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Parallel Algorithms for Bridge- and Bi-Connectivity
on Minimum Area Meshes

Susanne E. Hambrusch

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

January 1985

Abstract

We present parallel algorithms for finding the bridge- and bi-connected components
of an undirected graph G =(V ,E)} with n vertices and ¢ edges on 2-dimensional mesh
of size n'?xn'”2. 1n conventional parallel models any bridge- and bi-connectivity
algorithm requires at least n processing elements, and thus our algorithms run on
minimum area networks. Our algorithms find the bridge-connected components in
0 (n*?) time for both input in the form of an adjacency matrix and in the form of
edges. For bi-connectivity we show how achieve O (n*?) time when the input is adja-
cency matrix form, and O (¢ +17?) time when the input is in the form of edges.

Key Words

Parallel computation, analysis of algorithms, bi-connectivity, bridge-connectivity,
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1. Introdaction

The simple interconnection pattern and the uniform wire length of a mesh of
processors appear to make it ideally suited for parallel processing and VLSI compu-
tation, and numerous researchers have developed parallel afgorithms tailored towards
the mesh [AK, GKT, H1, KL, MS}, MS2, TK]. In this paper we present parallel algo-
rithms for finding the bridge- and bi-conrected components of an undirected graph
G=(V,), |Vi=n and IE |=¢, on a mesh of size n'2xn'2, Since, under conven-
tional assumptions for parallel models any algorithm finding the bridge-, bi-, and
connected components requires at least n PE’s, our algorithms run on a network of
minimum area. Developing algorithms for minimum area networks is both of
theoretical and practical interest. Of practical interest because area is an expensive
resource, and of theoretical interest because of the algorithm and data movement

techniques needed.

The n'?xn’” mesh receives n? (resp. ) inputs describing the graph in the form
of ‘input waves’, and the algorithms chnnot explicitly store the entire input on the
mesh. Thus the actual computation has to begin before all the inputs have been
read. Already between the reading of input waves our algorithms determine which
inputs are irrelevant and can be discarded, and they incorporate relevant inputs (i.e.,
inputs that contain new information about the graph) into the data structures used
on the mesh. Organizing the individual elements of the data structures so that the
necessary data movement can be done fast and without ’collisions’ is crucial to the

efficiency of our algorithms. We next describe our parallel model and our results.

In our model we assume that every input is read once, every output is generated
once, and that every PE contains a constant number of registers of logn bits each.
Thus the mesh has a storage capacity’ of O (nlogn) bits, while the total length of the
input is n? (resp. ©(elogn)) bits. Observe that numerous problems (e.g., directed
graph problems, sorting) cannot be solved on networks with storage capacity less

than the length of their input [H1]). We consider algorithms in which the graph G is
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represented by an adjacency matrix as well as algorithms in which G is represented
in the form of edges. In the case of an adjacency matrix, the i-th input wave consists
of the i-row of the matrix, and in the case of edges, the i-th input wave consists of n
arbitrary edges of G. In the i-th input wave PE;, 1= j=<n, receives exactly on input
(which is either the bit o,; or an edge (x;,y;)). Our algorithms receive the input
waves in a when-indeterminate mode [U]; i.e., the time at which the i-th input wave

is read may depend on the data.

In this paper we show how to find the bridge-connected components (i.e., the
maximum subgraphs of G for which the removal of an edge leaves the subgraph con-
nected) in O (n*?) time for both input in the form of an adjacency matrix and edges.
Our bridge-connectivity algorithms number the bridge-connected components of the
graph, and the output consists, for every vertex, of the number of the bridge-
connected component the vertex is in. We show how to determine the bi-connected
components (i.e., the removal of a vertex leaves the subgraph connected) in O (n372)
time when the input is in adjacency matrix form, and in O (e +n°?) time when the
input is in the form of edges. The bi-connectivity algorithms also number the bi-
connected components. The output lists, for every vertex, the bi-connected com-
ponents containing this vertex. Note that, since bi-connectivity induces an
equivalence relation on the edges, a vertex can be in more than on bi-connected

component [AHU].

Algorithms for graph problems on parallel models with enough PE’s and
memory to store a representation of the graph explicitly during the entire computa-
tion have been studied extensively for a variety of parallel models [AK, DNS, HCS,
JS, N81, 81, 8V, TC]. The issues involved when only part of the input is available at
any time during the algorithm and where this input is processed (i.., irrelevant
inputs are discarded) before the next input wave is read, are quite different. Lipton
and Valdes [LV] and Hochschild et al. [HMS] consider binary tree networks with n

leaves for solving graph problems with adjacency matrix input. The algorithms in
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[HMS] require logn registers per PE, and the bi-connectivity algorithm in [L V] reads
the adjacency matrix twice. Hambrusch [H2] uses the model of this paper and
describes algorithms on O (n) arca meshes for finding the connected components in

0 (n*?) time for both forms of input.

2. Bridge-Connectivity

In this section we present an algorithm for finding the bridge-connected com-
ponents on a 2-dimensional mesh of O(n) area in time O (n32). We first give the
algorithm for input in the form of an adjacency matrix, and then describe the
modifications to be done when the graph is represented in the form of edges. In our
algorithms we assume that the n PE’s, PE,, - - PE,, are arranged in snake-like
row-major order; i.e., PE; is directly connected to PE;_y and PE;,,, provided they
exist. This assumption is for convenience only, and our time bounds hold when
other standard indexing schemas are used. The time bounds of our algorithms are
further independent of whether all or only the PE’s on the boundary of the mesh
can perform VO. We make the standard assumption that in unit time every PE can
perform an operation using its own registers or send the content of some of its regis-

ters to an adjacent PE; for further details of the model see [H1].

We start with an informal description of the approach used in the bridge-
connectivity algorithm. The algorithm processes the i-th input wave (ie., the i-th
row of the adjacency matrix) completely before reading the (i+1)-st input wave.
Throughout the algorithm vertex i has two integers, C;, the current component
number of i, and B;, the current bridge-connected component pumber of i, associ-
ated with it, 1=<i=gn. Initially, B, = C; =i, 1=i=n, These two entries are stored in
PE; in the mesh. The algorithm puts two vertices in the same bridge-connected com-
ponent if and ornly if it finds two edge disjoint paths between them. In order to
determine this, the algorithm stores in the mesh the (at most n—~1) edges that have so

far caused the merge of two connected components. These edges form a forest, and
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every tree in the forest represents a connected component and is called a connectivity

tree.

\;Vben the i-th row of the adjacency matrix is read, PE, reads the entry g,
I1sj=n. If a;=1and C;# C,, the con;iectivity tree containing vertex i and the one
containing vertex j are connected by the edge (i,j); i.e., the connected components
C; and C; are merged. The edge (i,j) is recorded in the mesh as an edge of the
newly formed connectivity tree. If a;,=1 and C;=C,, the edge (i,j) forms a cycle in
the connectivity tree representing the connected component C;, and the algorithm
(at some later stage) determines the bridge-connected components merged by the
edge (i.j). If B;# By, all the bridge-connected components that contain at least one
vertex on the path from i (resp. j) to the lowest common ancestor of i and j in the
connectivity tree (containing vertices i and j) form a new bridge-connected com-

ponent. The information about the connectivity tree has to be organized such that

these vertices can be determined easily. (Of course, if B, + B;, the edge is discarded.)

We next describe the organization of the entries of the connectivity trees. The
entries representing a counected component CX are organized as edges of a rooted
tree. The root of the tree is vertex CX . More precisely, every connectivity tree entry
is a 6-tupel (CX X ,PX ,DX ,BX ,DBX ), where

- CX is the component number of the vertex X,

- PX is the parent node of X in the connectivity tree with root CX,

- DX is the depth of X in the connectivity tree CX,

- BX is the bridge-connected component number of X ; the value of the bridge-
connected component BX is always equal to the vertex in BX that has the
smallest depth (i.e., is the closest to the root of the connectivity tree),

- DBX is the depth of the vertex BX . |

See Figure 2.1, where the dashed undirected edges indicate edges that merged
bridge-connected components. The connectivity tree entries are stored in the mesh

sorted according to the component numbers CX, and entries belonging to the same
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connectivity tree are kept sorted according to their depth DX in the tree CX. Note
that the bridge-connected component number does not correspond to the smallest

vertex in this bridge-connected component, but only a minor modification is neces-
sary to produce the cutput in this form.
depth

0 |

= L

A S AASTS, 2l i
Figure 211

Initiafly, PE; contains the connéctivity tree entry (i,i,0,0,i,0), but in the later
stages of the algorithm there is no relation between the connectivity entry stored in
PE; and vertex i{. In addition to the connected component register C; and bridge-
connected component register B,, two other registers in PE; are associated with ver-
tex i throughout the algorithm:

- D; contains the depth of vertex { in the connectivity tree with root C;, and

- NR,; contains the number of vertices in the connectivity tree C,.
Information about vertex i is thus kept in two differeat locations: in PE, and in the
connectivity tree eatry for vertex i, Auxiliary registers are introduced when needed.

In the description of the implementation of our algorithm we assume that the

following subroutines are available:



Random-Access-Read (RAR): PE; requests the content of register R, of PE; and
stores it in register R;. This operation is denoted by R,;:= R, or R:= R, if the
value of i is clear from the context. Note that different PE’s can request data

from the same PE,
SORT: specified data items in the mesh are sorted in increasing order.

PACK: &k PE’s in the mesh contain a 'flag’, and operation PACK moves specified
data stored in the flagged PE’s, while maintaining their original order, into

lower numbered PE (i.e., the data in the i -th flagged PE is moved into PE;).

All of the above subroutines can be implemented to run in 0(n'?) on a mesh of n

PE’s, and we refer the reader to [H1, NS2, TK] for details.

Combining the Connectivity Trees
After the PE’s have read the i-th row of the matrix, the values of C,, NR,, and
D, stored in PE; are broadcasted to every PE in the mesh. If there is an edge from

vertex i to j, PE; sets registers as shown in Figure 2.2,

for all PE;, 1=< j=<n parde

cl:= C‘

NRI = NR;

DI = D!

it a;;=1 then
J:=j
CJ:=¢,
NRJ = N.R!
DI = Df

odpar

Setting registers at the beginning of i-th iteration
Figure 2.2

The entries (I J ,CI,CJ NRI NRJ DI DJI) that are created in PE’s with a; =1

and CI# CJ are called the tree-combining entries. The algorithm next sorts the tree-
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combining entries in increasing order according to CJ. After the sort, the algorithm
sets a flag in PE,, and in every PE; that contains a tree-<combining entry for which
the value of CJ differs from the value of CJ in PE,_,. It then calls routine PACK.
Assume PE,, - -- ,PE, contain the flagged tree-combining entries (I ,J,C1,CJ NRI,
NRJ DI DJ) after PACK. These entries represent p edges that connect p+1 connec-
tivity trees, namely CI, CJy, - ,CJp. Note that_ throughout the description of the
algorithms we refer to the value stored in a register R; simply as R,. The next step of
the algorithm is to combine the p +1 connectivity trees into one. Since the connec-
tivity tree entries are stored as edges of a rooted tree, combining connectivity trees
involves ’rerooting’ some of them. When a non-root vertex of a connectivity tree is
made the new root, the edges on the path from the old root to the new root have to
be reversed, and the depth of all the vertices in the connectivity tree has to be
updated.

The rerooting of the connectivity trees is potentially a time consuming pro-
cedure, and in order to achieve the claimed time bound the algorithm never reroots
the connectivity tree containing the largest number of vertices (among all the other
trees to be rerooted). Thus, before the start of the rerooting process, the algorithm
rearranges the tree-combining entries so that the tree-combining entry stored in PE,
has the largest NRJ value; ie., NRJ, = max {NRJ,, - -- NRJ,}. Recall that CI,
CJy, - - - ,CJ, are the connectivity trees to be combined, and that the registers CI,
NRI, and DI of the tree-combining entries in the first p PE’s have the same value,
respectively.

® If NCI\=NCJ,, then the connectivity tree CI containing vertex I is not

rerooted. In the connectivity trees CJy, - - - ,CJ, vertices J,, - - - J, are made

the new ’roots’ at depth DI +1. See Figure 2.3(a).

® If NCI,<NCJ,, then the tree CJ, containing vertex 7, is not rerooted. In the
connectivity tree CJ, vertex I is made the new root at depth DJ,+1, and in the

trees CJy, - - CJ,, the vertices J,, - -+ J, are made the new roots at depth




DJ,+2. See Figure 23(b).

CI contalns tlgzlargis mmber of vertices 7, contains the mg(:b? pumber of vertices
Figure 23

We next discuss the rerooting process for the first case (i.e., when NCI=NC/J,)

as shown in Figure 23(a). The second case is handled in a similar fashion. Every
flagged tree-combining entry creates a rercot entry (I J,CI ,CJI ND),, where ND is
the new depth of vertex J which is equal to DI +1. Vertex J will be the new root of
the vertices in the connectivity tree CJ. (Note that the subscript ’r’ is used to indi-
cate a rercot entry, not a PE.) Everyone of the p reroot entries is sent to the PE that
contains the connectivity entry for vertex J; i.e., to the PE containing the connec-
tivity entry (CX X PX ,DX ,BX DBX) with CX =CJ and X =J. Observe that the PE
creating the reroot entry does not know the position of this connectivity entry. The
position is determined by sorting all the connectivity tree entries belonging to ver-
tices that are roots together with the p rerooting entries according to the component
numbers. By doing so every reroot entry determines the position of the root of its
connectivity tree in O (n'?) time. Once every reroot entry has been sent to the PE
containing the root, it locates the connectivity entry corresponding to vertex J in
O (n'72) time (recall that the connectivity entries of every tree CX are sorted accord-
ing to their depth). Now the actual rerooting of connectivity trees CX starts, and

the p connectivity trees are rerooted in parallel.

The rerooting of every tree CX works in two phases. The first phase reverses

the edges on the path from vertex X to the root CX (and also updates connectivity
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tree entries), and the second phase updates the depth of the vertices in the subtrees
rooted on a vertex on the path from X to CX. Both phases use 0(n'2+m) time,

where m is the number of vertices in tree CX.

We now describe the implementation of first phase in more detail. Let
(CX X ,PX DX BX ,DBX) be a connectivity tree entry in PE, that received the reroot
eatry (I J,CI,CIND),:

® If X+J, PE, it sends the reroot entry to PE,_; without changing it or its

own registers.

® If X=J, PE; updates its connectivity tree entry by setting CX:= CJ, PX:=1,

and DX:= ND. PE, then creates the update entry (J,CI,CJ WMD), with
ND=ND +1 and the value of registers J, CI, and CJ as in the reroot entry.
The update entry remains stored in PE; until it is activated in the second
phase. PE, next changes the reroot entry as follows, If vertex J (which, in
this case, is equal to vertex X) is not the root (i.e., X # CX), PE, then sends
the reroot entry (I J,CI1,CJ ND), with I=X,J=PX, ND=ND+1, CI and CJ

unchanged, to PE, . If vertex X is the root, the second phase starts.

After the first phase, every PE containing a connectivity entry of a vertex that is
incident to an edge of the tree which did get reversed, contains an update entry
(.CI1,CI ND),. The goal of the second phase is to send every update entry
(J,CI1,CJ ND), to the children of vertex J (excluding the child that is now a
parent), and to change the depth in the connectivity entry of the children to ND.
Every child will then create ifs own update entry, which is to be send to its children,
etc. Every PE containing a connectivity tree entry thus creates {or already contains)
exactly one update entry. We now describe how to implement the second phase in
O(m) time. If every update entry originally in PE; is sent (independent of the other
update entries) to PE, ,,, PE,,,, ..., and if the PE’s (which contain the connectivity

entries of children) create their own update entries (which are also sent to higher
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numbered PE’s), the algorifhm encounters “collisions” problems. Thus the algorithm
does the following. The update entry in the root is activated first (i.e., if the connec-
tivity entry of the root is in PEy, PE, sends its update entry to PE,,,, PE, ,,. ..).

Assume PE; receives an update entry (J ,CI ,CJ ND),.

® If PX,+#J (ie., the connectivity entry in PE; does not belong to a child of

vertex J ), PE; sends the update entry to PE,,,.

e If PX,=J, the algorithm sets register- DX; (of the connectivity entry) equal to
ND, CX; equal to CI, and it creates a new update entry (J2,C12,CJ2ND2)
with J2=X, CI2=Cl, CJ2=CJ, and ND2=ND +1. PE, sends the *old’ update
entry to PE;,,, and keeps the pewly created one until it is activated. The
newly created update entry in PE; is activated after the update entry created

in PE;_, passed through PE,.

It is easy to see that this technique does not run into collision problems and that,
after O-(m) time, where m is the number of vertices in the tree, every conneﬁtivity
tree entry contains the new values.

From the above discussion it follows that the p connectivity trees can be
terooted in O ('2+m) time, where m is the number of vertices in the second largest
connectivity tree involved. Before proceeding with the next major step of the algo-
rithm, the determining and merging of bridge-connected components, we have to
update the entries about vertex & in PE,, 1=k=n. The number of vertices in the
new connectivity tree with root CI (resp. CJ;) can be computed in O (n 172y time using
the p tree-combining entries. Every vertex k in CI, CJy, - - - ,CJ, can update its com-
ponent number C, and the value NR, stored in PE; in O (r'?) time (by using SORT
twice). Finally, a write operation initiated be the connectivity entries updates the

depth registers D, in every PE; in O{n'?) time,

Merging Bridge-Connected Components
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After the connectivity trees have been combined, every PE; with g;;=1 has
C;=C,, where C,; is the updated connected component number. If the edge ({,7) was
uséd as a tree-combining edge, we set g;; to 0. Next, every PE; obtains the values B,
and D; and, if B,=B,, also sets ay to 0, 1<j=n. The remaining PE;’s with a;;=1
and B;+B; contain an edge that merges bridge-connected components, and every
such PE; creates a bridge entry (I,J.CI BI ,BJ DI DJ), with =i and J =j. The

values of a bridge entries are set similar to the code shown in Figure 2.2.

While the algorithm determines the bridge-connected components merged by
one bridge entry, only the section of the mesh containing the connectivity tree
entries of tree CI is used. The algorithm can thus process bridge entries of different
connectivity trees simultancously. Since doing so does not affect the worst case time
performance, we will not discuss this possibility in more detail. When the algorithm
chooses one bridge entry {f . ,CI ,BI BJ DI DJ ) it follows the path from vertex 7 to
the lowest common ancestor of J and J, referred to as Ica(f J ), and the path from
vertex J to lca(/ J). It marks all bridge-connected components encountered on these
two paths as to be merged into one. We now describe in more detail how a bridge
entry is processed in O (bn'/?) time, where b is the number of bridge-connected com-

ponents merged by the edge (I 7).

The bridge entry (I J,CI ,BI ,BJ DI DI), created in PE,; is sent to the PE con-
taining the connectivity entry of the root of connectivity tree CI. Let PE, be this
PE. At PE,, the bridge entry is split up into two entries: {I,CI .BI DI ), and
(J ,Ci ,BJ ,DJ),, which will from now on be called the bridge entries. If DI =DJ,
then both bridge entries are sent from PE; to the PE contzining the connectivity
entry of vertex I' and J, respectively, If DI <DJ, then only the bridge entry contain-
ing vertex J is sent, and if DI >DJ, then only the bridge entry containing vertex I is
sent. This ensures that we move in the connectivity tree from I and J towards the

lca(f 7 ) ’at the same pace’.
I




We next describe what the algorithm does once the bridge entry (7 ,CI B DI »
has arrived at the PE containing the connectivity entry for veriex . The action for
the bridge entry for J is analogous. Assume that the connectivity tree entry for ver-
tex I is in PE;y; ie, PE, contains the connectivity tree entry
(CX;1X51,PX ;DX 1,BX1,DBX,,1) with X, =I (and, of course, CX;=CI, DX,,=DI,
and BX; =Bl ). PE;, sets a flag to indicate that it contains a bridge-connected com-
ponent to be used in the merge.

® If BX;, = X;,, then PE,, sends its bridge entry to the PE containing the con-

nectivity entry of vertex PX;,, the parent of vertex X, ,.

® If BX, ;¥ X,1, then PE;; sends its bridge entry to the PE containing the con-
nectivity entry of vertex BX,,, which is at depth DBX,,. Note that by sending
the bridge entry to the PE containing the entry of BX,,, the algorithm never
‘traverses edges that are in already existing bridge-connected components.
Let PE,;Z be the PE receiving the bridge entry from PE,,. The bridge entry can be
sent from PE;; to PEg; in O(n'?) time. At PE,,, the bridge entry (I ,CI BI DI), is
updated to: I =X,,, BI =8X,,, and DI =DX;,. The updated bridge entry is sent to
PE,. When PE, receives the updated bridge entry (resp. entries), it checks whether
the bridge-connected component containing the Ica(7 J ) has been reached:
® If BI+# BJ, then PE; sends out either one or both bridge entries (depending
on the current depth in the bridge entries).
® If Bl =BJ, the lowest common bridge-connected component has been reached,
and PE; sets BNEW, =Bl . BNEW; will be the new bridge-connected com-
ponent number of all the vertices in bridge-connected components that
received a flag, and the updating of bridge-connected component eantries
begins.
We now describe the final updating of the entries. The algorithm calls routine

PACK, which places the connectivity tree entries of flagged PE’s in PE,, - - - PE,.
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Let B, ,---,B, be the bridge-connected components of these entries. BNEW, is

made the new bridge-connected component number of all the vertices in B, p B

This change has to be recorded in a number of entries: In the bridge-connected com-
ponent number B, of vertex & in PE,, and in the bridge-connected component
numbers in the connectivity entrics containing vertex k. Furthermore, the entry
DBX in the connectivity entries belonging to vertices of flagged bridge-connected
components has to be updated. Note that the new value of DBX of all the vertices
involved in the merging is the depth of vertex BNEW, . The updating of all these

entries can be done in O (r'?) time.

Theorem 2.1 The bridge-connected components can be found in time 0 (7%2) on a 2-
dimensional mesh of O(n) area when the graph is given in the form of an adjacency
matrix.

Proof: '_I’hé correctness of the algorithm follows from the preceding discussion. The
time bound is obtained as follows. The time spent not on the combining of connec-
tivity trees or the merging of bridgc-cqnnected components is 0 {(n'?) for each row
of the adjacency matrix. We have shov.vn that the time used to combine and reroot
connectivity trees is O (n’?+m) in each iteration, where m is the number of vertices
in the second largest component to be merged in the i-th iteration. In the worst case
we combine and reroot connectivity trees of the same size, and we combine only 2
connectivity trees in each iteration (i.e., we combine 2 trees of /2 vertices each in
the n-th iteration, 2 trees of n /4 vertices each in the (n —1)-st and (n —2)-nd iteration,
etc.) Thus, the total time spent on combining connectivity trees is

O((n/2+n") +2(n/d + ') +4(n /B +a'D) + -+ +n/2(1 + n'P)),

which is 0 (n*2). The overall time spent on the processing of bridge entries and the
merging of bridge-connected components is also 0 (n*?), since at most n -1 bridge-
connected components can be merged. Hence, the total time of our algorithm is

0(r*?. o
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Our algorithm can be extended to find the bridge-connected components in time
O (n*?) when the input is given in the form of edges. The overall structure of the
algorithm and the entries created during the computation remain the same. Observe
that now PE,, 1<k=n, reads an arbitrary edge (I /) and that the connected com-
ponent number of vertex I (resp. J) is in PE, (resp. PE,). While the merging of
bridge-connected components is done by processing the bridge entries cne by one as
before, the situation for combining connectivity trees is different. When the graph is
given in the form of an adjacency matrix, the edges that merge connectivity trees at
the i-th iteration represent a connected graph with no transitive edges. See Figure
23. When the graph is given in the form of edges this is no longer true. The edges
between connectivity trees can now represent a graph that is not mecessarily con-
nected and that can contain transitive edges. But in order to achieve O (n?) time,
the connectivity trees do not have to be combined in parallel. We only have to make
sure that the connectivity tree with the largest number of vertices is never rerooted.

Hence, by making this step more "sequential’ the following result is obtained:

Theorem 2.2 The bridge-connected components can be found in time 0 (2*2) on a 2-

dimensional mesh of O (n) area when the graph is given in the form of edges.

3. Bl-Connectivity

In this section we first describe an algorithm that determines the bi-connected
components of an undirected graph on an O (r) area mesh in time O (#*?2) when the
input is given in the form of an adjacency matrix. We also present an algorithm for
input in the form of edges which runs in time O(e+n?). As done for bridge-
connectivity, we associate with every vertex a connected component number, and we
record the edges that caused the merge of two connected components as entries of
connectivity trees. The connectivity trees help to determine the bi-connected com-
ponents, and the algorithm puts two vertices in the same bi-connected component if

and only if it finds two vertex-disjoint paths between them. Bi-connected component
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numbers are used to record the bi-connectivity information obtained about the graph
so far. Since one vertex can be in more than one (and at most n/2) bi-connected

components, PE; cannot be used to store the bi-connectivity numbers of vertex i.
The algorithm records in PE; the entries C;, D;, and NR, associated with vertex

i, and they are defined as in Section 3, The bi-connectivity information is recorded

in the form of bi-number entries, and every such entry is a 4-tupel consisting of

a vertex,
- a bi-connected component number (the vertex is currently in),

the vertex in the same bi-connected component ‘number that has smallest

depth in the connectivity tree, and

the depth of this vertex.

Note that the vertex at the smallest depth in the connectivity tree cannot be used as
the bi-connected component number (as done for bridge-connectivity), since this ver-
tex could be in more than one bi-connected component. Bi-connected component
numbers are now assigned as follows: PE, contains a register NUMB, which is ini-
tially set to 1. Every time a new bi-connected component is formed, it gets the
number equal to the current value of NUMB, and NUMB i3 increased by 1. Since
every time NUMB is increased, at least two bi-connected components get merged, the
final value of NUMB is at most n—1. See Figure 3.1, where the edge (4,13) is pro-
cessed after the edges (4,9) and (4,8).

Every PE contains registers to store up to 2 bi-number entries; namely registers
(/1,B11,011,D0I'Y) and (12, BI 2, 012, DOI'2). We refer to these two sets of regis-
ters as (/* ,BI*,0I* ,DOI*). It is easy to show that in any graph there can be at most
(3n —3)/2 bi-number entries, and thus two per PE are sufficient. At some time dur-
ing the algorithm, the bi-number entries will be sorted according to the vertices, at
other times they will be sorted according to the bi-connected component numbers.
The bi-number entries are stored in packed form; i.c., the entries in PE, are filled

after the 2(i —1) bi-number entries in PE;, - - -, PE;_; have been filled. Initially, the
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Solid arrows represent the conpedtivity tree,
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mesh contains the n bi-number entries (§,0,i,0), 1=i=n.

The combining and rerooting of the connectivity trees, and the merging of con-
nected components is done as in the bridge-connectivity algorithm. Note that a con-
nectivity tree entry is now a 4-tupel (CX X ,PX ,DX), and that after the rerooting pro-

cess the DOI* component in the bi-number entries needs to be updated.

After the combining and rerooting of the connectivity trees every PE, with
a; =1 and edge (i.j) not used for merging connected components creates an edge
entry (1,J,CI DI \DJ) with I'=i and J=j. The algorithm next finds one edge entry
that forms new bi-connected components. It does so by determining in O (1!7?) time
either an edge entry that causes the merge of (at least two) bi-connected components
or it concludes, also in O (n'/) time, that none of the {(up to n) edge entries merges
bi-connected components. An edge (I J) merges bi-connected components if no bi-
connected component contains both I and J. In terms of bi-number entries and
edge entries this condition is stated as follows. The edge entry (/ J,CI DI DJ)

merges bi-connected components if and only if for all bi-number entries (/*, 57+, ,
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Or*, ,DOI*,) angd (I, ,BI*;, OI; ,DOI*;) with I*%,=I and I*=J, BI*, # BI* holds. It is
easy to check this condition in O(um) time for one given edge entry. How one edge
entry satisfying the condition is found (or it is determined that no edge entry

satisfies it) in O (n'7) time is described next.

Selecting an Edge Entry

The algorithm adds a mark register MARK%,, 1<k=n, to every bi-number
entry. MARK™*; is initially set to 0. 'I‘ile selection of an edge entry is done in three
stages. In the first stage, the algorithm sets the mark registers in all bi-number
entries of vertices adjacent to vertex I to 1; i.e., it sets MARK*, = 1 in every bi-
number entry (I ,BI%y, OI*, ,DOI*, MARK®;) with I%, =J;, where {I; J,,CI; DI, DJ;)
is an edge entry. This step is implemented in O (n'?) time by sorting the bi-number
entries according to the vertices, then sending every edge entry (; J;,CI, DI, ,DJ;) to
the low‘esi indexed PE; containing a bi-number entry with I*,=J,, and propagating

this edge entry to higher-numbered PE’s.

In the second stage the algorithm sets the mark registers in bi-number entries
(I*; BI*,, OI*, DOI*, MARK*) with MARK", =1 to 2 if there exists a bi-number
entry (I*,BI%;, OI* ,DOI*; MARK*) with I*;=i and BI*,=BI%. This step is imple-
mented in O(n'?) time by sorting the bi-number entries according to the bi-
connected component numbers, and letting every bi-number entry with 1% =i mark

the entries with BI¥, =BI*,.

The third and final stage in the selection of an edge entry the algorithm sorts
the bi-number entries according to the vertices. It then selects, in O (n'/?) time,
among all edge entries (I J,CI ,DI ,DJ) for which no bi-number entry corresponding
to vertex J has the mark register set to 2, an arbitrary one. If one exists, the merg-
ing of bi-connected components starts. If no such edge entry is found, the i-th itera-
tion of the algorithm is completed (and row i+1 of the adjacency matrix is read

next).
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Merging of Bi-Connected Components

After an edge entry, say (I,J,CI,DI,DJ), has been selected, the algorithm
merges bi-connected components. The basic concept of the merging is similar to the
one used in the algorithm for bridge-connectivity. The algorithm follows the paths
from vertices / and J to the lowest common ancestor of I and J in the connec;tivity
tree CI. Obviously, all the vertices on the two paths belong to one bi-connected
component. In addition, we include a bi-connected component that contains at least

two vertices that are on these two paths.

The data movement for determining the bi-connected components to be merged
is similar to the one for bridge-connectivity, and we only point out some of the
differences. The bi-connectivity information about a vertex is not stored in the con-
nectivity tree entry, and it has to 'looked up’ in bi-number entries. This adds an
additional O (n'?) time for traversed every edge on the paths. Existing bi-connected
components encountered on the paths are only included if they contain at least two
vertices that are on the path to the Ica{f 7). The algorithm uses the depth entry
DOI* of the vertex OI* of the bi-connected component BI* to avoid traversing more
than one edge in the bi-connected component BI*. We leave the implementation
details to the reader. It follows that the time for processing one edge entry is
O(mn'?), where m is the number of bi-connected components that get merged by the
edge (/ J). Again, at most n—1 bi-connected components can get merged, and the

overall time of the algorithm is O (n*?2).

Theorem 3.1 The bi-connected components can be found in time 0 (n*?) on a 2-
dimensional mesh of O(n) area when the graph is given in the form of an adjacency
matrix.

Proof: Similar to the proof of Theorem 2.1. O

We next describe how to modify the above algorithm to find the bi-connected

components in O (¢ +rn*2) time when the graph is given in the form of edges. Recall
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that for bridge-connectivity O (n%?) time can be achicved for both forms of input.
The time-critical step in the bi-connectivity algorithm is selecting an edge entry that
merges bi-connected components (or deciding that none exists) efficiently. When the
idea of marking bi-number entries is applied to an arbitrary set of edges (instead of
edges adjacent to vertex i), the irregularity of the input causes an increase in the
time complexity. We now describe the difficulties that arise and give an informal

outline how to process O (n1?) edge entries in O (1) time.

Let (x; ) be n edges that do not merge connected components and assume
they are stored in PE,, - - - ,PE, of the mesh. Let the number of bi-number entries

containing vertex x; be be less than or equal to the number of bi-number entries con-

taining vertex y,. If vertex x; is in the bi-connected components Bl .., B,", form
the triples (x; 3 ,Bf), 15k ={,. Then check for every triple (x;,y, ,B%) whether or not
vertex y; is in the bi-connected component Bf. Unfortunately we cannot create all
the trip-les of the n edges at once, since n edges can result in O (n>?) triples in the

worst case, as shown by an example below,

Consider a graph with n=dk? vertices in which vertices Xy, X, and
Y1 © ", Y are on one cycle, and in which every vertex x; (resp. y,) is in &£ +1 bi-
connected componeats (namely the cycle and & ‘triangles’). Every vertex in a trian-
gle, except the one on the big cycle, is in exactly one bi-connected component. Let
the next input sequence contain the edges (x; Vi) 1sj<k,1=isk. If we form the
triples as described above, we form (k +1D)k2=n2/8 + n/4 triples. Note that no new

bi-connected component is formed by these edges.

In the selection of an edge eatry we handle a batch of n'? edges at a time. For
n'? edge entries we form the triples as outlined above (note that at most O (n) tri-
ples can be created), and then select an edge entry by marking bi-number entries
similar to the marking step for input in the form of an adjacency matrix. Once an
edge entry has been selected and bi-connected components been merged, the. next

edge entry is selected from the current batch of n'” edges in O (n'?) time. Thus the
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total time for processing n edge entries (not counting the time to merge bi-connected
components) in O(n). The overall time spent in selecting edge entries is 0(< n) =
u.

O{e). The time spent in the other steps of the algorithm remains the same. We can

thus state the following theorem:

Theorem 3.2 The bi-connected components can be found in time @ (e + n%?) on a 2-

dimensional mesh of O (n) area when the graph is given in the form of edges.
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