
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2007

A High-Quality Physically-Accurate Visualization of the September A High-Quality Physically-Accurate Visualization of the September

11 Attack on the World Trade Center 11 Attack on the World Trade Center

Paul Rosen

Voicu Popescu
Purdue University, popescu@cs.purdue.edu

Christoph Hoffmann
Purdue University, cmh@cs.purdue.edu

Ayhan Irfanoglu

Report Number:
07-007

Rosen, Paul; Popescu, Voicu; Hoffmann, Christoph; and Irfanoglu, Ayhan, "A High-Quality Physically-
Accurate Visualization of the September 11 Attack on the World Trade Center" (2007). Department of
Computer Science Technical Reports. Paper 1671.
https://docs.lib.purdue.edu/cstech/1671

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A HIGH-QUALITY PHYSICALLY-ACCURATE VISUALIZATION
OF THE SEPTEMBER 11 ATTACK ON THE WORLD TRADE CENTER

Paul Rosen
Voicu Popescu

Christoph Hoffmann
Ayhan Irfanoglu

CSD TR #07-007
March 2007

A HIGH-QUALITY PHYSICALLY-ACCURATE VISUALIZAnON
OF THE SEPTEMBER 11 ATTACK ON THE WORLD TRADE CENTER

Paul Rosen
Voicu Popescu

Christoph Hoffmann
Ayhan Irfanoglu

CSD TR #07-007
March 2007

A High-Quality Physically-Accurate Visualization of the September 11
Attack on the World Trade Center

Paul Rosen, Voicu Popescu, Christoph Hoffmann, Ayhan lrfanoglu
Purdue University

Figure 1. Simulation integrated into lower Figure 2. Impact visualization from outside the building. Right image highlights core
Manhattan scene using Google Earth. column damage by rendering all other elements with transparent materials.

Figure 3. Region between fapade and building core, during (lefi) and after (right) impact. Figure 4. Visualization of fapade breach.

Figure 5. Visualization of the two floors most affected by the impact, chronologically, from left to right.

Figure 6. Dust and glass debris generated Figure 7. Fire visualization (right) generated automatically from SPH simulated jet fuel
automatically from eroding elements. (lefi). The shape of the fire follows the particle distribution.

, A High-Quality Physically-Accurate Visualization of the September 11
Attack on the World Trade Center

Paul Rosen, Voicu Popescu, Christoph Hoffmann, Ayhan Irfanoglu
Purdue University

Figure 2. Impact visualization from outside the building. Right image highlights core
column damage by rendering all other elements with transparent materials.

III'! !~, >""",.
.. ;1.~~

:.L
Figure 5. Visualization ofthe two floors most affected by the impact, chronologically, from left to right.

Figure 3. Region between fa~ade and building core, during (left) and after (right) impact.

K
Figure 1. Simulation integrated into lower
Manhattan scene using Google Earth.

Figure 6. Dust and glass debris generated
automatically from eroding elements.

Figure 7. Fire visualization (right) generated automatically from SPH simulated jet fuel
(left). The shape of the fire follows the particle distribution.

In this application paper we describe the efforts of a multi-
disciplinary team towards producing a visualization of the
September l l 2001 Attack on the North Tower of New York's
World Trade Center. The visualization was designed to meet two
conditions. First, the visualization had to depict the impact with
high fidelity, by closely following the laws of physics. Second,
the visualization had to be eloquent to a non-expert user. This was
achieved by first designing and computing a finite element
analysis (FEA) simulation of the impact between the Boeing 767
and the top 20 stories of the building, and then by visualizing the
FEA results with a state-of-the-art commercial animation system.
The visualization was enabled by an automatic translator that
converts the simulation data into an animation system 3D scene
by removing simulation data with little visual relevance and by
adding details important for the visualization that were ignored by
the simulation. We built upon a translator developed part of our
previous efforts to produce a high-fidelity visualization of the
September 11 Attack on the Pentagon. The translator was
extended to handle beam elements with a variety of complex
profiles, to handle smoothed particle hydrodynamics (SPH) liquid
representations, to enable and control visualization of fire and of
disintegrating elements, and to better scale with the number of
nodes and number of states.

Keywords: finite-element analysis, visualization, high-fidelity,
scalability, translation, 911 1 Attack on World Trade Center.

Visualization has long been used by experts in a variety of
domains as a powerful tool that assists them in their mission. The
visualization system is typically developed in collaboration with
domain experts and achieves-automatically or with user
guidancethe detection and isolation of relevant data subsets,
which are then converted into salient visual representations. The
rules of this conversion and the resulting visualization language
are well familiar to the domain experts, for whom it facilitates
broad-band assimilation of information. However, this same
visualization language can be cryptic to anyone outside the
narrow circle of domain experts, which is a problem when the
interest in the visualization transcends a single domain.

This is a serious limitation in the case of computer simulations.
Simulation codes and computing hardware are now sufficiently
powerful to enable high-fidelity simulations that track in detail
complex interactions in large and complex scenes. The results of
such simulations are often of great interest to a group of users
with heterogeneous expertise, yet the visualization modules of
simulation systems typically cater only to the experts who
designed the simulation.

This application paper describes the collaborative efforts of
visualization and civil engineering researchers towards producing
a simulation of the September 11 2001 Attack on New York's
World Trade Center. The interest in such a simulation transcends
civil engineering and includes emergency response, defense, and
society in general. Therefore we pursued two major goals. On the
one hand the simulation had to follow the laws of physics as
closely as possible. On the other hand, the simulation results had
to be presented through a visualization that is eloquent to users
outside of civil engineering. The goals of simulation fidelity and
of broad accessibility to the simulation results through
visualization are somewhat contradictory and are rarely pursued in
combination.

Employing state-of-the-art numerical simulation code has the
advantage of a high degree of confidence in the fidelity of the
physical simulation, but suffers from the disadvantage of lower

fidelity visualization provided by post-processing modules that
are one or several steps behind the state-of-the-art in general
purpose visualization. Employing a state-of-the-art animation
system on the other hand enables high-quality visualization but
there is little confidence that the rendered imagery faithhlly
depicts the actual events. We combine the advantages and avoid
the disadvantages of both approaches by computing the simulation
in a state-of-the-art commercial simulation system and by
visualizing the simulation results using a state-of-the-art
commercial animation system.

We generated finite element models of the Boeing 767 and of
the top 20 stories of the North Tower of the World Trade Center
(WTC-I) consisting of beam, shell, SPH, and solid elements. The
finite element models were used to compute an FEA simulation of
the impact using LS-DYNA [I]. The simulation tracked the
impact over one second of real time. Simulation results were
saved for 400 output time steps, thus every 2.5111s. The simulation
results were imported into 3ds Max [2] where, relying on state-of-
the-art geometry, material, light, and visual effects editors a high-
quality visualization of the simulation results was produced (see
Figures 2-7 and accompanying video). Once the light, material,
and effects parameters were tuned, producing the visualization
was fully automatic: materials were applied automatically to the
simulation data and visual effects such as fire, dust, and glass
debris were seeded automatically based on simulation data. The
visualization was placed into context by modeling and importing
the WTC plaza buildings into a Google Earth [3] 3D scene of
lower Manhattan (Figure 1).

The importer translates the simulation data into an animated 3D
scene amenable to high-quality visualization, effectively linking
the worlds of simulation and animation. The process of translation
implements two tasks. First, simulation data with little
visualization relevance is discarded. Examples include removing
internal faces of structures modeled with opaque solid elements,
discarding values of physical quantities not intended to be
visualized (i.e. pressure, momentum), and simplifying planar
surfaces that are not affected by the impact and are therefore
excessively tessellated by shell elements.

The second task implemented by the translation is to enhance or
add detail with high visual relevance that was crudely
approximated or even ignored due to its little simulation
relevance. For example, once an element erodes, the simulation
code simply eliminates it from subsequent computations.
Assuming that the element breaks into many small fragments, this
is an acceptable approximation from the simulation standpoint,
since the expense of tracking each fragment individually is not
justified by the fragment's impact on the simulation. However, for
example, if the element models a concrete wall that turns into dust
when submitted to excessive stress, the eroding element has a
large visual impact which should be captured by the visualization.

Another example of visual detail added during translation is the
geometry needed to model the actual beam profile since the
simulation uses only two nodes and a normal per beam element
regardless of the beam profile (the shape is accounted for by
physics equation in the FEA) and drawing all beam elements as
segments is unacceptable. A third example is the addition of fire
visualization. Our simulation did not take into account the effects
of the explosion and of the ensuing fire. The SPH elements
modeling the jet fuel are used by the translator to automatically
control fire visualization matching the dispersing fuel.

The importer used for this work is based on a LS-DYNA to 3ds
Max importer we have originally developed for producing a
visualization of the September 11 Attack on the Pentagon [4]. We
have extended the importer to support:

- beam elements with complex profiles,
- SPH liquid simulation,

ABSTRACT

In this application paper we describe the efforts of a multi
disciplinary team towards producing a visualization of the
September II 2001 Attack on the North Tower of New York's
World Trade Center. The visualization was designed to meet two
conditions. First, the visualization had to depict the impact with
high fidelity, by closely following the laws of physics. Second,
the visualization had to be eloquent to a non-expert user. This was
achieved by first designing and computing a finite element
analysis (FEA) simulation of the impact between the Boeing 767
and the top 20 stories of the building, and then by visualizing the
FEA results with a state-of-the-art commercial animation system.
The visualization was enabled by an automatic translator that
converts the simulation data into an animation system 3D scene
by removing simulation data with little visual relevance and by
adding details important for the visualization that were ignored by
the simulation. We built upon a translator developed part of our
previous efforts to produce a high-fidelity visualization of the
September II Attack on the Pentagon. The translator was
extended to handle beam elements with a variety of complex
profiles, to handle smoothed particle hydrodynamics (SPH) liquid
representations, to enable and control visualization of fire and of
disintegrating elements, and to better scale with the number of
nodes and number of states.

Keywords: finite-element analysis, visualization, high-fidelity,
scalability, translation, 9111 Attack on World Trade Center.

1 INTRODUCTION

Visualization has long been used by experts in a variety of
domains as a powerful tool that assists them in their mission. The
visualization system is typically developed in collaboration with
domain experts and achieves-automatically or with user
guidanccr-the detection and isolation of relevant data subsets,
which are then converted into salient visual representations. The
rules of this conversion and the resulting visualization language
are well familiar to the domain experts, for whom it facilitates
broad-band assimilation of information. However, this same
visualization language can be cryptic to anyone outside the
narrow circle of domain experts, which is a problem when the
interest in the visualization transcends a single domain.

This is a serious limitation in the case of computer simulations.
Simulation codes and computing hardware are now sufficiently
powerful to enable high-fidelity simulations that track in detail
complex interactions in large and complex scenes. The results of
such simulations are often of great interest to a group of users
with heterogeneous expertise, yet the visualization modules of
simulation systems typically cater only to the experts who
designed the simulation.

This application paper describes the collaborative efforts. of
visualization and civil engineering researchers towards prodUCIng
a simulation of the September II 2001 Attack on New York's
World Trade Center. The interest in such a simulation transcends
civil engineering and includes emergency response, defense, and
society in general. Therefore we pursued two major goals. \In the
one hand the simulation had to follow the laws of phYSICS as
closely as possible. On the other hand, the simulation results had
to be presented through a visualization tha~ is el?quent t~ users
outside of civil engineering. The goals of simulatIOn fidelity and
of broad accessibility to the simulation results through
visualization are somewhat contradictory and are rarely pursued in
combination.

Employing state-of-the-art numerical sim.ulation cod~ has the
advantage of a high degree of confidence In the fidelity of the
physical simulation, but suffers from the disadvantage of lower

fidelity visualization provided by post-processing modules that
are one or several steps behind the state-of-the-art in general
purpose visualization. Employing a state-of-the-art animation
system on the other hand enables high-quality visualization but
there is little confidence that the rendered imagery faithfully
depicts the actual events. We combine the adv~ntages ~nd av?id
the disadvantages of both approaches by computIng the simulatIOn
in a state-of-the-art commercial simulation system and by
visualizing the simulation results using a state-of-the-art
commercial animation system.

We generated finite element models of the Boeing 767 and of
the top 20 stories of the North Tower of the World Trade Center
(WTC-I) consisting of beam, shell, SPH, and solid el~ment~. The
finite element models were used to compute an FEA Simulation of
the impact using LS-DYNA [1]. The simulation tracked the
impact over one second of real time. Simulation res~lts w~re

saved for 400 output time steps, thus every 2.5ms. The simulatIOn
results were imported into 3ds Max [2] where, relying on state-of
the-art geometry, material, light, and visual effects editors a high
quality visualization of the simulation results was ~roduced (~ee

Figures 2-7 and accompanying video). Once the light, matenal,
and effects parameters were tuned, producing the visualization
was fully automatic: materials were applied automatically to the
simulation data and visual effects such as fire, dust, and glass
debris were seeded automatically based on simulation data. The
visualization was placed into context by modeling and importing
the WTC plaza buildings into a Google Earth [3] 3D scene of
lower Manhattan (Figure I).

The importer translates the simulation data into an animated 3D
scene amenable to high-quality visualization, effectively linking
the worlds of simulation and animation. The process of translation
implements two tasks. First, simulation data with little
visualization relevance is discarded. Examples include removing
internal faces of structures modeled with opaque solid elements,
discarding values of physical quantities not intended to be
visualized (i.e. pressure, momentum), and simplifying planar
surfaces that are not affected by the impact and are therefore
excessively tessellated by shell elements.

The second task implemented by the translation is to enhance or
add detail with high visual relevance that was crudely
approximated or even ignored due to its little simulation
relevance. For example, once an element erodes, the simulation
code simply eliminates it from subsequent computation~.

Assuming that the element breaks into many small fragments, thiS
is an acceptable approximation from the simulation standpoint,
since the expense of tracking each fragment individually is not
justified by the fragment's impact on the simulation. How~ver, for
example, if the element models a concrete wall that turns Into dust
when submitted to excessive stress, the eroding element has a
large visual impact which should be captured by the visualization.

Another example of visual detail added during translation is the
geometry needed to model the actual beam profile since the
simulation uses only two nodes and a normal per beam element
regardless of the beam profile (the shape is accounted for by
physics equation in the FEA) and drawing .all beam ~I.ements as
segments is unacceptable. A third example IS the addition of fire
visualization. Our simulation did not take into account the effects
of the explosion and of the ensuing fire. The SPH ele~ents

modeling the jet fuel are used by the translator to automatically
control fire visualization matching the dispersing fuel.

The importer used for this work is based on a LS-DYNA to 3ds
Max importer we have originally developed for producing a
visualization of the September 11 Attack on the Pentagon [4]. We
have extended the importer to support:

beam elements with complex profiles,
SPH liquid simulation,

2

Figure 8. Layers of the aircraft finite element model.

- automatic fire visualization controlled by SPH elements,
- automatic dust and debris visualization controlled by

eroding elements,
- out-of-core simulation visualization.
The resulting importer is a powerful, scalable, and general tool

suitable for visualizing other simulations. Although the translator
was developed in the context of LS-DYNA and 3ds Max, it can be
extended to support other pairs of simulation/animation systems.
The visualizations produced achieve the dual goal of physical and
visual fidelity, surpassing what can be produced with typical
postprocessors yet tracking the physical entities with the rigor of
state of the art simulation code.

The remainder of the paper is organized as follows. Prior work
is discussed next. The FEA simulation is described in Section 3.
Section 4 describes the translation of the simulation data into an
animation system 3D scene suitable for visualization. Section 5
describes using the animation system's resources to produce the
visualization and presents the visualization results. Section 6 gives
an overview of the implementation, and Section 7 provides
conclusions and sketches possible directions of future work.

An earlier effort with similar goals to ours was the simulation
of the impact of a bomb detonation on nearby buildings [5]. The
specifics of the simulation match the 1996 attack on the Khobar
towers. A first simulation of the blast computed the initial
pressure loadings on the building, which were then used in an
FEA simulation to model the structural response of the building to
the blast. Visualization was performed using the postprocessor of
the simulation system [6] and using the Visualization Tool Kit
(VTK) [7]. The researchers mention enhancing the visualization
with photographs as future work in order to improve the
communication of the simulation results.

Considerable nuclear and civil engineering research effort is
dedicated to the simulation of the crash of an aircraft into a
concrete structure, in order to derive safe building codes for
nuclear containment structures. A full-scale experiment with an
actual fighter aircraft was conducted by Sugano et al. [a]. The
experiment provided impact forceldeflection measurements used
to validate subsequent simulations.

In a previous effort, our team produced a visualization of the
911 1 Attack on the Pentagon. Like for the current work, the initial
motivation of understanding the performance response of the
building from a civil engineering stand point was augmented with
producing a high-quality visualization that speaks to the public at
large. The Pentagon building was simplified to the spiral-
reinforced columns, which are the building's main structural
components. Most of the kinetic energy of the aircraft was
concentrated in the jet fuel, which was modeled with an Arbitrary
Eulerian Lagrangian (ALE) mesh. The simulation showed a
column destruction pattern similar to the one actually observed.
The visualization footage was used by local, national, and
international news agencies, and it continues to be the all-time
most downloaded video file off Purdue University's web site.

Compared to the Pentagon visualization, the present effort not
only involved a different scenario, but required developing the

Figure 9. Layers of the WTC-I finite element model.

importer in new directions. First, whereas the Pentagon columns
were modeled mainly with solid elements, the WTC-I was
modeled primarily with beams, which required developing the
beam visualization capability (see Section4.1). Second, the current
effort required adding support for visualization of SPH liquid
simulation (see Section 4.2). Third, the current effort eliminated
the node animation bottleneck which would have been even more
severe in the present context due to the complex beam profiles
(see Section 4.3). Finally the present effort added automatic,
simulation controlled, fire, dust, and debris visualization.

3 FEA SIMULATION

We modeled a Boeing 767-200 using both graphics models as
well as published aircraft literature. The FEA model (Figure 8)
includes structural elements, including ribs, stringers, keel beam,
floor and more. The model was calibrated using Sugano's method
as well as weight distribution information.

A model of the North Tower (WTC-I) was built by the civil
engineering members of the team. It included all structural
elements as well as the concrete floors (Figure 9). All stories were
modeled, including those underground. The simulation restricted
to the upper 20 floors of the building, however with increased
detail meshing near the impact region so as to achieve high
accuracy of the results. The aircraft and WTC-I model total
332,862 nodes; 87,188 SPH, 248,433 beam, 93,733 shell, and 674
solid elements. The titanium shafts of the two engines and the
titanium undercamage were modeled with solid elements. The
FEA computation took 166 hours on an IBM Regatta with 16
Power-5 processors. The simulation data files for the 400 saved
states comprise 20GB of disk space. The simulation begins at the
moment of impact and covers 1 second of real time. Debris begins
to re-emerge through the opposite face of the building at
approximately 0.36s.

Figure 8. Layers of the aircraft finite element model.

automatic fire visualization controlled by SPH elements,
automatic dust and debris visualization controlled by
eroding elements,
out-of-core simulation visualization.

The resulting importer is a powerful, scalable, and general tool
suitable for visualizing other simulations. Although the translator
was developed in the context ofLS-DYNA and 3ds Max, it can be
extended to support other pairs of simulation/animation systems.
The visualizations produced achieve the dual goal of physical and
visual fidelity, surpassing what can be produced with typical
postprocessors yet tracking the physical entities with the rigor of
state of the art simulation code.

The remainder of the paper is organized as follows. Prior work
is discussed next. The FEA simulation is described in Section 3.
Section 4 describes the translation of the simulation data into an
animation system 3D scene suitable for visualization. Section 5
describes using the animation system's resources to produce the
visualization and presents the visualization results. Section 6 gives
an overview of the implementation, and Section 7 provides
conclusions and sketches possible directions of future work.

An earlier effort with similar goals to ours was the simulation
of the impact of a bomb detonation on nearby buildings [5]. The
specifics of the simulation match the 1996 attack on the Khobar
towers. A first simulation of the blast computed the initial
pressure loadings on the building, which were then used in an
FEA simulation to model the structural response of the building to
the blast. Visualization was performed using the postprocessor of
the simulation system [6] and using the Visualization Tool Kit
(VTK) [7]. The researchers mention enhancing the visualization
with photographs as future work in order to improve the
communication of the simulation results.

Considerable nuclear and civil engineering research effort is
dedicated to the simulation of the crash of an aircraft into a
concrete structure, in order to derive safe building codes for
nuclear containment structures. A full-scale experiment with an
actual fighter aircraft was conducted by Sugano et al. [8]. The
experiment provided impact force/deflection measurements used
to validate subsequent simulations.

In a previous effort, our team produced a visualization of the
9/11 Attack on the Pentagon. Like for the current work, the initial
motivation of understanding the performance response of the
building from a civil engineering stand point was augmented with
producing a high-quality visualization that speaks to the public at
large. The Pentagon building was simplified to the spiral
reinforced columns, which are the building's main structural
components. Most of the kinetic energy of the aircraft was
concentrated in the jet fuel, which was modeled with an Arbitrary
Eulerian Lagrangian (ALE) mesh. The simulation showed a
column destruction pattern similar to the one actually observed.
The visualization footage was used by local, national, and
international news agencies, and it continues to be the all-time
most downloaded video file offPurdue University's web site.

Compared to the Pentagon visualization, the present effort not
only involved a different scenario, but required developing the

2 PRIOR WORK Figure 9. Layers of the WTC-I finite element model.

importer in new directions. First, whereas the Pentagon columns
were modeled mainly with solid elements, the WTC-I was
modeled primarily with beams, which required developing the
beam visualization capability (see Section4.1). Second, the current
effort required adding support for visualization of SPH liquid
simulation (see Section 4.2). Third, the current effort eliminated
the node animation bottleneck which would have been even more
severe in the present context due to the complex beam profiles
(see Section 4.3). Finally the present effort added automatic,
simulation controlled, fire, dust, and debris visualization.

3 FEA SIMULATION

We modeled a Boeing 767-200 using both graphics models as
well as published aircraft literature. The FEA model (Figure 8)
includes structural elements, including ribs, stringers, keel beam,
floor and more. The model was calibrated using Sugano's method
as well as weight distribution information.

A model of the North Tower (WTC-I) was built by the civil
engineering members of the team. It included all structural
elements as well as the concrete floors (Figure 9). All stories were
modeled, including those underground. The simulation restricted
to the upper 20 floors of the building, however with increased
detail meshing near the impact region so as to achieve high
accuracy of the results. The aircraft and WTC-I model total
332,862 nodes; 87,188 SPH, 248,433 beam, 93,733 shell, and 674
solid elements. The titanium shafts of the two engines and the
titanium undercarriage were modeled with solid elements. The
FEA computation took 166 hours on an IBM Regatta with 16
Power-5 processors. The simulation data files for the 400 saved
states comprise 20GB of disk space. The simulation begins at the
moment of impact and covers 1 second of real time. Debris begins
to re-emerge through the opposite face of the building at
approximately 0.36s.

3

Figure 11. Beam profile types: L, square (top), I and T
(bottom), thin and thick versions.

Figure 10. Comparison between our visualization (top) and
actual photograph (bottom, O 2001 Roberto Rabanne [9]).

The faqade damage computed by the simulation is in agreement
with the observed damage (Figure 10). The core columns are
essential to the structural integrity of the building, but no detailed
data exists recording their performance. Instead, FEA simulations
were used to assist estimating the impact response and the post-
impact state of the core's structural elements. Based on this
evidence it was found that some of the core columns were
vulnerable to failure, and that a simple construct not dependent on
exact determination would explain the collapse of the structure.
The simulation study concentrated on the core structure of the
tower and its possible behaviour under impact and thermal loads.
The study did not seek to rule out other plausible mechanisms
initiating collapse of the WTC-I tower, such as one due to loss of
lateral bracing and buckling of perimeter columns induced by
failure of open-web floor joists under thermal loads, or other
failure mechanisms.

4 TRANSLATION OF FEA OUTPUT INTO ANIMATION SCENE

Quadrilateral shell and hexahedral solid elements are imported
and translated into 2 and 12 faces as previously reported [4].

4.1 BEAM ELEMENTS
The FEA models contain beams with L, square, I, and T profiles
(Figure 11). The simulation represents a beam element with two
nodes and a normal, from which the importer reconstructs the
actual profile. For example a thinlthick I beam element is modeled
with 6/12 vertices per end point. In the visualizations shown in
this paper the material thickness was ignored, but could be easily
added at the cost of a factor of 2 increase in geometry complexity.

Element connectivity is not encoded in the simulation output
files. The importer recovers beam element connectivity in NlogN
time, where N is the number of beam elements, by sorting the
beam elements on the node indices of their endpoints. Two beam
elements with similar normals that share a simulation node will

also share the vertices created at the shared endpoint, achieving CO

continuity. C' discontinuity is masked by shading.
The geometry resulting from the shell, solid, and beam

elements is automatically filtered through a 3ds Max geometry
simplification tool which re-triangulates planar regions and
achieves on average a factor of 2 non-lossy geometry load
reduction (e.g. from -2.3 to 1.2 million triangles).

4.2 SPH ELEMENTS
The jet fuel was simulated using SPH because of its advantage
over ALE of easier set up in the context of the highly
compartmentalized aircraft fuel tanks. The SPH elements are first
imported as individual spheres of constant radius, then nearby
spheres are automatically fused into a mesh using a 3ds Max
geometry modifier, and finally a liquid material is applied to the
resulting mesh (Figure 12).

Animation systems such as 3ds Max support per-vertex animation
through position controllers that define the position of a vertex at
a given frame. In our previous work [4], the imported simulation
scene was animated using position controllers. However, the
approach proved to scale poorly with the number of states and the
number of nodes. Indeed, position controllers are used to animate
a few control points per character and animation systems are not
designed to support large numbers of position controllers. Even by
resorting to aggressive lossy compression of node trajectories,
which have the undesirable effect of modifying the result of the
simulation, the number of remaining position controllers was still
too high resulting in a slow and unresponsive animation system.

The simulation data specifies one position for every node for
every saved state. In our case, 400 states times 332,862 nodes
amounts to more than 133 million node positions. By taking into
account that a simulation node is converted on average to 5
animation scene vertices, the number of vertex positions
approaches one billion.

In order to comfortably support this large number of vertex
positions, we abandoned the position controller approach in favor
of an out-of-core approach to the animation of the imported
simulation data. A script controls the creation of a scene file for
every desired visualization frame by invoking the importer, and
then renders the frame. Only the simulation data corresponding to
a single time step is loaded into the animation system at any time.
The approach removes the position controller bottleneck and
scales perfectly well with the number of states The out-of-core
approach allows decoupling the time step used to save simulation
data from the time step of the visualization frames. Typically the

4 TRANSLATION OF FEA OUTPUT INTO ANIMATION SCENE

Quadrilateral shell and hexahedral solid elements are imported
and translated into 2 and 12 faces as previously reported [4].

4.1 BEAM ELEMENTS

The FEA models contain beams with L, square, I, and T profiles
(Figure 11). The simulation represents a beam element with two
nodes and a normal, from which the importer reconstructs the
actual profile. For example a thin/thick I beam element is modeled
with 6/12 vertices per end point. In the visualizations shown in
this paper the material thickness was ignored, but could be easily
added at the cost ofa factor of2 increase in geometry complexity.

Element connectivity is not encoded in the simulation output
files. The importer recovers beam element connectivity in NlogN
time, where N is the number of beam elements, by sorting the
beam elements on the node indices of their endpoints. Two beam
elements with similar normals that share a simulation node will

Figure 11. Beam profile types: L, square (top), I and T
(bottom), thin and thick versions.

also share the vertices created at the shared endpoint, achieving CO
continuity. C 1 discontinuity is masked by shading.

The geometry resulting from the shell, solid, and beam
elements is automatically filtered through a 3ds Max geometry
simplification tool which re-triangulates planar regions and
achieves on average a factor of 2 non-lossy geometry load
reduction (e.g. from -2.3 to 1.2 million triangles).

4.2 SPH ELEMENTS

The jet fuel was simulated using SPH because of its advantage
over ALE of easier set up in the context of the highly
compartmentalized aircraft fuel tanks. The SPH elements are first
imported as individual spheres of constant radius, then nearby
spheres are automatically fused into a mesh using a 3ds Max
geometry modifier, and finally a liquid material is applied to the
resulting mesh (Figure 12).

4.3 OUT-OF-CORE ANIMATION

Animation systems such as 3ds Max support per-vertex animation
through position controllers that define the position of a vertex at
a given frame. In our previous work [4], the imported simulation
scene was animated using position controllers. However, the
approach proved to scale poorly with the number of states and the
number of nodes. Indeed, position controllers are used to animate
a few control points per character and animation systems are not
designed to support large numbers of position controllers. Even by
resorting to aggressive lossy compression of node trajectories,
which have the undesirable effect of modifying the result of the
simulation, the number of remaining position controllers was still
too high resulting in a slow and unresponsive animation system.

The simulation data specifies one position for every node for
every saved state. In our case, 400 states times 332,862 nodes
amounts to more than 133 million node positions. By taking into
account that a simulation node is converted on average to 5
animation scene vertices, the number of vertex positions
approaches one billion.

In order to comfortably support this large number of vertex
positions, we abandoned the position controller approach in favor
of an out-of-core approach to the animation of the imported
simulation data. A script controls the creation of a scene file for
every desired visualization frame by invoking the importer, and
then renders the frame. Only the simulation data corresponding to
a single time step is loaded into the animation system at any time.
The approach removes the position controller bottleneck and
scales perfectly well with the number of states The out-of-core
approach allows decoupling the time step used to save simulation
data from the time step of the visualization frames. Typically the

Iill1

IJ
L
Uiunh

Figure 10. Comparison between our visualization (top) and
actual photograph (bottom, © 2001 Roberto Rabanne [9]).

The fa"ade damage computed by the simulation is in agreement
with the observed damage (Figure 10). The core columns are
essential to the structural integrity of the building, but no detailed
data exists recording their performance. Instead, FEA simulations
were used to assist estimating the impact response and the post
impact state of the core's structural elements. Based on this
evidence it was found that some of the core columns were
vulnerable to failure, and that a simple construct not dependent on
exact determination would explain the collapse of the structure.
The simulation study concentrated on the core structure of the
tower and its possible behaviour under impact and thermal loads.
The study did not seek to rule out other plausible mechanisms
initiating collapse of the WTC-I tower, such as one due to loss of
lateral bracing and buckling of perimeter columns induced by
failure of open-web floor joists under thermal loads, or other
failure mechanisms.

4

Figure 13. Glass debris effect.

Figure 12. From the top: close-up visualization of conversion
of SPH-element spheres (reduced size, blue) into fuel mesh
(green), diffuse fuel mesh, ray traced fuel mesh, and ray
traced fuel mesh close-up.

visualization examines the transition between two saved states
over several frames, which is achieved by interpolating the
simulation data.

Materials, lights, cameras, and camera trajectories are created
relying on the sophisticated support available in the animation
system. The materials are assigned automatically by a script to
each scene as the simulation data is processed out-of-core.

The importer first generates a pseudo mesh from the simulation
data which is then used by a script to control visual effects such as
erosion (i.e. glass debris and dust), and fire (see Figure 13, Figure
6, and Figure 7). The pseudo mesh vertices are used for particle
generation. In the case of erosion, the pseudo mesh vertices are
created by the importer by down-sampling the set of nodes of the
elements that erode (i.e. glass shells for the glass debris, and all
other eroding elements for dust). The erosion pseudo mesh has a
birth frame and a death frame specified by the importer. In the
case of fire, the pseudo mesh vertices are derived from the SPH
nodes and the mesh persists through the entire simulation.

Then the importer generates a script which creates a particle
array using the pseudo mesh vertices as seeds, and the animator
attaches the effect to those seeds. There are two types of particle
arrays used. Erosion uses a standard particle array which shoots
particles out of the seed. Space warpers (wind and gravity) then
affect the motion of the particles. Fire uses a sticky particle array
that creates particles and leaves each one of them attached to the
position of its (animated) seed.

The visualization is produced according to the pipeline depicted in
Figure 14. The FEA simulation results produced by LS-DYNA
are saved in the output files State, to State,. The importer is
implemented in C t t as a 3ds Max plug-in, taking advantage of
the open software architecture of commercial animation systems.
The importer loads, interpolates, and translates the simulation
results into n x m 3ds Max scenes. The variable m allows
"slowing" down the simulation in the visualization by creating
intermediate frames by interpolation. At most one frame is created
from each scene, and some scenes can be skipped. In the example
in Figure 14 the visualization rendered progresses three times
faster than the slowest pace possible. The 3ds Max scene files are
created only once and then reused to produce visualizations with a
variety of speeds, camera angles, effects, and materials. The
visualization rendering is controlled by a 3ds Max script that
loads, sets, and renders the appropriate 3ds Max scene for each
visualization frame.

Visualizations were rendered on two Intel Dual-Core Xeon
workstations. One workstation has 16GB of RAM and 2.6GHz
CPUs, while the other has only 4GB of RAM with faster 3.2GHz
CPUs. Each workstation has 2 CPUs, each CPU has 2 cores, and
each core runs two hardware threads, for a total of 16 threads. One
instance of the renderer uses I or 2 threads for simple scenes

Figure 12. From the top: close-up visualization of conversion
of SPH-element spheres (reduced size, blue) into fuel mesh
(green), diffuse fuel mesh, ray traced fuel mesh, and ray
traced fuel mesh close-up.

visualization examines the transition between two saved states
over several frames, which is achieved by interpolating the
simulation data.

Figure 13. Glass debris effect.

5 VISUALIZATION IN ANIMATION SYSTEM

Materials, lights, cameras, and camera trajectories are created
relying on the sophisticated support available in the animation
system. The materials are assigned automatically by a script to
each scene as the simulation data is processed out-of-core.

The importer first generates a pseudo mesh from the simulation
data which is then used by a script to control visual effects such as
erosion (Le. glass debris and dust), and fire (see Figure 13, Figure
6, and Figure 7). The pseudo mesh vertices are used for particle
generation. In the case of erosion, the pseudo mesh vertices are
created by the importer by down-sampling the set of nodes of the
elements that erode (i.e. glass shells for the glass debris, and all
other eroding elements for dust). The erosion pseudo mesh has a
birth frame and a death frame specified by the importer. In the
case of fire, the pseudo mesh vertices are derived from the SPH
nodes and the mesh persists through the entire simulation.

Then the importer generates a script which creates a particle
array using the pseudo mesh vertices as seeds, and the animator
attaches the effect to those seeds. There are two types of particle
arrays used. Erosion uses a standard particle array which shoots
particles out of the seed. Space warpers (wind and gravity) then
affect the motion of the particles. Fire uses a sticky particle array
that creates particles and leaves each one of them attached to the
position of its (animated) seed.

6 IMPLEMENTATION

The visualization is produced according to the pipeline depicted in
Figure 14. The FEA simulation results produced by LS-DYNA
are saved in the output files Statej to Staten. The importer is
implemented in C++ as a 3ds Max plug-in, taking advantage of
the open software architecture of commercial animation systems.
The importer loads, interpolates, and translates the simulation
results into n x m 3ds Max scenes. The variable mallows
"slowing" down the simulation in the visualization by creating
intermediate frames by interpolation. At most one frame is created
from each scene, and some scenes can be skipped. In the example
in Figure 14 the visualization rendered progresses three times
faster than the slowest pace possible. The 3ds Max scene files are
created only once and then reused to produce visualizations with a
variety of speeds, camera angles, effects, and materials. The
visualization rendering is controlled by a 3ds Max script that
loads, sets, and renders the appropriate 3ds Max scene for each
visualization frame.

Visualizations were rendered on two Intel Dual-Core Xeon
workstations. One workstation has 16GB of RAM and 2.6GHz
CPUs, while the other has only 4GB of RAM with faster 3.2GHz
CPUs. Each workstation has 2 CPUs, each CPU has 2 cores, and
each core runs two hardware threads, for a total of 16 threads. One
instance of the renderer uses 1 or 2 threads for simple scenes

5

Figure 14. Implementation overview.

without visual effects (i.e. no dust, debris, or fire) and without fuel
meshes, 4 threads for scenes with visual effects, and 8 threads for
scenes that require ray tracing fuel meshes. The visualization
frame rendering times vary from 2-3 minutes for scenes without
visual effects and without jet fuel, to 3-5 minutes for scenes with
visual effects, and to 5-60 minutes for scenes with fuel meshes
(depending on the degree of dispersion of the jet fuel).

The geometry load was on average 1.2 million triangles for the
geometry resulting from the beam, shell, and solid elements, plus
the triangles that modeled the fuel meshes. As expected, the
geometric complexity of the fuel meshes increased considerably
as the fuel dispersed. Fuel meshes totaled only 5,000 triangles at
time 0.0s when the liquid was concentrated in the fuel tanks,
71,500 triangles at 0.125s, 148,130 at 0.25s, 715,500 at 0.5s and
over 1.3 million triangles at 0.75s. Even so, the total number of
triangles does not exceed 3 million.

Federating a visualization system with FEA simulation is a
powerful approach to communicating the results of simulations,
especially when the user is not a domain expert. High visual
impact is accomplished without sacrificing physical reality.
Excepted from this assertion are fire and explosion details, which
as chaotic processes, cannot be modeled to duplicate the actual
event. Nevertheless, the similarity between the simulated damage
to the faqade and the observed damage increases confidence that
the simulated core damage is likely to be accurate.

From the technical perspective, this type of visualization is also
helpful in uncovering errors of detail, in the meshing as well as in
the orientation of elements. For instance, since traditional post-
processors do not employ sophisticated lighting computations,
subtle errors such as incorrect normals can go unnoticed.

One of the shortcomings of the simulation is that the dispersing
fuel is treated by LS-DYNA as a non-volatile liquid. However, it
created an explosion and subsequent fire. Thus, SPH elements
should have a death frame associated that attenuates the mass of
liquid over time. This and other fire-related effects should be
revisited in future work.

The Pentagon and the WTC projects demanded a largely
orthogonal set of importer features. Most LS-DYNA output is
now supported by the importer. The importer has a modular

architecture consisting of an LS-DYNA output file parser, the
translator which is independent of LS-DYNA and 3ds Max, and a
scene instantiation module. This should facilitate deriving
importers that couple other pairs of simulation/animation systems,
by reusing the translator module.

Another line of future work is to develop a translation that
supports interactive visualization. The geometry load is easily
manageable by a modem graphics card, so a single state could, in
principle, be examined interactively after simplifying the material
and lighting models. The challenge that remains to be overcome is
handling the massive animation data that specifies the positions of
millions of vertices independently for each frame.

Our work does not advocate stripping post-processors of all
visualization capability. Post-processors will continue to play their
role as a rapid inspection tool, catering to the domain experts that
design and run simulations. However, the post-processor should
not be expected to produce high-quality visualizations based on
state-of-the-art rendering algorithms. Such visualization tasks
should be simply outsourced to animation systems through
general and scalable importers.

We would like to thank Profs. Sozen and Pujol from Purdue's
Civil Engineering department who helped with the simulation and
calibration of its models and parameters. Ingo Brachmann and
Oscar Ardila-Giraldo constructed the models for the WTC-I. Tom
Miller and Joe Fams helped with 3ds Max and AfterBum. Scott
Meador provided great suggestions regarding visualization in 3ds
Max. The work was supported in part by NSF, DOE, the Tellabs
Foundation, and by Purdue's Rosen Center for Advanced
Computing. Some of the runs were done using NCN's Regatta
and this support is also gratefully acknowledged.

[I] LS-DYNA, URL: http://www.ls-dyna.com/
[2] Discreet, URL: http://www.discreet.com/products/3dsmax/
[3] GoogleEarth, URL: http://earth.google.com
[4] V. Popescu, C. Hoffmann, S. Kilic, M. Sozen, S. Meador, "Producing
High-Quality Visualizations of Large-Scale Simulations," Proceedings of
IEEE Visualization, Oct., 2003.
[5] M. Pauline Baker, Dave Bock, Randy Heiland, and Michael Stephens.
"Visualization of Damaged Structures", U.S. Army Corps of Engineers
Waterways Experiment Station, Technical Report, 1998.
[6] J. 0. Hallquist and D. J. Benson, "Dyna3D User's Manual (Nonlinear
Dynamic Analysis of Structures in Three Dimensions)", Report #UCID-
19592-revision-3, Lawrence Livermore National Labomtory, Livermore,
California, pp. 168, 1987.
[7] The Visualization Toolkit, URL: http://public.kitware.comNTW
[8] T. Sugano et al., "Full-scale aircmft impact test for evaluation of
impact force", Nuclear Engineering and Design, Vol. 140,373-385, 1993.
[9] "World Tmde Center Building Performance Study: Data Collection,
Preliminary Observations, and Recommendations", Fedeml Emergency
Management Agency, FEMA 403, May 2002.

Figure 14. Implementation overview.

without visual effects (Le. no dust, debris, or fire) and without fuel
meshes, 4 threads for scenes with visual effects, and 8 threads for
scenes that require ray tracing fuel meshes. The visualization
frame rendering times vary from 2-3 minutes for scenes without
visual effects and without jet fuel, to 3-5 minutes for scenes with
visual effects, and to 5-60 minutes for scenes with fuel meshes
(depending on the degree of dispersion of the jet fuel).

The geometry load was on average 1.2 million triangles for the
geometry resulting from the beam, shell, and solid elements, plus
the triangles that modeled the fuel meshes. As expected, the
geometric complexity of the fuel meshes increased considerably
as the fuel dispersed. Fuel meshes totaled only 5,000 triangles at
time O.Os when the liquid was concentrated in the fuel tanks,
71,500 triangles at 0.125s, 148,130 at 0.25s, 715,500 at 0.5s and
over 1.3 million triangles at 0.75s. Even so, the total number of
triangles does not exceed 3 million.

7 CONCLUSIONS

Federating a visualization system with FEA simulation is a
powerful approach to communicating the results of simulations,
especially when the user is not a domain expert. High visual
impact is accomplished without sacrificing physical reality.
Excepted from this assertion are fire and explosion details, which
as chaotic processes, cannot be modeled to duplicate the actual
event. Nevertheless, the similarity between the simulated damage
to the fa~ade and the observed damage increases confidence that
the simulated core damage is likely to be accurate.

From the technical perspective, this type of visualization is also
helpful in uncovering errors of detail, in the meshing as well as in
the orientation of elements. For instance, since traditional post
processors do not employ sophisticated lighting computations,
subtle errors such as incorrect normals can go unnoticed.

One of the shortcomings of the simulation is that the dispersing
fuel is treated by LS-DYNA as a non-volatile liquid. However, it
created an explosion and subsequent fire. Thus, SPH elements
should have a death frame associated that attenuates the mass of
liquid over time. This and other fire-related effects should be
revisited in future work.

The Pentagon and the WTC projects demanded a largely
orthogonal set of importer features. Most LS-DYNA output is
now supported by the importer. The importer has a modular

architecture consisting of an LS-DYNA output file parser, the
translator which is independent of LS-DYNA and 3ds Max, and a
scene instantiation module. This should facilitate deriving
importers that couple other pairs of simulation/animation systems,
by reusing the translator module.

Another line of future work is to develop a translation that
supports interactive visualization. The geometry load is easily
manageable by a modem graphics card, so a single state could, in
principle, be examined interactively after simplifying the material
and lighting models. The challenge that remains to be overcome is
handling the massive animation data that specifies the positions of
millions of vertices independently for each frame.

Our work does not advocate stripping post-processors of all
visualization capability. Post-processors will continue to play their
role as a rapid inspection tool, catering to the domain experts that
design and run simulations. However, the post-processor should
not be expected to produce high-quality visualizations based on
state-of-the-art rendering algorithms. Such visualization tasks
should be simply outsourced to animation systems through
general and scalable importers.

8 ACKNOWLEDGMENTS

We would like to thank Profs. Sozen and Pujol from Purdue's
Civil Engineering department who helped with the simulation and
calibration of its models and parameters. Ingo Brachmann and
Oscar Ardila-Giraldo constructed the models for the WTC-I. Tom
Miller and Joe Farris helped with 3ds Max and AfterBurn. SC9tt
Meador provided great suggestions regarding visualization in 3ds
Max. The work was supported in part by NSF, DOE, the Tellabs
Foundation, and by Purdue's Rosen Center for Advanced
Computing. Some of the runs were done using NCN's Regatta
and this support is also gratefully acknowledged.

REFERENCES

[I] LS-DYNA, URL: http://www.ls-dyna.com/
[2] Discreet, URL: http://www.discreet.com/products/3dsmax!
[3] GoogleEarth, URL: http://earth.google.com
[4] V. Popescu, C. Hoffmann, S. Kilic, M. Sozen, S. Meador, "Producing
High-Quality Visualizations of Large-Scale Simulations," Proceedings of
IEEE Visualization, Oct., 2003.
[5] M. Pauline Baker, Dave Bock, Randy Heiland, and Michael Stephens.
"Visualization of Damaged Structures", U.S. Army Corps of Engineers
WateIWays Experiment Station, Technical Report, 1998.
[6] J. O. Hallquist and D. J. Benson, "Dyna3D User's Manual (Nonlinear
Dynamic Analysis of Structures in Three Dimensions)", Report #UCID
19592-revision-3, Lawrence Livermore National Laboratory, Livermore,
California, pp. 168,1987.
[7] The Visualization Toolkit, URL: http://public.kitware.comlVTKJ
[8] T. Sugano et aI., "Full-scale aircraft impact test for evaluation of
impact force", Nuclear Engineering and Design, Vol. 140,373-385,1993.
[9] "World Trade Center Building Performance Study: Data Collection,
Preliminary Observations, and Recommendations", Federal Emergency
Management Agency, FEMA 403, May 2002.

6

	A High-Quality Physically-Accurate Visualization of the September 11 Attack on the World Trade Center
	Report Number:
	

	tmp.1307986960.pdf.Dyh49

