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Abstract
This work describes Continuum, a general-purpose solvCI for polyno

mial systems by homotopy continuation, which has been extensively used
in [Dur98] to solve systems of geometric constraints.

1 Introduction

Polynomial systems arise frequently in many different fields of science aJld en
gineering, such as computer-aided design, inverse kinematics, and molecular
modeling. Many standard numerical methods can be llsed to find one so
lution of the system. One of the most celebrated is the Newton-Rnphson
method [SB93, OR70], which is distinguished by the ability to solve large plah.
terns. However it is very sensitive, requiring a sufficiently good initial guess.
Nonlinear optimization methods [DS83] are global and converge to a solution
from almost any initial guess.

Nonetheless, many applications require that all solutions are computed.
G6bner bases [Buc85, ALW95, CL092, Buc79], characteristic sets [Wan89b,
Wan89a, Wu94, Rit50], and resultants [Gc191, Stu, Man93, MC93] have been
extensively used for that purpose. These methods, however, involve intensive
symbolic computations which are very time and space-demanding. In many
cases the computations fail due to limitations in memory and speed.

Homotopy continuation is a robust and versatile global method capable of
Iinding all the solutions of a given system [AG93]. Although the theoretical
foundations encompass many differcnt areas of mathematics, the idea behind
homotopy is rather intuitive: the solutions of a known "easy" system are de
formed into the solutions of the wanted system. The method has been applied to
problems in various areas, including robotics, kinematics of mechanisms, chem
ical equilibrium, geometric intersection (MorS7, WMS90, PaW2, Ver96, Ver97,
HS95, Hub96, Ll97] and, more recently, to constraint solving [LM95].

This work describes Continuum, a general-purpose solver for polynomial
systems by homotopy cOIltinuation, which has been extensively used in [Dur9S]
to solve systems of geometric constraints. It is assumed that the systcm to be
solved has lhc samc number of equations and variables.
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This work is organized as follows. Section 2 provides the theoretical founda~
tions of homotopy continuation. Section 3 describes the implementation of the
method. Finally, section 4 describes the syntax shows some examples of usage

2 Homotopy Continuation

For more than a century homotopy has played an important role in many areas
of modern mathematics, and its use as a tool to solve systems of linear equations
can be traced back at least to Lahaye [Lah34].

Homotopy continuation is a technique for numerically approximating a so
lution curve c which is implicitly defined by an under-determined system of
equations. It deforms the solutions of a "simpler" system (called start system)
into the solutions of the system which needs to be solved (called target system
or simply target). The solutions of the start system are referred <IS the start
points of the homotopy.

2.1 Definitions and Notations

Let x = (Xl, X2, ... ,xn) and let the system of polynomial equations

{

h(x"x" ... ,x"):: 0
h{Xl,X2"'.'Xn ) - 0

fn(X\,X2,···,X n)=O

be denoted by F(x) = O.
Notice that all the systems considered here have zero-dimensional solution

set, and therefore they have the same number of variables and equations.
The total de.gree of the system F (denoted by deg(F» is defined by

"
d,g(F) = II deg(/;).

;",;1

The Jacobian of a F (denoted by J(x) or dF(x)) is a n x n matrix of partial
derivatives

[
~ M; ...

~]
u••

!!h. !lli ... !!h.
J(x) ~ 0" D" 8••. .

£b. [J[. l!b.
D" 8%~ D••

A solution x· of F(x} = 0 is said to be singular if det(J(x·)) = o.
The homotopy or continuatIon equation is defined by

H(x,A) ~ (1- '\)G(x) + '\,F(x)

2
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where x E C, .>. E [0,1), I is a random complex number, F(x) is the target
system, and O(x) is the start system. G(x) is a system with n equations and
n variables. Moreover, its structure resembles the structure of F(x) and its
solutions are known or can he easily calculated.

The homotopy continuation method proceeds by deforming each solution of
system G(x) into a solution of F(x). This describes a path in en x (0,1) called
homotopy or continuation path. The issue of building a start system is addressed
in section 2.3.

2.2 Solutions at Infinity and Projective Transformations

The homogeneous part of F, denoted by FJ is the system obtained from F by
deleting the terms of lower degree in each equation.

Example 1 Let F be the system defined by

{
XIX2-xi-3xl+3x2=0
X1X2 -3XI-X2+3= 0

A solution at infinity of a is a solution of pO where the first nonzero entry
is equal to 1.

Example 2 The solutions at infinity of F in the example 1 correspond to the
solutions of po which have either one of thc forms (1, x2) or (0,1).

The first form satisfies po for X2 = 0, but thc second form does not satisfy
FO. Therefore, the only solution at infinity of F is (1,0).

If a system has solutions at infinity, then the corresponding homotopy paths
are divergent. Deciding if a path diverges is a difficult problem in general.

Fortunately, any polynomial system can be transformed into an equivalent
system, which has no solutions at infinity [Mor86b]. This procedure is now
explained in detail.

Let F(x) be a system in n variables x\, ... , X n_ The homogenization oC F is
the system F(y) with n equations and n + 1 variables defined by

-( ) d, Yl Yn ) .!iYI, ... ,Y,,+\ =Y,,+\I>(--,· __ ,--, t=1, ... ,n (2)
Y,,+I Y,,+1

where d; = deg(h)· In other words, ft can be obtained from F by replacing Xi

by Yi and completing the degree of each term by multiplying the term by an
appropriate power of y..+\.
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Example 3 The homogenization of the system of example 1 is

F"( )_{~~-~-~l~+~h=O
V.,V2,Y3 - 3 ' 3' 0YlY2 - YIYJ - Y2Y + Ys =

If y. is a solution of equation 2, then ky· is also a solution for any k E C.
Therefore the solutions of 2 are complex lines through the origin in Cn,+l. The
set of all this lines form the complex projective space, denoted by cpn.

There is an explicit relationship between the solutions of the original system
and its homogenization. If (VI, Y'l"", Yn, Yn+d with Yn+l i=- 0 is a solution of
F(y) ~ 0 then

x=(..1!L.,2'!..""'~) (3)
Yn+l Yn+l Yn+l

is a solution for F(x) = D. Conversely, if x = (x], X2,' _. ,xn) is a solution to
F(x) = 0, then

(4)

is a solution for F(y) = O. The solutions [or F(y) = 0, where Yn+1 = 0 are the
solutions at infinity.

Let L(x) = L~=l biX. + bn+l l where the constants bi, i = 1,. __ , n + 1 are
random complex numbers and bn+l # O. The projective transfonnation of F
(denoted by F) is the polynomial system with n variables defined by

Theorem 1 (BezQut) Let F(x) = 0 be a polynomial system and d = deg(F).
Then

1. The total number of geometric isolated solutions and solutions at infinity
of F(x) = 0 is no more than d.

£. If F(x) = 0 has a finite number of solutions and solutions at infinity,
then the total number of solutions and solutions at infinity of F(x) = 0
(counting multiplicities) is exactly d.

Theorem 1 establishes an upper bound for the number of solutions of a given
system (sometimes called the Bezout number or Bezout bound of the system).
In (Mor86b, Mor87] Morgan uses theorem 1 to prove the following statement:

Theorem 2 Let F(x) and L(x) be as in 5. If F has a finite number of solutions
and solutions at infinity, then, for almost all bi E C, i = 1, ... , n + 1, bn+1 # 0,
P has no solution at infinity.

The "almost all" condition of theorem 2 is satisfied in practice by selecting
random complex numbers for b\, .. _, bn +1 .

Finally, notice that the lise of projective transformations does not increase
the dimensionality of the problem, since deg(j,) = deg(/i), i = 1,. __ , n and
F{x) has n variables.
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2.3 Start System

Let F(x) be the target system, d:= deg{F), and L(x) defined as in the previous
section. The standard start system O(x) is defined by

{
lii(x) = xt; - ad. ._
a=L(x) I i-l, __ .,n.

Then G(x) = 0 has d = deg(F) solutions, given by

{
xi=ktd...i;o i=l, ... ,ni ji=O,- .. ,d,·-1
a=k

(6)

(7)

where

(8)

and
21r"j' 21rj'

~d'"' = cos(--') +isin(--')., ',1. d; d;.

(the d;-th roots of the unity). This can be easily verified by substituting 7 and 8
into 6.

The homotopy can now be restated as

N(x,!o) ~ (1 - !o)O(x) + !oOF(x), (9)

and is sometimes referred as standard homotopy. It generates deg(F) paths in
en x [0,1) starting at each of the solutions of G(x) for). = O.

Theorem 3 For almost all choices of bl , __ • ,bn and 7 the homotopy 9 gcner
ates a collection of d non-overlapping converging smooth paths. Moreover, if a
solution has multiplicity m, then m homotopy paths converge to it (see [Mor86aj
-and [Mor8?]).

Theorem 3 states that the homotopy paths generated by 9 are "well be
haved". A typical situation is presented on figure 1. The issue of singular
solutions (multiple paths converging to the same solution) is discussed in the
next section.

It should be noted that theorem 3 still holds if different start systems are
used. As a general rule, the start system should be selected in such a way that

1. its structure is similar to the structure of F(x), and

2. its roots are known or can be easily computed.

It is clear that the standard start system satisfies the conditions above.
The start system plays a central role in the success of homotopy continua

tion. Even though theorem 3 guarantees that the homotopy paths are smooth,
the more the start system resembles the target, the shorter and smoother the
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Figure 1: Typical behavior of homotopy paths with 2 double roots and 4 simple
roots

homotopy paths are. This is an important issue in practice, since very long or
almost singular paths can cause numerical problemsl .

On the other hand, solving these "non-standard" start systems is a problem
in itseU, where homotopy continuation can also be used. Polyhedral homotopy
continuation [HS95, VGC96, HS97j can also be used as an alternate method.

2.4 Parameter Homotopy

As shown in the previous section, the coefficients of the homotopy H(:z:,..\)
change as ,\ varies from 0 to 1. However, in many applications, the coefficients
of the system depend on parameters. Systems associated with constraint prob
lems, for instance, exhibit such a parametric structure, since their coefficients
are functions of the constraints.

In parameter homotopies, the continuation is generated in the parameter
space Q, instead of the coefficient space. Therefore, the special structure the
parameters impose on the solution set can be exploited. As a practical result,
fewer paths have to be tracked to solve the system, significantly reducing the
total numerical cost in some cases.

In the following discussion, let Fq(x) denote the system obtained for some
set of parameter values q= (ql, ... ,%) E Q.

The rf'1inHs presented in [MSB9] can be used as the basis for a two--step
method for solving pq(x).

"1. For a random qO E Q, solve Fq using standard homotopy continuation,
and

2. Solve Fq using Fqo as the start system and its nOllsingular affine solutions,
a.<; the start points.

lA path is almost sillgular if the deLerminant of the Jacobian matrix is smaller than a
threshold for one or more poin1..s along the path. Those points arc rcrerred as almost singular
points.
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Since only the nonsingular affine solutions of Fqo are used as start points, much
fewer paths have to be tracked, when compared to standard homotopy. Fur
thermore, all nonsingular affine solutions of Fq are guaranteed to be computed.
Notice, however, that some solutions at infinity might be computed {or special
sets of parameter values.

•The cost of solving Fq cannot be discounted, but it is acceptable in apglica-
tions where homotopy continuation will be used repeatedly. The same Fq can
be used for solving many systems. This is consistent with the theory and does
not seem to cause numerical difficulties. For further details refer to [MSS9j.

3 Implementation

This section describes Continuum, a homotopy continnation solver for systems
of algebraic equations. Table 1 shows the outline of the algorithm.

IT standard homotopy continuation is used, G(x) is initialized as the system
defined on section 2.3. Alternatively, the user can provide the start system and
start points. This becomes necessary when parameter homotopy has to be used.

The algorithm generates a new path starting at each solution of G(x) = 0
and proceeds by computing points along the homotopy path using a prediclor
corrector scheme, as ,,\ varies from 0 to 1.

N steps corresponds to the current number of predictor-corrector steps per
formed on a given path. MAXSTEPS corresponds to the maximum number
of steps allowed per path. The continuation is aborted (Path failure) if more
than MAXSTEPS steps are performed::!.

Step corresponds to the current value of the step size. It is initialized to
STEP, but its value is not fixed. If the corrector does not converge, the Step
size is divided by two, and is doubled after SAFE successful steps. Appendix A
introduces the other parameters used in Continuum, and summarizes their de
fault values, which are used in all the computations performed in this work,
unless otherwise stated.

3.1 Predictor-Corrector

The predictor function computes a point all the line tangent to the homotopy
path at the point x~. More specifically, if (x~,"\) is the current point on the
homotopy path, then

(X',A)+ (~~(A),l)

gives the coordinates of the tip of the tangent vector. The corrector fundion
attempts to solve H(x' J ..\') = 0 using Newtoll-Raphson method, where

(x', A') ~ (X',A) + (~~(A),l) BPS

2PfLlh raiJure can also occur when lhe palh is almoslsingular (see seclion 4)
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Table 1: Homotopy Continuation Algorithm

INPUT, F
OUTPUT: All solutions for F(x) = 0

For each solution x· of G(x) = 0 do begin
>.:= 0;
nsteps:= 0;
step:= STEP;
success := 0;
\Vhile>. < 1 and nsteps::; MAXSTEPS do begin

Repeat
x' := Predictor(x·);
x· := Corrector(x');
If correction did not converge then begin

step := slepj2;
success := 0;

end
Else begin

nsteps := nsteps + 1;
Update >.;
success := success + 1;
If success = NSAFE then begin

step ;= 2slep;
success := 0;

end;
end;

Until correction converges;
end;
If nsteps > M AXSTEPS then

Path Failure;
Else

(L(";Oj' ... , L(";.)) is a solution for F(x) = 0;
end

8
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Figure 2: x· is a point on the curve and x' is the predicted point.

and the scale factor EPS is chosen such that J(x', A')- (x*, A)I equals the current
value of step. The situation is depicted on figure 2.

The difficulty with this approach is that now ~ (,\) must be computed ex
plicitally. Let x('\) be a parametrization of the path as ,\ goes from 0 to 1, and
x a point on the homotopy path. Then

H(x, A) = 0, t? o.

Define

Therefore
H(x, A) = H(w(A»

Applying the chain rule to 11 yields

dH. dW_
Odwd'\-'

where ~~is an n x (n + 1) matrix and ~~ a n x 1 vector.
Based 011 10, equation 11 can be wrillen in block form

where ~~ is a n x 7L matrix, ~~ is a n x 1 vector and ~ is a n x 1 vector.
Finally, equation 13 can be rewrillen

(ll)

(12)

(13)

dH dx dH
<Ix . dA =-d>: (11)

Equation 14 is a linear system and can be easily solved using by a variety of
methods like LU-factorization and singular value decomposition [SB93]
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3.2 Random Parameters

As stated in theorems 2 and 3, the random complex parameters bi , b2 , ••• ,

bn+1 and..., are essential to make the algorithm work, but care must be taken
when choosing these values. IT these parameters have arbitrarily large norms,
numerical problem related to scaling may be introduced.

In practice, this problem is circumvented by selecting bi , b2 , .•• , bn+I and 'Y
among the complex numbers of norm 1.

3.3 Singular Solutions

Ac.cording to theorem 3 the homotopy paths associated to 9 do not have singular
points for>. E [0,1), but the system may have singular solutions for ,,\ = 0

Moreover, it is important to know if a solution is singular, since special
techniques must be required to compute the solution accurately. It is important
to emphasize, however, that singular solutions are a "localM or "postprocessing"
problem, rather than a homotopy continuation issue.

In the neighborhood of a singular solution, Newton-Raphsoll method still
converges, but slower (usually linear convergence), and with fewer (about half)
significant digits. In this ease, the singular solution is regarded as a nice singular
solution. However, exceptionally bad behavior is possible. One can experience
"arbitrarily slow convergence" or cyclic behavior. These solutions are cnlled
nasty singular solutions. Only nice singular solutions were encountered in the
course of this work.

The condition [Gau97] of the Jacobian matrix can be used to classify (inde
pendently of scaling) the solutions into singular and possibly singular. DiITerent
algorithms can then be used to refine tbe solutions depending on the preliminary
classificatioll.

A slightly modified version of Newton-Rapbson method can be used to refine
nice singular solutions. This version should use a larger number of steps, more
conservative "epsilons" and a test for singularity (to prevent overflow).

3.4 Computation of dF(x)

It is more efficient to substitute L(x) Ilumerically, instead of symbolically. COll

sider, for example, the calculation of dF(x).
Let P be the defined by composition of two functions:

F=Fov:cn-jocn,

where P : e,,+l -+ en is defined as in 2 and

v;C"'-+C,,+l
v(x) ~ (x"x" ... ,x",L(x»).

withL(x)=bIXi+···+bnx,,+b"+i, bjEC, i=l, ... ,n, bn +1 ¥-O
The .Jacobian of F(x) can be calculated by

dF(x) ~ <IF(y) 0 dv(x), (15)
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where y = v(x),

'!h. '!h. '!h. -.2.iL
'" 8l1~ 8l1.. 8y.,+1

9.h. '!h. 2h. ....!!.h.-
dF(y) ~ a" a!l~ 8y.. 8Y"+1 ~ {F}"._,I,J-

!l.i.. !l.i.. !l.i.. -fl.i..-8,. 8" 8," DlIn+l

and
1 0 0
0 1 0

dv(x) =

0 0 1
b, b, b"

(16)

(17)

According to 15, dF(x) is obtained by multiplying 16 by 17 Since 17 has a
very simple structure, the n x n matrix dF(x) = {FH~j=l is defined by

dFi,j = dF,,j + hj . d:F.,n+l' i, j = 1, ... l n.

3.5 Computation of dH(x) and dH()')

The formulas for computing dH(x) and dH("\) are obtained from 9 by differen
tiation.

dH(x) = (1- A)dC(x) + A,dF(x)
dH(A) ~ dF(A) - dC(A).

Example 4 Let F be the syslem.

{

XO+Xl+X2+X3-1=0
Xo +Xl -X2 +X3 -3 = 0
X5 +Xf +X~ +X§ -4 = 0
x~ +x~+x~ +X~ -2xo -3 =0

Standord homotopy continuation trucks 4 paths. Two of the paths correspond to
solutions at infinity. Tlie otlier two converge to the following real roots

x = (0.5, -0.151388, -1, 1.65130)
x = (0.5,1.65139, -1, -0.151388)

Example 5 Let F be the system

1
2XO + Xl + X2 + X3 + X4 - G= 0
Xo + 2Xl + X2 + X3 + X4 - 6 = 0
Xo + Xl + 2X2 +X3 + X4 - 6 = 0
Xo +Xl +x2 +2X3 +X4 - 6 = 0
XOXIX2X;lX4 - 1 = 0

Standard homotopy continuation trucks 4 patlis. Three of these palhs correspond
to real solutions and the remaining two, to conjugate complex solutions.
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x= (1,1,1,1,1)
x = (0.916351, 0.916351, 0.916351, 0.916351, 1.41825)
x = (-0.57002, -0.57002, -0.57002, -0.57002, 8.8951)
x = (-0.068558 - 0.610028i, -0.068558 - 0.610028i,

-0.068558 - 0.610028i, -0.068558 - 0.610028i, 6.34279 + 3.05014i)
x = (-0.0695828+ 0.609968i, -0.0695828+ 0.609968i, .

-0.0695828 + 0.609968i, -0.0695828 + 0.609968i, 6.34791 - 3.04984i)

4 Usage and Examples

Continuum is a command-line tool. The command

Continuum < test.hh > test.out

solves the system described in test.hh and outputs the results on file test. out.

4.1 The Input File

The input file contains the target system and, optionally, the start system and
the corresponding start points. If the start system and start points are not
included, Continuum gcnerates and uses the standard start system, as defined
in section 2.3.

Table 2 shows olle input file corresponding to example 4. It is structured
into 3 blocks delimited by a begin ... end pair, which define the target system,
the start system, and the start points, respectively.

The syntax of the target and start systems is very simple. If they involve n
variables, each line must be a polynomial in XO,X1, ••• ,X",_1. Each polynomial
It = h(xo,xl, ... ,x",-d must be written as a sum of terms

m; 0 ~-l

'"" B i ; B i ;L..,..CijXo ' .• X",_l'

;=1

where mi is the number of terms of h. Furthermore,

1. The exponents a?; ...aij-l are positive integers (A variable with zero
exponent should be omitted).

2. The coeIIicients c;j can be either integer, real, or complex numbers. A
complex number (L + bi is represented by the ordered pair (a,b). Real
numbers Collow the standard IEEE format.

3. Multiplication is dcnoted by juxtaposition.

4. Each polynomial is delimited by a semicolon.

5. The sign of the first term of each polynomial is not optional.

The ordered pair at the beginning of the third block informs the number of
start points and the Humber of variables, respectively. The following lines list
the actual start points. For instance, the input file shown on table 2 has 2 start
points involving 4 variablc..':i.

12



Table 2: Input file corresponding to example 4.

begin
.+xo + xl + x2 + x3 - 1;
+xo + xl - x2 + x3 - 3;
+xO-2 + xl-2 + x2-2 + x3-2 - 4;
+xO-2 + xl-2 + xT2 + x3-2 - 2 xO -3;

ond

begin
+xO + xl + x2 + x3 - (0.371234,0.928539);
+xo + xl - x2 + x3 - (0.685677,0.727906);
+xO-2 + xl-2 + x2-2 + x3-2 - (0.888296,0.459271);
+xO-2 + xl-2 + x2-2 + xS-2 - 2xO -(0.628353,0.777928);

,nd

begin
(2 4)

(0.129971500000,-0.159328500000)
(-0.605147336515,0.450665817131)
(-0.157221500000,0.100316500000)
(1.003631336515,0.536885182869)

(0.129971500000,-0.159328500000)
(1.003631336515,0.536885182869)
(-0.157221500000,0.100316500000)
(-0.605147336515,0.450665817131)

ond

13



4.2 The Output File

The output file summarizes the computation. Appendix B shows the output
generated for the input file of table 2. It is divided into four sections. The first
section shows the parameter values used (refer to appendix A). The second
section shows the target and start systems (after homogenization), the random
vector b, and the random constant a, which corresponds to /. The vector deg
contains the degrees of the polynomials of the target system.

The third section shows the number of paths to be tracked. IT the start
system is not provided, then standard homotopy is used. In this case, the
number of paths equals the total degree of the target system. Otherwise, it
corresponds to the number DC start points given. Additional information [or
each individual path is also provided inside of the square brackets. The following
notation is used:

! : The refinement step at the end of the path converged.

x ; The refinement step at the end of the path did not converge.

+ : Successful path tracking.

- : Path failure.

(s) : Almost singular point found during the tracking.

(A) ; More than MAXSINGULAR almost singular points found.

If tlie REFINEMENT flag is off (refer to appendix A), ! and x are not
used. Notice that x does not imply in path failure (-). It only indicates that
the refinement step did not converge given the parameters REFIN.EP$ and
REFIN-NITER.

Finally, the fourth section lists all the solutions computed.
Appendix C presents another complete example.

4.3 Setting the Parameters

Continuum is called from a shell script, where the parameters are set to the
default values. These values can be modified simply by editing the script.
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A Parameters used by Continuum and their De
fault Values

In addition to MAXSTEPS, STEP and SAFE, Continuum requires the fol
lowing parameters to be specified, These parameters can be tuned to each indi
vidual problem.

1. DETAIL: Level of detail of the output.

2. REFINEMENT: If set to 1, a refinement step is performed at the end
of each homotopy path.

3. NEWTON-BPS: Tolerance used to check the convergence of the Newton
Raplisoll routine during correction.

4. REFIN-BPS: Tolerance used to check the cOllvergence of the Newton
Raphson routine during refinement. It is not used if REFINEMENT =
o.

5. PIVOT_EPS: Tolerance used to to check for zero pivot during LU de
composition. If the pivot is smaller than PIVOT-EPS, the matrix is
considered singular.

6. IMAG-BPS; Tolerance used in deciding if the imaginary part of a solu
tion coordinate is O.

7. REAL..EPS: Tolerance used in deciding if the real part of a solution
coordinate is O.

8. COMP -BPS: Tolerance used in deciding if a solution coordinate is O.

9. INFTY-BPS: Tolerance used to decide if a solution is a solution at
infinity.

10. NITER: Maximum number of iterations of the Newlon-Raphsoll routine
during correction.

11. REFIN_NITER: Maximum nllmber of iterations of the Newton-RaphsoJl
routine during refinement.
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12. FILTER: Ifset to 1, the solutions are filtered according to FILTEILLIMIT.

13. FILTEILLIMIT: IT any coordinate of a solution has norm greater than
F ILTEILLIMIT, then the solution is considered a solution at infinity.
It is not used if FILTER = O.

14. MAXSINGULAR: Maximum number of almost singular points found
on a path. If more than MAXSINGULAR points are found the path is
aborted.

15. TOO-BIG: If set to 1 the solutions are not stored in memory for future
post-processing. They are printed as they are computed. It is useful to
solve large systems.

I ValueI Parameter

DETAIL 4
REFINEMENT 1
NEWTON-EPS l.Oe - 8
REFIN-EPS l.Oe - 12
IMAG-EPS l.Oe - 8
REAL-EPS l.Oe - 8
COMP-EPS 1.0e - 8
PIVOT-EPS l.Oe - 20
INFTY-EPS 1.0e - 4
NITER 5
REFIN-NITER 100
STEP 0.01
NSAFE 5
MAXSTEPS 100
FILTER 1
FILTERLIMIT 100
MAXSINGULAR 5
TOOBIG 0

B Output file for example 4

Continuum 1.6 - Continuation-based Solver for Algebraic Systems
Computer Science, Purdue University, 1996-98

Parameters;
DETAIL
REFINEMENT
NEWTON EPS

= 4
1

= 1. 000000e-08
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REFIN_EPS = 1.000000e-12
IMAG_EPS 1.000000e-08
REAL_EPS = 1.000000e-08
COMP_EPS = 1.000000e-08
PIVOT_EPS = 1.000000e-20
INFTY_EPS = 1.000000e-04
NITER 5
REFIN_NITER = 100
STEP = 1.000000e-02
NSAFE = 5
MAXSTEPS 100
FILTER = 0
FILTER_LIMIT= 1.000000e+02

Parsing Input System... No Errors on input!
Equations = 4

•••••***••*****•••••*********.****•••••*****.*
Homotopy system

a = (0.387237,0.92198)
bezout number = 2
b = [ (0.791597,0.611043) (0.564735,0.825273)
(0.865966,0.500103) (0.651847,0.75835) (1,0) J
Target System
(l,O)*xO-l+(l,O)*xl-l+(l,O)*x2-1+(l,O)*x3-1+(-l,O)*x4-1+
(l,O).xO-1+(l,O)*xl-l+(-1,0)*x2-1+(l,O)*x3-1+(-3,O)*x4-1+
(l,O)*xO-2+(l,O)*xl-2+(l,O)*x2-2+(l,O).x3-2+(-4,O).x4-2+
(l,O)*xO-2+(l,O)*xl-2+(l,O)*x2-2+(l,O)*x3-2+(-2,O).xO-1.x4-1+(-3,0)*x4-2+
Start System
.(l,O).xO-1+(l,O)*xl-1+(l,O)*x2-1+(l,O)*x3-1+(-0.371234,-0.928539)*x4-1+
(l,O).xO-1+(l,O)*xl-1+(-1,0)*x2-1+(l,O)*x3-1+(-0.685677,-0.727906).x4-1+
(l,O)*xO-2+(l,O)*xl-2+(l,O)*x2-2+(l,O)*x3-2+(-0.888296,-0.459271)*x4-2+
(l,O)*xO-2+(l,O)*xl-2+(l,O)*x2-2+(l,0)*x3-2+(-2,0)*xO-1*x4-1+

(-0.628353,-0.777928).x4-2+
deg=[1122J

•••••*******••••**••**************.*.*.*****.
Number of Paths to be Tracked: 2

Tracking 2 possible paths ...

[l!+J [2!+J

=====»> Elapsed Time; 0.375294 seconds
Number of paths aborted: °
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="'=="'=='"

SOLUTIONS

Real (2) Complex (0) At Infinity (0) Limits (0)

REAL SOLUTIONS
1-th Path, nsteps '" 26
(0.500000000000,0.000000000000) (-0.151387818866,0.000000000000)
(-1.000000000000,0.000000000000) (1.651387818866,0.000000000000)

2-th Path, nsteps '" 26
(0.500000000000,0.000000000000) (1.651387818866,0.000000000000)
(-1.000000000000,0.000000000000) (-0.151387818866,0.000000000000)

COMPLEX SOLUTIONS

LIMIT SOLUTIONS

======~=~====~~

SOLUTIONS AT INFINITY

C Another Example

The system presented in this section is extensivelly studied in [Dur98]. It cor
responds to the problem of constructing a line tangent to 4 knOWlI spheres.

• Input file:

begin
+x3-2+x4-2+xS-2-1j
+xOx3+x1x4+x2xSj
+xO-2+x1-2+6x1+x2-2-9x4-2+8j
+xO-2+x1-2-6x1+x2-2-9x4-2+8i
+xO-2+xl-2-14x1+x2-2-2x2-49x4-2-14x4x5-x5-2+49j
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+xO-2-2xO+xl-2-10xl+x2-2-4x2-x3-2-10x3x4-4x3x5-25x4-2
-20x4xS-4x5-2+29j

end

• Output file:

Continuum 1.8 - Continuation-based Solver for Algebraic Systems
Computer Science, Purdue University. 1996-98

Parameters:
DETAIL = 4
REFINEMENT = 1
NEWTON_EPS = 1.000000e-08
REFIN_EPS = 1.000000a-12
IMAG_EPS = 1.000000a-08
REAL EPS = 1.000000e-08
COMP_EPS 1.000000e-08
PIVOT_EPS = 1.000000e-20
INFTY EPS = 1.000000e-04
NITER = 5
REFIN_NITER = 100
STEP = 1.000000e-02
NSAFE = 5
MAXSTEPS = 100
FILTER = 0
FILTER_LIMIT= 1.000000e+02

Parsing Input System... No Errors on input!
Equations = 6

**********************************************
Homotopy system

a = (0.839398,0.543518)
bezout number = 64
b = [ (0.536953,0.843612) (0.518618,0.855006) (0.705336.0.708873)
(0.880625,0.473813) (0.384871,0.92297) (0.407086,0.91339) (1,0) ]
Target System
(l,O)*x3-2+(l,O)*x4-2+(l,0)*x5-2+(-l,O)*x6-2+
(l,0)*xO-l*x3-1+(l,0)*xl-l*x4-1+(1,0)*x2-1*x5-1+
(1,0)*xO-2+(l,0)*xl-2+(6.0)*xl-l*x6-1+(1.0)*x2-2+(-9.0)*x4-2

+(8.0)*x6-2+
(l,O)*xO-2+(l,0)*x!-2+(-S,0)*x!-1*x6-1+(1.0)*x2-2+(-9.0)*x4-2

+(8.0)*xS-2+
(1.0)*xO-2+(l.0)*x!-2+(-14.0)*xl-l*x6-1+(l.0)*x2-2+(-2,0)*x2-1*x6-1

+(-49.0)*x4-2+(-14.0)*x4-1*xS-l+(-1.0)*x5-2+(49.0)*x6-2+
(1.0)*xO-2+(-2,0)*xO-l*xS-l+(l,0)*xl-2+(-10.0)*xl-1*x6-1+(l,0)*x2-2
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+(-4,O)*x2~1*x6~1+(-1.0)*x3-2+(-10,O)*x3-1.x4~1+(-4,O)*x3-1*xS-l

+(-2S,O)*x4-2+(-20,O)*x4-1.xS-l+(-4,O)*xS-2+(29,O).x6-2+
Start System
(1,O)*xO-2+(-1,O).x6-2+
(1,O).xl-2+(-1,O).x6-2+
(1,O).x2-2+(-1,O).x6-2+
(l,O)*x3~2+(-l,O)*x6-2+

(l,O)*x4-2+(-l,O)*x6-2+
(l,O)*xS-2+(-l,O)*x6-2+
deg=[222222]

•••••••••••••••••••••••••••*•••••*****••*****
Number of Paths to be Tracked: 64

Tracking 64 possible paths •..

[1x+] [2x+] [3x+] [4x+] [Sx+] [6x+J [7x+J [8!+J [9!+J [to!+]
[l1x+] [12]+] [13]+] (141+] [1Sx+J [16!+] [171+J [t8x+J [t9!+J [20!+]
[21!+] [22x+] [23x+] [24x+] [2Sx+J [26x+] [27!+] [281+J [29x+] [30!+]
[31x+] [321+] [331+] [34x+] [3Sx+] [36x+] [371+] [38x+J [39x+J [40x+J
[41x+] [42x+] [43x+] [44x+J [4Sx+J [46x+] [47x+] [48!+J [491+] [SOI+J
[S1x+J [52x+J [531+] [54x+] [55!+] [56x+] [57x+] [58!+] [59x+] [60x+]
[61x+J [62!+] [63x+] [64x+J

=====»> Elapsed Time: 76.6876 seconds
Number of paths aborted: 0

,~~===~=

SOLUTIONS

Real (8) Complex (16) At Infinity (40) Limits (0)

REAL SOLUTIONS
12-th Path, nsteps = 39
(-0.S41030812433,O.000000000000) (0.000000000000,0.000000000000)
(0.294941920212,0.000000000000) (0.125658294384,0.000000000000)
(0.964924008309,0.000000000000) (0.230503039549,0.000000000000)
14-th Path, nsteps == 34
(0.565454517450,0.000000000000) (0.000000000000,0.000000000000)
(0.187172830160,0.000000000000) (-0.084140101598,0.000000000000)
(0.963487443247,0.000000000000) (0.254189673292,0.000000000000)
19-th Path, nsteps = 62
(0.565454517450,0.000000000000) (0.000000000000,0.000000000000)
(0.187172830160,0.000000000000) (0.084140101598,0.000000000000)
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(-0.963487443247,0.000000000000) (-0.254189673292,0.000000000000)
27-th Path, nsteps = 41
(-0.225724345720,0.000000000000) (0.000000000000,0.000000000000)
(0.811917097587,0.000000000000) (-0.172898246526,0.000000000000)
(-0.983766054710,0.000000000000) (-0.048068138593,0.000000000000)
33-th Path, nsteps = 36
(-0.225724345720,0.000000000000) (0.000000000000,0.000000000000)
(0.811917097587,0.000000000000) (0.172898246526,0.000000000000)
(0.983766054710,0.000000000000) (0.048068138593,0.000000000000)
37-th Path, nsteps = 65
(0.777804377366,0.000000000000) (0.000000000000,0.000000000000)
(-0.073855672310,0.000000000000) (0.019666790154,0.000000000000)
(0.978118051827,0.000000000000) (0.207119033543,0.000000000000)
49-th Path, nsteps = 49
(-0.541030812433,0.000000000000) (0.000000000000,0.000000000000)
(0.294941920212,0.000000000000) (-0.125658294384,0.000000000000)
(-0.964924008309,0.000000000000) (-0.230503039549,0.000000000000)
53-th Path, nsteps = 74
(0.777804377366,0.000000000000) (0.000000000000,0.000000000000)

(-0.073855672310,0.000000000000) (-0.019666790154,0.000000000000)
(-0.978118051827,0.000000000000) (-0.207119033543,0.000000000000)
===========================================================

COMPLEX SOLUTIONS
8-th Path, nsteps = 50
(-20.591388173181,16.798652742161) (0.000000000000,0.000000000000)
(-16.811600210558,-20.574158420389) (2.199597369133,-2.354763798077)

(1.007995700888,-0.002541166928) (2.353487613284,2.201878485049)

9-th Path, nsteps = 42
(0.909583750877,2.699528493742) (0.000000000000,0.000000000000)

(2.904508769077,-0.833754389715) (-0.089264218475,-0.469651829608)
(1.015493115843,0.003698292674) (-0.438458291966,0.104180249553)

10-th Path, nsteps = 44
(0.909583750877,-2.699528493742) (0.000000000000,0.000000000000)

(2.904508769077,0.833754389715) (-0.089264218475,0.469651829608)
(1.015493115843,-0.003698292674) (-0.438458291966,-0.104180249553)

13-th Path, nsteps = 41
(3.462981149984,-5.725434540256) (0.000000000000,0.000000000000)

(6.048846369144,3.476649224401) (-1.183400957819.1.741279050875)
(1.146748895756,0.116527026379) (-1.644271210718,-1.171950250816)

16-th Path, nsteps = 42
(-20.591388173181,-16.798652742157) (0.000000000000,0.000000000000)

(-16.811600210554,20.574158420389) (2.199597369133,2.354763798077)
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(1.007995700888,0.002541166928) (2.353487613284,-2.201878485049)

17-th Path, nsteps = 33
(3.462981149984,5.725434540256) (0.000000000000,0.000000000000)

(6.048846369144,-3.476649224401) (1.183400957819,1.741279050875)
(-1.146748895756,0.116527026379) (1.644271210718,-1.171950250816)

20-th Path. nsteps = 45
(3.462981149984,-5.725434540256) (0.000000000000,0.000000000000)
(6.048846369144,3.476649224401) (1.183400957819,-1.741279050875)

(-1.146748895756,-0.116527026379) (1.644271210718,1.171950250815)

21-th Path, nsteps = 46
(-47.963546243070,0.568028395867) (0.000000000000,0.000000000000)
(-0.161254780193,49.437226046515) (16.525305119684,0.031339318357)

(-0.976811100897,4.005851878591) (-0.211763377903,-16.032369803857)

28-th Path, nsteps = 38
(0.909583750877,-2.699528493742) (0.000000000000,0.000000000000)

(2.904508769077,0.833754389715) (0.089264218475,-0.469651829608)
(-1.015493115843,0.003698292674) (0.438458291966,0.104180249553)

30-th Path, nsteps = 35
(-47.963546243071,0.568028395866) (0.000000000000,0.000000000000)

(-0.161254780194,49.437226046515) (-16.525305119685,-0.031339318357)
(0.976811100897,-4.005851878592) (0.211763377903,16.032369803858)

32-th Path, nsteps = 37
(-20.591388173177,-16.798652742156) (0.000000000000,0.000000000000)

(-16.811600210553,20.574158420384) (-2.199597369133,-2.354763798077)
(-1.007995700888,-0.002541166928) (-2.353487613284,2.201878485049)

48-th Path, nsteps = 46
(3.462981149984,5.725434540256) (0.000000000000,0.000000000000)

(6.048846369144,-3.476649224401) (-1.183400957819,-1.741279050875)
(1.146748895756,-0.116527026379) (-1.644271210718,1.171950250815)

50-th Path, nsteps = 88
(-47.963546243071,-0.568028395866) (0.000000000000,0.000000000000)

(-0.161254780193,-49.437226046515) (16.525305119685,-0.031339318357)
(-0.976811100897,-4.005851878591) (-0.211763377903,16.032369803857)

55-th Path, nsteps = 36
(0.909583750877,2.699528493742) (0.000000000000,0.000000000000)
(2.904508769077,-0.833754389715) (0.089264218475,0.469651829608)
(-1.015493115843,-0.003698292674) (0.438458291966,-0.104180249553)
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58-tb Path, nsteps = 40
(-47.963546243071,-0.568028395866) (0.000000000000,0.000000000000)

(-0.161254780194,-49.437226046515) (-16.525305119684,0.031339318357)
(0.976811100897,4.005851878591) (0.211763377903,-16.032369803857)

62-th Path, nsteps = 43
(-20.591388173181,16.798652742161) (0.000000000000,0.000000000000)

(-16.811600210559,-20.574158420388) (-2.199597369133,2.354763798077)
(-1.007995700888,0.002541166928) (-2.353487613284,-2.201878485049)
===========================================================

LIMIT SOLUTIONS

===========================================================

SOLUTIONS AT INFINITY
1-th Path, nsteps = 42

2-tb Path, nsteps = 57

3-th Path, nsteps = 49

4-th Path, nsteps = 47

5-th Path, nsteps = 38

6-th Path, nsteps = 45

7-th Path, nsteps = 44

11-th Path, nsteps = 40

15-th Path, nsteps = 47

18-th Path, nsteps = 55
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22-th Path, nsteps 55

23-th Path, nsteps 58

24-th Path, nsteps = 41

25-th Path, nsteps 59

26-th Path, nsteps 50

29-th Path, nsteps 39

31-th Path, nsteps 41

34-th Path, nsteps = 60

35-tb Path, nsteps = 43

36-th Path, nsteps = 93

38-th Path, nsteps 44

39-th Path, nsteps 56

40-th Path, nsteps 51

41-th Path, nsteps = 45

42-th Path, nsteps = 43
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43-th Path, nsteps = 59

44-th Path, nsteps = 44

45-th Path, nsteps = 41

46-th Path, nsteps 47

47-th Path, nsteps 44

51-th Path, nsteps = 53

52-th Path, nsteps = 39

54-th Path, nsteps 46

56-th Path, nsteps = 40

57-th Path, nsteps 78

59-th Path, nsteps 62

60-th Path, nsteps 36

61-th Path, nsteps = 53

63-th Path, nsteps = 48

64-th Path, nsteps ~ 34

~~~~~~~=~==~~~~~==~~~==~~~======================~~======
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