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Abstract

End-to-end congestion control mechanisms help utilize network resources more opti
mally because they inherently cooperate with the congestion control mechanisms inside
the network. Recent research has shown that coordinating congestion control strategies
between flows can improve the performance of the group of flows as a whole. An important
aspect of such congestion management is identifying flows to be grouped together and the
coordinated congestion technique to be adopted for the group. Currently Dows between the
same end systems are grouped togther. Here, we attempt to provide an efficient, dynamic
grouping mechanism for a set of flows originating from an end system on the basis of shared
points of congestion. We use a correlation of the TCP round trip times (RTTs) to provide
an estimate of the shared points of congestion.

1 Introduction

Current congestion control mechanisms work on a per-flow basis, regulating the data send
ing rate in conformance with the network conditions as assessed by the flow. Recent trends
in research have focused on performing coordinated congestion control at the end systems.
The motivation for this approach is to provide fairness and improve performance among
the flows sharing certain characteristics. Additionally, such end to end congestion control
schemes are more network friendly and cooperative with the congestion control techniques
in place at the center of the network.

The two key aspects of coordinated congestion control are:

• Grouping flows based on some common criterion .

• Improvising on the current TCP congestion control mechanism to make it work better
for a group of flows in terms of aggressiveness and responsiveness to the network
conditions.

Typically flows between the same end systems are grouped together. This is based on
the observation that routes in the Internet change less freqnently and hence it is reasonable
to assume that most packets of flows between the same end syslems traverse the same
path. Hence the information about congestion in the network that is assessed by one flow
can be used to control all other flows in the same group as they share the same bottleneck.
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Coordination of the congcstion control schemes of flows in a group is done by maintaining
a common congestion window for all flows or by adjusting the congestion window of the
individual flows appropriately or by adjusting the rate at which data is sent from the end
system.

In our work, we attempt to provide a grouping scheme which groups TCP flows that
share common points of congestion. We use a correlation of the RTIs of the TCP flows
originating from an end system to identify sets of flows that share their ma.....imally congested
links. We also provide a mechanism for adjusting the congestion windows of the flows in a
group based on the state of the network as assessed by all group members.

The remainder of the report is organized as follows: Section 2 summarizes the related
work in this area. Section 3 explains our dynamic grouping scheme. In section 4, we explain
how we coordinate the congestion management among flows in a group. Section 5 presents
some of the simulation results that were performed. We conclude in section 6 observing
t.hat dynamic grouping helps in achieving fairness and better overall performance among
the flows originating from an end system.

2 Related Work

TCP-Int [5]uses one common congestion window for all concurrent TCP connections which
is increased upon receipt of an acknowledgement and decreased upon detection of packet
loss by any connection.

Ensemble-TCP [6]also groups flows between same end systems. In addition it caches
information about the measured state of network congestion for a period of time. it. uses
the cached information to expedite the start up phase of the new connections.

Congestion Manager [2]prcsents a framework for managing network congestion from an
end-ta-end perspective. It seperates congestion management from the transport layer and
uses a common window for all flows between the same pair of end systems. Application
and transport layer feedback is used to adjust this window appropriately.

[3]emphasises the need for a coordinated approach to congestion management at an end
system. It identifies topology discovery, correlating delay and/or loss at the receiver and
enhanced ECN as means of detecting shared bottleneck links among flows in order to group
them.

[l]uses loss correlation, delay correlat.ion and poisson probes to identify shared bottle
neck links.

3 Dynamic Grouping of TCP flows

Instead of grouping concurrent TCP flows based on the same end hosts, we group TCP
flows based on the correlation of their packet round-trip times. The idea is to identify and
group together flows that experience common major congestion bottlenecks (regardless of
where their other end hosts locate), and then to apply coordinated congestion management
to the flows that face similar congestion problems 011 a group basis. Deciding whether or
not two out-going flows originated from the same source experience same major bottlenecks
is not a new problem; Rubenstein, et al in [7]have proposed some statistical solutions to it
that are based on finding the correlat.ion between the packet losses and delays of two flows.
Here, we apply their concept of correlation analysis to the context of dynamically grouping
concurrent TCP flows in real-time.
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To make our grouping scheme dynamically reflect current congestion states of the net
work, correlation analysis and grouping/regrouping of flows need to be performed period
ically. As shown in Figure 1, a new timer is introduced into TCP to periodicallY invoke
the correlation analysis and regrouping ofTCP Rows (discarding previous grouping infor
mation). During each correlation period, TCP flows are coordinated on a group basis in
their responses to different network states for that time period. See Sect.ion 4 for details
on coordinating TCP flows in a group.

Figure 1: The process of correlating, grouping, and coordinating TCP flows

3.1 Correlating RTTs of TCP flows

We use Pearson's correlation funct.ion [8][7]for correlating both the RTIs of acked packets
and the timed out durations for lost packets between two Tep flows. Tn his formula,

r~y is the correlation coefficient (with range [-1, 1]) of the two data sets Xj and Yi whose
averages are x and y, respectively. The closer r~y approaches +1 (-I), the more positively
(negatively) linear the data points (x;, y;) are. If J.~y :::: 0, the data points show no linear
relationship - that is, they do not correlate.

Since a TCP flow may receive its acks or experience retransmission timeouts at very
different times from other concurrent Tep flows, simply selecting a random set of data
values (i.e., RTI or timeout values) of the same size from each flow and then correlating
them with those of other flows would very possibly yield poor or incorrect correlation
results. Rather, the data values lo be correlated have to be selected carefully. Tn Figure
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2, we presen~ a simple heuristic for pairing up data values from ~wo TCP flows ~ha~ are to
be submi~~ed ~o ~he correla~ion analysis: pair up ~he data values from ~wo flows tha~ are
the closest (in time) to each other.

RTTs
of
two
dlff.
Tep
flows

prev. period ! rurrent ceJTelatim time period
Time

Figure 2: A heuristic for pairing up and correlating data values from two flows

3.2 Grouping decision

The grouping decision for two TCP flows is based on the value of their smoothed correlation
coefficient, ST"xy, which is a weighted average of 1"xy and R:r:y, ~hc correlation coefficient for
the current correlation period and ~he correlation coefficient for the entire hislory of the
two flows (including the current correlation period). In other words,

S1'xy = w*1"xy+ (1- w)*R.r:y

If SI'xy is greater than a preset threshold value (0.75 for example), then the two flows
are grouped together. In order for groups to be expandable to a larger size, two groups are
fur~her merged into a single group if the smoothed correlation coefficient between any two
flows from both groups is greater than threshold. While this may seem to be incorrectly
merging groups of flows some of whi.ch may not correlate among themselves, our grouping
experiments convince us that, ifthl'cshold is set to a relatively high value (say 0.75), it is
quite likely that all flow pairs exhibit a similarly high correlation.

The cost of deriving ~y is not as expensive as it may seem. Indeed i~ is just O(n),
where n is the number of data points in a correlation period. The reason is that the
computation of ~y can be carried over and con~inued from one correlation period to the
next.

3.3 Tuning the parameters

Grouping decisions depend on three control parameters:
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• The length of a correlation period. If it is too long, flows are unable to be regrouped
in time to reflect changes in congestion states. If it is too short, there would not
be enough data points available for an accurate correlation analysis. For example,
if only two data points are collected for two flows, then the points show either a
perfectly positive or negative linear relationship (rry =: 1 or -1) or no correlation at
all (Try =: 0).
In our simulation experiments, we fixed the length of correlation periods to be several
seconds long. Depending on the congestion levels experienced by the flows, there were
as many as 60 data points and as less as 10 data points collected by each flow in a
period of several seconds. (From our experiments, we found that 10 to 15 data points
per correlation period is appropriate for an accurate, in-time correlation analysis.) A
possible improvement over our fixed correlation period scheme, therefore, is to vary
the length of a correlation period according to the numbers of data points already
collected by the majority of flows (for example, if more than three-fourths of the flows
have collected 15 data points each, then the correlation period ends even when the
timer has not timed out yet).

• The weight w for computing Try. If w is too large, Tzy dominates the grouping of
flows. This may not be ideal as correlation coefficients computed over short time
durations are less precise and thus grouping of flows based almost entirely on these
values may be highly unstable. On the other hand, if Rzy carries a larger weight
than l'ry, the flow grouping mechanism would not be able to promptly react to new
changes in network congestion. We fiXed w =:: 0.75 in our simulation experiments.

• The thl'cshold for grouping flows. .From our experience, threshold =: 0.8 or above
allows flows that really correlate (i.e., that share the same major boLllenecks) to be
grouped together. However, when flows arc newly started, their correlation coeffi
cients for the beginning correlation periods arc usually unstable due to a relatively
short correlation history. A possible improvement over the fiXed-threshold scheme is
to set tlu'eshold higher momentarily for (only) newly started flows.

4 Coordinating TCP flows in a Group

The two operations performed on the congestion window of a TCP flow are increasing it in
the event of receiving acknowledgements and decreasing it upon detecting packet loss. The
amount by which the congestion window is varied depends on the phase the TCP session is
in, namely slow start or congestion avoidance or fast retransmit (in later versions like Reno,
New Reno etc.). In our approach, TCP flows within a group are coordinated by adjusting
the congestion window of all flows based on the assessed network state by a single flow.

We modify the window updation functions to perform:

• Upon packet loss for a flow, decrease the congestion window (cwnd) and ssthresh for
all other flows in the group accordingly.

• Upon receipt of a certain number of acks by the flows in a group, whose RTIs are
lower than the smoothed RTIs of the flows, increase the congestion window (cwnd)
of aU other flows in its group.

We reduce the congestion window of all flows in a group whenever a flow detects a packet
loss because we want to make all flows react instantly to the congestion in the network.
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Here the cwnd and the ssthresh of the other flows are modified in the same manner as they
are modified for the flow that detected congestion.However this can be improved by basing
the modifications on the relative state of the flows compared to the flow that detected
congestion. On the other hand, we use a count of the number of flows that have received
their acknowledgements for the data that was sent and only when the count is beyond a
threshold, do we increase the congestion window of all other flows. This is because we want
to react less aggresively to flows detecting available bandwidth. Otherwise, all TCP flows
would become overly aggressive in transmitting data leading to more congestion and in
turn more packet losses. The threshold can be set to half the number of flows which would
result in increasing the congestion window of flows based on the majority of the flows in
the group obtaining acknowledgements. Also the threshold can be set to a fL',-ed number.
We have found 2 as a suitable threshold in our e.xperiments with 6 TCP flows.

Qur grouping scheme is independent of the way in which we coordinate the congestion
windows and it can be used with any other coordinated congestion control scheme which
is based on grouping flows.

5 Simulation Results

We have performed simulation experiments on the ns-2 simulator. The topology used is
shown below.

6Mb 5ms

3Mb

5 inS
OMb

DESTI

Figure 3: Topology for Simulation Setup

SI'C is the source of traffic (FTP and cross traffic), destO and destl are the sinks for
the FTP traffic, and eng is the sink for the cross traffic. Six FTP flows were used, three
each uetween src and deslO and dest! over TCP New Reno connections. The FTP agent
attached to src transmits an infinitely long file, thus it uses the TCP connection for the
entire length of experiment. Pareto cross traffic was introduced between src and eng. We
used Pareto cross traffic because recent research suggests that it models the Internet traffic
closely. The length of the experiment was 100 seconds. The peak rate of the Pareto cross
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traffic was set to 500](bps, which serves as a good measure of the congestion in the link
shared by all six Hows

We pcrformed three simulation experiments whose results are described below.
In the first case, the link between src and rir is the maximum bottlencck link for all

the six Hows. Here we found that all the six Hows were grouped together most of the time.
The plots of the sequence number of the acknowledgements received at src versus time
is shown in Figures 1. and 5, for both our method and that by using normal Tep New
Reno without using coordinated congestion control. (In all cases, the x-axis is the time in
seconds and the y-axis is the sequence number).

We observe that the throughput achieved by the flows in the normal case varies a lot,
whereas using our scheme, they are much more uniform. The average throughput achieved
by all the flows is almost the same as (but a bit lower than) that in the normal case, the
difference being negligibly small. Also, packet loss rate is much lesser, which indicates a
more network friendly behavior on the part of the TCP flows. This proves the correctness of
our grouping scheme that flows sharing their ma'Cimally congested points must be grouped
together.

Tn the second case, Pareto traffic with a peak rate of 6 Mbps is additionally introduced
between ,·tr and destO making it more congested than the link between src and rir.

We observe that flows between src and destO are grouped together and those between
src and desll are grouped together. This grouping is correct because the maximum point
of congestion for the Oows between src and destO occurs on the link between rt1' and destO
and that it is far higher than the congestion experienced by the flows at the earlier link.
Again, we see that the throughput of the flows grouped together do not vary as they do in
the normal case. Figures 6 and 7 illustrate the results.

In the third case, we had the same set up as the second case, except that the Pareto cross
traffic between src and deslO is introduced after 50 seconds had elapsed in the experiment.

We observe that initially all flows are grouped together, and after 50 seconds flows to
destO are grouped together, while those to desll are grouped together. This verifies that
our algorithm groups flows together dynamically. Again the throughput of all the flows in
a group do not vary. (See Figures 8 and 9.)

From the above simulations we infer that:

• Our dynamic grouping algorithm works correctly, i.e., flows sharing their same max.
imally congested points are grouped together.

• Coordinating the congestion management of the flows in a group leads to better
fairness.

6 Conclusion

We have provided a mechanism to dynamically group TCP flows based on correlating their
RTTs. Our correlation alogorithm identifies flows that share common points of congestion
and the degree of correlation reflects the degree to which they share common bottlenecks.
Our grouping mechanism thus groups flows that share their same ma'Cimally congested
points. Performing coordinating congestion control among flows in a group leads to better
fairness among them.
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7 Future work

Grouping orUDP flows have not been considered here because eClack ofR'IT measurements
on the parl of VDP. Special probe mechanisms may need be considered in order to group
them. We can also vary the congestion control algorithm and try to tune the performance
of the flows.
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Figure 4: One bottleneck; grouping enabled. X-axis denotes time in seconds; Y-a.'<is show the
packets that have been ackcd.
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Figure 5: One bottleneck; grouping disabled.
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Figure 7: Two bottlenecks; grouping disabled.
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Figure 8: Second bottleneck starts half-way; grouping enabled.
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Figure 9: Second bottleneck starts half-way; grouping disabled.
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