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Abstract

A number of factors motivate and favor the implementation of communication
protocols in user-space. This motivation is particularly strong in the context of
providing multiway connectionless transport for distributed computing, multime-
dia, and conferencing applications. Here, protocol implementations can hold the
key to optimal functionality and performance. As part of a larger study investi-
gating experimental strategies for general multiway, connectionless transport for
a variety of applications and multiple media, we report our experiences with the
implementation of an unreliable transport mechanism. This step is a precursor
to multiway reliable transport. We focus on the use of user-space threads and
UDP-based protocol actions, presenting strategies for scheduling threads that ei-
ther do a client’s application-processing or retrieve packets {from a client’s network
receive buffer. Efficient packet retrieval is crucial especially when transport is reli-
able, because higher packet-loss implies longer network delays. With experiments
performed on a Sun SPARC 5 LAN environment, we show how different threads
scheduling strategies yield different levels of application-processing efficiency and
packet-loss.

* Supported in part by NSF-CCR. 9311862, ONR-9310233 and ARO-93G0045.
! Supported in part by NSF-ASC-9527186 and ONR-9310278




1 Introduction

We are witness to a paradigm shift in networking and distributed computing. Within
a span of about two decades, isolated computing machines have been transformed into
cooperating systems whose processes interact closely with one another via networks and
efficient protocols. While reliable protocols have revolutionized computing by making
heterogeneous networks transparent, at least in part, to users and applications, they
have also revealed to us ways of using networks for supporting virtual collaboratories
and enterprises: computing engines once transformed into cooperating engines are now
undergoing a further transformation into application-based collaborating engines. But
with this transformation comes a number of requirements and problems which require
novel solutions.

It is inevitable that new generation netware must support a variety of applications.
These include combinations of high-performance numerical computations, audio, video
and high-resolution imaging. Ideally, these will operate as integrated services, and may be
packaged as multimedia applications, i.e., applications with multiple media involving re-
altime delivery and interactivity. Videoconferencing, distance-learning, simulation-based
collaborative design, reliable distributed interactive simulations, etc. are some examples.
Realtime and interactive bandwidth-creep applications, in which mixed media force band-
width requirements upwards, will be common. As an example of bandwidth-creep, small
technical documents typically contain tens of kB of text, but with an image added to
the document, size may climb to several MB. Robust protocols we have come to rely on,
such as TCP/IP or extant reliable UDP schemes, were simply not designed for clients
with such volatile demands, especially when the transfer involves multiple participants
(i.e. many-to-many communication).

Different kinds of applications, e.g., realtime, bandwidth-creep, high-performance nu-
merical computations, and collaborative applications, place very different demands on a
network. Because of this, algorithms for maximizing throughput and minimizing latency
between or within applications are hard to come by. Indeed, a protocol like TCP/IP
operates under certain guidelines in a client independent way; often, new protocols are
developed to provide specific services (e.g., RMP [1] and AFDP [2]) not provided by
existing ones. Even with high speed nets like the 100-Mbps Ethernet, FDDI, or ATM,
existing protocols will be hard pressed to deliver integrated services such as scalability,
low-latency, isochronous transport, bandwidth reservation and prioritized schemes for
smooth delivery. These services are crucial for the high-performance, realtime internet-
working applications of the future.

Our interest lies in improving protocol performance in distributed computing envi-
ronments which may eventually support multicasting and collaborative applications. In
this study, we focus on aspects of protocol design and implementation that can reduce
latency through reduced packet-loss, while simultaneously enhancing client-related pro-
cessing. For example, in extant message-based, distributed computing systems, processes
alternate between computation and communication through a single thread of control.
Processes interact with one another, by sending and receiving messages, at well-defined
points in their execution sequences. Examples of such systems include PVM [3], P4 [4],
MPI [5, 6] and Conch [7], all of which seek to support high-performance computations




in distributed environments. PVM utilizes communication daemons which talk to one
another using UDP. In P4, most MPI implementations, Conch, and PVM (route direct
option), compute processes may interact using TCP/IP. Conch uses software routing
between processes to support different network topologies, providing for improved scala-
bility.

In Unix environments, for example, alternating between communication and compu-
tation within a single thread of control can result in performance loss. When a process
expects to receive a message, it must either block and wait for the message, or it can
proceed with a computation and periodically check (poll) for the message. A blocking
wait prevents the process from doing other useful work, and further aggravates the sitna-
tion by generating an OS context switch; control is given to the blocked process at some
later time, after a message arrives. This occurs, for instance, with PVM tasks and P4
processes. With polling, as done in the Conch system, useful work proceeds but only at
the expense of increased overheads and delayed message receipt. The delay depends on
the time spent computing between consecutive polls, and the overhead depends on the
manner in which polling is implemented. For example, polling in Conch is implemented
through signal-based multiplexing. Because of the 500 ms granularity of the timer, Conch
examines its receive buffers for messages only every half a second.

Regardless of the particular transport mechanism used, delay in acknowledging mes-
sage receipt contributes to delay experienced by future messages. This may also be
indicative of a potential backup in message delivery between a receiving client and its
host’s network layer, further delaying client processing and response. Naturally, this may
further degrade protocol services. To be specific, if messages occupying receive buffers
are not retrieved and rapidly acknowledged by the receiver, the sender is forced to delay
sending further messages to this receiver!. Even worse, delay in acknowledgement forces
a sender to retransmit messages because the sender must assume that the information
was lost in transit.

2 Motivation and approach

The advantages of user-space protocols are well-known [8, 9, 10], though implementations
are few. Protocol layers, provided mainly for modularity, make protocol actions less
sensitive to client needs [11]. Layer boundaries tend to restrict interfaces, and lower
layers are unable to query clients so to make the best use of asynchronous actions, timing
and buffering. Our intent is to remedy this situation by implementing threads-based
protocol actions in user-space for environments supporting high-performance distributed
computation and collaboration.

In utilizing user-level threads, the idea is to perform efficient scheduling of compute-
and communicate- functions within a single process, in an attempt to minimize the ill
effects of OS context switches and message retransmission described earlier. To integrate
compute- and communicate- functions within a single process, we resort to user-space
multithreading. The resulting protocol actions will be efficient only if thread operations

'In PVM’s daemon-to-daemon communication there is no flow control, and the sender does not delay
sending further messages. In extreme cases, the consequences are disastrous.




are efficient, and threads are scheduled in a manner that minimizes packet delays. Tai-
lored thread schedules will help reduce packet-loss (and thus retransmission delays) at
a receiver’s network layer, simultaneously increasing client processing. We believe this
approach to be important because these factors are critical in real-time message delivery
and efficient multicast.

To aid in experimentation with scheduling and to investigate issues in multiway,
connectionless transport, we have embarked on the design and implementation of a con-
nectionless, lightweight and multiway communications environment (i.e., CLAM). At this
time the CLAM protocol suite supports point-to-point connectionless transport, both un-
reliably as well as reliably, though the discussion in this paper is restricted to unreliable
communication. In the future, we expect to support multiway connectionless transport
with facilities for message delivery at various, selectable qualities of service, including
bounded loss, lossless, and sequenced transmission; both unordered with respect to the
recipients and with atomic multicast semantics. CLAM is an active-message based sys-
tem implemented with support from the Ariadne [12] threads system. In the interests of
portability, CLAM utilizes standard threads primitives available in most threads libraries.

The CLAM system presently consists of two layers. A lower layer provides UDP-
based unreliable messaging services. Within this layer, a simple but efficient scheduler
dispatches computation and communication functions in a manner that attempts to min-
imize packet-loss and maximize CPU attention to an application’s computation. Sup-
ported by the lower layer, the upper layer provides for reliable and realtime message
services and an interface to core MPI [5] communication primitives. As an example of
immediate applicability, CLAM’s unreliable layer (and proposed multicast extension) is
ideal for support of the DIS protocol [13], where it is critical that packet-loss be small,
and work efficiency high.

The remainder of the paper is devoted to a discussion of the scheduling algorithms
used in CLAM’s lower layer, for uniprocessor hosts. Further improvements can be shown
for shared memory multiprocessors. This requires additional support from the threads
system, and is the subject of another paper. In Section 3, we present five different
scheduling algorithms, each using threads and time-slicing to multiplex between commu-
nication and computation. Experimental results on performance are presented alongside
a description of each scheduling algorithm. We conclude briefly in Section 4, and mention
future work.

3 On scheduling computation and communication

A process may be made to alternate between compute work and communication work,
given appropriate help from a signalling mechanism. Though the use of signals is risky
and requires care, the mechanism is effective in separating send and receive task func-
tionality, and is ideal in adapting tasks to load. When used in concert with threads,
careful signal-based multiplexing offers potential gains that may significantly outweigh
risks. In this study, we envision an application as consisting of multiple threads of con-
trol, and focus on two immediate goals. One is the minimization of packet-loss at the
network layer, effected by a receive thread which is responsible for the rapid retrieval of




packets from a given receive buffer (e.g., if UDP is used, this buffer is the UDP buffer).
The other is the maximization of work done by work threads, which are responsibie for
compute-bound application processing.

With separate threads for sending and receiving, each of which executes for a given
amount of time under signal-based control, a messaging subsystem may readily adapt to
traffic. A receive thread may monitor and process incoming packets, to curtail packet-loss
at the receive buffer. A send thread may dispatch outgoing packets in a manner that is
sensitive to client needs, minimizing time-to-acknowledgement for packets received. Im-
plementing such adaptation, however, requires that the system make low-cost scheduling
decisions using transient information. In particular, when should the system schedule a
client’s receive, send and work threads, and what specific information should be used in
scheduling these threads 7 A great variety of scheduling options exist, all operating in
the millisecond time scale, with an equally great variety of efficiency levels. Identifying
the best or even selecting a reasonably good algorithm is a nontrivial task.

We propose, implement and measure the performance of five simple but effective
strategies for scheduling receive and work threads. Fach strategy relies on signal-based
time slicing between threads, with selective nonpreemption and possible use of I/0 in-
terrupts. To enable us to focus our attention on performance at the receiving end of a
communicating pair, all algorithms and measurements deal with the receive thread and
minimization of packet loss, though increase in work thread efficiency is an indirect result
of increase in receive thread efficiency. Since this study is lirnited to unreliable transmis-
sion, and the experiments do not involve particular applications, we do not address the
scheduling of send threads. Experiments on the scheduling of send threads are to be
found in a companion study geared towards efficient reliable transmission.

The Standard Model

Consider the standard model illustrated in Figure 1, where machine X hosts two processes
(called A and B) and machine Y hosts three processes (called A, B, and C). On opening
a socket, each process is given a receive buffer (shown as a network receive buffer). The
OS kernel routes a process’s incoming packets from its host's IP buffer to the process’s
receive buffer. Suppose that processes on machines X and Y seek to interact with one
another over the network. Labels W, § and R within a process represent functionality
for client-related work, message sending and message receipt, respectively. When given
control by the Operating System (OS), a process may attend to any one of these functions
at any time. But once some functionality is invoked, it must be completed before some
other functionality is invoked. If process B on machine X sends a string of packets to
process A on machine Y, A would do well to retrieve the packets from its receive buffer
as rapidly as possible. Of course, if the CPU is with another process when the packets
arrive, process A has little recourse but to wait. But if A is using the CPU in W or
in S when packets arrive, its best chance for not seeing packets drop off the end of the
receive buffer is to process incoming packets immediately. Further, to enable the client
to take action on the data without undue delay, delivery to the client should be equally
rapid. Ideally, delay in detecting a packet in a host’s receive buffer and making this data
available to a client should be negligible.
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Figure 1: The Standard Model

In extant message-passing systems (e.g., PVM, P4/Parmacs) it is highly unusual for
clients to implement work, message sending and message receiving functionality as distinct
threads. The client computes until it is necessary to send or to receive. Functions for
sending and/or receiving are invoked as and when necessary. If either sends or receives
involve blocking calls to the OS, an OS context switch ensues. Once switched, a process
regains control at some later time, but only after the condition for the block has been
satisfied. Though it may appear pointless for a CPU to stay with a process once a blocking
call is made, the forced context switch actually penalizes the process. It prevents such a
process from continuing with other useful work that is unrelated to the block, were the
process to have access o such work.

Though PVM exploits multiple processes (i.e., a daemon and a compute process) to
overlap communication and computation, one or more OS context switches take place
while daemons talk to local compute processes (tasks). This hampers the ability of both
a daemon and a compute process to attend to their respective receive buffers. Moreover,
communication between compute processes is hindered by the presence of intermediate
daemons. Finally, since such systems are generally TCP/IP based, integrating services
such as scalability and realtime delivery is difficult. P4 suffers from similar drawbacks
and for similar reasons, though daemons are not used in communication.




Experimental Methodology

All experiments were conducted with a SPARCstation 20 sending to a SPARCstation 5
over an Ethernet, both machines running SunQOS 5.4. The protocol receive actions and
application-related work actions were implemented as threads, using the Ariadne threads
library [12]. Preemption was accomplished with the aid of time-slicing support available
in Ariadne. CLAM’s unreliable transmission layer is implemented in about 2000 lines of
C-code; this excludes threads library code. We used UDP as the underlying protocol.
Datagram size was such that Ethernet frames were of maximum size (Ethernet MTU).
Both CPUs were only lightly loaded by other applications, and interference from other
network traffic was negligible during experimentation.

Packet interdeparture times at the sender were kept constant, ranging from 10 to
250 ms. At the receiving end, however, interarrival times were not strictly constant,
due to network jitter. We also studied the effect of correlated arrivals, interspersing
periods of heavy traffic among periods of light traffic. Here, arrivals were governed by
a two-state Markov chain with states H (high rate) and L (low rate) controlling packet
interarrival times. In the scheduling algorithms, time slice length was used as the primary
control parameter, since it is this quantity which determines for just how long a given
thread will execute before relinquishing CPU control. Time slice length was permitted
to vary between 10 ms and 500 ms. The granularity of the measuring clock was 10 ms.
Other control parameters included a simple history of the number of packets received
per instantiation of the receive thread, expansion and contraction factors for time slice
length, and the enabling of interrupts.

A measure of the amount of work done per second is obtained by sampling the number
of CopyBuffer operations (see Figure 4(a)) executed by the work thread W during a period
of roughly 10 secs of real time. Each such sample is normalized, and an average obtained
over 20 such samples. The nrormalization is a correction done because of timing overruns
in measuring copy operations of the work thread. First, the number of CopyBuffer
operations done by the work thread in 10 secs of real time is not an integer. Second,
this number is randoém, because it depends on whether one or more OS context switches
occur during execution of the work thread and the length of time the thread is displaced
from the CPU on each switch. The correction enables us to report the actual work done
by the work thread during its execution. Each point displayed on a graph is a further
average of up to 18 batched means, with an approximate 90% confidence interval based
on the Student t-distribution.

Packet loss at a receive buffer is measured by tagging each packet with a unique
sequence number and identifying gaps in the sequence of packets arriving at the receiver.
As with work measurement, this is also done over a period of roughly 10 secs in real
time. Note that this scheme is workable in an Ethernet LAN where in-order delivery is
guaranteed. In networks where in-order deliver is not guaranteed a more sophisticated
accounting scheme is required. As in the measure of work, each point displayed on a
graph 1s the average of up to 18 batched means. Each batch is made up of 20 normalized
samples, with each sample measured over a 10 second interval, yielding an approximate
90% confidence interval as before. It took us about 10 minutes to obtain each data point
in each of the graphs displayed in this section. The sampling and measurement work for




a single graph required roughly 3 to 4 hours.

3.1 Slicing with Preemptive Receive (SPR)

Consider a multithreaded version of the standard model, as depicted in Figure 2. Because
our emphasis is on efficient scheduling of a receive thread, to minimize incoming packet
loss, the send and work threads are assumed to be lumped together in W. We defer
discussion of send thread schedules to a companion paper on reliable transmission. As
mentioned earlier, we restrict our attention to unreliable transmission, with a single
recetve thread monitoring packet arrivals at a host’s receive buffer.

An OS5 context switch may occur during execution of any thread, placing CPU at-
tention on other processes in the system. When control is returned to the process in
question, execution resumes within the thread preempted by the OS. In general, actions
taken by the OS are outside our (user) control. What is in our control is deciding just
how our process’s CPU time slice is to be divided between its receive thread and other
threads, given that the goal is to keep packet-loss low and work efficiency high.

Threads enable distinct functionalities to operate within a single address space, with
low thread context switch overheads, compared to the relatively high OS context switch
overheads. Given some level of multithreading support within a process, a reasonable
scheduling scheme entails sharing CPU attention between send, receive and work threads
in some equitable manner. The easiest way to do this is to give each thread a fixed
quantum of CPU attention, using a fized time slice. A running thread is preempted by
the threads system scheduler when a signal is generated on time slice expiry. Such a
fixed-slice, preemptive approach is taken by the Conch message-passing library [7], based
on a simple signal-generated multiplexing scheme.

When the threads system scheduler selects a ready thread to run, it has no way of
knowing if the thread will have work to do. This may depend on the thread’s data. Thus,
such a thread is forced to run even though it may have no work to do. If it finds no work
when it begins to run, it will typically yield control to the threads system scheduler. If
this action is frequent, many unnecessary thread context switches are generated. With
too small a time slice, a frequently scheduled receive thread will tend to find its receive
buffer empty. Even if it finds its buffer occupied every so often, a small time slice will
cause the receive thread to be preempted even while it has packets to remove from the
buffer. Both factors — frequent context switching and small receive thread run times —
contribute to protocol performance degradation.

Performance of SPR scheduling

How well the simple SPR scheme performs is a function of the size of the time slice and
rate of packet arrival. With small interarrival times, small time slices enable the system
to clean out incoming-buffers more rapidly than larger time slices. Similarly, when inter-
arrival times are large, larger time slices are more effective because of the corresponding
reduction in thread context switches. For a given arrival rate, an appropriately chosen
time slice will help minimize context switching overhead and keep the probability of
packet-loss at the network layer low.
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Figure 2: The Multithreaded Model

In Figure 3(a} is shown the average amount of work done per second by the work
thread W graphed against the packet interarrival time. How work done per unit time and
packets lost per unit time are measured is explained in the subsection on experimental
methodology. Also, as explained earlier, each data point displayed lies within a 90%
confidence interval. The end-points of the confidence intervals are not displayed becanse
standard deviations are negligible, relative to graph dimensions. Pseudo-code for work,
send, and receive threads is shown in Figures 4(a), 4(b), and 4(c), respectively. In
Figure 3(b) is shown the measured average packet loss per second, graphed against packet
interarrival time.

The experimental results suggest that increasing the size of the time slice yields
a corresponding increase in the amount of work that can be done by the application.
Unfortunately, increasing the size of the time slice also causes the minimum interarrival
time for which packet loss is significant to increase (see Figure 3(b)). This means that,
if time slice size is fixed, regions of maximum work efficiency and minimal packet loss
depend on packet arrival rates.

3.2 Slicing with Nonpreemptive Receive (SNR)

With the simple SPR scheme just presented, a receive thread is preempted when its time
slice expires, even though the receive buffer may not be empty. If packets continue to
arrive, packet loss is inevitable. While one solution is to allow a receive thread to continue
to execute as long as there are packets to be read, this can cause other threads to starve

9
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Figure 3: Performance of SPR strategy

for CPU attention. In instances of reliable transmission, if a slow receive thread is
overworked by a fast source, it is conceivable that its send thread counterpart (executing
on the same machine) may not be able to return acknowledgements rapidly enough. This
will occur in the absence of good flow control, and may lead a source to conclude that
the link is down. Also, processing speed mismatches may cause a deadlock in upper
layers of the software. With nonpreemptive execution, a receive thread can attend to its
receive-buffer more aggressively, though it does so only at the expense of other threads.

Performance of SNR scheduling

In Figure 5(a) is shown the average amount of work done per second by the work thread
W, graphed against the packet interarrival time, for the nonpreemptive receive (SNR)
strategy. In IMigure 5(b) is shown the corresponding average packet loss per second, also
graphed against the packet interarrival time. Though use of a nonpreemptive-receive may
appear to offer potential for a considerably smaller packet-loss than use of a preemptive-
receive, simply because more attention is paid to emptying a receive buffer, the experi-
ments show no significant difference.

A compromise between preemption and nonpreemption is the use of a limit on the
number of packets read by the receive thread before it relinquishes CPU control. Besides
keeping packet-loss low, this approach has some promise of preventing CPU starvation
at send and work threads. During experimentation, we found this tack to show a slight
decrease in efficiency. We attribute this to the overhead of disabling Ariadne’s time slice
feature so that a receive thread may attend to a receive buffer without being preempted.

10




(a)

WorkThread()

{

while( TRUE ){
CopyBuffer();
UpdateStats( Work );
UpdateStats( PacketLoss );

(b)

SendThread()

{

while{ TRUE ){
message = MessageDequeue();
SendMessage( socket, message );
FreeMessage( message );

ReceiveThread()

{

message = AllocateMessage();

while( ReceiveMessage( message ) = WOULDBLOCK ){
AdaptTimeSlice();
yield();

}

UpdatePacketLoss( message );

FreeMessage( message );

Figure 4: Pseudo-code for Threads
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3.3 Adaptive time slice mechanisms

For a fixed packet arrival rate A, where A = 1/{, and {, is the average interarrival time,
an optimal value of time slice length T is one which minimizes the packet loss !, and
maximizes work thread efficiency. Because A is application and network dependent, it
will typically vary with time. Given a varying A, the idea is to adjust 7" dynamically with
A so as to keep [, small. Since the average cost of a thread context switch in Ariadne
is small {e.g., 10-15 g-secs for a Sun SPARC 5) a near-optimal procedure for repeatedly
adjusting the time slice would be possible only if the CPU is dedicated to the process.
Unfortunately, as depicted in Figure 2, CPU attention is typically shared between mul-
tiple processes. An OS context switch may occur, unpredictably, during the execution
of any thread (a receive, send, or any work thread) within a CLAM process. Because of
this, the time that elapses between consecutive activations of a CLAM process’s receive
thread is random. This time depends on, among other things, the number of processes in
the system, the demands placed by each on the OS, and the length of a receive thread’s
time slice. Thus, keeping thread time slices small is one way of ensuring smaller expected
elapsed times.

Adaptation based on receive-buffer statistics

The effectiveness of a given value of the time slice (T") can be gauged by the average
number of packets that a receive thread tends to find queued at the network receive
buffer when it begins to run. Each time it gets control, a nonpreemptive receive thread
(over) estimates the number of waiting packets as the count of the number of packets it
reads before the buffer is found empty. If activated too frequently, the receive thread will

12




often find the receive buffer empty, with no packets to read. Though this may help keep
packet-loss low, excessive context switching to the receive thread and back will generate
unnecessary overheads and may cause other threads to starve for CPU attention. On the
other hand, if activation is not frequent enough, the receive thread may often find the
receive buffer full. This is indicative of potential packet-loss.

I the mazimum queue size Q. physically allowable in a network receive buffer
can be determined, a reasonable approach is to activate a receive often enough to keep
the queue size within an acceptable range. Naturally, the the high end should be kept
below Q.- as often as possible, to keep the packet loss (I,) low. Indeed, this very same
approach is used in congestion avoidance algorithms [14]. But in this case, the scheme is
used to prevent buffer overflow at a receiver, instead of at gateways or switches located
en route between a ‘sender and a receiver. In the CLAM overflow control scheme, the
control signal (i.e., the queue size) is sensed at the receiving end; the control action (i.e.,
adapting the time slice) also takes place at the receiving end. Thus, the control loop
lies fully within the receiver. It is not distributed across the network, as in the most
congestion avoidance schemes. Because of this, we can expect a fast and more reliable
response.

The quantity (Qmer 1s machine and environment dependent. A simple scheme to
estimate @z at a given machine is as follows. A consumer process is initiated on the
machine: it opens a UDP port, awaits keyboard input, and reads as many packets as
possible from this port upon keyboard input. A producer process is initiated on a remote
machine, to avoid the effects of local machine optimizations. While the consumer awaits
keyboard input, the producer opens a UDP port and floods the consumer’s port with
packets. The maximum number of packets read by the consumer is the required estimate
Loz That is, Lyaz 1s an estimate of the maximum number of packets Q.- that the
UDP protocol may queue, at any given time, at a port on the receiving machine. The
CLAM system uses an automatic procedure to obtain L., for each machine during
system initialization.

The idea behind the adaptive algorithm is to allow a receive thread to alter the value
of T, thus altering its frequency of activation with the kind of packet load it encounters
at the network receive buffer. Unfortunately, even though a CLAM process can allocate
portions of its time slice to resident threads in any manner, how often its gets to run
and for how long it runs before being displaced from the CPU is decided by the OS.
Context switching between processes occurs at unpredictable times and processes may
hold a CPU for equally unpredictable durations. This is largely a function of the OS
scheduling policy and system load. Despite this problem, however, we have found simple
time slice adjustment schemes to be highly effective in keeping response times (i.e., the
interval of time between consecutive activations) of the receive thread small.

Let X; denote the number of packets read from the network receive buffer by a receive
thread on its ¢-th activation, for some large . Because an OS context switch may have
occurred between a receive thread’s (i —1)-th and i-th activations, it is impossible for this
thread to quickly determine if a large value of X; is solely a function of network input
load and the current length 7; of the time slice, or if a large value of X; is the result of
an OS context switch. Utilizing system calls for timing is expensive, and it is precisely
such extra overheads that we wish to avoid.
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Figure 6: Effect of sample window size on response-time (¢, = 10 ms)

If a receive thread computes a new time slice length 73, purely as a function of 7} and
Xi, its response-time will tend to oscillate with X;. To effect a more stable response, it is
advisable to compute Ty, as a function of T; and a more stable value, such as that based
on the set X (n_1),...,Xi—1,Xi of n consecutive queue size estimates. The quantity
n defines the size of the sample window. Any oscillation and related overhead can be
further reduced by using hysteresis, as suggested in [15]. Details of how this feature is
used by the CLAM overflow control algorithm is described below.

Experimental results measuring the ability of a receive thread to respond to input
load, as a function of the sample window size n, can be seen in Figures 6(2) and 6(b).
As predicted, for » = 1 and n = 2, the response time fluctuates considerably, even for
relatively large values of T'. With n = 3, however, the response time appears to stabilize,
though smaller windows clearly yield a more rapid response for certain values of 7. We
have found too frequent an adjustment of T to be an additional source of overhead.
A window size of n = 3 was found adequate for our purposes and yields an acceptable
average response time of about 1 second. Compare this, for example, with the granularity
of the TCP/IP timer, which is 500 ms in BSD Unix.

3.4 Slicing with Adaptive, Nonpreemptive Receive (SANR)

The adaptive scheduling algorithm works as follows. Each time it is activated, a receive
thread estimates the size of its receive queue, obtaining estimate X; on activation i.
If X; and all n — 1 previous estimates of the receive queue size are found to be less
than some minimum acceptable size Ly, or if these estimates are all greater than some
maximum acceptable size 8L, where 8 < 1, the receive thread’s time slice length
must be adjusted. This adjustment is done to help push the value of X; into the interval
[Lminy BLimaz) for § > 4. The new time slice length T}, of the receive thread is computed
as
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T if Yo(i,n) =1
Tin =% Tije f Yg(z,n) =1

T: otherwise

where Y.,(2,n) = [[ici_(no1) HiXj<Lmin}s YH(E 7)) = [ljcic(ne1) 14X Lmes} and & s a suit-
ably chosen constant greater than 1. Here, I(,<s) 1s the indicator function which is 1 if
a < b, and 0 otherwise. At most one of the indicator products Y.(z,n) and Yx(i,n) can
take on the value 1 for any value of :. The constant « should be chosen in a way that
ensures an acceptable granularity in time slice lengths.

The results shown in Figure 7 correspond to experiments in which we used values of
n =3, Ly =1, @ = 1.125, and an experimentally determined value of 8L = 5. A
value of a = 1.125 was found to yield an acceptable granularity in time slice lengths.
A well-chosen value of & (e.g., 1 + 1/23} is one which permits binary shifts, addition,
and subtraction in code to circumvent the use of more expensive multiplications and
divisions. Thus, efficient calculation of new time slice values is enabled by these rapid
operations, as

T(i+1) = T@) + ( T(1) >> 3 ); /* right-shift, addition */
T(i+1) = T(1) - ( T(i) >> 3 ); /* right-shift, subtraction */

In Figure 7(a) we observe a trend in which the amount of work done per second
increases with interarrival time. In Figure 7(b), there is a peak in packet loss when
interarrival time is very small. This is due to the granularity of the time slice length (10
msecs). For interarrival times approaching 10 msecs, the adaptive algorithm is unable to
effect further reductions in time slice length. As as a result, packet loss is unavoidable.
In Figure 7(c), we see that the adaptive algorithm defines time slice lengths in a such a
way that they are near perfectly (positively) correlated with interarrival times. Though
a receive thread 1s given more respite when interarrival times are large, packet loss is still
kept low. It is instructive to note that this SANR scheduling algorithm outperforms the
nonadaptive SPR and SNR algorithms for almost all arrival rates.

3.5 Interrupt-driven, Nonpreemptive Scheduling (SINR)

Consider a scheme in which all threads, including the work threads, are scheduled to run
for fixed (i.e., nonadaptive) time slices. Recall that in our experiments, the only threads
which may run are 2 work thread and a receive thread. As in the previous case, assume
that a receive thread runs nonpreemptively once it is activated. One possible way of
activating a receive thread is on asynchronous input: it is scheduled to run whenever
a SIGIO interrupt occurs. The SIGIO interrupt indicates the arrival of one or more
packets at the receive buffer monitored by a receive thread. The motivation for this
approach should be obvious. The receive thread should run only when input packets
await processing.

15




3400
3350
3300
Work /sec 3250
3200
3150
3100

(a) Effect of SANR on efficiency

0.120
¢ 0.100
0.080
0.060

Loss/sec

0.020

S— : : ' 0.000

0 50 100 150 200 250

Interarrival Time (ms)

(b) Effect of SANR on packet-loss

_\r T T T I

O SO
0 50 100 150 200 250

Interarrival Time (ms)

(c) Slice-length determined by SANR, strategy

300

250

. 200
surfér?;s) 150 -

100
50

0 50 100 150

200 250

Interarrival Time (ms)

Figure 7: Performance of SANR strategy
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In most threads systems, as in Ariadne [12], threads may run at different priority
levels. When a thread relinquishes CPU control voluntarily, or is preempted, the threads
system scheduler ordinarily places this thread at the tail end of its priority queue and
gives CPU control to the thread at the head of the highest-priority queue. In general,
when a SIGIO interrupt is generated by an incoming packet, the threads system may not
be able to immediately run or even schedule an appropriate receive thread. This happens,
in particular, when the threads system is executing within a critical section. Any attempt
to bypass this restriction has the potential of complicating portability requirements of
the software. Because of this, there may be some delay between the arrival of one or
more packets and the activation of a receive thread.

Instead of context switching to a receive thread or each SIGIO interrupt, only the
first such interrupt triggers a context switch. When a SIGIO signal is delivered, a receive
thread — which ordinarily sleeps, blocked on a semaphore, while other threads run - is
awakened by the threads system and moved to the head of the highest-priority queue. It
runs immediately after the current thread relinquishes control of the CPU. If the signal
arrives while the threads system is in a critical section, this action is taken only after
the critical section is exited. Naturally, if the time-to-activation of the receive thread is
large, 1t will not be able to respond quickly to packets which arrive in quick succession.
On the other hand, imagine a scheduling scheme in which the CPU is usually allocated
to a number of work threads, in round-robin fashion, before being allocated to a receive
thread. The use of I/O interrupts enables the threads system to break the round-robin
cycle and rapidly attend to a receive buffer.

In Figures 8(a) and 8(b) are shown measurements of the amount of work done per
second by the work thread, and the average packet loss, respectively. Each measured
quantity is graphed against packet interarrival times. For the given interarrival times,
there appears to be an upper bound to the amount of work that can be done by the work
thread. As seen in Figure 8(b), the use of a fixed, nonadaptive time slice can cause serious
packet loss when packet arrival rate is high. For larger time slice lengths, the response-
time of the receive thread is bound to be larger, ensuring a higher likelihood of packet
loss for a given arrival rate. Since we use only a single work thread, there is no significant
difference between this interrupt-driven approach and the SPR. and SNR approaches.
With many work threads, and thus a round-robin scheduling of work, interrupt-driven
scheduling (SINR) will outperform the SPR and SNR. scheduling algorithms because it
ensures a smaller time-to-activation of a receive thread.

3.6 Interrupt-driven, Adaptive Scheduling (SAINR)

Problems encountered in the use of fixed, nonadaptive time-slicing with SIGIO-based
scheduling of a receive thread can be overcome by resorting to time slice adaptation. The
idea is to reduce a receive thread’s response-time when packet arrival rate is high, and
to reduce context switching overhead between other threads (i.e., work threads) when
packet arrival rate is low. With SAINR, the approach used to adjust the length of a time
slice is identical to the scheme presented in the SANR scheduling strategy.

Time slice length adaptation is not possible in the absence of packet arrivals, because
after all, 1t is the responsibility of a receive thread to perform the adjustment. If no
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Figure 8: Performance of SINR strategy

packets arrive for a while, a receive thread is not given control and is thus not able to
make a time slice adjustment. If a sudden burst of packets was to arrive after a period of
silence, even though a receive thread may respond quickly (with the help of the interrupt
feature), it will resize the time slice parameter to a value that may unnecessarily increase
context switching overheads for work threads.

To solve this problem in CLAM, we use a special fimer thread. This thread activates
a receive thread every second. This is done repeatedly, even in-the absence of arriving
packets, to enable a receive to execute the adaptive algorithm. In this way, were a
burst of packets to arrive, followed by a period of inactivity, the time slice length will
automatically and slowly be readjusted upwards. In Figures 9(a), 9(b), and 9(c} are
shown measurements made for the SAINR scheduling algorithm. The performance shown
is similar to that obtained with the SANR scheduling algorithm. Observe, however, that
Figure 9(a) shows a reduced efficiency compared to that seen in Figure 7(a), probably
due to SIGIO interrupt overheads.

3.7 Experiments with bursty and correlated packet arrivals

In all the experiments described thus far, the time between successive packet generations
at a source was kept almost constant. A simple procedure was used for generating
packets. A sender injected packets into the local net with an almost constant delay
between consecutive injections. Any jitter experienced in sends was due to OS context
switches at the sending machine, and any jitter experienced by packet arrivals at a
receiver was due to network load. To model more realistic traffic, with interleaved burst
and silent periods, we used the following simple Markovian strategy. At any given time,
a sender is made to reside in one of two possible states: H (high) and L (low). If a sender
is in state H, the delay between consecutively sent packets is set to 10 ms. If a sender
is in state L, the delay between consecutively sent packets is set to 100 ms. The sender
makes a state transition after sending a packet, using the following transition matrix:
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The sequence of states visited by such a sender is governed by a Markov chain with
the given transition probability matrix. Further, consecutive states are correlated, with
correlation coefficient given by p =y + 6§ — 1.

To measure the effects of correlated arrivals on the scheduling algorithms we need
o examine how work efficiency and packet loss vary with p. Because multiple combi-
nations of y and § yield the same value of p, it is necessary to choose an appropriate
parameterization. For the experiments described below, we used a value of v = (1+p)/2,
with this choice yielding a symmetric transition probability matrix. As - approaches 1,
p also approaches 1, and packets either arrive in rapid succession (bursts) or slowly. As
~ approaches 0, p approaches —1, and packet arrival is low, as the sender transitions
quickly between sending off a packet fast (after 10 ms), and sending off a packet slowly
(after 100 ms). Larger values of p are indicative of more stable interarrival times.

In Figures 10 and 11 are shown plots of efficiency and packet loss for all scheduling
algorithms. For the nonadaptive schemes, with results graphed in Figure 11, the time slice
value used was 50 ms. We see that the adaptive time slicing algorithms outperform their
nonadaptive counterparts in terms of work efficiency. However, with respect to packet
loss, the nonadaptive schemes appear to show better performance. This is probably due
to the fact that the minimum arrival rate of 10 ms is not too small compared to the
length of fixed time slice used, namely 50 ms. If the fixed time slice length is increased
from 50ms to 100ms, to get better efficiency, packet loss can be expected to increase over
that offered by the adaptive schemes. In other words, the time slice of 50 ms used in the
experiments with the nonadaptive algorithms is close to the optimal value for the two
arrival rates used: 10 and 100 ms. The SANR algorithm performs better, for most values
of the parameter p, than the SAINR algorithm.

As is to be expected, all algorithms perform equally well with respect to packet loss as
long as p is not high (see Figure 11(b)). There is a significant difference, however, in how
the algorithms perform with respect to work efficiency, as can be seen in Figure 11(a). In
Figure 10(b), packet loss appears to be uniformly high, relatively speaking, for correlated
arrivals. This occurs because the sampling-window of n = 3 is sufficiently large that
adaptation to arrivals while the sender is in state H is not fast enough. For example,
when p is near 1, a sender that transitions from L to H may send a large number of
packets before the receive thread (operating with a time slice length of roughly 150 ms,
as given by Tigure 7) finally realizes that it is time to reduce the length of the time slice.
Packet-loss can be significant during this period. We are currently investigating variations
of the adaptive strategy that may adapt window size to changing traffic patterns.
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4 Conclusions and Future Work

Though this work is but a first step towards novel protocols and their implementation,
we have found threads-based adaptive scheduling schemes to be crucial in achieving efhi-
ciency, through overlap of communication and computation. Adaptivity enables reduced
communication overheads by lowering retransmission rates, and allows efficient reliable
transmission with the CLAM system. Our results indicate that the adaptive time slicing
algorithms have the potential to yield significantly higher amounts of compute-bound
work than algorithms that do not adapt to network load.

Interrupt driven schemes appear to yield reduced work efficiency, possibly because of
attendant I/O interrupt overheads. Despite this, interrupt-driven schemes may still be
beneficial because of their capacity to respond quickly, and keep packet loss low when
packet arrivals occur in bursts with periods of silence in between. Some disadvantages
of the interrupt-driven schemes include potential problems with portability and main-
tenance. Because of this, the CLAM system resorts to adaptive time slice scheduling
(SANR), using 1/O interrupts only as an option.

It 1s instructive to note that CLAM’s model of overflow control is useful when the
bottleneck is located at a receiving node, as is the case for most LANs and high band-
width networks. However, upper layers must still resort to regular congestion control
and/or congestion avoidance algorithms to prevent congestion at intermediate gateways
or switches. This covers the case where a bottleneck lies at some intermediate point
between a sender and a receiver, and is not located at the receiver. Indeed, this situation
1s typical in the WANs of today.

The techniques presented here comprise the initial stages of a project aimed at the
provision of eflicient point-to-point and multiway message transport with different, se-
lectable qualities of service: reliable, unreliable, and prioritized delivery. A portion of
this work has already been completed. Preliminary results appear promising, compared
to the performance of related systems which guarantee reliable service based on UDP.
In addition to reliable and in-order delivery, we have successfully used CLAM to imple-
ment transaction oriented delivery [16] and active messages [17, 18], with reports on this
work in preparation. We currently plan on adding other features, including support for
partial-order service, as proposed in [19]. Such services are fundamental in communica-
tion environments that support distributed multimedia applications.
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