View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1998

Dynamic Process Management in CLAM

Juan Gomez

Vernon J. Rego
Purdue University, rego@cs.purdue.edu

Report Number:
98-012

Gomez, Juan and Rego, Vernon J., "Dynamic Process Management in CLAM" (1998). Department of
Computer Science Technical Reports. Paper 1403.
https://docs.lib.purdue.edu/cstech/1403

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4971947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DYNAMIC PROCESS MANAGEMENT IN CLAM

Juan Gemez
Vernon Rego

Department of Computer Sciences
Purdue University
West Lalayette, IN 47907

CSD-TR #98-012
April 1998

Dynamic Process Management in CLAM

Juan Gomez and Vernon Rego

April 30, 1998

Abstract

The dynamic management of processes is a fundamental task in distributed applications. In its
general form it must encompass specialized models of parallel programming such as Task Farming
models or Parallel Client/Server models, and must also provide for important features such as lault
tolerance and load balancing. But despite the significance of dynamic process management, there is
no portable and efficient framework that defines and supports a general functionality, particularly for
multithreaded distributed computing. In response to this need, we present a portable and efficient
process management module in the context of the CLaM {connectionless, lightweight, and multiway)
threads-based system for distributed operations on heterogeneous networks. We present a process
management module that supports a wide range of services, including process naming, dynamic
pracess creation, pid-based message routing, process sign-off, system shutdown, I/Q redirection,
and signal delivery. We describe how CLaM's active messaging interface and its threads are used
to build dynamic process management features into the library. For each service, we provide a
description and an implementation. Further, we define and implement a formal protocol to support
these services. We also present experimental data that compares the overall performance of CLAM’s
process management services to equivalent services in PVM, LAM-MPI, and P4, using both uni-
and multi-processor hosts.

1 Introduction and Motivation

With the emergence of distributed computing via hundreds of communicating processes we have come
to witness the importance of scalable and efficient communication [1, 2, 3, 4]. In this paper, we re-
sbrict our attention to two key problems, namely, the problems of distributed process management and
distributed process scheduling {3, 5]. Many approaches to process management and scheduling have
been proposed, and standards continue to emerge [2]. The problem of distributed process management
concerns the provision of services like, for example, process creation and initialization, I/O redirection,
signal delivery, process naming, system-wide orderly termination, process termination, message routing
based on process naming information, and the provision of status and configuration information. The
problem of distributed process scheduling concerns the allocation of CPU resources to a particular set
of distributed processes. It may involve techniques like Gang Scheduling [6], where an application’s
distributed tasks are scheduled simultaneously to improve communication performance.

Distributed Multiprocessors (DMPPs) (e.g., Intel Paragon, IBM SP2) provide batch and interac-
tive schedulers, message-passing libraries, and process management tools as an integral part of their
operating environment. These services, however, are not readily available for heterogeneouns processor
clusters (e.g., workstation clusters) and this may be due, in part, to a lack of standards. While var-
ious software packages provide mechanisms for process scheduling and management on heterogeneous
workstation clusters, these mechanisms are invariably built into the packages, and lack the modularity
that encourages flexibility, enhancement, or reuse. Further, because these mechanisms are built into
single-threaded libraries, they do not integrate well or cannot be expected to perform satisfactorily with
protocols built with threads [4].

Primitive Description
pum_mytid{) [pvm_ezit() Adds/Extracts processes
pum._spawn() /pom Eill() Creates/Destroys processes
pvm_parent()/pvm_pstal() Configuration and status information
pvm_con fig()/pvm._mstat()
pum_tasks()
pvm_catchout() /pvm_getopt() I/O redirection
pvm_setopt()
pvm_sendsig() /pvm_noti fy() Process signaling
pum_halt(} Shutdown
pvm_addhost()/pvm_deletehost() | Process scheduling and resource
pvm_reg_hoster()/pvm regrm() | management
pum_reg_rm(), pym_reg_tasker()

Table 1: PVM Process Management and Scheduling Primitives

In some message-passing systems (e.g., PVM [7]), process management and scheduling is done with
the help of daemons located on each host in a virtual machine. Table 1 lists primitives that the PVYM
system uses for process management and scheduling via dacmons. The P4 [8] system also provides
primitives for process creation, naming, and configuration information, as shown in Table 2; these
represent a subset of those provided by the PVM system. The LAM MPI [9] system also uses daemons
to provide some of this functionality for process management/scheduling. The MPI Forum, however,
recommends that all process management/scheduling functionality be left out of the MPI Interface;
instead, this functionality should be provided by additional software modules.

There are systeimns that interface with message-passing libraries for process management and schedul-
ing. DQS [10] provides batch and interactive scheduling for P4 and PVM. Condor [11], a batch scheduler
designed specifically for PVM, dispatches and relocates jobs on workstation clusters. The architecture
described in [12] clearly defines how message-passing, process scheduling, and process management
tasks interact. This work, in particular, emphasizes the need for a clear interface definition between
these tasks, and the need for their support in distinct modules for reusability. But this work, however,
is based on the single-threaded model of the PVM library, and restricts flexibility and the potential
for concurrency. Besides affording a poor and inefficient interface, there is a high cost associated with
running process management tasks in an address space that is distinct from an application’s space. In
effect, the single-threaded model necessitates the use of multiple heavy-weight OS processes (HWPs);
their executions overlap with leng latency transactions such as those related to the creation of new
processes. Several heavy-weight context switches may ensue in a communication between a process
responsible for management and a process hosting an application. Many applications, including Task
Farms, Parallel Client-Server applications, and, in general, ones in which working process set size and
configuration changes dynamically, can greatly benefit from a low-cost interface to a distributed process
management module [2].

In this paper we propose and implement an efficient prototype for distributed process management.
This system is an intrinsic part of the CLAM (connectionless, lightweight, and multiway) communications
architecture [4, 13]. Here, the idea is to hide communication latencies and reduce code complexity with
the help of user-space threads. By integrating three components—the communications library, the
process management module, and the application—and placing them within a single address space, we
show how a clean and low-cost interface can be built to provide for efficient interaction between these
modules. By replacing HWPs with user-level threads, long-latency transactions that are generally
associated with some process management operations are easily overlapped with computations. This

Primitives Description
pdaniteny()/pd_create_procgroup() Process creation
pd.alloc_procgroup(}/pd_startup()
pd_getmy id() Process naming
pd_wait_for_end() Process termination
pd.num total_ids()/pd.num total_slaves() | Configuration information

Table 2: P4 Process Management Primitives

is done at the simple expense of a user-level thread’s context switch. Such features make CLAM an
attractive platform for distributed applications involving fault tolerance, load balancing, collaborative
interaction, and, in general, in situations where there is a frequent need for invocation of process
management tasks (e.g., the creation or destruction of processes).

For completeness, we formally define the application protocol that supports all the process man-
agement features provided by CiaMm. This protocol may be used and enhanced by other systems.
CLAM’s pracess control module offers the following functionality: process naming, pid-based routing,
1/0 redirection, signal delivery, process and system-wide termination, and status query. At this time,
CLAM does not provide process scheduling services. In the experiments reported here, a static process
scheduler programmed in Perl [14] was used. The scheduler initiates processes on hosts that are lightly
loaded at startup time.

The remainder of the paper is organized as follows. In Section 2 we describe the CLAM environment,
its process hierarchy, and its hierarchical routing. The protocol that supports CLAM’s dynamic Process
Management Interface is described in Section 3, along with the details on signals, process creation, and
process termination. In Section 4 we describe the initialization procedure based on a host-file. We
present a set of experimental results in Section 5 and conclude briefly in Section 6.

2 The CLAM Environment and Process Hierarchy

The Connectionless Lightweight and Multiway (CLam) [15] communications environment is a software
architecture designed to support interactive, multiprotocol, and multithreaded distributed comput-
ing on heterogeneous workstation networks. CLAM is layered on top of the ARIADNE [16] user-space
threads library and supports multithreaded (distributed) applications. CrAM uses threads to improve
performance through an overlap of communication with computation and an efficient integration of
functionality [3]. The use of threads enables a reduction in the complexity of code required for integrat-
ing an applicatior with multiple protacols, inside a single address space. Through specialized adaptive
scheduling algorithms [13, 17], CLAM’s threads distribute CPU time fairly across an application and
its (multiple) protacol modules. This strategy makes it ideal for distributed multimedia applications
where progress must be guaranteed for each protocol session.

The basic structure of the system is shown in Figure 1. In its simplest form, it includes three pro-
tocol modules and a process management module. The basic protocol modules include: a transaction-
oriented and reliable point-to-point protocol (TRAP) [4], a transaction-oriented reliable multipoint
protocol (TRAM) [18], and an unreliable point-to-point and multipoint module. Each basic protocol
module provides support for both passive messages and active messages. The passive message interface
of these protocols resembles a message-passing interface. Active messages are supported in two forms:
proper Active Messages (AMs), as described in [19], and Remote Thread Activations (RTAs) [4]. While
AMSs are more efficient than RTAs, they have limited flexibility because they cannot invoke thread
primitives that may potentially block.

CLAM runtime

support:
global naming,
algnal dellvery,
otc

User Space
OS Process
UDFP Protocol
Sesslona

Kernal

Figure 1: CLaM’s Structure

Although CLAM protocols can be layered on top of any best-effort communication subsystem, we
have employed UDP in our prototype implementation. One of the main advantages of using UDP instead
of TCP/IP consists in a significant reduction in the number of protocol sessions needed to maintain a
distributed computation. While TCP /IP requires IV {IV 1) /2 protocol sessions to keep a fully connected
distributed computation involving N processes, UDP (and a reliable protocol implemented on top of
it) only requires N protocol sessions. Besides reducing the usage of kernel resources, this approach
also diminishes the overhead of user-kernel interactions involved in communicating one process with
multiple destinations. This performance improvement is related to the movement of the multiplexing
and demultiplexing functionality to user space and not to the use of specific protocols. In fact, about
the same improvement could be achieved if the socket interface to the in-kernel TCP/IP protacol would
allow connecting a single socket to multiple remote end-points. Other factors that contribute to an
efficient point-to-point communication using UDP include the elimination of the three-way hand-shake
for connection establishment, and the introduction of a tight integration between the application and
the protocols. UDP also provides portability, makes our system easy to deploy, and enhances flexibility
by freeing us from the stream-oriented reliable model of TCP/IP.

2.1 The Environment

CLAM’s processes are structured hierarchically and classified according to their function. There are five
types of processes. Some are used, in part, to support the runtime Process Management Interface.
They help during the startup procedure, in routing messages to destinations, and also act as multicast
routers when there are no other means to forward multicast packets. There are three types of processes
in this category: HyperText Transfer Protocol (HTTP) servers, Fork Servers (FS), and Domain Servers
(DS). The other two types of processes are related to user computation and may or may not include the
Cram library code. OS5-level processes that load the CLAM library and run application code are called
Computing Processes (CP). Other user level processes in a CLAM session—which do not contain CLam
code—are simply called User Processes (UP). Although CLAM processes (i.e., DS, CP) can communicate
with UPs, such communication is not suppoerted by the library and must be handled by the application.

HTTP servers are used exclusively during the startup procedure in order to efficiently create pro-
cesses in hosts where servers run, The Fork Servers (FS) are used when no HTTP server is available on

CLAM pid

Domain Process

High-order Low-order
word (16-bits)| word (16-bits)

Figure 2: Structure of CLAM's Process Identifiers

a given host. The FS processes reduce overheads related to rsh or rezec invocations; these invocations
are, in general, more time-consuming than corresponding CLAM protocol invocations handled by an
F'S process. FS processes are state-less, with functionality limited to receiving and executing spawn
requests on behalf of remote processes.

Domain Servers (DS) are CLAM processes with key functionality in the CLAM environment. These
are assigned a CLAM pid, can communicate using CLAM protocols, and can help in routing messages.
If a CLAM process cannot map a given pid into a low-level protocol address using local information,
DS processes help forward the message to its final destination. DS processes also aid in decentralizing
process management functions and data, thus increasing scalability and fault tolerance. In the absence
of regular multicast routers, DS processes assume ronting responsibility, and optimize collective com-
munication across a WAN or a set of interconnected LANs. While DS processes are primarily meant
to manage CPs in their own IP or physical networks, a DS process can efficiently manage CPs that are
distributed across several locally interconnected networks. Several DS processes may co-exist in one IP
or physical network. This is beneficial when the number of CPs is large, since a single DS process may
become a bottleneck. With threads support, management tasks done by DS processes are transparent
to applications that share the same address space. Using DS processes to run part of a distributed
application may, however, affect the performance of process management and reliable multicast across
different domains.

There are two kinds of DS processes: Root Domain Servers (RDSs) and Regular Domain Servers
{(DSs). The RDS is a DS that serves as a communication hub for all regular DS processes; it also
assigns pids to DS processes. There is only one RDS in a CLAM session, and this process is always
assigned the well-known pid of zero (0). CLAM processes are organized hierarchically under the RDS.
The RDS routes messages that cross domains whose members have not communicated previously.! If
a process does not know how to communicate directly with another, it uses its own DS—and possibly
the RDS—to locate its target based on a pid. For each such pair of communicating processes, only one
RDS intervention suffices. Subsequent messages use locally installed pid-to-protocol-address mapping
entries after the first message and RDS intervention.

In CrAM, processes refer to one another using integer-valued process identifiers (pids). CraM pids
have two parts: a domain identifier and a process identifier (see Figure 2). This structure enables pid-
based routing across different CLAM domains. If the sender is unable to map a message’s destination pid
to a low-level protocol address, the message is given to a DS, which forwards it based on a destination
pid. Each DS manages its own pid space independently, thus facilitating dynamic process management.

1n Cram, a domain is a group of CPs and their corresponding DS.

Figure 3: CLaMm Process Hierarchy

2.2 Process Hierarchy and Routing Tables

In principle, no routing is necessary in CLAM: two processes communicate directly using only one
UDP session (socket) per process. To imitiate communication, however, processes need to know IP
addresses and UDP port numbers.?2 The approach used in most distributed computing systems {e.g.,
PVM, LAM MPI) is to build a table that maps pids to low-level protocol addresses and distribute
the table, during setup, to all participating processes. The main disadvantage is that scalability is
affected. Startup times may become prohibitively large because of overheads incurred in distributing
information. Dynamic updates of these tables, when possible, must be governed by a central process
that becomes a potential bottleneck. Because modifying and redistributing centralized mapping tables
to all participants is costly, process management primitives that require modified process tables become
very expensive. This severely hampers the scalability of applications that may require dynamic process
allocations (e.g., the addition/deletion of participants in a collaborative interaction).

Cram’s hierarchical organization circumvents most of the problems encountered by centralized and
static approaches. Processes are organized in domains according to their physical location and patterns
of communication. Each domain employs a DS to represent its naming and management authority.
Processes start with minimal information in their process tables and update these tables on-demand, as
the communication unfolds. Instead of keeping table entries identifying all other processes in a session, a
process keeps only those entries that correspond to processes with which it must directly communicate.
This reduces process table size and, in the worst case, yields a table that is as large as tables in the
usual approach. Observe that the worst case occurs when the communication graph is complete.

Even for applications with very demanding communication patterns (e.g., almost complete graphs)
direct links may not be required between all nodes simultaneously; aging and for recycling algorithms can
be used to deallocate old funused process table entries. After the first {indirect) communication between
two processes, subsequent communication is direct, and there is no mediation or routing because of the
automatic table build-up feature described below. Dynamic changes in one domain are transparent
to other domains because management functionality is distributed. In addition, CLaM’s hierarchy also
reduces startup times: minimal information needs to be given to each newly created process.

CraM employs a tree-shaped hierarchy (see Figure 3). The RDS, located at the root, routes
information across different domains when processes from these domains initially communicate. The
RDS5 acts as a DS when it interacts with a CP or an FS that it directly manages. It may also manage

2This may be any low-level addressing information pertinent to the underlying communication layer.

- — =~ lnsiall Message
—» Forwarded Message

Figure 4: CLAM Routing and Process Tables Configuration

several DS processes. In like manner, each DS may manage a set of CP and FS processes. The
RDS manages the assignment of Domain Identifiers, and DS processes assign pids to subordinate CP
processes. Bach FS is assigned a pid that is equal to its IP address. With the exception of the RDS,
each CLAM process has a master, which represents its parent in the tree-hierarchy. CLAM processes
keep a mapping table for each process type (i.e., DS, CP, FS). These tables help processes map pids
to low-level protocol addresses, enabling point-to-point communication; initially empty, the tables are
updated as processes begin to communicate during setup.

The RDS is the first process created. Its low-level protocol address is the only information required
in the process table of a DS that wants to enroll in a CLaM session. The RDS begins with a single
entry in its process tables: its own pid. Both CP and FS processes are subordinate to their parent DS
and, to join in a CLAM session, they require only the address of their masters (i.e., their DS processes).
CP and FS processes may run only after the DS that manages their domain is initiated, since their
communication depends on this DS. A DS updates its tables when a new CP enrolls; it may also create
new FS processes and add corresponding entries to its tables during system startup, or later during the
session. This dynamic updating feature requires that each CP and FS must sign-off with its master
DS when it leaves a CLAM session. A DS that leaves a CLAM session must also sign-off with the RDS
process and all the processes it manages before it exits.

2.3 Hierarchical Routing

When a CLAM process sends a message to a process whose address is not in its local tables, the message
is forwarded to the destination (see Figure 4). But any uncontrolled forwarding of messages through
these paths, however, may swamp a DS with excessive routing load. This will occur, for example, when
a source generates a burst of large packets, or when multiple sources in one domain generate many

packets simultaneously. To avoid such chaotic scenarios, only the first message sent from a process to
one it is not directly connected to uses the routing shown in Figure 4. This initial routing results in
the installation of an entry in the source’s local table; the entry enables subsequent communications
between the process pair to be direct. But even the initial message’s routing via Domain Servers may be
problematic. Because different messages may follow different paths, and because there is no guarantee
that the initial message has reached its destination when the direct path is enabled, the message routed
via a DS may, in principle, arrive out-of-order. Also, there is no limit on the amount of data the
first message may contain, and multiple sources that send large messages through the same DS may
overwhelm it with routing work.

To avoid problems, only Null Active Messages {AM) are forwarded. Such a message only triggers
the installation of a process table entry at a source, enabling the latter to communicate directly with
the given destination. CLAM’s routing infrastructure is designed to handle messages with arbitrarily
large sizes; this feature s crucial in implementing reliable multicast across multiple domains. Null AMs
are very small and are quickly forwarded by DS processes. Even if a DS receives many such AMs
simultaneously, flooding is unlikely unless the size (in members) of its domain is very large. In this
case, the addition of new domains will resolve the problem.

If a sender has a table entry for a direct path to a destination, its messages to this destination
are sent immediately. Otherwise, the sending process issues a Null Active Message and blocks the
sending thread until a direct path is created. Any thread that attempts to send while the direct path
is being installed will also block until the path is established. This path is created as a side effect
when the Null AM is forwarded to its destination. Forwarded messages are tagged as self-routing and
sent as special Optimistic Active Messages (OAMSs) [20] so that they obtain the special and efficient
processing they require. Using OAMSs for routing messages also helps prevent deadlocks. If a process’s
receive thread is allowed to block on flow- or congestion-control, while trying to forward a packet, then
flow- and conpgestion-control windows cannot be opened because acknowledgments and new messages
cannot be received; the result is a deadlock. Using an OAM for forwarding guarantees execution of
the forwarding procedure on the stack of the receive thread, when flow- or congestion-control allows
forwarding without blocking. If blocking is likely during the routing procedure, a new thread is created
to forward the message while the receive thread continues to run without blocking. Through this, we
avoid thread context switching overheads for each forwarded message whenever possible. Self-routed
messages forward themselves through the CraM hierarchy based on the destination pid held by the
message and local information contained in the process tables of a forwarding process.

Message forwarding (e.g., like the one undergone by Null AMs) through paths such as those shown
in Figure 4 proceeds as follows. If a sending process has a direct path to the DS managing a destination
CP’s domain, the message is forwarded to the DS, and the DS forwards it to the CP. If the sender is
a CP that does not have a path to the destination’s DS, it forwards the message to its own master
(i.e., its own DS). If neither of these two cases is true, and if the sender is a DS but not the RDS, the
message is simply forwarded to the RDS. Finally, if the process initiating or routing the message is the
RDS, and a local path to the destination’s DS does not exist, then an error has occurred.

Clearly, if the routing described above is used for every message, communication would be inef-
ficient. In practice, this can be observed in daemon-oriented systems like PVM. Applications based
on daemon-based routing achieve about half the communication throughput when compared to direct
TCP/IP connections [7]. Fortunately, CLAM requires only one message to bhe forwarded before pid
tables are dynamically configured and all future routing between the process pair in question is elimi-
nated. This dynamic self-configuration feature enables direct point-to-point communication after a Null
message or a regular message is sent between two CLAM processes.

Whenever a CLAM process forwards a message that originated elsewhere, and for which a destination
pid entry exists in local tables, the entry is installed at the message’s source. The only restriction is
when a source is a DS and the destination is a CP; such a restriction is imposed in order to prevent the

Message
Forwarded (o
its final dest.

Forwarded
Message
(dest. =2)

/
/I:::s'rall
- (pid=2) 3

Source Process Destination Process

(pid=1) (pid =2)

- - - - » Subsequent Communication

Figure 5: CLAM pid-based Routing: an Example

installation of CP entries in the tables of foreign DS processes.® Forcing a DS to collect information
on CP processes in different domains inhibits scalability because mapping tables at a DS will grow
large. Also, this information becomes stale as domains change configuration and foreign DSs do not get
notified.

If a message being routed by a process originated elsewhere, and a DS—either the final destination
or the destination process’s DS—is located at the next calculated hop, then an entry identifying this DS
is installed at the previous hop.* This rule enables the RDS to install DS entries in the tables of other
DS processes when the RDS routes messages across domains. A DS determines the low-level protocol
addresses of all the other DS processes through entries installed by the RDS. This rule also permits a DS
to install entries identifying DS processes in the tables of CP processes in its own domain. By allowing
a CP to install process table entries that directly lead to other domains, efficient communication is
enabled between a given CP and CPs in other domains.

Using the rules described above, each sending process learns low-level protocol addresses of destina-
tions quickly and with minimum overhead. In like manner, Domain Servers that govern communicating
domains quickly learn low-level protocol addresses to reduce forwarding effort. As shown in Figure 4,
this scheme involves a single Install message that is generated by each forwarding operation for most
communication paths that require routing. Configurations (b}, (d), and (e} in Figure 4, however, require
fewer Install messages.

The installation of entries in remote process tables is done by an Install Remote Thread Activation
(RTA) message generated by a routing process. This Install RTA carries the pid and low-level protocol
address of the CLAM process to which the message was forwarded. When the Install RTA reaches
its destination, which is usnally the source of the message, it installs an appropriate entry in the
corresponding process table. The next time this source sends to the same destination, direct point-to-
point communication is used. Thus, after the first message has been sent and some time has elapsed,
the sender is able to communicate directly with the destination. The elapsed time is the time taken by
the Install RTA message to reach the sender and effectively install information in the sender’s tables.

To demonstrate how entries are installed in process tables, consider the example shown in Figure 5.
Assume that two CP processes within a domain want to communicate. Initially, these processes do not
know each other’s low-level protocol address. Both processes, however, know the low-level address of

3A foreign DS is a DS that handles a domain that is distinct from the domain of the CP under consideration.
4The previous hop ig the process that forwarded the message Lo the one doing the current routing.

their common DS. When one CP sends a message to the other, local routing forwards a Null message—
indicating the final destination—to the DS. At the DS, the message routes itself to the target CP.
During the routing, an Install RTA message is sent to the source CP, giving it the (pid, IP address,
UDP port) triplet that was used by the DS to forward the message to the destination. When the
Install RTA message arrives at the source, it installs an entry in the source’s local tables. Thereafter,
communication between the source and the destination is direct. While the source may receive multiple
Install RTA messages containing information corresponding to a single pid, only the first is significant.
‘When process tables are to be updated, old entries must be deleted before new information is installed.
Table entries must be deleted when a process exits a CLAM session. This is accomplished with the help
of a Remove RTA message.

For applications with well-defined communication patterns, explicit construction of routing tables
can be dene with the c_instpa() primitive. This primitive installs pid-to-low-level protocol address
mapping entries ab remote processes. It may be used by any process to install pid mapping entries that
it knows on remote process tables. Domain Servers, for example, know each of the CP processes in
their domains and can install corresponding entries at any remote process. This enables these remote
processes to communicate directly with the corresponding DS’s CP processes. For applications with
all-to-all communication patterns and a static process configuration, this is an efficient way to build
process tables.

3 The Dynamic Process Management Protocol

A session of distributed processes is managed with the help of a protocol. We present a formal de-
scription of CLAM’s protocol for dynamic process management, along with an efficient and portable
implementation. The protecol is layered on top of the reliable Active Message and Remote Thread Ac-
tivation transport services provided by the Transaction-oriented and Reliable Point-to-point protocol
(TRAP) [4] module in CLaM. The protocol is simple and consists of ten message types: the Register
message, the Install message, the Null message, the Remove message, the Spawn message, the Spawn-
Report message, the Spawn-Reply message, the Kill message, the Lightweight-Shutdown message, and
the Shutdown message. The Register, Install, and Null messages let one process know another’s protocol
address, to enable direct communication. The Remove message extracts addressing information from
process tables. The set of Spawn-related messages is used to create new processes and report the status
of spawning operations. The Kill message delivers signals to processes. The Lightweight-Shutdown and
Shutdown messages are used for process termination.

3.1 Protocol Description

Although the description of a protocol in terms of a sample implementation may serve as a protocol spec-
ification, such a description may be ambiguous and hinder enhancements to the protocol. For example,
this may occur if new architectures use different word sizes or different basic data type representations.
Complete generality, however, comes at the price of performance because universal intermediate encod-
ing/decoding schemes must be used to compensate for differences in data representations. Because of
this we present both a formal protocol description as well as an efficient implementation.

To describe the structure of each message unambiguously we use a language that is capable of
representing a wide range of abstract data types, including simple and structured data types. The
OSI's [21] Abstract Syntax Notation One (ASN.1) [22, 23] has become a standard for specifying high-
level application protocols. ASN.1 is a notation or language used to describe abstract data types and
values. It can be used to represent data types that consist of a finite or an infinite set of values.
ASN.1 can be used to represent simple data types (which are atomic), structured types (which have
components), tagged types (which are derived from other types)}, and other types, including the CHOICE

10

{b) ASN.1
(a) € structure CLAM-P-H-Msg ::= SEQUENCE {
magSource MagSource,
typadef struct cmsgt { magDestination MsgDestination,
uleng src; /+ Source pid »/ protocellp CHDICE {
ulong dat; /+ Destination pid »/ Tagisterisg RegisterMsg,
ulong type; /+ Type of Hessage »/ installlsg Inatml]Msg,
unien pop.t { nullMag KullHeg,
RegisterMsg rgstr; removelsg Removelsg,
InatallMeg instll; apavnMsg SpawnMag,
Kull null; spawnReportMsg SpawnReportMsg,
Removelsg rmy; spawnReplyMsg SpawnReplyMsg,
SpavnMsg spwn; killMsg KillMsp,
SpawvnRprtMag spwnRprt; 1ShutdownMsg LShucdownMag,
SpawnRplyMag spwnRply; shutdownMag ShutdewnMag
KillMsg kill; }
LShutdown lshtdsm; }
Shutdewn shtdwn;
} protoDp; MsgSource ::= INTEGER (O...maxLongInt }
} CLAM-P-M-H=g; MsgDestination ::w INTEGER (0...maxLengInt }
maxLongInt ::= (292 _1)

Figure 6: CLAM Process Management Message

and ANY types. Types and values are assigned through the equal (::=) operator. Bold braces ({}) are
used to group related terms; brackets ([]) are used to indicate optional terms. A vertical bar ([) is used
to delimit alternatives in a group of related terms. The subset of simple types defined by ASN.1 that are
used in this document include TA5String, which represents an ASCII string, INTEGER, which represents
a regular integer, and ENUMERATED, which is a type with a finite and well-defined set of possible values.
The two structured types defined by ASN.1 that are relevant to this description include SEQUENCE and
SEQUENCE OF. The SEQUENCE type defines an ordered collection of one or more types. The SEQUENCE
OF defines an ordered collection of zero or more occurrences of a given type. The CHOICE type denctes
the union of one or more alternatives. Tagged types are those that are assigned a specific number. Tags
may have an abstract meaning in the context of an application, an enterprise, a given context, or they
may have a universal abstract meaning. Only application-specific tags are used in this description.

The OSI framework also recommends the use of the Basic Encoding Rules (BER) [24] to encode
each ASN.1 value as an octet string. BER, however, may offer multiple representations for a given
value; hence, an encoding ambiguity results. A subset of the BER rules, namely, the Distinguished
Encoding Rules (DER), offers a unique encoding for each ASN.1 value and has become popular in
protocol specifications. Although this encoding/decoding scheme allows protocol specifications that
are completely architecture independent, we have not used these rules in our current protocol imple-
mentation to maximize efficiency and simplicity. Routines for encoding/decoding DER data only add
latency and other overheads to the protocol. The protocol we describe uses only unsigned long integers,
unsigned short integers, and ASCII strings. Conversion routines or macros, available in the standard
networking library, may be used to convert these types from and to network-byte order. As a result,
more complex data representations are unnecessary. On the other hand, the ASN.1 notation enhances
our description of the protocol by unambiguously describing the structure of messages. Furthermore, a
formal description of the protocol represents a solid base for future enhancements to it.

A CLAM Process Management message has the general structure depicted in Figure 6. There is a

11

(b} ASH.1
RegisterMsg ::= [APPLICATION ©)
SEQUEKCE {
procType ProcType,
(2) € srructure oSPid 05Pid
typedef struct rgstrt { }
u.ghort type; /= Type of Process s/ L
ulong opid; /w OS Pid »/ P"g”‘" o ENUMERATED {
} RegisterMsg; o5 1y,
F§ (2)
1
05Pid ::= INTEGER (O...mexLonglat)

Figure 7: Register RTA Message

common header that contains the CrLaM pid of the source and destination of the message. The type
field in the “C" description {Figure 6(a)), which defines the content of the union field, is represented in
the ASN.1 description as an application tag. The structure of all the messages and the actions taken
upon their arrival at their destinations are described next.

3.2 Process Table Initialization

The Hegister and Install messages are used to initialize and build process tables in each CLAM process.
These tables contain information that maps CLAM pids into low-level protocol addresses. A process
initializes its routing tables by registering with its master process through the Register Remote Thread
Activation (RTA) message. The format of the Register RTA is shown in Figure 7. In Figure 7(a) is
shown a “C"” language description, and in Figure 7(b) is shown an ASN.1 representation. The type
field in the "C” structure specifies the type of process (i.e., DS, CP, FS) that issued the Register RTA.
The opid field is its OS pid. When the Register RTA arrives at the master process, three actions are
taken. First, a CLAM pid is reserved for the registering process. Second, an entry is installed locally,
in the process table of the master; the pid identifying this entry corresponds to the slave that sent the
Register RTA. Third, the master sends an Install RTA back to the slave that sent it the Register RTA
in the first place.® When the Install RTA arrives at the slave, two entries are installed in its tables: an
entry that corresponds to the master, and an entry for itself—the latter containing the newly assigned
pid. Because several DS processes may register simultaneously with the RDS, and because several CP
processes may register simultaneously with a given DS, the global variables used for pid and domain id
assignment must be protected by locks.

A process obtains its master’s low-level address through its command-line arguments. Except for
the RDS, all CLAM processes must be given this information via the -R command-line switch. A process
that is not manually started installs an additional entry in its tables; this entry corresponds to its parent.
In CLAM, the parent of a process is the process that generates the Spawn request creating the process.
Observe that, in some cases, the parent may be the master itself. A parent’s low-level addressing
information is passed to the child as an optional command-line argument (-S) during initialization. If
the process has a parent, then the parent also installs an entry corresponding to its child.

5Note that a CLam pid is reserved by the master process only if the process that is registering is not a Fork Server
(Fs).

12

{a) € structura

ulong pid; /*

u-long ospid;/+

u_short typa; /*

uwleng ip; /*

u_short pert; /=
} InstallEntry;

typodef struct insts_t {

CLAM Pid =/

05 Pid »/

Type of Procemm #*/
IP Addrass »/

UDE port */

InptallEntry InstallMsgl J;

(b) ASN.1

TnatallMeg ::= [APPLICATION 1]
SEQUENCE OF SEQUENCE {

pid Pid,

o5Pid 0SPid,

procType ProcType,

iPAdds IP,

port Port
}
IF := INTEGER (C...maxLongInt)
Pld := INTEGER { ©...maxLongInt)
Port ::= INTEGER { O...mexShortInt)}
maxShortInt ::= (216 1)

The format of the data encapsulated in an Install RTA message is shown in Figure 8. Each
Install RTA message may contain multiple entries that must be installed at a destination process. The
information carried by each entry in this RTA message includes the CLAM pid (pid), the OS pid (ospid),
the type of process (type), and the low-level protocol addressing information containing the IP address
(ip) and the UDP port number (port). Once an Install RTA message reaches its destination, it proceeds
to install all entries contained in the message that do not already exist in the destination’s local tables.

Figure 8: Instell RTA Message

In Figure 9 are shown the RTA messages involved in a startup operation.

———— » Register Message
- — ~ -p Insrall Message

Figure 9: CLAM Initialization

13

During initialization, each CrAM process but the RDS blacks until the first Install RTA message
is received. This ensures that the CLAM communication primitives are used only after process tables
obtain the basic information.

3.3 Process Creation

CLamM's Process Management Interface (PMI) provides a complete set of calls to create processes dy-
namicalty anywhere in the Internet, as long as the user has the required permissions. The interface can
be used by a job scheduler, a user console, a startup routine, or by an application to create new CrLAm
processes. The PMI takes advantage of multithreading and non-blocking system calls to concurrently
process high-latency invocations of rsk, rezee, and other remote access mechanisms. These mecha-
nisms exhibit high-latencies because of their implicit use of the TCP/IP protocol, with its three-way
handshake connection establishment procedure. Multithreading helps overlap these latencies with other
useful work, thus providing for improved performance and scalability.

3.3.1 Basic Startup Mechanisms

Most message-passing systems use rsh or rezec to create processes on remote machines (7, 8, 9]. Some
systems also provide startup doemons to reduce the high latency and overheads due to rsh and rezec.
These startup daemons are processes that exist on every host in the distributed environment; their main
function is to receive and process startup requests locally. The daemons respond to startup requests
by forking new OS-level processes and loading specified code. In general, these daemons are initially
created with rsh, and they may be reused over several runs of the same or a different application. While
their use reduces startup time, they are tied to a particular message-passing system because of the
distinct format of their startup requests. Thus, even though startup daemons for different message-
passing systems have the same basic Functionality, one system’s daemons cannot be used by another
system.

We propose another alternative to the methods mentioned above: the HyperText Transfer Protocol
(HTTP) [25), a de-facto standard for access to Internet resources. This protocol can be used for
efficient process creation. By using existing HT'TP servers for process creation, we are saved the task
of initializing Cram's Fork Servers (FS). Besides, HI'TP daemons can serve other purposes as well.
This technology is well-supported and there is much ongoing research geared toward the provision of
faster and more efficient HTTP servers based on threads. By exploiting HI'TP in Cram's PMI, the user
can also take advantage of existing Web browsers to interact with a CLAM session. In contrast, other
message-passing systems usually provide a proprietary graphical user interface. Yet ancther advantage
of the HTTP protocol for process startup is its interoperability with threads. In traditional methods
for remote process creation (e.g., rsh, rezec), a new process must be forked to prevent the parent from
blocking while a creation request is handled.? With HTTP, non-blocking system calls and new user-
level threads can be used to handle new startup requests, thus overlapping one request’s latency with
ancther request’s computation.

To use a HTTP server for process creation, the software must be installed and configured on every
target host. But this is a one-time task, and these daemons can be left in place to serve a group of users,
as is the case with PVM daemons. All the CLAM process™s code must be marked as executable and
accessible to the HTTP daemon. Processes can be started up interactively with the help of a regular
Web browser that reads a HyperText Markup Langnage (HTML) [26] page with the URLs of all target
hosts, applications, and parameters that must be passed to remote processes through the Common
Gateway Interface (CGI) [27]. CLAM processes can configure themselves in a group by using a unique,
global process that listens at a well-known address. The latter process enables all the other processes
to get to know about one another. Other methods to create processes {rezec, rsh, etc.} may also be
made available to the user of a Web browser by building scripts or programs that use CGI to receive
their parameters. These scripts can then execute the required commands or system ¢alls from a central
host.

GAthough this may not be necessary in systems that support kerncl threads, not all our target operating environments
support this feature.

14

{a) fork Method: (b) rsh Method:

Intermediate New Intermediate Auxiliary New

1
|
[
Process Process [Process Process Process
| -y - iy
I
I

(¢} rexee Method: d) HTTP Method:
Inlermediaie Awxiffary New Intermediate HTTP New

Process Proceass Process

Process daemon Process

Figure 10: Processes Involved in Each Startup Method

To handle situations in which the user may not be willing or able to use HT'TP, CLaM also supports
well-known startup methods based on rsh and rezec. CLAM’s startup mechanisms include rsh, rezec,
fork, and HTTP. The rsk command is used to create processes at hosts in which no CLAM process or
HTTP daemon already runs. The rezec method is used when rsh is not available or cannot be used.
The fork method is used when a CLAM process already exists on a remote host. When this process
receives a startup request, it executes a fork system call and then loads the code of the new process.

There are many ways to use CLAM’s PMI to create a group of distributed processes. The user
may specify details of the session, e.g., the number of processes, where and when they must run. A job
scheduler then locates the specified hosts and determines when the session begins [10, 11]. Alternatively,
the user can select the hosts to be used in a specific session and save that information in a file before
actually initiating the session. At runtime, this file is passed to a startup program that executes all
the necessary steps to create the processes specified in the file [7, 8). Finally, the user can create the
processes interactively from a console. The first and second methods can be implemented in a script
language (e.g., Perl [14]) or a shell. An interactive startup interface can be implemented with a regular
HyperText Markup Language (HTML) browser and Common Gateway Interface (CGI) scripts.

3.3.2 Details of Process Creation in CLAM

A typical startup procedure in CLAM involves three types of processes: a parent process, which issues
the request, an infermediate process, which does the startup, and a new process, which is created
in response to the request. Some startup methods (e.g., rsh} use an auziliary process to prevent an
intermediate process from blocking while a new process is being created. Because the rezec library call
and the rsh command generate high-latency blocks on internal sockets, creating a new OS-level process
for every rsh and rerec prevents blocking delays. The fork and HT'TP startup methods do not need an
auxiliary process to hide latencies. Each HTTP-based request is processed by a distinct thread that
is created exclusively for this purpose. The sets of processes involved in the different startup methods
are shown in Figure 10. In each figure a broken arrow represents a potential fork operation; a CLAM

15

feem thfeiiédiaie T
) Process . %
) rsh New
rexec Processes
~

——» Spawn Message
~— - —» Spawn-Report Message
------ » Spawn-Reply Message

Figure 11: Messages Involved in CrLaM's Process Spawning

process may detach itself from its parent by closing its standard file descriptors and creating a new
process. The broken circle in Figure 10 represents this new process. For simplicity, we have illustrated
cases with only a few processes, even though more OS-level processes may be involved in a startup.

A startup request is generated when a {parent} process invokes the c_sndepwn () function. Function
parameters specify the number of processes to be created, the creation method, the CLaM pid of the
intermediate process that does the job, and other configuration details. The parent thus generates
a Spawn Remote Thread Activation (RTA) message addressed to the intermediate process.” Upon
receiving the request, the intermediate process initiates the new process set and generates a status
report for the parent (using a Spawn-Report RTA message). Finally, each new process reports to the
parent with a Spawn-Reply RTA message. In Figure 11 a startup mechanism is shown for a specific
request. A parent asks an intermediate process to start two new processes, one with an rsk and another
with an rezec.

The intermediate process collects information on the status of each spawn request. This information
is sent to the parent when all requests within a Spawn RTA have been processed. In the case of fork,
rsh, and rezee, the intermediate process uses pipes to communicate with newly created processes. It
reads from these pipes to obtain status information. To enhance concurrency and hide latency while
multiple processes are created, pipes or sockets connecting the intermediate process to auxiliary or child
processes are read with non-blocking system calls. The read terminates on a timeont (initiated by a
new process’s creation} or when the remote end of the pipe is closed. When all reading related to one
spawn request has terminated (i.e., all pipes are closed), the intermediate process sends its information
to the parent with a Spawn-Report RTA message. A newly created CLAM process detaches itself from
a parent by redirecting stdout, stderr, and stdin, and forking a new OS-level process. A user may
specify a non-detach option to enable a parent to maintain a direct link to a new process after startup.

Auxiliary processes are not wholly integrated with the rest of the system in that they cannot
communicate using CLaM’S protocols. The cost of assigning and revoking CLAM pids to auxiliary
processes during their creation/destruction is too high. Instead, each auxiliary process maintains a
direct link to its parent—the intermediate pracess—for the purpose of relaying relevant information to
the parent.

Error conditions detected by an auxiliary process are reported to the parent via an intermediate
process (with ASCII strings). These error conditions are grouped into two classes: first class errors,

711 is permissible for the parent to act as the intermediate process,

16

which prevent the creation of the new process; and second class errors, which may oceur at an auxiliary
process once the new process has been successfully created. Such a classification enables a parent to
decide when to wait for the reply to a specific spawn request. Timeouts are useful in recovery from
second class errors, but are not useful with first class errors (since a new process does not exist).
The intermediate process also collects exit status information from auxiliary processes that terminate
after creating a new process. Within an intermediate process, a thread waits for status changes in
auxiliary processes and reports these to the parent. The exit status alone cannot be used to determine
if an auxiliary process has failed; for example, when an rsh command is used with a wrong path, the
command fails to create a new process and reports the message “Command not found” to its stderr
file descriptor, with an exit status of 0 (i.e., success). The parent detects such situations by parsing the
output string sent by the auxiliary process. With the HTTP-based startup method, errors reported by
the HTTP protocol are also detected by parsing the response issued by the server at the parent.

The Spawn RTA message sent by the parent to an intermediate process contains information about
the parent and each new process to be created; its format is shown in Figure 12 (with both the “C”
and the ASN.1 representation). The parent information is placed at the front of the message. The type
field specifies the parent's process type. The ppid, oppid, prip, and port felds specify the parent’s
Cram pid, O8-pid, IP address, and UDP port number, respectively. The tag field is the request id
number, used by the parent to match replies. The parent information is passed to new processes via
command line arguments, enabling every child process to install a process table entry that allows direct
communication with the parent.

Other information in the Spawn RTA message specifies the number of new processes to start up,
and the startup method. The format of this part of the Spawn RTA message is given by the SpawnE
data structure shown in Figure 12(a). The type field indicates which type (i.e., F'S, CP, DS) of process
is to be created. The method field specifies the creation mechanism (i.e., rsh, fork, rexec, HTTP).
The flags field specifies configuration options for the new process: the redirect option instructs a new
process to redirect stderr and stdout to a file, the detach option directs it to detach itself from the
parent, and the display option instructs it to display its protocol address after initialization. The path
field contains either the UNIX path or the URL of the executable to be run by the new process. The
dargs field contains a sequence of null-terminated strings, representing debugging switches (to be passed
to the new process}. The args field is a sequence of null-terminated strings, containing user arguments
that must be passed te the new process.

The methodSpecific union contains information that depends on the mechanism used to create
the new process, as described by the structures Rsh, Rexec, and Fork in Figure 12(a). All the arrays of
characters in these structures are represented by null-terminated ASCII strings in the Spawn message.
The host field containg the name of the machine on which the new process must be started, and the
user field specifies the process’s user-name. The port and pssw fields are only used with the rexec
method. These specify the remote port where the rezec daemon listens, and the password for accessing
the remote host.

The format of the Spawn-Report RTA message is shown in Figure 13. There may be multiple records
with the SpawnRprtEntry structure in each Spawn-Report RTA message. The tag field identifies the
startup request for which the rest of the data is being reported; this value is used by Spawn-Report
RTA message’s handler to integrate the message's information at the parent. The value of the pid
field depends on the startup method and the result of the startup request. With rsh or rezec, the pid
field is set to the OS-pid of the auxiliary process. With fork, the OS-pid of the new child process is
placed in the pid field. With HTTP, if connection to the HTTP server is established, the pid field is
set to 0. Finally, if a fork operation used to create the auxiliary process or a new process fails, or if
the intermediate process is unable to connect and send a HTTP request, the pid field is set to —1 and
an ASCII error message is placed in the errstr field. The ess field is divided in two parts, one that
specifies the startup method and the other that specifies the state of the exs field; the value of the

17

{(a) € structura

typoadef struct rah.t
char bost[]; /
char user[J;: Fi
} Rsh;

{

= Target host =/
» -1 option for rsh */

typedef atruct rexzec_t {

wrehort port; /f* Targot rexec pert =/
char hest[];/+ Target host name */
char umer[J;/* Login neme %/
cher pasw[1;/* Password +/

} Rexec;

typadef struct fork t {

char host[]1;
} Fork;

typedef struct spwne
u.short type;

i

Target host name */

t {

f/* Type of Procass =/

u shorc mathod; f* Machod to be used */

w_short flags;

union mthdsu {
Rsh J:1-H
Rexec rexec;
Fork fork;

} mathodSpecific;

char path[];

char dargs[][1;

char acgs[J[1;

} SpwmE;

/* Flags %/

/* rsh specific data «/f
/= rexec() specific data =/
/= fork(} specific dmta =/

f+ Path to erscutable «/
/* CLAM-apacific arga +/
/* Applicaction mrguments */

typedef struct aspwn.t

uw.shorttypa; P
ulong ppid; /=
ulong opid; /*
ulopng prip; /*
u_shortport; [+
u_short tag; FL
SpwvnE spw[1; /*
} SpavmMsg;

Type of Parent Process +/
Parsnt CLAM Pid #/

Parant (5 Pid »/

Parant IP Address */
Parant UDP Port +f

Tag for thia regueat =/
Spawvn request entries «/

(b} ASN.1

SpawnMsg ::= [APPLICATION 2]
SEQUENCE {
parentProcType ProcType,
parentPid Pid,
parentGSPid 0SPid,
parentIP IpP,
parentPort Port,
tag Teg,
spavnRgats SpavnRgsts }
SpawnRqsta ::= SEQUENCE OF
SEQUENCE {
procType
meathod Hethod,
flags Flag,
methodSpec CHOICE {
Ish Rah,
raxec Hexac,
fork Fork
} "
path
dargs
args

ProcType,

IASSering,
Argsa,
Args }
Method ::= ENUMERATED {
RSH (0).
REXEC (1},
FORK (2},
HTTP (3} }
Rsh ::= SEQUENCE |
host IASString,
user IASString }
Rexec ::= SEQUENCE {
port Port,
host IASString,
user IASString,
pssw IASString }
Fork ::= SEQUENCE {
hoat IA5String }
Args ::= SEQUENCE OF {
arg IASStriog }
Flag ::= INTEGER { 0...maxShortInt }
Tag ::= INTEGER (O...maxShortInt)

Figure 12: Spewn RTA Message

18

(b) ASN.1

SpawnReportMag ::= [APPLICATIDN 4]
(a) C structure SEQEEZCE OF SEQUE":_EE {
oSPid O5Pid,
typedef struct spwnrprt.t { e thod Hotno
u_short tag; /% Tag of ralated request »/ aState E‘Stug'

ulong pid; /= 05 Pid of new process s/

ushort asa; /* Mathod + state of exs »/

int axs; f* Exit status =/

char arratr[]; /% Error description »/

char chletr[]1; /« Child output %/ 1
} SpawnRprtEntry;

exitStatus ExitStatus,
errorString IAGString,
childString IASString

EState ::= ENUMERATED {

SpavnRprtEntry SpawnRprtMagl 1; :g:]]:z Eg;'
}
ExitStatus ::= INTEGER { 0...pmaxLongInt)}

Figure 13: Spawn-Report RTA Message

part that specifies the state of exs is either _RCVDS or _TOWFS. The former means that the intermediate
process actually received the exit status of the auxiliary process, and this is contained in the exs
field. The latter indicates that the intermediate process timed out while waiting for the exit status; in
this case exs is invalid. All data collected by the intermediate process from its pipes to its children
is placed in the chldstr field of the corresponding request. In addition, all the data collected from
TCP/IP connections to HTTP servers that act as startup daemons is placed in the chldstr field of
the corresponding request. The errstr and chldstr fields are variable-length, null-terminated ASCII
strings.

The Spawn-Reply RTA message is sent by each newly created CLAM process to its parent, commu-
nicating the result of a startup operation. The format of the Spawn-Reply RTA message is shown in
Figure 14. The tag field facilitates matching replies with their respective handler records at a parent
process. Each time a parent makes a startup request, a handler record is created and a tag is associated
with the request. The handler record contains a tag corresponding to the request and an array of reply
structures used to store status information from newly created processes. This status (i.e., stt field)
information includes the values WAIT, FAIL, 0K, _TOUT, or RGTO. Here .WAIT means that the parent
is still waiting for a new process’s Spawn-Reply RTA message, FAIL means that the process creation
request failed, 0K means that the request completed successfully, .TOUT indicates that the request timed
out (i.e., the Spawn-Reply RTA message was not received), -RGTO means that a new process was unable
to register with its master® The OS-pid (ospid) and the type (type) of the new process are also
reported to the parent in the Spawn-Reply RTA message. With this information the parent can create
a process table entry for a child, enabling it to communicate directly with each child after initialization.

In addition to the status of each creation request, the handler record also contains a count of the
number of new processes that are to be created. Handler records are placed in a global queue where
they can be manipulated by incoming Spawn-Reply RTA messages based on tag values. A Spawn-Reply
RTA message modifies statns information stored at a corresponding handler record when it arrives at
a parent. The record is removed from the global queue when the corresponding startup request times
out, or when all new processes have reported their status and the parent has received the Spawn-Report

9The master is its immediate parent in the CLAM tree-shaped hicrarchy.

19

{b) ASK.1
SpawnReplyMsg ::= [APPLICATION 3]
(a} C structure SEQUENCE {
tag Tag,
typedef struct spunrplt { gtatus 5tatus,
ushort tag; /» Tag of this request =/ oSPid 05Pid,
ushort atet; f» Statuas +/ procType ProcType
ulong espid; /» 08 Pid /
ulong typs; /* Typs of process =/
} SpavnRplyMsg; Status ::= ENUMERATED {
LK (0},
RGO (1}
}

Figure 14: Spawn-Reply RTA Message

RTA message from the intermediate process. The system does not wait for replies if an intermediate
process reports failures during process creation.

In Figure 15 is shown an example with two concurrent startup requests, with messages and the
global queue of pending requests. Although message ordering is not explicit in the figure, it is easy to
infer from the description given previously. Once a process is created (as a result of a spawn request)
it registers for the CLAM session using Register and Install messages. After registration, it exchanges
messages to report the status of its creation and to enable direct communication with its parent. One
of the requests shown in Figure 15 (tags = 0,1) creates two new processes with the help of a process
that is not their master. The second request {tag = 2) creates a new process using the process’s master
as intermediary. A handler is created for each request, and it is identified with the corresponding tags.
These handlers are placed in a global queue until requests either complete or timeout.

The process startup interface described here offers some advantages over traditional, single-threaded
and centralized implementations. First, as will be shown by our experiments (see Figure 16), CLAM’s
startup is very efficient for WANs or a set of interconnected LANs. For the creation of multiple processes,
it suffices to send spawn requests over a WAN using a single message. In contrast, other message-passing
systems require a connection establishment for each new process to be created. CLam’s scheme is also
flexible because it offers many methods for creating new processes. Finally, multiple requests can be
processed concurrently, due to CLAM’S use of threads, non-blocking calls, and auxiliary processes.

3.3.3 Passing Configuration Information to New Processes

Newly created processes are informed of their type (i.e. DS, CP, FS), the process to which they must
register (i.e., their master), and the process that requested their creation (i.e., their parent} through
command-line arguments. This section describes these command-line arguments along with their format
and semantics.

The -y switch takes one of the following arguments: ds, cp, and fs, and its function is to in-
form a CLAM process of its type. The -R switch takes two arguments with the following format:
IP-adds:UDP-port. The IP-adds part represents the IP address of the master process, and the
UDP-port part its UDP port. The -5 switch is used to provide a CLAM process with information
concerning its parent. This switch takes six arguments with the following format:

P-type:P-pid:P-opid:IP-addr:UDP-port:TAG

20

Master . ——» Spmim —y Process Creation

Marter and Intermedinte = = b Register
----- » Install

- — — - Spmwn-Reply
Intermediate Farens
...... » Spawn-Report

Figure 15: Details of CLAM’s Process Spawning

These arguments represent the parent’s process type, pid, OS pid, IP address, UDP port, and a tag
number, respectively. The tag number corresponds to the spawn request that resulted in the creation
of the process accepting the -5 switch. CLAM processes started manually are not passed the -8 switch,
and they do not send a Spawn-Reply RTA message. The master of these processes assumes the role of
the parent process for all the other concerns. The P-type, UDP-port, and TAG numbers are two-octet
wide, while P~pid, P-opid, and IP-addr are four-octet wide numbers.

Finally, the -o switch informs the new process of some optional settings to be used during initial-
ization and the method that was used for creating it. The method used for the creation of a process
is significant because processes created by a HTTP server have to communicate with the server using
the HTTP protocol, and not plain ASCII strings like when rsk or other startup methods are used. The
format of the parameters to this switch is the following: mthd:f1gs. The mthd field is a two-octet wide
number and the flgs field is four-octet wide.

All the numbers passed as arguments to new processes need to be in network byte order and hex-
adecimal format. User parameters are passed in the command-line arguments after a colon (:) character,
which is used as a delimiter. Debug switches can also be passed through command-line arguments; they
are placed before the colon that separates the user-specific arguments and are distingunished by the -d
switch. The argument to the -d switch is generally the name of a function for which tracing information
needs to be collected.

The arguments to the -y and -8 switches depend on the initial spawn request. The arguments to
the -R switch, however, depend on the type of process that is executing the startup request and the
type of the new process. If the process executing the Spawn RTA is a DS process, its own IP address
and UDP port are used as arguments to the -R switch, unless the new process is also a DS process; in
this case, the IP address and UDP port of the RDS pracess are used as argnments to the -R switch.
If the process executing the Spawn RTA is an FS or a CP process, the IP address and UDP port of

21

{ LAN-1 \ CLAM’sapproach

Spawn

——'*'z__———

WAN

Alternative approach LAN-2

rsh/rexec/HTTP
—

F——*’Z——*
_J WAN

Figure 16: Process Spawning Across Wide Area Networks

EJK-5

their master DS process are used as arguments to the -R switch. Currently, DS processes may not be
started up by ¥S5 or CP processes because the latter processes may not have addressing information
corresponding to the RDS. This, however, may be resolved by having the IP address and UDP port of
the RDS installed in the process table of every CLAM process at initialization.

3.4 Process Termination

A CLAM process signs off a distributed session by terminating all its dependents and notifying its mas-
ter. A process causes the orderly termination of one of its dependents by sending it a LSkutdown RTA
message. Dependant processes notify their master that they are leaving the computation through the
Remove RTA message. Upon arriving at its destination, the Remove RTA extracts entries specified in
its content from the destination’s process tables. The format of a Remove RTA is shown in Figure 17(a),
represented as 2 “C” data structure, and in Figure 17{b) as an ASN.1 abstract data type. The LShut-
down RTA is not represented because it does not carry any data. Each record within 2 Remove RTA
specifies the CLAM pid and the type of a process whose entry must be removed from the destination’s
process tables,

The LShutdown RTA causes a CLAM process to start an orderly termination of all its subordinate
processes, and then begin its own termination sequence. Figure 18 illustrates a case in which the RDS
process sends a LShutdown RTA message to a DS process. Upon receiving this message, the DS process
sends LShutdown RTA messages to all its subordinate processes. After sending the these RTAs to all
its suberdinates, the DS sets a timeout in case one or more dependents fail to respond. After receiving
confirmation from all its subordinate processes, the DS proceeds to sign off the distributed session by
sending a Remove RTA message to its master (i.e., the RDS). The ¢ 1shtdwn() CLAM primitive is
used to initiate a local lightweight shutdown by any process. The ¢c_sndlshtdwn() primitive is used to

22

{a) € structura (b) ASN.1

typedef struct rmv.t { RemoveMsg ::= [APPLICATION 6 J

ulong pid; /* CLAM Pid =/
ushort typs; /+ Type of Process =/ SEQ:ﬂCE oF ii.gUENCE {

} RemoveEntry; pracType ProcTypa
RemoveEntry RemoveMsgl 1;

Figure 17: Remove RTA Message

initiate a lightweight shutdown at any other process.

RDS Process

—» LShurdown Message
- - -+ Remove Message DS Process

CP Process

Figure 18: Lightweight Shutdown

The global shutdown (Skutdown) RTA message causes all the processes involved in a CLAM session
to terminate. When a process recetves a Shutdown RTA it terminates all its subordinates and sends a
Shutdown RTA to its master. Once all subordinates have confirmed termination or the wait has timed
out, the process signs off from its master by sending a Remove RTA with its own pid. The Shutdown
RTA message is especially useful in handling fatal errors that occur at at any process. The messages
involved in a global shutdown initiated by a specific CP can be seen in Figure 19. The c_shtdwn()
primitive is used to initiate a global shutdown by any CLAM process. The c_sndshtdwn() primitive is
used to send a Shutdown RTA to a remote process.

The functions that handle the global and lightweight shutdown procedures are non-reentrant and ex-
ecute only the first time they are called. This prevents potential problems from arising when lightweight
or global shutdowns are simultaneously initiated by two different processes. Although the ASN.1 repre-
sentations of the LShutdown, Shutdown, and Null messages were omitted for brevity, their applications
tags are consecutively assigned according to Figure 6 (i.e., these messages are assigned the application
tags 7, 8, and 9, respectively).

23

Source of Shutdown

------ » Shutdown Message . RDS Process
—» LShutdown Message

— - =+ Remove Message DS Process

CP Process

Figure 19: Shutdown

3.5 CraM Signals

In CLAM, signals can be delivered to remote processes via a Kill Remote Thread Activation (RTA).
This message contains an unsigned long integer that represents the CLAM code for the signal being
delivered (see field signal in the “C” data structure shown in Figure 20(a)). Table 3 lists all signals
that are currently supported, along with their UNIX equivalents. In Figure 20 is shown the “C” and
ASN.1 representations of this message. An internal signal code set is used for portability. CLAM’s signal
semantic corresponds to that of UNIX System V. A signal can be sent to a CrLaM process by invoking
CLAaM’s c_sndkill () primitive.

CLam Code | UNIX Signal
CSIGINT SIGINT
CSIGQUIT | SIGQUIT
CSIGABRT | SIGABRT
CSIGKILL | SIGKILL
CSIGTSTP | SIGTSTP
CSIGUSR1 | SIGUSR1
CSIGUSR2 | SIGUSR2
CSIGSTOP | SIGSTOP
C.SIGCONT | SIGCONT
CSIGURG SIGURG

Table 3: CLam’s Signals

24

(b) ASH.1

KillMsg ::= [APPLICATION 6]
SEQUENCE {
gignal SignalTypa
}
(a) € structure SignalType ::= ENUMERATED {
C SIGINT (o),
typedef =truct kill t { C SIGQUET (1),
w.long mignal; /* Signal Code »/ C SIGABAT (2),
} KillHsg; CSIGKILL (1),

C.SIGTSTP (4),
C.SIGUSR1 (5),
C.SIGUSR2 (B),
C.SIGSTOP (7)),
C.SIGCONT (8),
CSIGURG (9)

Figure 20: Kill RTA Message

4 System Startup based on a Host-file

The vser may specify a set of CLAM processes to be started up with the help of an ASCII file. The
Extended Backus-Naur Form (EBNF) grammar for this file is shown in Table 4. The first rule for the
non-terminal < line > is used to specify processes that must be created using the rezec, rsh, or fork
methods. The second rule for the non-terminal < line > is used to specify processes to be created using
the HTTP protocol. The < password > and < port > non-terminals are used only when the startup
mechanism specified is rezec. There are three flags that may be set or cleared for each new process:
disp, iord, and dtch. The flag disp directs the new CLAM process to write its protocol address to its
stdout descriptor before detaching from its creator. The flag iord forces the new process to redirect
its stdout and stderr descriptors to a file. To prevent naming conflicts in systems with NFS mounted
files, this file is named using the host on which the process runs and the OS pid of the new process. The
dtch Rag instructs to a new process to detach itself from its parent by closing its stdout, stderr, and
stdin descriptors, and forking a new OS process. The < args > non-terminal represents an optional
list of arguments that the user may pass to a new process as command-line arguments. The < dargs >
non-terminal represents an optional list of CLAM-specific debug switches that are used to turn on tracing
with specific CLAM library functions.

The name of the host-file is passed to the RDS through the -h command-line switch when it is
started up. If a CLAM process is invoked as an RDS and given this command-line switch, it efficiently
starts up all the processes listed in the file. The initialization proceeds as follows. First, the CLAM
library parses the host-file and creates a linked list of records containing information on each process to
be created. Next, the RDS creates its own children. To avoid kernel resource starvation and excessive
network congestion, these processes are started in batches of up to a maximum number specified by an
integer constant. Once the children have been started up, the RDS creates a new data structure with
the remainder of the records in the initial linked list. The new data structure (shown in Figure 21) has
an entry for each new domain to be created. This data structure is intended to facilitate the efficient
creation of new domains.

Once the data structure mentioned previously is ready, the RDS starts up the new DS processes.

25

Grammear Rules

< lines >
< line >

< line >

< path >

< method >
< type >

< password >
< port >

< flags >
< flag >

< args >

< dargs >
< arg-list >
< number >
< string >
< user >

< host >

< fs.path >
< digit >

< url >

L T O T O R TN A

{ <line>}

< path > < method > < type > {< password >] [< port >]
[« flags >] [< args >] [< dargs >]

< url > <type > [< flags >) [< args >] [< dargs >]

[[« user >@] < host > : | < fs.path >

mthd = { rsh | rexec | hitp | fork)

type = (ds | fs|cp|op)

pssw = < siring >

port = < number >

[< flag> { < flag > }]

(disp | iord | dtch) = (on | off)

args = < arg.list >

dargs = < arglist >

< string > {, < string > }

< digit > { < digit > }

ABCII string with no space, tab, newline, or comma

Valid login name

DNS-compliant host name

Valid OS path

O|1]|2|3|4|5|6 |7|8]|9

Valid URL with http scheme

Table 4: Host-file EBNF Grammar

., &
4 € €p) (s P
-

63

ES) (€P) €B) (P
"o

Process Records

Domain Entries

Figure 21: Data Structure Used for Creating New Domains

‘This task is also performed in batches, for the same reason as described above. A new thread is created
for each DS that is started successfully. These threads send Spawn RTA requests to their corresponding
D5 processes, to have themn create their own children. Each thread sends the requests in batches to
avoid overloading the DS process and congesting the network. Once the startup procedure is complete,
the handlers generated by the various startup operations are analyzed, and errors, if any, are reported.
CLaM’s startup procedure is specially designed to distribute the load of process creation among the DS
processes, and to prevent a buildup of network congestion or kernel resource starvation.

5 Experiments

5.1 Methodology

CLAM uses its PMI intensively during system initialization, and hence, startup time is a critical measure
of its performance. To compare CLAM’s startup performance with other well-known (single-threaded)
message-passing systems, we conducted experiments that measured the amount of time each system
took to initialize a set of processes on a workstation cluster. Each process was located on a distinet host.
All the experiments were performed on 10 Mbit/sec Ethernet LANs, which were only lightly loaded by
other applications.

In each of the systems that we experimented with, startup is initiated by a process that is invoked
by the user. This startup master reads and parses a host configuration file that specifies the location
of each sleve that must be created, and the creation method. We define starfup time as the time that
elapses between the creation of the master and the time at which all slave processes are ready to begin
communication. The startup time is measured by the master, and it includes the time required to
read and parse the configuration file. The master is notified of the readiness of a slave through a short
(four-byte long) message sent by the slave. For systems that use communication daemons (i.e., PVM,
LAM-MPI) we measured both daemon and application startup times.

Because each process is started up upon a distinct host, the number of processes shown on graph
axes represents the number of hosts. When the number of processes is one, this process is started up
locally. Each observation displayed on a graph is an average over thirty samples. A 90% confidence
interval based on the Student-t distribution was obtained for each observation. Interval lengths are
negligible with respect to graph scales and are not displayed. We used single CPU workstations (70 MHz
SPARCstation 5, SunQS Solaris 5.5) as hosts. In some experiments the master was run on a four-
node multiprocessor (60 MHz SPARCstation 20, SunOS Solaris 5.5); the intent is to show how well
the different systems exploit shared-memory multiprocessing potential for process initialization. In
general, we used executables located on a shared file system, remotely NFS-mounted by each host. To
circumvent potential problems of initialization bias due to ARP cache misses and other setup effects,
initial observations were discarded.

5.2 Experimental Results

In Figure 22 is shown the startup time (in secs) of dacmons, graphed against the number of processes
(number of hosts) created, for PVM and LAM-MPI. In Figure 22(a), we observe startup performance
when the master is run on a uni-processor (PVM-UP, LAM-MPI-UP) and on a multiprocessor (PVM-
MP, LAM-MPI-MP)}. PVM is clearly able exploit the multiprocessor for concurrency during system
initialization; LAM-MPI, however, appears to create daemon processes serially, and thus does not take
advantage of the multiprocessor. Because the uniprocessor has a faster clock rate than the multiproces-
sor {70 MHz vs 50 MHz), the uniprocessor tends to yield smaller times when hosting the master for this
small setup. Only up to five processes were used in the experiment corresponding to Figure 22(a), with
four remote and one local process; this is because only four additional workstations shared the same

27

[8) Dworrant Sty Tirrmy (Uni- wrd bl processos asar] [Dmerran S Timas (Uripocsosor Maiasd
T T T T T T T

T T
PVRHUP —p— = F P
LAL-UM —

Buariup Timo [eas|
Startup Time [ee]

F.:]]
Humiwr ol Procese

Figure 22: Daemon Startup Times vs Number of Processes

physical network with the multiprocessor. When the number of processes is larger, startup time grows
linearly, as can be seen in Figure 22(b). Although startup time increases linearly with the number of
processes for both message-passing systems, the increase is rapid with LAM-MPI.

In Figure 23 is shown the application startup time for both daeman-based libraries. Qbserve that
because the daemons are already in-place, the startup time is only a small fraction of the startup
time of the daemons. From Figure 23(a) it is apparent that neither system takes advantage of the
multiprocessor in starting up application-level processes. In addition, application startup time is seen
to grow linearly with the number of processes started up, for both systems. Here, LAM-MPI shows
marginally better performance when the number of processes is small. As in the previous graphs,
Figure 23(a) shows startup times for both systems when the master is run on a uniprocessor (PVM-UP,
LAM-MPI-UP) and on a multiprocessor (PVM-MP, LAM-MPI-MP). In Figure 23(b) is shown startup
times for a larger number of application-level processes, and a master process that runs in a uniprocessor
host; both systems exhibit similar behavior.

In Figure 24 is shown the results of an experiment that compares the PVM, LAM-MPI, and
P4 systems with CLAM, in terms of total startup time vs number of processes created. As shown
in Figure 24(a), CLAM tends to offer smaller startup times than the other systems, even for a small
number of processes, when the master is run on a uniprocessor. The different CLaM legends identify
the different startup methods that CLaM provides: OLaAM-RSH corresponds to the remote shell method,
CLaM-RXC corresponds to the rexec method, and CLAM-HTTP, corresponds to the HT'TP protocol.
The CLAM-HTTP graph does not include the startup time for HT'TP servers.

A similar performance behavior can be seen in Figure 24(b), where the master is run on a mul-
tiprocessor; again, CLAM offers the best overall performance. While P4 and LAM-MPI exhibit graphs
with startup times that increase linearly with the number of processors, both PVM and CLaM are fully
able to exploit (process-based) concurrency on the multiprocessor during startup. Though PVM shows
much larger startup times, the net result for both PVYM and CLaM is an almost perfect overlap of the
startup of distinct remote processes.

When the number of pracesses to be started up is large, and the master is run on a uniprocessor,
both PVM and CLAM-RSH exhibit similar startup times (see Figure 25). LAM-MPI exhibits sharply
increasing times because startup time is large for its daemon. P4 exhibits behavior that is similar to
other systems based on remote shell; we were unable, however, to obtain measurements with more

28

] Appkatn Sariug Trmes (Un- and M- peoveees acier} (b} Applenton Staip Times [Unipmceasor Maca)

10 T 50
PP P
PP 1 LM
LAMAPHUP -0
LAL-MPUE ——
an
3 I
g g
3 i
10 F
ool .
Q 10 Fx | 0 40 B

Figure 23: Application Startup Times vs Number of Processes

than 25 processes with P4 because of OS configuration limits on the number of sockets that may be
open simultaneously on each process in the system. During these experiments we found that network
load played a key role in determining startup times. For example, distributing processes over two
different physical networks taxes systems like P4, PVM, and LAM-MPI because startup traffic generated
by the process hosting the master cannot be evenly split between the networks. The CLAM system,
however, is able to efficiently distribute the network traffic and processing load generated by the startup
over two or more networks. The net result is a small startup time, as shown by the CLAM-RSH-DM
graph in Figure 25. For this experiment, the startup task was divided equally between two different
domain servers (DS} located on two distinct physical networks. This hierarchical arrangement gave an
improvement of about 20% in the startup time of a large process set.

As mentioned earlier, we used executables located on a shared file system, remotely mounted by
each host with NFS. We attempted to repeat the experiments using executables located on the local disk
of each host. We omit these results because they show no significant difference from the measurements
with NFS-mounted executables. Although small improvements were observed, these were in the order
of 1 to 3% and thus do not warrant special attention. It is possible that with larger executables, slower
networks, or a larger number of processes the time required to load executables from a shared file system
will become a significant part of the startup time. The testing of such a hypothesis, however, is not in
the scope of this work.

System Daemon | Application | Total
[K-bytes] [K-bytes] [K-bytes]

P4 160
CLAM — — 170
LAM-MPI 100 150 250
PVM 800 275 1075

Table 5: Sizes of the Different Executables Used

The sizes of the executable used are shown in Table 5; these sizes may have some influence on
startup time, although we expect this influence to be small. Sizes were determined after eliminating

29

Slariup Tima [woa)]

) Total Startp Taraey. (Uniroces sy lasier)

) Tota! Starvg: Turwy (L Syrocetmr Master)

T o T T
i 4—
P —— i
45 LALLADY -p-]
o CLAL-RSH -u— ra
- CLAM-FAE -+ o
K -1 40 | CLAMHHETTP - .‘__.-' .
A -
- 5 -
sy
— ""..
p ¥ nl -
L3 e
-~
;E =1
3 rd
= .
2 o P]
-~
sl ___.-'" /-
n"'
1wl -
st e ol
e e B s e
8 L :
i 5

Figure 24: Total Startup Times vs Number of Processes (Detailed View)

250 - P4 ——
PyM -
LAM-MP| -+~
CLAM-ASH -x—
GLAM- e
CLAM:RSH-ON -m---
200 [
i wf
€
=
(=
2
5
o 100

Toiad Startup Timas (Uniprocassor Maglar)

20 30
Number of Processes

Figure 25: Total Startup Times vs Number of Processes (Expanded View)

30

debugging and symbel table information inserted by the compiler; all the experiments used the stripped
executables. For systems based on communication daemons, we present the sizes of both the application
as well as the daemon. The CLAM executable is slightly larger than the P4 executable, but even so,
CLaM offers smaller startup times. The LAM-MPI and PVM executables are significantly larger than
the CLAM and P4 executables. The CLAM executable used in these experiments did not include its
reliable multicast protocol module. However, none of the other systems provide for reliable multicast
either.

6 Conclusions

With the help of an efficient implementation of a dynamic process management interface and pro-
tocol for distributed system startup, we show how a threads-based protocol can reduce startup time
and exploit multiprocessing power. We provide a formal description of the protocol to enable its use
and future extensibility. Through a set of experiments designed to compare CLAM’s multithreaded
startup performance with the performance of other (single-threaded) message-passing systems, we con-
clude that Cram’s interface is more efficient and exhibits smaller startup costs, with the same—or
enhanced—functionality. CLAM’s management interface, which uses a pid-based routing scheme to en-
able communication between processes that do not share a parent-child relationship, exhibits more
scalability than that provided by similar systems (e.g., PVM).

This work has also served as a test for the versatility of the Active Messages and Remote Thread Ac-
tivation interface provided by CLAM’s reliable point-to-point protocol module (TRAP) [4]. We conclude
that Remote Thread Activations are an ideal transport mechanism for implementing this functionality
in a way that is transparent to the application. Further, CLAM’s dynamic Process Management Inter-
face (PMI) enlarges the scope of typical distributed applications to include functionality like dynamic
load balancing, fault tolerance, and, in general, any functionality that may require periodic runtime
assessment and reconfiguration of processes in a distributed session.

Although Cram’s PMI is reasonably mature and well-tested, there are still many areas that can
benefit from refinements and enhancements. Kernel-threads, for example, can be exploited during
process initialization, to provide more efficient and scalable startup. This is especially true when
methods like 1sh and rexec are used because the application cannot control blocking (communication)
calls that are made internally by these methods. In the current version, we are forced to create new OS-
level processes when using these primitives; this enables us to avoid blocking the main process, which
handles the startup operation. In addition, kernel-threads will enhance concurrency on shared-memory
multiprocessors. We intend to provide this support in a next version. The protocol presented here
can be enhanced to include I/O redirection across processes, status queries, and other useful features.
Also, reliable multicast can be exploited to decrease network load and enhance performance during
initialization.

31

References
(1) Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, June 1995.
[2] Message Passing Interface Forum. MPI-2: Eztensions to the Message-Passing Interface, July 1997.

(3] A. Skjellum, N. Doss, K. Viswanathan, A. Chowdappa, and P. Bangalore. Extending the Message
Passing Interface (MPI). In 1994 Scelable Parallel Libraries Conference, pages 106-118. IEEE
Computer Society Press, October 1994,

(4] Juan Carlos Gomez, Vernon Rego, and V. S. Sunderam. Efficient multithreaded user-space trans-
port for network computing: Design and test of the TRAP protocol. Journal of Parallel and
Distributed Computing, 40(1):103-117, January 1997.

[5] A. Skjellum, N. Doss, and K. Viswanathan, Inter-communicator Extensions to MPI in the MPIX
(MPI eXtension} Library. Technical report, Mississippi State University, APRIL 1994.

(6] K. Al-Saqabi, R. Prouty, D. McNamee, 8. Otto, and J. Walpole. Dynamic Load Distribution
in MIST. In International Conference on Parallel and Distributed Processing Techniques and
Applications, 1997.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine A Users’ Guide and Tutorial for Networked Parallel Computing. MIT Press,
1994,

[8] R. Butler and E. Lusk. Monitors, Messages, and Clusters: The p4 Parallel Programming System.
Parallel Computing, 20(4):547-564, April 1994.

[9] Ohio State University. MPI Primer / Developing With LAM, November 1996.

(10} L. Revor. DQS User’s Guide. Argonne National Laboratory / CTD, 9700 South Cass Av. Argonne,
1L 60439-4801, 1992.

[11] M. Litzkow, M. Livny, and M. Mutka. Condor—A Hunter of Idle Workstations. In Proceedings of
the 8th International Conference on Distributed Computing Systems, pages 63-71, 1088.

[12] S. Otto. Processor Virtualization and Migration for PVM. In Proceedings of the 2nd Workshop on
Environments and Tools for Parallel Scientific Computing, pages 66-75, 1994.

[13] J. Gomez, E. Mascarenhas, and V. Rego. The CLAM Approach to Multithreaded Communication
on Shared-Memory Multiprocessors: Design and Experiments. JEEE Transactions on Parallel and
Distributed Systems, 9(1):1-14, January 1998.

(14) L. Wall and R. Schwartz. Programming Perl. O'Reilly and Associates, Inc., 1992.

[15] J. Gomez, V. Rego, and V. Sunderam. CLAM: Connectionless, Lightweight, and Multiway Com-
munication Support for Distributed Computing. In Lecture Notes in Computer Science: Commu-
nication and Architectural Support for Network-based Parallel Computing, Springer- Verlag, pages
227-240, 1997.

[16] E. Mascarenhas and V. Rego. Ariadne: Architecture of a Portable Threads System Supporting
Thread Migration. Seftware-Practice and Ezperience, 26(3):327-357, March 1996.

[17] J. Gomez, V. Rego, and V. Sunderam. On Tailoring Thread Schedules in Protocol Design: Exper-
imental Results. Technical Report TR 96-018, Purdue University, 1996.

32

(18] J. Gomez and V. Rego. TRAM: A Transaction-oriented Reliable and Multipoint Protocol for
Multiway Communication. Report in preparation.

(19] T. von Eicken. Active Messages: an Efficient Communication Architecture for Multiprocessors.
PhD thests, University of California at Berkeley, 1993,

[20] D. Wallach, W. Hsieh, K. Johnson, M. Kaashoek, and W. Weihl. Optimistic Active Messages: A
Mechanism for Scheduling Communication with Computation. In Proceedings of the Fifth Sympo-
sium or Principles and Practices of Parallel Programming, pages 217-226, 1995.

[21] CCITT. Recommendation X.200: Reference Model of Open Systems Interconnection for CCITT
Applications. CCITT, 1984.

[22] CCITT. Recommendation X.208: Specification of Abstract Syntaz Notation One (ASN.1). CCITT,
1988.

{23] B. Kaliski. A Layman’s Guide to a Subset of ASN.1, BER, and DER. Technical report, RSA
Laboratories, 1993.

[24] CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract Syntez No-
tation One (ASN.1). CCITT, 1988.

[25] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext Transfer Protocol ~
HTTP/1.1. RFC-2068, January 1997.

(26] D. Raggett. HTML 3.2 Reference Specification. Technical report, World Wide Web Consortium,
January 1997.

[27] University of Ilinois at Urbana Champaign National Center for Supercomputer Applications. Com-
mon Gateway Interface (CGI). http://hoohoo.ncsa.viuc.edu/egi/, 1995.

33

	Dynamic Process Management in CLAM
	Report Number:
	

	tmp.1307986960.pdf.hvlb1

