edges in the new shape instance, any annotation of the previous model instance
in which the edge was selected has been lost. The example was created using
Pro/ENGINEER Version 12, and demonstrates that the naming schema used
by Pro/ENGINEER has a problem. The nature of their naming schema and
an analysis of its limitations cannot be giver because the implementation of
Pro/ENGINEER is guarded as proprietary information.

Prior work [7, 8, 13] has articulated the problem clearly. Others have hinted
at the issue without putting it into sharp focus. For instance, [12] cbserves
that to record a picked vertex in the log file, the mouse position is inadequate
because, if the log file is edited later, the position may become meaningless. The
paper proposes a naming schema derived from an underlying CSG expression,
but does not give precise rules for how these expressions are to be constructed.

In [15], Vérady proposes a syntax for defining topological expressions that
serves to identify geometric elements and features in parts and assemblies. How-
ever, the method uses directives such as left, top, front, etc., which must rely
on coordinate frames that are understood and remain invariant. This aspect
makes the method unsuitable for constraint-based variant generation in which
no explicit coordinate system should be assumed,

Solano and Brunet propose in [14] a CSG-based design representation with
constraint-based object instantiation. However, as their system description does
not include operations that need to reference geometric elements which would
arise from feature collisions, their description of the underlying language has no
linguistic elements that address the persistent naming problem in the needed
generality.

Kripac [11] gives a naming scheme that is characterized by the immediate
adjacency of an entity, its orientation in the boundary representation, and a
graph recording the history of face merging and splitting. The naming scheme
is used for dimensional changes, and the matching algorithms are sophisticated.
However, the presentation omits a number of details, most notably under which
circumstances exact matches are required and when approximate matches may
be acceptable.

In the collection [10] a number of commercial CAD vendors have published
papers that acknowledge the importance of the naming problem but give no
details on the particular algorithms their respective systems implement. Exist-
ing problems such as the one illustrated in Figure 1 urge us to study a naming
schema formally in order to build a feature-based design system][9].

This gereric naming problem is especially important for our generative,
constraint-based design system, Erep, as proposed in [9]. In that system,
we explicitly record design gestures or intent into an unevaluated, modeler-
independent representation which can be automatically instantiated into an
evaluated, modeler-dependent representation with a design compiler (4] follow-
ing a sound feature attachment semantics [3]. To achieve modeler independence




for the recorded design history, we substitute all geometric references, such as
the edge to be rounded in Figure 1, by generic, persistent names. During design
compilation, these generic names are first persistently mapped back to geomet-
ric references in the boundary representation (Brep) a solid modeler. When
the design is changed, a new variant can be constructed based on the generic
description and on the history of the previous variant. This involves matching
generic names that may not map unambiguously to Brep entities in the new de-
sign variant. A companion paper (2] describes in detail the matching algorithms
for persistent names when editing design and how to update the unevaluated
design representation.

In this paper we define three naming mechanisms to record geometric ele-
ments referenced by feature or constraint descriptions. Neither of these mecha-
nisms is complete. We show in Section 5 how to combine them into a compre-
hensive naming schema.

Obviously, a good generic naming mechanism is important for regenerating
constraint-driven, feature-based design. However, the significance of a robust
naming schema extends beyond the purely geometric problem of automatically
regenerating a design variant correctly. In particular, tolerancing, annotating
parts of a design with boundary conditions for engineering analysis, and record-
ing surface finish, are some of the many activities arising in manufacturing
applications that also depend on a generic naming schema.

2 Semantics of Model Generation

As pointed out in [7], the semantics of feature-based generative modeling must
be specified unambigrously, and implementing the semantics depends on a well-
founded naming schema that is the subject of this paper. We review briefly the
semantics of feature operations detailed in [3]. We assume that the solution of a
2D sketch, based on specified geometric constraints, is the one the user intended.
In view of the points discussed in [1], this assumption is not a triviality, and we
make it here only to limit the scope of the paper.

Following [9], we distinguish between generated features, datumn features and
modifying features. Generated features under consideration are only sweeps of
extrusion and revolution, of cross sections that enclose a connected, finite area.
The cross section is composed of line segments and arcs. The datum features we
consider are datum points, axes and planes; the modifying features are blends
and chamfers. We exclude for simplicity the operations of mirroring, patterning,
and shelling that were discussed in [9)].

Generated features create geometry subject to modalities such as blind ex-
trusjons, extrusions from a face to another face, and so on. To implement these
modalities, we proceed conceptually as follows (see [3] for details):

1. A proto feature is created that is the extrusion or revolution of the spec-
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ified cross section to an extent sufficient for generating all necessary sur-
faces. In the case of a blind extrusion or revolution, the proto feature is
simply generated as if the feature were the first feature. In the case of
more complicated modalities, the proto feature may extend to intersect
the boundaries of the bounding box for the existing geometry.

2. A partial Boolean intersection between the proto feature and the existing
geometry creates a set of edges and vertices on the surface of the proto
feature. These are used to extract from the proto feature’s surface all
necessary new boundary elements of the feature after attachment,

3. The relevant surface elements are interpolated in the existing geometry
and excess surface geometries are cut away.

(a) (b)

S ) B =

(c) (4) (e)

Figure 2: Idea of feature attachment. (a) existing geometry; (b) geometry after
the cut is made; (c} proto feature; (d) subdivision of proto feature; (&) needed
component of proto feature.

Figure 2 illustrates the process. The existing geometry is shown in Fig-
ure 2(a). We want to make a round slot as in Figure 2(b), from the side face
to the existing slot. A circle is drawn on the left face. Its extrusion across the
extent of the existing geometry is the proto feature, shown in Figure 2(c). In-
tersection of the proto feature with the existing geometry, shown in Figure 2(d),
identifies two potentially relevant components of the proto feature. The cut
attributes identify the leftmost component to be the one defining the new fea-
ture, shown in Figure 2(e). The desired cut can now be constructed using this
component.




Features are constructed sequentially in the order in which the user has de-
fined them. We assume in this paper that the order in which features are defined
is not changed, but this restriction can be relaxed with suitable adjustments to
the algorithms. The elements referenced for constructing a particular feature
are always evaluated with respect to the geometry that exists at the time when
the feature is added to the design.

The Brep entities that need to be named persistently fall into two categories.
One class of entities corresponds to geometry created explicitly as part of a fea-
ture operation. This includes virtually all faces’ and some edges and vertices.
The second class includes entities that comes about through feature collision:
Such entities are, essentially, edges and vertices in which different feature ele-
ments intersect. For example, the intersection edges of a slot and a block are in
this category (see Figure 1).

Entities in the first class are uniquely associated with a single feature,
whereas entities in the second class are associated with several features and
are transient in the sense that, after editing, such entities could disappear or
new ones could be created. Some examples of such changes are discussed in [2].

3 Topology-Based Naming

All three feature types require, for their definition, references to existing geome-
try, and those references must be made generic, so that, upon editing the design
variables, the new design variant can be construcied completely automatically.
A suitable raming schema for geometric elements directly created by design ges-
tures is not complicated. We describe such a schema first. Then, we concentrate
on naming geometric elements that arise implicitly from feature collision, giving
a topological naming schema.

3.1 Naming Created Geometric Elements
Generated Feature Elements

Generated features create geometry by sweeping a standardized or sketched
cross section. The elements of the cross section can be named as follows: First,
1, ¥2, -.. will be points of the sketch. In a subsequent extrusion operation, these
points will become vertices and edges. Next, 3, ez,... will be segments and arcs
of the sketch. They become edges and faces in the extrusion. Finally, f will be
the area enclosed by the loops of the sketch. It will become two faces of the
extrusion. The situation is depicted schematically in Figure 3. We have two
instances of each v;, ex, and of f, for the front and the back face. Moreover, the

"Two planar faces of separate features may overlap and be merged. In that case, there is
no unique association.
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Figure 3: Generic naming in an extrusion: Names assigned by sketcher left,
names for extrusion shown right.

side faces are named f(e;) and the side edges are named e(2;). The two instances
can be ordered by the direction of the sweep and are thereby distinguished from
each other.

For revolute sweeps the same naming scheme is adopted, except that a full
revolution has neither front nor back face, so that only side faces and edges are
named in that case.

Since the names v;, e, and f are generated by the sketch, they are made
unique in the global context by adding the feature name as qualification. For
instance, e; of feature X is referenced as X.eg.

Merging Named Entilies

When generating the first {feature, the created shape is the proto feature. Its
vertices, edges and faces can be named by this scheme, and the names are unique
for valid extrusions and revolutions. Subsequent protrusions, restrictions and
cuts first generate a proto feature that is named in the manner defined before.
The proto feature is then trimmed against the existing geometry, creating on the
surface of the proto feature new edges and vertices. These edges and vertices
are given the nonunique names I, and I, respectively, for intersection edge
and vertez. Finally, the boundary elements of the trimmed proto feature are
interpolated into the existing geometry as required by the modalities of the
feature operation.

When attaching the feature, the vertices, edges and faces of the trimmed
proto feature may coincide with existing vertices, edges and faces, and are
merged into single logical entities. In this case it is ambiguous how to name
the merged geometric elements. We uniformly name the merged entity from
the geometry that exists prior to attaching the feature: When two vertices are
coincident, the new vertex is named from the existing geometry. When two
edges overlap and are merged into one, the new edge is named from the existing
geometry. When two faces overlap and are merged, the new face is named from




the existing geometry. In all other cases, the geometric elements of the new fea-
ture are logically distinguishable from existing geometry and so keep the name
of the proto feature.

Datum and Medifying Features

Datum features are named serially in the order of creation. If the intersection
of two datum features is to be referenced, then an explicit feature creation
operation will be needed [9) and a name will have been associated with the
feature. The same holds for the intersection of a datum with existing geometry.

Chamfers and rounds replace selected edges and vertices with new faces.
We label the face replacing edge e or edges I, with ¢(e) or ¢(l.) in the case of a
chamfer and with r(e) or »({.) in the case of a round. The bounding edges and
vertices are named exactly in the same way as intersection edges and intersection
vertices.

3.2 Topological Context Computation

A geometric model instance named in the manner described has a number of
elements that have the same name. These include not only elements with the
collective names I, I., r(l.) and so on, but also edges and faces that have been
subdivided by feature collisions. To distinguish between them, we determine
their topological contezt.

The adjacencies of the geometric elements form a contezt graph. By conven-
tion, a face is adjacent to edges, an edge adjacent to vertices and faces, and 2
vertex to edges. In many cases the context graph is essentially the adjacency
graph of the Brep; see, e.g., [6]. But, in some cases, several faces of the Brep
are grouped into a single logical face and then the context graph is a reduction
of the adjacency graph. Note that the context graph is a labeled graph. For
example, consider the design of Figure 4. The context graph is shown in Figure
5. The types of the graph nodes — vertex, edge or face — are indicated by the
enclosure: a face node has a rectangle, an edge node a circle enclosing it. Vertex
nodes are not enclosed.

We define the immediate contezt of a graph node to be its star; i.e., the
nodes immediately adjacent. For example, the immediate context of f consists
of the six edge nodes labeled e, eq, €3, €5, €3, and e4. Note that e3 occurs twice.
There are two edges of the object of Figure 4 labeled I.. Their immediate context
consists of the faces f(es) and f(es) and two vertices labeled I,,. It is clear that
the edges cannot be distinguished by their immediate context. However, the
immediate context of the two adjacent faces differs. One of the f(e3) faces is
adjacent to e(vs), whereas the other one is adjacent to e(v3). Consequently,

!Face to vertex adjacency is ignored.
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Figure 4: Labeling of object with two features. For simplicity, the names omit

the feature qualifier.

Figure 5: Context graph for object of Figure 4. Faces indicated by boxes, edges

by circles.




the two occurrences of f(e3) can be distinguished, and therefore also the two I,
edges.

We compute the extended context of a geometric element by a breadth-first
graph search. The algorithm has the following structure:

1. The extended context of level 1 is the immediate context.

2. The extended context of level &k + 1 is the extended context of level k& plus
those elements of the immediate context of any node at level & that are
not yet in the extended context.

After determining the extended context to some depth, we will be able to dif-
ferentiate some of the geometric elements of the same type that have the same
name. In particular, all elements of the example in Figure 4 can be distinguished
by contexts of depth 2. The algorithm is:

Full Topological Context Description
Input: Context graph G and a node r of the graph; depth d.
Output: Context description of the node.
Method:
1. Let R be the set of nodes that have the same label as r.
2. If R contains only r then stop; r is unique without context.
3. Otherwise, for every v in R do the following:
4. By breadth-first search, compute the subgraph reachable
from v in up to d steps.
5.  Label each subgraph node u by its distance dy(u) from v.
6.  Partition the nodes in the subgraph into equivalence classes,
where two nodes are equivalent if they have the same label
and the same distance from r.
7. The description of a node v in R is the class structure so computed.

Note that a node can be distinguished from r if it has a different equivalence
class structure. The context description can be textually encoded as follows:
Each equivalence class is represented by a triple [d, [, n}, where d is the distance
from =, ! is the label, and = is the number of nodes in the class. For instance,
the two edges labeled I, in Figure 4 have the following descriptions:

Left edge:
[O!Ier 1]!
[ls L, 2]! [1: f(e?i)) 1]: [1: f(eS): 1]3
[2., e(?..’q), 1], [2, €3, l], [2, €5, l], [2, Ic., 1], [2, és, l], [2, 53, 1]
Right edge:
[OEIG'} 1]1
[lsfm 2]) [11 f(83), 1]1 [1: f(35)$ 1]!
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[2, e(wa), 1], [2, €3, 1], [2, €5, 1], [2, L, 1], [2, 25, 1], [2, &3, 1]

The two edges can be distinguished because of the two different classes [2, e(v3),1]
and [2, e(v4), 1].

Rather than storing the full context description, we could delete from it
those classes that are not distinguishing and that do not contain nodes that are
in the context graph on the path from r to a node belonging to a distinguishing
class. We call this the reduced contez!l. For example, the reduced context of the
two edges is

Left edge: Right edge:
0,rn,1], [0, L, 1],
[1, f(ES)al]i [1s f(e:i), 1]-,-
[21 8(1)4), 1] [2: e(‘b'a), 1]

Note that the reduced context sacrifices some resolution when matching in design
variants,

3.3 Remarks

Since features are evaluated in a fixed sequence, the context of a referenced
element is evaluated for the geometry that exists at the time the new feature is
created. Thus, the context graph of feature & is based on the geometry created
by features 1 through k only. Later features may well obliterate geometric
elements used to construct earlier features, yet they can be referenced at the
carlier times.

The algorithm for distinguishing geometric elements by their topological con-
text is essentially a spectral graph isomorphism algorithm (see [5]). The context
computation determines a spectrum, and the reduced context is a certificate.
Graph nodes with distinct certificates can then be distinguished.

It is well known that spectral algorithms do not solve the graph isomorphism
problem and that they fail on highly regular graphs; [5]. It is easy to construct
an example in which no topological context can distinguish some geometric
features: Consider Figure 6. A toroidal hole has been cut into a block. The two
circular edges bounding the cut cannot be distinguished, because the context
graph has a structural symmetry that exchanges the two edges. For this reason
we need other mechanisms such as that described in Section 4.

4 Orientation Information

The topological context information discussed in the previous section essentially
encodes the adjacency structure of feature collision. In addition, we will consider
orientation information that is based on the way geometry has been created and

11




Figure 6: Block with toroidal hole. The edges of the cut cannot be distinguished
from the context graph.

the way features lie with respect to each other geometrically. The directional
information derived from the feature creation process is called feature orienta-
tion, and the orientation information locally derived from the geometry of the
boundary elements is called local orientation.

4.1 Local Orientation

Local orientation information is based on the direction in which an adjacent face
uses an edge, and on the face orientation in the solid boundary. By convention,
a face is oriented so that the surface normal locally points to the solid exterior,
and an edge is used in a direction such that locally, when viewed from the
exterior of the solid, the face’s interior is to the left of the edge; e.g., [6].

Distinguishing Edges with Local Orientation

An edge use by an adjacent face orders the vertices of the edge, assuming that
the edge is not closed. The vertices can be designated explicitly by their names,
so that the edge use orientation can be encoded by a triple consisting of the face
name and the names of the two vertices in order. In Figure 7 (left), the edge
e 1s used by f; from v; to v, and by f, from v, to v,. The edge use can be
encoded by the triples

L. = [fi, 11, v2] or  L.={(fa,vs,v]

In most cases, we may use equivalently terminating faces, i.e.,

L, = [fl:f:i: fd] or L. = [f?s f4a f3]

Now consider Figure 7 (right). Edge ¢; is used by the adjacent face J2 in the

12




Figure 7: Computation of local orientation of an edge.

direction fy to f3, whereas e, is used in the opposite direction:

Lq = [f2:f4:f3] Leg = [f2) .f3s f4]

Therefore, e; and e; can be distinguished by the local edge orientation with
respect to fo. Of course, the edges can also be distinguished by the local edge
orientation with respect to fi.

Note that the orientation of closed edges cannot be recorded by triples. For
those edges an orientation comparison is needed based on comparing the edge
use direction with an intrinsic orientation induced by the feature creation, as
explained later. See also Figure 12 below. Local orientation cannot distingunish
the intersection edges of Figure 6.

Distinguishing Vertices with Local Orientation

Consider the vertex v shown in Figure 8 (left). Generically, a manifold vertex is
adjacent to three faces which are the direct context of the vertex. Ordering the
faces cyclically, with n;, na, and nj the surface normals at the vertex, we may
define the local orientation at v as the sign of the mixed product of the normals
in that order:

Sy = sgn((m; X n3)ng)
Then §, is positive if the three vectors form a right-handed coordinate system,

and negative if they form a left-handed one. If two surfaces meet with tangent
continuity at the vertex, then 5, is zero. The quantity S, essentially expresses

Figure 8: Computation of local orientation of a vertex.

the local geometry at a vertex where three adjacent faces meet transversally.
This schema can be extended to vertices with more than three adjacent faces.
However, it is not clear whether this geometric information should be expected

13




to remain invariant under a broad class of feature editing operations, so we do
not use it. Instead, we record whether a vertex is a manifold or a2 nonmanrifold
vertex, and if it is a manifold vertex, we describe it locally by a list of incident
faces, ordered cyclically counter-clockwise, as seen from the vertex exterior.
Thus, the four vertices in Figure 8 (right) have the descriptions

Lb'l = [fl'.l f3:f2] va = [f]:f?a f3] LUJ = [fl: f2: f4] Ll.q, = [fl:fti:fZ]

They can be distinguished if f3 # fs. However, if f3 = f4, then L, = L,, and
L,, = L,,. An example of this situation is shown in Figure 9. To distinguish
these four vertices, other information must be used as explained later.

V3 V4

Figure 9: Local crientation is insufficient to identify the four vertices with same
direct context.

4.2 Feature Orientation

In the example of Figure 6, the cut was created by revolving a circular profile.
The direction of revolution defines an orientation of the surface that can be de-
rived urambiguously from the design gestures and can be thought of as a vector
field that is tangent to the surface and perpendicular to the axis of rotation.
See also Figure 10. We call this orientation the fealure orientation since it is
defined by the feature creation, and not by the geometric characteristics of the
instantiated feature.

Feature orientation information can be defined based on the direction of ex-
trusion or the spin of revolution. It amounts essentially to observing the (local)
motion of the sweep of the 2D cross section as the 3D proto feature is created. In
the case of extrusions, the extrusion direction is the feature orientation. In the
case of revolution, the feature orientation at any point is defined by the instanta-
neous rotation vector at that point. At singular points, where the rotation axis
intersects the revolved surface, the axis orientation can be used instead. Note
that the axis orientation and the direction of the revolution are by convention
related by a right-hand rule as illustrated in Figure 10.

14




Figure 10: Orientation of torus surface created by revolving a circular profile.

Distinguishing Edges with Feature Orientation

Feature orientation induces a direction of adjacent edges. For edges such as the
straight boundaries of the slot in Figure 9, the orientation directs them from #;
to v3 and from ve to v4, assuming the slot was an extrusion of a circular profile
from the front to the back. Loosely speaking, one could call such an edge aligned
with the orientation.

More precisely, consider an extrusion or a partial revolution, as seen in Figure
11. Its topology consists of cylinders that could be pinched along edges that are
the trajectory of nonmanifold vertices of the swept profile. In the case of such
nonmanifold topology, we cut the profile at nonmanifold vertices and consider
the resulting cylinders separately. Three types of curves must be considered:

1. Curves that cut the cylinder such that we can unroll the surface into a
rectangle.

2. Curves that cut the cylinder into two separate cylinders.

3. Curves that separate the cylinder into a cylinder with a hole and the hole

/,/’

Figure 11: Curve types on a cylindrical topology

15




Figure 12: Edges e; and e; are not distinguished by feature orientation alone

interior which is essentially a disk.

Type 1 is an aligned edge, and can be directed by the orientation of the cylinder
surface. See Figure 9 for an example. Type 2 is an edge where the adjacent
cylindrical surface, used in the feature defined, either has a source or a sink at
the edge. See Figure 6 for an example. Note that edges of Type 2 must occur in
pairs, each source edge having a corresponding sink edge. The correspondence is
established by the direction of the sweep. Type 3 is an edge where the adjacent
surface has both a source and a sink on the edge. If the axis of the toroidal cut
were lifted in Figure 6, the two delimiting edges would merge into a single edge
of type 3. The same types can be defined analogously for full revolutions with
spherical or toroidal topologies.

Using feature orientation information, we can distinguish the two circular
edges of the Figure 6. Both are type 2, and at one of them the orientation of the
toroidal face has a source, whereas at the other one it has a sink. If more than
two such edges are present, they can be sorted by the direction of the feature
orientation and distinguished positionally in the order in which they lie with
respect to the feature orientation. Note that for toroidal topologies the ordering
is cyclical, whereas for partial revolutions or extrusions a total order is imposed.

In Figure 12, edges e; and e; are both of type 1 and are oriented in the same
way by the direction of revolution. They can only be distinguished by observing
that face f uses ¢; in the feature orientation direction, whereas e, is used by f
in the opposite direction.

Two closed edges of type 3 cannot be distinguished using feature orientation
except in rather special cases where a cutting plane can be defined that induces
a separating curve of type 2. However, type 3 edges arise from feature collisions
where the other, intersecting surface usually allows differentiation.

The feature orientation of an edge is recorded by a triple [F, f,c]. Fis the
feature that defines the feature orientation; f is a face of the feature that is
adjacent to the edge. If the edge is of type 1, then ¢ = 3 according to whether

16




the edge is used by f in the direction of the feature orientation or in the opposite
orientation. If the edge is of type 2, then ¢ = in/out, where ‘in’ means that the
feature orientation flows from the face exterior across the edge into the face
interior, whereas for ‘out’ the orientation flows from the interior of f to the
exterior. If the edge is of type 3, then ¢ = 0 and no information is obtained.

The feature orientation information for edges of type 2 can be refined further
by ordering all edges of type 2 in the direction of the feature orientation. For
extrusions, this is a total ordering, but for revolutions with a toroidal topol-
ogy the ordering is only cyclical. In such a schema, an expression of the form
[F, f, m n,g] could be used, where F and f are as before. Moreover, the edge is
the m® of » edges of type 2, and ¢ designates whether the ordering is cyclical
or total.

Distinguishing Vertices with Feature Orientation

Feafure orientation does not add a separate naming mechanism for vertices.
However, the vertex v may be incident to an edge e that has a feature orientation.
If e is of type 1, we observe whether e begins or ends at v. The name of the
vertex is then [e, +] or [e, —].

For edges of type 2, this approach does not apply, but we can derive similar
information by a slightly more complicated computation. Instead of using the
edge tangent, we can use the feature direction vector at the vertex. For edges of
type 1 we have conceptually observed whether the inner product of this vector
with the edge tangent is positive or negative. Instead of using the edge tangent,
we use the normal of an incident face not adjacent to the edge. Consequently,
the vertex feature orientation encoding can be uniformly expressed by [F, f, 4],
where F' is the feature whose orientation we use, f’ is an incident face that is
not adjacent to an intersection edge of the feature F, and + records the sign of
the inner product. Note that f' must be selected such that the inner product
does not vanish,

For example, consider vertex »; of Figure 9 right. Assuming that the round
slot is generated as feature F with an extrusion from the front to the rear, v is

labeled [F, f3, —].

4.3 Combining Local and Feature Orientation

Intersection features are named by a combination of local and global orienta-
tions, because both types of orientation provide only limited resolution. In ad-
dition, the immediate topological context is added. The combined information
is recorded in a formal expression has the following properties:

1. The expression is canonical. I one entity name uses one face, another
entity uses a different face when in both the same face could have been
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used, then an ambiguity could go unnoticed. We avoid this by exploiting
the serial creation of features and by using set expressions.

2. The expressions are not circular. If a name for edge e uses a vertex v,
then the name of v does not use edge e. We avoid this by using only face
names in formal expressions.

3. Where reasonable, we use the generated names explained in Section 3.1.

The naming expressions that combine this information are composed of three
subexpressions, the ordered, immediate context, the local orientation informa-
tion, and the feature information. Naming expressions may be nested.

Naming Intersection Edges

The name is an expression of the form
E, = [Ce: Lm Fc]

where C. = [fi, f2,...] are the names of all faces adjacent to the edge, cyclically
ordered. There is no direction in which the cycle is understood. For example,
(/15 f2, fa, fs] and [y, fa, fa, f1] ave not distinguished. This is because not every
edge has an intrinsic direction that can be defined generically. If edges have an
Intrinsic orientation derived from the feature orientation, then the cyele direction
can be inferred from the feature orientation subexpression.

L. is the local orientation, which has the form [V, W, s] if the edge is open.
For closed edges we have L, = []. Here V and W identify the two vertices
bounding the edge. If s = +1 then f; uses the edge from V to W, and if
s = —1, then f; uses the edge from W to V. Since the F; are cyclically ordered,
it follows that the faces fi, fs,... use the edge in the orientation [s, —s, 5, —s, o)
If the vertex identified by V is a created vertex, ther V is the name generated for
that vertex as described in Section 3.1. Otherwise, V is an expression identifying
an intersection vertex as described later.

F. is the feature orientation of the edge. It has the form F, = [F, H] where
F'is a feature and H is a set of feature orientation expressions. F' is the latest
feature one of whose faces is adjacent to the edge. Let hq,ko,... be all faces
belonging to F that are adjacent to the edge. Then H = {[hy, c1], [h2, €2); ...},
where [F) h;, ¢;] is a feature orientation triple of the edge.

Naming Intersection Verlices

The name of a vertex is an expression

-Ev = [Cm Lvs Fv]
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Here C, = {fi, f2, f3,.--} 1 the set of incident faces. It is not ordered if v is
2 nonmanifold vertex. For manifold vertices, there is a cyclical ordering of the
fi that is counterclockwise as explained before. If L, = M, then the vertex is
manifold, if L, = N, then the vertex is nonmanifold.

The expression F,, = [F, H] is the feature orientation information consisting
of a feature name F and a set # of orientation informations. For every face f
incident to the vertex but not part of the feature F, H contains the expression
[f,s), where [F, f, 5] is the feature orientation as explained before. Note that
s = 0 is allowed.

5 Implementation

Both the context graph and the orientation information eliminate ambiguities,
but neither technique is complete. Therefore, we have implemented a combina-
tion of the two methods. In particular, intersection elements are first encoded
using the formal expressions derived in Section 4.3. These expressions include
the immediate context. We add to this information the reduced topological
context, to some predefined maximum depth. Because both the orientation
information and reduced context is canonically organized, the derived naming
expressions remain canonical.

We note that ambiguities are not always resolvable by our method. Struc-
tural symmetries can be constructed that foil our naming schema. However,
such highly symmetric situations seem to occur rather rarely in practice. When
they arise, moreover, choosing arbitrarily between several entities with the same
name is often acceptable. In particular, when a straight edge is referenced as
a boundary of a distance dimension, any edge that has the same underlying
line equation meets this reference need. In such cases, certain ambiguities are
allowed.

Remaining ambiguities for different classes of entities, if existing, are uni-
formly handled as follows. If the operation is a modifying feature, such as a
chamfer or blend, then the operation is applied to all geometric entities with
the same name. If the operation requires exact identification in a dimensioning
schema, then the user has to change the dimensioning schema.

5.1 Vertices

Vertices that are not the result of feature collision are named as explained in
Section 3.1. Evidently, such names are unique. Intersecting vertices, on the
other hand, are named first with the expression E, explained before. If a vertex
is not uniquely named by the expression, then the reduced context is computed.
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5.2 Edges

Edges are also classified as intersecting edges and non-intersecting edges. Inter-
secting edges are first named with the expression E, explained in Section 4.3.
If ambiguities remain for identifying an edge, the reduced context is computed.

A nonintersecting edge is named similarly, except that the immediate context
of a non-intersecting edge is replaced by the inherited edge name of the parent
edge in the proto feature.

5.3 Faces

All faces are generated as faces of proto features or modifying features, or are
a subdivision of such faces. Furthermore, different faces may be merged if they
are on the same underlying geometric surface and overlap. A face name is then
an expression that contains a part Hy describing the origin of the face. If the
face is from a proto feature, Hy is one of the following

(startf feature.f2D),(end f feature.f2D),(sidef feature.f2D)

If the face is from a chamfer, then Hp = ¢({.), where . is a description of the
edges chamfered. If the face is from a round, then Hg = r{{;). When faces are
merged, then this name is inherited from the face of the earliest feature involved
in the merge. In addition, the face name contains an expression naming every
adjacent edge of the face.

6 Summary

We have described topological and geometric mechanisms that name generically
geometric elements that were not generically named by the user. The nam-
ing algorithms are complemented by algorithms for editing generic design, and
those algorithms are described in a companion paper {2]. Together, this work

constitutes a naming schema that in our experiments has proven to be robust
and reliable.
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