
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1985

Parallel Algorithms for Bridge- and Bi-Connectivity on Minimum Parallel Algorithms for Bridge- and Bi-Connectivity on Minimum

Area Meshes Area Meshes

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Report Number:
85-506

Hambrusch, Susanne E., "Parallel Algorithms for Bridge- and Bi-Connectivity on Minimum Area Meshes"
(1985). Department of Computer Science Technical Reports. Paper 427.
https://docs.lib.purdue.edu/cstech/427

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARALLEL ALGORITHMS FOR BRIDGE- AND
BI-CONNECTIVITY ON MINIMUM AREA MESHES

Susanne E. Hambrusch

CSD-TR-506
February, 1985

Parallel Algorithms for Bridge- and BI·Connectivity
on Minimum Area Meshes

Susantu E. Hambrusch

Department of Computer Sciences
Purdue University

West Lafayelle, IN 47900

January 1985

Abstract

We present parallel algorithms for finding tbe bridge- and bi~onDected components
of an undirected graph G =(V .E) with n vertices and t1 edges on 2-dimensiooal mesh
of size n1/lxnJ/2. In conventional parallel models any bridge. and bi-connectivity
algorithm requires at least n processing elements, and tbus our algorithms run on
minimum area networks. OUf algorithms find tbe bridge-connected components in
0(n 3/2) time for both input in the form of an adjacency matrix and in the form of
edges. For bi-connectivity we show how achieve 0 (n 3/2) time when the input is adja
cency matrix form, and 0 (e +n312) time when the input is in the form of edges.

Key Words

Parallel computation, analysis of algorithms, bi-connectivity, bridge-connectivity,
meshes.

This work was supporled in part by the Office of NawJ Research Conlracl NOOOl4-84-K-oSOZ.

. 1 .

1. Introduction

The simple interconnection pattern and the uniform wire length of a mesh of

processors appear to make it ideally Buited for parallel processing and VLSI compu

tation. and numerous researchers have developed parallel algorithms tailored towards

the mesh [AK, GKT, HI, KL, MSI, MS2, TK]. In this paper we present parallel algo

ritbms for finding the bridge- and bi-connected components of an undirected grapb

G=(V,E), IV l=n and IE I=e, on a mesh of size n!/2xn!/2. Since. under conven

tional assumptions for parallel models any algorithm findiog the bridge-, bi-, and

cODnected components requires at least n PE's, our algorithms run on a network of

minimum area. Developing algorithms for minimum area networks is both of

theoretical and practical interest. Of practical interest because area is an expensive

resource, and of theoretical interest because of the algorithm and data movement

techoique~ needed.

Th-e n J/2 Xn J/2 mesh receives n 2 (resp. eo) inputs describing the graph in the form

of 'input waves', and the algorithms cb.nnot explicitly store the entire input on the

mesh. Thus the actual computation has to begin before all the inputs have been

read. Already between the reading of input waves our algorithms determine which

inputs are irrelevant and can be discarded, and they incorporate relevant inputs (Le.,

inputs that contain new information about the graph) into the data structures used

on the mesh. Organizing the individual elements of the data structures so that the

necessary data movement can be done fast and without 'collisions' is crucial to the

efficiency of our algorithms~ We next describe our parallel model and our results.

In our model we assume that every input is read once, every output is generated

once, and that every PE contains a constant number of registers of logn bits each.

Thus Ihe mesh has a 'slolage capacity' of 0(010811) bilS, while Ihe 10lal length of Ihe

input is n 2 (resp. 8(elogl'I» bits. Observe that numerous problems (e.g., directed

graph problems, sorting) cannot be solved on networks with storage capacity less

tban the leogth of tbeir input (HI]. We consider algorithms in which the graph G is

·2·

represented by an adjacency matrix as well al algorithms in which G is represented

in the form of edges. In the case of an adjacency matrix. the i ·th input wave consists

of the i ·row of the matrix, aod io the case of edges, the i ·th input wave consists of n

arbitrary edges of G. In the i -th input wave PE). ls j S n, receives exactly on input

(which is either the bit Ql) or an edge (x) 3}». Our algorithms receive the input

waves in a when-indeterminate mode (U]; i.e., the time at which the i -th input wave

is read may depend on the data.

In this paper we show how to find the bridge-connected components (i.e., the

maximum subgraphs of G for which tbe removal of an edge leaves the &ubgraph con

nected) in 0 (n J/2) time for both input in the form of an adjacency matrix and edges.

Our bridge-connectivity algorithms number tbe bridge-connected components of the

graph. and the output consists. for every vertex. of tbe number of the bridge

connected component the vertex is in. We show how to determine the bi-connected

components (Le., the removal of a vertex leaves tbe subgraph connected) in 0 (n J/2)

time when the input is in adjacency matrix form, and in O(e+n 3/2) time when the
,

input is in the form of edges. The bi-connectivity algorithms also number the bi-

connected components. The output lists. for every vertex. the bio.Connected com-

ponents containing this vertex. Note that. since bio.Connectivity induces an

equivalence relation on the edges. a vertex can be in more than on bi-connected

component [AHU].

Algorithms for graph problems on parallel models with enough PE's and

memory to store a representation of the graph explicitly during tbe entire computa

tion have been studied extensively for a variety of parallel models [AK, DNS, HCS,

JS, NS1, SJ, SV, Tel. The issues involved when only part of the input is availahle at

any time during the algorithm and where this input is processed (Le.• irrelevant

inputs are discarded) before tbe next input wave is read, are quite different. Lipton

and Valdes [LV] and Hocbscbild el a1. [HMSI consider binary Iree networks witb n

leaves for solving graph problems with adjacency matrix input. The algorithms in

- 3-

[HMS] require logn registers per PE, and the bi-connoctivity algorithm in [LV) reads

the adjacency matrix twice. Hambrusch [H2) uses tbe model of tbis paper and

describes algorithms on 0 (n) area meshes for finding the connected components in

o (n 3/2) time for both forms of input.

2. Brldge·CoDDocllvlly

In this section we present an algorithm for finding the bridge-connected com

ponents OD a 2-dimensional mesh of O(n) area in time o (n312). We first give the

algorithm for input in the form of an adjacency matrix. and then describe the

modifications to be done when the graph is represented in the form of edges. In our

algorithms we assume that the n PE's. PE h ... ,JIE". are arranged in snake-like

row-major order; i.e., PE, is directly connected to PE'-l and PE, +1• provided they

exist. This assumption is for convenience only, and our time bounds hold when

other standard indexing schemas are used. The time bounds of our algorithms are

further independent of whether all or only the PE's on the boundary of the mesh

can perform 110. We make the standard assumption that in unit time every PE can

perfo~m an operation using its own registers or send tbe content of some of its regis

ters to an adjacent PEj for further details of the model see [HI].
'.

We start with an informal description of the approach used in the bridge

connectivity algorithm. The algorithm processes the i -th input wave (Le., the i -th

row of the adjacency matrix) completely before reading the {i +l)-st input wave.

Throughout the algorithm vertex i has two integers, C't the current component

number of i. and B
"

the current bridge-connected component number of i. assod

ated with it, Is is n. Initially, Bl = C, = i, Is is n. These two entries are stored in

PE, in the mesh. The algorithm puts two vertices in the same bridge-connected com

ponent if and only if it finds two edge disjoint paths between them. In order to

determine this, the algorithm stores in the mesh the (at most n -1) edges that have so

far caused the merge of two connected components. These edges form a forest; and

·4·

every tree in the forest represents a connected component and is called a connectivity

tree. ,
When the i ·th row of the adjacency matrix is read, PEJ reads the entry af)'

,
ISj S n. If alJ =1 and CI ¢ C), the cODnectivity tree containing vertex i and the one

containing vertex j are connected by the edge (i J); i.e., the connected components

C, and C) are merged. The edge (i J) is recorded in the mesh as an edge of the

newly formed connectivity tree. If Qlj=1aod C,=Cj , the edge (iJ) forms a cycle in

the connectivity tree representing the connected component CI , and the algorithm

(at some later stage) determines the bridge.connected components merged by the

edge (i j). If B, ¢ BJ• all tbe bridge.connected components tbat contain at least one

vertex on tbe patb from J. (resp. j) to tbe lowest common ancestor of i and j in the

connectivity tree (containing vertices i and j) form a new bridge--connected com.

ponent. The information about the connectivity tree bas to be organized such tbat

these vertices can be determined easily. (Of course, if B, =1= Bj , the edge is discarded.)

We next describe the organization of the entries of the connectivity trees. The

entries representing a connected component ex are organized as edges of a rooted

tree. The root of tbe tree is vertex CX. More precisely, every connectivity tree entry

is a 6-tupel (eX .x ,PX ,DX ,BX ,DBX), where

CX is the component number of tbe vertex X,

PX is the parent node of X in the coonectivity tree with root CX,

DX is the depth of X in the connectivity tree ex,

BX is the brtdge.conoected component number of X; the value of the bridge.

connected compooent BX is always equal to the vertex in BX that has the

smallest depth (Le., is the closest to the root of the connectivity tree),

DBX is the depth of the vertex BX •

See Figure 2.1, where the dashed undirected edges indicate edges that merged

bridge--connected components. The connectivity tree entries are stored in the mesb

sorted according to the component numbers ex, and entries belonging to the same

- s-

connectivity tree are kept sorted according to tbeir deptb DX in the tree CX. Note

that the bridge.connected component number does not correspond to tbe smallest

vertex in this bridge.connected component, but only a minor modification is neces

sary to produce the output in this form.

o

1 3

z

3

4

8

6

10

A connectivity tree with vertices 2,4,6,',8, aDd 91n tbc: bridF-<:onoectctl
compooem 2; the conoedivity eD~ for verte. 91s (1,9,7,4,2,1)

R.... 2.1

Initially, PEl contains the connectivity tree entry (i.i ,O,O,i ,0), but in the later

stages of the algorithm there is no relation between the cODnectivity entry stored in

PE, and vertex i. In addition to tbe coDnected component register C, and bridge.

connected component register 8~, two otber registers in PE~ are associated with ver

tex i throughout the algorithm:

D, contains the depth of vertex i in the connectivity tree with root Ct. and

NR, contains the number of vertices in the connectivity tree C, ..

Information about vertex i is thus kept in two different locations: in PE, and in tbe

connectivity tree entry for vertex i. Auxiliary registers are introduced when needed.

In the description of the implementation of our algorithm we assume that the

following subroutines are available:

-6-

Random-Access-Read (RAR): PE, requests the content of register R) of PEl and

stores it in register R, . This operatioD is denoted by R,:== R) or R:= RJ if the

value of i is clear from the context. Note that different PE's can request data

from the same PE.

SORT: specified data items in the mesh are sorted in increasing order.

PACK: k PE's in the mesh contain a 'flag', and operation PACK moves specified

data stored in the flagged PE's, while maintaining their original order, into

lower numbered PE (i.e., the data in the i ·tb flagged PE is moved into PE,).

All of the above subroutines can be implemented to run in 0 (n 1/2) on a mesh of n

PE's, and we refer tbe reader to [HI, NS2, TK] for details.

Combining the Connectivity Trees

After the PE's have read the i·th row of the matrix, the values of C,. NRJ , and

DE stored in PE, are broadcasted to every PE in the mesh. If there is an edge from

vertex i to j, PEJ sets registers as shown in Figure 2.2.

..._._---------_._------_._--
for all PEl' l.:Sjs,. pardo

CI:~ C,
NR1:~ NR,
D1:~ D,

If a,) ==1 then
J:=j
CJ:~ C)
NRJ:~NR)

DJ:= D)
odpar

.._._------ _---_.._ __._--_.._._--
Settiog registers at tbe beginning of i·th iteration

Figure 2.2

The entrie, (I,J ,CI,CJ,NRl,NRJ ,01 PI) tbat are created in PE', witb a,) =1

and Cl =F CJ are called the tree-eombining entries. The algorithm next sorts the tree.

-7-

combining entries in increasing order according to CJ. After the sort. the algorithm

sets a Oag in PE l' and in every PEj that contains a tree-combining entry for which

the value of CJ differs from the value of CJ in PEj-I' It then calls routine PACK.

Assume PE hPEp contain the flagged tree-combining entries (I,J ,CI ,CJ .,NRJ,

NRJ .,DI.,DJ) after PACK. These entries represent p edges that connect p+l connec

tivity trees, namely CI, CJ h ... •CJpo Note that throughout the description of the

algorithms we refer to the value stored in a register R, simply as R, . The next step of

the algorithm is to combine the p +1 connectivity trees into one. Since the connec

tivity tree entries are stored as edges of a rooted tree, combining connectivity trees

involves 'rerooting' some of them. When a non-root vertex of a connectivity tree is

made the new root. the edges on the path from the old root to the new root have to

be reversed, and the depth of all the vertices in the connectivity tree has to be

updated.

The rerooting of the connectivity trees is potentially a time .consuming pro

cedure, and in order to achieve the claimed time bound the algorithm never reroots

the connectivity tree containing tbe largest number of vertices (among all the other

trees to be rerooted). Thus, before the start of ~he rerooting process. the algorithm

rearranges the tree-combining entries so tbat tbe tree-combioing entry stored in PE J

bas the largest NRJ value; i.e., NRJ 1 = max (NRJ , •... ,NRJpl. Recall that Cl,

CJ h ... ,CJp are the connectivity trees to be combined. and tbat the registers CI,

NRJ. and VI of the tree-combining entries in the first p PE's have the same value.

respectively.

• If NCI It? NCJ 10 then the connectivity tree CI containing vertex I is not

rerooted. In the connectivity trees CJ J, ... •CJp vertices J Jo .•• ,Jp are made

the new 'roots' at depth VI +1. See Figure 23(a).

• If NCI I<NCJ h theo tbe tree CI J containing vertex J 1 is not rerooted. 10 the

coonectivity tree CI, vertex I is made the new root at depth DJ1+1. and in tbe

trees CJ2,··· CJp • the vertices 1 2,'" J p are made the new roots at depth

·8·

J,

CJ2 CI,

Cli contains the largl;st number of vertices
(b)

J,

/
J,

CI,

DJ ,+2. See Figure 2.3{b}.

Cl i C/2-
Cl comolos the ~st number of vertices

(a)

J,

Fl_23

We next discuss the rerooting process for tbe first case (i.e., when NCI ~NCJJ)

as shown in Figure 23(a). The second case is handled in a similar fashion. Every

flagged tree-combining entry creates a rerool enlry (1,1 ,Cl,CJ ,ND)r, where ND is

the new depth of vertex J which is equal to Dl +1. Vertex J will be the new root of

the vertices in the connectivity tree CJ. (Note that the subscript 'f' is used to indi

cate a reroot entry, not a PE.) Everyone of the p reroot entries is sent to tbe PE that

contains the connectivity eotry for vertex J j i.e., to the PE containing the connec

tivity entry (CX ;X,PX ,DX ,oX ,DBX) witb CX ~CJ and X -J. Observe tb., tbe PE

creating the reroot cntry does not know the position of tbis connectivity cntry. The

position is determined by sorting all the connectivity tree entries belonging to ver

tices that are roots together with the p rerooting entries according to the component

numbers. By doing so every reroot entry determines the position of the root of its

connectivity tree in 0 (n Uz) time. Once every reroot entry bas been sent to the PE

containing the root. it locates tbe connectivity entry corresponding to vertex J in

o (n 1/2) time (recall that the connectivity entries of every tree ex are sorted accord

iog to their depth). Now the actual rerooting of connectivity trees ex starts, and

the p connectivity trees are rerooted in parallel.

The rerooting of every tree ex works in two phases. The first phase reverses

the edges on the path from vertex X to the root ex (and also updates connectivity

-9-

tree entries), and the second phase updates the depth of the vertices in the subtrees

rooted on a vertex on the patb from X to ex. Both phases use O(n J/2+m) time,

where m is the number of venices in tree ex.

We now describe the implementation of first phase in more detail. Let

(CX){ ,PX.oX,BX .oBX) be a connectivity tree entry in PEl that received the reroot

entry (/,I,CI,CJND),:

• If X=l:J, PEl: it sends the reraot entry to PEI - J without changing it or its

own registers.

• If X =J ,PEl updates its connectivity tree entry by setting ex:= CI. PX:= I,

and DX;= ND. PEl then creates the update entry (J .CI.CJ .j{D)/4 with

ND =ND +1 and the value of registers J, CI, and CJ as in the reroot entry.

The update entry remains stored in PEl: until it is activated in the second

phase. PEl: next changes the reroot entry as follows. If vertex J (which, in

this case. is equal to vertex X) is not the root (i.e.• X ¢ eX), PEl: then sends

the reroot enlry (I ,I ,CI,CJ ,ND), with I=X, J=PX, ND =ND +1, CI and CJ

unchanged, to PEI-J. If vertex X is the root. the second phase starts.

After the first phase. every PE containing a connectivity entry of a vertex that is

incident to an edge of the tree which did get reversed, contains sn update entry

(J ,CI ,CJ,ND)/4' The goal of the second phase is to send every update entry

(J ,CI,CJ I'/D)14 to the children of venex J (excluding the child that is now a

parent), and to change the depth in the connectivity entry of the children to ND.

Every child will then create its own update entry, which is to be send to its children,

etc. Every PE containing a connectivity tree entry thus creates (or already contains)

exactly one update entry. We now describe how to implement the second phase in

o (m) time. If every update entry originally in PEl is sent (independent of the other

update entries) to PEI +1> PEI:+2, and if the PE's (which contain tbe connectivity

entries of children) create their own update entries (which are also sent to higher

·10·

numbered PE's), the algorithm encounten ·collisions" problems. Thus the algorithm

does the following. The update entry in the root is activated first (Le.• if the connec

tivity cntry of the root is in PEt., PEl sends its update entry to PEt. +1, PEt. +2••..).

Assume PEl receives an update entry (J ,CI ,CJ ,ND)",.

• If PX, =1= J (i.e., the connectivity entry in PEl does not belong to a child of

vertex J), PE, sends the update entry to PE, +1.

• If PX, =J I the algorithm sets register DX, (of the connectivity entry) equal to

ND, CX, equal to C/, and it cteates a new update eDtry (J2,C/2,CJ2,ND2)

with J2~X, C/2=C/, CJ2~CJ, aDd ND2=ND +1. PE, sends the 'old' update

entry to PE, +1, and keeps the newly created one until it is' activated. The

newly created update eotry in PE, is activated after the update cotry created

in PE'-l passed through PE,.

It is easy'to see that this technique does not run into collision problems and that.

after 0 (m) time, where m is the number of vertices in the tree, every connectivity

tree entry contains the new values.

From the above discussion it follows that the p connectivity trees can be

rerooted in 0 (n l/2+m) time, where m is the number of vertices in the second largest

connectivity tree involved. Before proceeding with the next major step of the alga-

rithm, the determining and merging of bridge-connccted components, we have to

update the entries about vertex k in PEt., Is k S II. The number of vertices in the

new connectivity tree with root C/ (resp. CJ 1) can be computed in 0 (n 1/2) time using

the p tree-combining entries. Every vertex k in CI, CJ h ... ,CJp can update its com

ponent number Ct. and the value NRt. stored in PEl in 0(11 1/2) time (by using SORT

twice). Finally, a write operation initiate.d be the connectivity entries updates the

depth registers Dl in every PEt. in 0(11 1/2) time.

Merging Bridge·Connected Components

- 11-

After the connectivity trees have been combined, every PEl with al} =1 has

C, =C), where C, is the updated connected component number. If the edge (i J) was

used as a tree-combining edge, we set "I) to O. Next, every PEl obtains the values B,

and D, and, if B~=B), also sets "I) to 0, l~j:Sn. The remaining PE/s with ai}=!

and B, =F B) contain an edge that merges bridge-connected components, and every

such PEJ creates a bridge elllry (1,J,CI,8I,8J,DI,DJ). with I=i and J~j. The

values of a bridge entries are set similar to the code shown in Figure 2.2.

While the algorithm determines the bridge-connected components merged by

one bridge entry, only the section of the mesh containing the connectivity tree

entries of tree Cl is used. The algorithm can thus process bridge entries of different

connectivity trees simultaneously. Since doing so does not affect tbe worst case time

performance, we will Dot discuss this possibility in more detail. Wheo the algorithm

chooses one bridge entry (/,J ,CI,8I,81 ,D1,DJ)b it follows the path from vertex I to

the low"est common ancestor of I and J, referred to as Ica(1 ,J), and the path from

vertex J to lca(l ,J). It marks all bridge-connected components encountered on these

two paths as to be merged into ooe. We now describe in more detail how a bridge

cntry is processed in 0 (bn 1/2) time. where b is the number of bridge-connected com

poneDts merged by the edge (I .,J).

The bridge entry (I,J ,CI,8I,8J,DI ,DJ). created in PEJ is ,ent to the PE con

taining the connectivity entry of the root of connectivity tree CI. Let PEl be this

PE. At PEl' the bridge entry is split up into two entries: (/,CI,BI ,DI)b and

(J ,CI .oj ,DJ)b' which will from now on be called the bridge entries. If DI =DJ ,

then botb bridge entries are sent from PEl to the PE containing the connectivity

entry of vertex I and 1 ,respectively, If DI < D1 , then ooly the bridge entry contain

ing vertex J is seot, and if VI> DJ , then only the bridge entry cootainiDg vertex I is

sent. This ensures that we move in tbe connectivity tree from I and J towards the

Ica(1 .J) 'at the same pace',
I

'.
·12·

We next describe what the algorithm does once the bridge entry (/.CI ,BI p/)b

has arrived at the PE containing the connectivity entry for vertex I. The action for

the bridge entry for J is analogous. Assume that the connectivity tree entry for ver

tex J is in PEu ; i.e.. PEu contains the connectivity tree entry

(Cx.,;X",PX",DX",BX",DBX,,) with X,,-I (aDd, of course, CX,,=CI, DX,,=D1,

and BXu=BI). PEu sets a Oag to indicate that it contains a bridge-connected com~

ponent to be used in the merge.

• If BKu = XiI. then PEI:l sends its bridge entry to the PE containing the con

nectivity entry of vertex PXih the parent of vertex Xu.

• If BXi f:F Xu. then PEu sends its bridge entry to the PE containing the con

nectivity entry of vertex BKu , which is at depth DBX1 J' Note that by sending

the bridge entry to the PE containing the entry of BXi]. the algorithm never

Jtraverses edges that are in already existing bridge-connected components.

Let PEJ:2 be the PE receiving the bridge entry from PEiJ • The bridge entry can be

sent from PEl J to PEI2 in 0 (n Jl2) time. At PEn, the bridge entry {I ,CI ,BI p/)b is

updated to: I =Xt,2. B1 =BXu , and DI =DX12. The updated bridge entry is sent to

PEl· When PEl receives the updated bridge entry (resp. entries), it checks whether

the bridge-connected component containing the Ica(I"I) bas been reached:

• If B1 '* BJ • then PEl sends out either one or both bridge eotries (depending

on the current depth in the bridge eotries).

• If Bf =BJ • the lowest common bridge-connected component bas been reached.

and PEl sets BNEW, =81. BNEW! will be the new bridge-connected com

ponent number of all the vertices in bridge-connected components that

received a Oag. and the updating of bridge-connected component entries

begiDs.

We now describe the final updating of the entries. The algorithm calls routine

PACK. which places tbe connectivity tree entries of Bagged PE's in PE],)'E•.

• 13·

Let B",' .. ,0'. be the bridge-connected components of these entries. BNEW, is

made the new bridge-connected component Dumber of all tbe vertices in B, •.... .,B, ., .
This change bas to be recorded in a number of entries: In the bridge-connected com~

panent number Bj; of vertex k in PE}.. and in the bridge~coDnected component

numbers in the connectivity enrries contaioing vertex k. Furthermore. the entry

DBX in the connectivity eotries belonging to venices of flagged bridge-connected

components has to be updated. Note that the new value of DBK of all the vertices

involved in the merging is the depth of vertex BNEW!. The updating of all these

eotries can be done in o (n1/1) time.

Thmrem 2.1 The bridge-connected components can be found in time 0 (n 3/2) on a 2

dimensional mesh of 0 (n) area when the graph is given in the form of an adjacency

matrix.

Proof: ~e correctness of the algorithm follows from the preceding discussion. The

time qound is obtained as follows. The time spent not on the combining of coonec.

tivity trees or tbe merging of bridge-connected components is O{n 1/2) for each row. .
of the adjacency matrix. We have shown that the time used to combine and reroot

connectivity trees is o (n 1/2+m) in each iteration, where m is the Dumber of vertices

in the second largest component to be merged in the i ·th iteration. In the worst case

we combine and reroot connectivity trees of the same size, and we combine only 2

connectivity trees in each iteration (i.e., we combine 2 trees of nil vertices each in

the n-th iteration, 2 trees of n/4 vertices each in the (n -l}st and (n -2}nd iteration,

etc.) Thus, the total time spent on combining connectivity trees is

0«n/2 + n'12) + 2(n/4 + n'12) + 4(n/8 + n''') + + n/2(1 + n'12»,

which is 0 (n 3/'2). The overall time spent on the processing of bridge entries and tbe

mergiog of bridge-conoected components is also O(n3/'2), since at most n-l bridge.

connected components can be merged. Hence, the total time of our algorithm is

o(n 312). 0

• 14·

Our algorithm can be extended to,~Dd the bridge-connected components in time

0(113/2) when the input is given in the form of edges. The overall structure of the

algorithm and the entries created during the computation remain the same. Observe

that now PEj;, 1stsn. reads an arbitrary edge (1.,1) and that the connected com

ponent number of vertex 1 (resp. J) is in PEl (resp. PEJ). While the merging of

bridge-connected components is done by processing the bridge entries one by one as

before, the situation for combining connectivity trees is different. When the graph is

given in the form of an adjacency matrix, the edges that merge connectivity trees at

the i -th iteration represent a connected graph with no transitive edges. See Figure

23. When the graph is given in the form of edges this is no longer true. The edges

between connectivity trees can DOW represent a graph tbat is not necessarily con

nected and that can contain transitive edges. But in order to achieve 0(n 3/2) time.

the connectivity trees do not have to be combined in parallel. We only have to make

sure tbat tbe connectivity tree with tbe largest number of vertices is never rerootcd.

Hence, by making this step more 'sequential' the foilowing result is obtained:

Theorem 2.2 The bridge-connected components can be found in time 0 (n 3/2) on a 2

dimensional mesh of 0 (11) area when tbe graph is given in the form of edges.

3. BI-Connectlvlty

In this section we first describe an algorithm that determines tbe bi-connected

components of an undirected graph on an O(n) area mesh in time o (n 3/2) when the

input is given in the form of an adjacency matrix. We also present an algorithm for

input in the form of edges which runs in time 0 (e +n 312). As done for bridge-

connectivity, we associate with every vertex a connected component number, and we

record the edges that caused the merge of two connected components as entries of

connectivity trees. The connectivity trees help to determine the bi-connected com

ponents, and the algorithm puts two vertices in the same bi-connected component if

and only if it finds two vertex-disjoint paths between them. Bi-connected component

• 15·

numbers are used to record the bi-connectivity information obtained about the graph

so far. Since one vertex can be in more than one (and at most n /2) bi-connected

components, PE, cannot be used to store the bi..connectivity numbers of vertex i.

The algorithm records in PE, the entries C,. D,. and NR, associated with vertex

;, and they are defined as in Section 3. The bi-connectivity information is recorded

in the form of hi-number entries. and every such entry is a 4-tupel consisting of

a vertex.

a bi-connected component number (the vertex is currently in).

the vertex in the same bi-connected component number that has smallest

depth in the connectivity tree, and

the depth of this vertex.

Note tbat the vertex at the smallest depth in the connectivity tree cannot be used as

the bi-connected component number (as done for bridge-connectivity), since this ver-
.

tex could be in more tban one bi-connected component. Bi..connected component

numbers are now assigned as follows: PE I contains a register NUMB, which is ini

tially set to 1. Every time a new bi-connected component is formed, it gets the

number equal to tbe current value of NUMB, and NUMB is increased by 1. Since

every time NUMB is increased, at least two bi-connected components get merged. the

final value of NUMB is at most n -1. See Figure 3.1, where the edge (4,13) is pro

cessed after the edges (4,9) and (4,8).

Every PE contains registers to store up to 2 bi-number cnuiesj namely registers

(II, BII, Oil, DOlI) and (/2, B12, 012, DOl 2). We refer to these two sets of regis

ters as (f" ,81· Pf" ,DOf"). It is easy to show that in any graph there can be at most

(3n -3)/2 hi-number entries, and tbus two per PE are sufficient. At some time dur

ing the algorithm, the bi-number entries will be sorted according to the venice,. at

other times they will be sorted according to the bi-connected component numbers.

The bi-number entries are stored in packed form; i.e., the entries in PE, are filled

after the 2(i -1) bi-number entries in PE II ••• , PE, -1 have been filled. Initially, the

·16·

o

1

2

3

4
10

1

13

3

1

Solid &nOM reprcsclll the ClDflDedhriry free,
dnshed lines represent ed~s that merged bl.-oonoected ~ots.

the hi-number comes for W:l1cx"-are (4,.,4,2) aod (4,3,1,0) •
fJgurc 3.1

mesb contains the n bi-number entries (i ,O,i ,0). 1s i s 11.

The combining and rerooting of the connectivity trees, and the merging of con

nected components is done as in the bridge--eoDoectivity algorithm. Note that a con

nectivity tree entry is now a 4--tupel (ex.)(,Px .oX). and that after the rerooting pro

cess the DOl· component in the bi~Dumberentries needs to be updated.

After the combiDing and rerooting of tbe connectivity trees every PE, with

aij =1 and edge (i j) DOt used for merging coanected components creates an edge

entry (I.,J ,el ,1JI .vI) with 1 =i and J =j. The algorithm next finds ooe edge entry

that forms new bi~cODnected components. It does so by determining in 0 (n 1/2) time

either 3n edge entry that causes the merge of (at least two) bi~connected components

or it concludes. also in o(n l/2) time. that none of the (up to II) edge entries merges

bi-coDnected components. An edge (1.1) merges bi-conn~ted components if no bi~

connected component contains botb I and J. In terms of bi-number entries and

edge entries this condition is stated as follows. The edge entry (I.,J ,eI .DI .DJ)

merges bi-connected components if and ooly if for all bi-number entries (I·J: pl.J:.

·17 -

0/.1,D0/·1) and (/.,.B/." 01, ,DOl·,) with 1.1 =1 and I·, =1 ,BI·1 =1= BI·, holds. It is

easy to check this condition in 0 (n 112) time for one given edge entry. How one edge

entry satisfying the condition is found (or it is determined that DO edge eotry

satisfies it) in 0 (n 1/2) time is described next.

Selecting an Edge Entry

The algorithm adds a mark register MARK·1 • !S k S II, to every bi-number

entry. MARK-j; is initially set to O. The selection of an edge entry is done in three

stages. In the first stage, the algorithm sets the mark registers in all bi-number

entries of vertices adjacent to vertex I to 1; i.c., it sets MARK·1 = 1 in every bi

number entry (/·j; ,81·j; , 0/.1 ,DOI·1 .,MARK·,,) with 1.1=1" where (I, rI"CI, ,DI,.,DJ,)

is an edge entry. This step is implemented in 0 (n l l2) time by sorting the bi-number

entries accordiog to the vertices, then sending every edge entry (I, ,1"CI, /1I,.,DJ,) to

the lowest indexed PEj; containing a bi-number entry with /.1; =J" and propagating

this edge entry to higher-numbered PE's.

In the second s'age the algoritbm sets the mark registers in bi-number entries

(1·1)1/·1, OI·".,DOI·I.,MARK·,,) with MARK·1;=! to 2 if there exists a bi-number

entry (/., ,81·,. O/·,.,DOI·,.,MARK·,) with 1., =i and BI·" =B/·,. This step is imple

mented in 0 (n U2) time by sorting the bi-number cntries according to the bi

connected component numbers, and letting every bi-number entry with I., =i mark

the entries witb B/.1=BI.,.

The third and final stage in the selection of an edge entry the algorithm sorts

the bi-number .entries according to the vertices. It tben selects, in 0 (n 1/2) time,

among all edge entries (/.,l ,CI ,DI.,DJ) for which no bi-oumber cntry corresponding

to vertex 1 has the mart register set to 2, an arbitrary onc. If one exists, the merg

iog of bi-connected components starts. If no such edge entry is found, the i -tb itera

tion of the algorithm is completed (and row i +1 of the adjacency matrix is read

next).

·18·

Merging of Bi-Connuted Components

After an edge entry, say (I ,1,CI,DI ,DJ), bas been selected, tbe algoritbm

merges bi~connected components. The basic concept of the merging is similar to the

one used in the algorithm for bridge-connectivity. The algorithm follows the paths

from vertices I and J to the lowest common ancestor of I and J in the connectivity

tree CI. Obviously, all the vertices on the two paths belong to one hi-connected

component. In addition, we include a bi-connccted component that contains at least

two vertices that are on these two paths.

The data movement for determining the bi""Connected components to be merged

is similar to the one for bridgc""Connectivity. and we only point out some of the

differences. The bi~connectivityinformation about a vertex is not stored in the con

nectivity tree entry, and it has to 'looked up' in hi-number cntries. This adds an

additional 0 (n J/2) time for traversed every edge on the paths. Existing hi-connected

components encountered on the paths are only included if they contain at least two

vertices that are on the path to the Ica(I.,l). The algorithm uses the depth entry

DOr· of the vertex or· of the hi-connected component B/· to avoid traversing more

than one edge in the bi-connected component B/·. We leave the implementation

details to the reader. It follows that the time for processing one edge entry is

o (mn 1/2). where m is the number of bi-connected components that get merged by the

edge (1.,1). Again, at most n -1 bi-connected components can get merged. and the

overall time of the algorithm is 0 (n 312).

Theorem 3.1 The bi-connected components can be found in time 0(n 3/2) on a 2

dimensional mesh of 0 (n) area when the graph is given in the form of an adjacency

matrix.

Proot: Similar to the proof of Theorem 2.1. 0

We next describe bow to modify the above algorithm to find the bi""Connected

components in 0 (e +n 3/2) time when the graph is given in the form of edges. Recall

• 19·

'.

that for bridge-connectivity O(n 3fl) time can be achieved for both forms of input.

The time~critical step in the bi-connectivity algorithm is selccting an edge entry that

merges bi-connccted components (or deciding that none exists) dficiently. When the

idea of marking bi-number entries is applied to an arbitrary set of edges (instead of

edges adjacent to vertex i), the irregularity of the input causes an increase in the

time complexity. We now describe the difficulties that arise and give an informal

outline how to process 0 (n]/2) edge entries in 0 (n) time.

Let (Xj ,y,) be n edges that do not merge coonected components and assume

they are stored in PE II ... ~E" of the mesh. Let the number of bi-number entries

containing vertex X, be be less than or equal to the number of bi-number entries con

taining vertex Y./. U vertex X, is in the bi-connected components B,t• ••. , 8:1
, form

the triples (XI oYl.Bf), Is k s I,. Then check for every triple (XI.Y1 ,st) whether or not

vertex Yi -is in the bi-connected component Bit. Unfortunately we cannot create all

the triples of the n edges at once, since n edges can result in 0 (n3/2) triples in the

worst case, as shown by an example below.

Consider a graph with n =4k2 vertices in which vertices X],···, Xt, and

Yl' ... ,Y,l; are on one cycle, and in which every vertex X, (resp. YI) is in k +1 bi

connected components (namely the cycle and k "triangles'). Every vertex in a trian

gle, except the one on the big cycle, is in exactly one bi-connected component. Let

the next input sequence contain the edges (XI,Y})' Isjs k, Is i s k. If we form the

triples as described above, we form (k +1)k2 = n3/2/8 + n/4 triples. Note that no new

bi-connected component is formed by these edges.

In the selection of an edge entry we handle a batch of n]/2 edges at a time. For

n1/2 edge entries we form the triples as outlined above (note that at most 0 (n) tri

ples can be created), aod then select an edge entry by marking bi-number entries

similar to the marking step for input in the form of an adjacency matrix. Once an

edge entry bas been selected and bi-connected components been merged, the. next

edge entry is selected from the current batch of nl/l edges in o (n]fl) time. Thus the

- 20-

'.

total time for processing n edge entries (not counting the time to merge bi-coDnected

components) in 0 (n). The overall time spent in selecting edge entries is 0 (.! n) =
n.

O(e). The time spent in the other steps of the algorithm remains the same. We can

thus state the following theorem:

Theorem 3.2 The bi-conoected components can be found in time O(e + n312) on a 2

dimensional mesh of 0 (n) area when the graph is given in the form of edges.

References

[AHU] A.V. Aho, I.E. Hopcrofr, ID. Ullman, The Design and A1Ullys;s of Computer
Algorithms, Addison-Wesley, 1974.

[AK] MJ. Atallah, S.R. Kosaraju, 'Graph Problems on a Mesh-Connected Processor
Array', Journal of ACM, Vol. 31, pp 649-667,1984.

CONS] E .. Oekel, D. Nassimi, S. Sahni, 'Parallel Matrix Bnd Graph Algorithms', SIAM
Journal on CompuJi.g, Vol. 10, pp 657-675,1981.

[GKT] LJ. Guibas, H.T. Kun8, CD. Thompson, 'Direct VLSllmplementations for
Combinatorial Algorithms', Proc. of Co"'. VLSI tech. design and fabrkaJion,
Caltech 1979.

[H1] SE. Hambruscb, 'Tbe Comple.ity of Graph Problems on VLSI', Ph.D. Tbesis,
The Pennsylvania State University, August 1982.

[H2] SE. Hambrusch, 'VLSI Algorithms for the Connected Component Problem',
SIAM Journal o. CompuJing, Vol. 12, pp 354-365,1983.

[HCS] D.S. Hirschberg, A.K. Chandra, D.V. Sarwate, 'Computing Connected Com
ponents on Parallel Computers', CACM, pp 461-464, Aug. 1979.

[HMS] P.H. Hochschild, E.W. Mayr, AR. Siegel, 'Techniques for Solving Graph
Problems in Parallel Environments', Proc. of U·rh IEEE FOCS Co.f., pp 351
359,1983.

[IS] I. Ia'Ia', I. Simon, 'Parallel Al80rithms in Grapb Theory: Planarity Testing',
SIAM Journal on Computing, PP 314-328, May 1982.

[KL] H.T. Kung, CE. LeisersoD, 'Systolic Arrays for VLSI', appeared in Introduc
tion to VLSI Systems, C. Mead, L. Conway, Addison-Wesley, pp 260-~92, 1980.

[LV) RJ. Lipton, J. Valdes, 'Census function: An Approach to VLSI Upper
Bounds', Proc. of 'he 22-nd Ann. Symp. on Found. 0/ Compo Sc., pp 13-22, 1981.

[MSI) R. Miller, Q.f. Stout, 'Computational Geometry on • Mesh-Connected Com
puterll', Proc. of 19841nternat. Con!. on Parallel Processing, PP ~73.1984.

[MS2] R. Miller, Q.F. Stout, 'Geometric Algorithms for Digitizes Pictures on a
Mesh-ConDected Computer', to appear in IEEE Tran. on Paltern Analysis and

- 21·

'.

[NS1]

[NS2]

[SJ]

[SV]

[TK]

[TC]

[U]

Machi1U! InJelligence.

D. Nassimi, S. Sahnil 'Finding Connected Components and Connected ones
on a Mesh-eoooected Parallel Computer" SIAM J. on Comp.• pp 744-757. 1980.

D. Nassimi, S. Sahni. 'Data Broadcasting in SIMD Computers', IEEE Transac
tions on Computers, pp 101-106, 1981.

C. Savage. J. Ja'la', 'Fast, Efficient Parallel Algorithms for some Graph Prob
lems', SIAM J. on Comp., pp 682-691';--1981.

Y. Shiloach, U. VishkiD, 'AD O(logo) parallel cODDectivity algorithm', J. of
Algorithms, Vol. 3, pp ~·67, 1982.

C. Thompson, H. Kung, 'Sorting on a Mesh-Connected Parallel Computer',
CACM, pp 263-271, 1977.

YR. Tsin, F.Y. ChiD. 'Efficient Parallel Graph Algorithms for a Class of
Graph Theoretic Problems" SIAM J. 011 Computing, pp S80-S99. 1984.

ID. Ullman, CompU/alionol Aspects 01 VLSl, Computer Science Press, 1984.

·22·

	Parallel Algorithms for Bridge- and Bi-Connectivity on Minimum Area Meshes
	Report Number:
	

	tmp.1307986960.pdf.6m5fO

