
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1998 

Towards Performance-Driven System Support for Distributed Towards Performance-Driven System Support for Distributed 

Computing in Clustered Environments Computing in Clustered Environments 

John Cruz 

Kihong Park 
Purdue University, park@cs.purdue.edu 

Report Number: 
98-035 

Cruz, John and Park, Kihong, "Towards Performance-Driven System Support for Distributed Computing in 
Clustered Environments" (1998). Department of Computer Science Technical Reports. Paper 1422. 
https://docs.lib.purdue.edu/cstech/1422 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


TOWARDS PERFORMANCE-DRIVEN SYSTEM
SUPPORT FOR DISTRIBUTED COMPUTING

IN CLUSTERED ENVIRONMENTS
John Cruz

Kihong Park

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD-TR #98-035
October 1998



Towards Performance-Driven System Support for Distributed
Computing in Clustered Environments'

John Cruzt Kihong Park!
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

{cruz,park}@cs.purdue,edu

CSD-TR 98-035
October 27, 1998

Abstract

With the proliferation of networked distributed resources and the prevalence of workstation
clusters as a dominant computing platform, providing adequate system support for distributed
computing, including parallel computing, has become an important problem. A principal focus
of previous works has been on enabling technologies that facilitate various forms of transparency
including intcropcrability and ease-or-programming. Less emphasis has been given to perfor­
mance and efficiency considerations, the dual, but equally important side to effectively achieving
distributed computing in networked environments.

This paper describes a set of performance features, their properties, implementation, and
evaluation in a software support environment called DUNES. The main performance features
consist of push/pull. based forms of active and passive end-point caching, communication­
sensitive load balancing, distributed demand-based paging, and adaptive commWlication con­
trol. Although each feature targets a separate aspect of performance, collectively, they affect
the scheduling of distributed resources to application processes where both commWlication and
computation requirements are taken into account.

The architecture of DUNES-in addition to incorporating the aforementioned performance
features-allows commodity operating systems to be easily transformed into a distributed op­
erating system while achieving complete transparency with respect to the existing application
base as well as preserving semantic correctness. We show performance measurements of a Solaris
UNIX based implementation of DUNES on Sparc and x86 architectures over LAN environments.
We show that significant performance gains in terms of parallel application speed-up and high
system throughput is achievable.

·Supported in part by NSF grant ESS-9806741.
t Additionally supported by a fellowship from the Purdue Research FOllndation (PRF).
tContact author; tel.: (765) 494-7821, fax.: (765) 494-0739. Additionally supported by NSF grant NCR-9714707,

and grants from PRF and Sprint.



1 Introduction

1.1 Motivation

With the advent of high-speed networks connecting a large number of high-performance work­

stations via local area and wide area networks, harnessing their collective power for distributed

computing, including parallel computing, has become a viable goal. Concurrent applications can

span from everyday applications to numerical and supercomputing applications which include a

diverse spectrum of computational problems ranging from partial differential equations to global

weather simulation to molecular sequence analysis [3, 5, 19, 28, 52, 62, 72, 73, 33, 74].

In addition to intrinsic limitations such as latencies introduced by increased physical distances

between networked hosts, two key issues need to be addressed to facilitate a distributed com­

puting environment capable of emulating the prowess of tightly coupled parallel computcrs­

communication control and load balancing. Although these issues arise in parallel machines as

well, their impact is amplified in workstation networks requiring new solutions.

With respect to communication control, the lack of special calibrated communication facilities in

the form of interconnection networks renders a workstation cluster more prone to congestion effects

when large volumes of data are transferred between hosts. In the case of load balancing, balanc­

ing of processor load without proper regard for communication costs can deteriorate performance

when network communication becomes a dominant factor. Furthermore, uneven access to network

bandwidth among hosts in the system increases the variance in computational progress of paral­

lel applications distributed across participating hosts. This, in turn, aggravates synchronization

penalty stalling application progress.

A myriad of software support environments have been advanced in the past with a view toward

facilitating concurrent applications in workstation environments [2, 6, 11, 12, 16, 17, 23, 35, 51, 67].

A principal focus of previous works has been on enabling technologies that achieve various forms

of transparency including interoperability and ease-of-programming. On the performance side,

significant work has been done in load balancing and process migration [4, 7, 14, 22, 26, 27, 30, 39,

46, 50, 61, 63, 76], a key component to achieving parallel speed-up and high system throughput.

More recently, performance studies of LAN- and WAN-based systems have shown the impor­

tance of controlling network communication for improving parallel or distributed application per­

formance [15, 21, 42, 44, 45, 56, 66]. The sensitivity of application performance to congestion

effects is directly dependent upon the communication/computation ratio and degree of synchrony.

An application with a high communication/computation ratio is prone to generate periods of con­

centrated congestion which leads to debilitating communication bottlenecks. Moreover, if two or

more such tightly coupled processes stemming from communication-intensive applications are split

apart and scheduled on separate hosts, then the resulting communication overhead can overshadow

any gain obtained from a more balanced load.

Synchronous applications-in particular, those with lock-step computation-communication
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iterations-are subject to synchronization penalties which are determined by the progress rate

of the slowest proces$ing element. The latter can be shown to be "exponentially sensitive" in the

number of nodes or workstations participa~ing in ~he computation [43].

1.2 Problem Statement

This paper addresses the issue of achieving parallel speed-up of concurrent applications and high

system throughput in shared network environments, where scheduling of processes to resources is

determined by an integrated approach to computation and communication control.

A principal lesson learned from load balancing is that, in the case of dynamic load balancing,

processes best suited for migration are those that are largely independent (or isolated), long-lived,

and small in size. When this is not the case, the gain obtained from a more balanced load can be out­

weighed by the resulting amplification of communication cost-single host interprocess communica­

tion or file access is turned into its more erratic and expensive cousin, network communication-as

well as the overhead associated with process migration itself. This, in turn, has lead to the practice

of static load balancing, both for its simplicity and the difficulty of performing cost/benefit analysis

of dynamical load balancing at run time.

The latter approach is satisfactory if a distributed application is executed in a dedicated, closed

environment and application-specific information obtained using a priori structural information or

at compile time is sufficient to affect a distribution of load that minimizes application completion

time. However, it has been shown that dynamic communication control in the form of application·

sensitive congestion control is needed to achieve stable network behavior and high throughput which

can reduce application completion time by several factors [42, 44].

When the environment is nonstationary, as is increasingly the case in today's shared workstation

networks whose underutilized resources we seek to harness, with new applications joining and

departing continuously and external factors including computations and traffic flows triggered by

Web browsers and other applications exerting a nonnegligible influence on the contention level of

shared resources, a dynamic resource allocation scheme is needed to achieve both high application

performance and system throughput.

The dynamic scheduling of distributed resources to application processes must explicitly take

into account both computation and communication requirements and their costs, and it must be

responsive to nonstationary changes in system state which may bring forth opportunities-and, in

some cases, necessitate remedial actions-to improve or preserve performance. To achieve these

goals, one, mechanisms must be put into place that facilitate the efficient use of underutilized

re$ources, two, the state of the system must be accurately and efficiently monitored on-line to

provide reliable information for decision making, and three, algorithms are needed that make usc

of the mechanisms and state information in an appropriate way.
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1.3 New Contributions

The contributions of this paper are twofold. First, we propose an integrated approach to com­

putation and communication control where the scheduling of application processes to distributed

resources is affected by explicit incorporation of both computation and communication require­

ment/cost considerations. This is achieved by devising a set of performance enhancement features

aimed at reducing communication cost which, when combined with a facility for accurate and ef­

ficient monitoring of system state, enables a communication-sensitive load balancer to schedule

resources effectively_

Second, we implement our functional and performance features in a library distributed oper­

ating system called DUNES (Distributed UNix ExtenSion) wherein the performance gains are

demonstrated using controlled experiments l . Although the performance enhancement features,

monitoring mechanisms, and integrated distributed scheduling algorithm are platform independent

and thus portable to other environments, the architecture of DUNES provides additional features

including efficiency, transparency, and deployability which makes its implementation and realization

particularly attractive.

The principal components in the performance feature category are those that facilitate the

reduction of communication cost when coupled processes are executed on separate hosts or other­

wise separated from software resources such as files. Dynamic monitoring of system state involves

maintaining a continuously updated profile of "who talks to whom and how much" (interprocess

coupling), "how compute- or communication-intensive is a process" (communication-computation

ratio), and "what is the utilization of hardware resources" (CPU and bandwidth utilization). The

control algorithm-making use of state information encompassing both computation and commu­

nication behavior-dynamically schedules application processes so as to enhance performance.

Performance Features As part of the distributed OS functionality, our system implements

dynamic process migration following the user-level mechanism employed in Condor [51]. How­

ever, unlike in Condor, our dynamic process migration mechanism handles dependencies arising

from interprocess communication and file access maintaining transparent bindings consistent with

UNIX semantics. Our process migration facility also supports dynamic process creation using fork

and related activities (e.g., exec), again, providing functionality consistent with standard single

processor UNIX semantics2 .

To offset or hide overhead stemming from the expanded distributed OS functionality, in par­

ticular, those due to dependencies arising from interprocess communication and file access in the

presence of process migration, we implement a set of performance enhancement mechanisms de-

lSome researchers may object to calling a non-kernel· based implementation of distributcd operating system fUllc­

tionality a Udistributed operating system." \Ve explain our reasons below.
2What we mCilll by "consistent with standard single processor UNIX semantics" is that, fixing a specific version

of UNIX, the execution obtained from our system is sequentially consistent with the corresponding single processor

system.
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scribed below:

• Active end-point caching To hide the (network) communication latency incurred by processes

engaging in IPC that have been split apart due to migration, we employ a prefetching or push­

based caching mechanism which forwards data written to a communication channel to the

target process without waiting for the issuance of reads. Since network latencies can be

large--especially when the network is congested~this mechanism attempts to maximize the

benefit of concurrency by hiding its potential communication cost.

• Passive end-point caching Similarly to active end-point caching, we seek to minimize the

cost of remote access to files by a process which has been separated due to migration. We

employ a form of prefetching coupled with paging and "client side" caching such that reads

and writes can be handled locally at the remote host whenever possible. We implement a

cache consistency mechanism with single writer/multiple reader semantics which conforms to

standard UNIX semantics.

• Demand paging of process image We seek to reduce the cost of migration in which a major

portion of the cost is due to the transfer of an entire checkpointed image. Instead of sending

an entire checkpointed image to the host where a process is to be resumed, we send only those

pages that correspond to the current working set, and the remaining pages are fetched on

demand. This ensures that the time taken for migration is considerably less when compared

against the time incurred transferring the entire checkpointed image.

• Communication-sensitive load balancing Whereas the aforementioned mechanisms try to

minimize the cost of facilitating dependencies over a distance, communication-sensitive load

balancing tries to prevent strongly coupled processes (coupled with other processes or files)

from being split apart in the first place if the benefit of parallelism is deemed less than its

cost. This is enabled by an efficient run-time state monitoring mechanism that quantitatively

estimates process-to-process and process-to-file communication patterns which can then be

used to perform a form of cost/benefit analysis to avoid unfruitful migrations and instantiate

fruitful ones.

Another important performance feature is adaptive communication control where application­

sensitive congestion control is applied to improve the effective throughput achieved by processes

belonging to a concurrent application distributed across a network. In previous works [42, 44, 45]

we have shown that significant performance gains~up to a factor of 4 under heavily congested

network conditions-can be obtained for parallel applications if a state-of-the-art dynamic conges­

tion control [58J is applied to regulate traffic flow on a per-application basis. We omit adaptive

communication related results due to redundancy and brevity reasons.

Architectural and Functional Features Another goal of the paper is to report our experience

with designing, implementing, and evaluating a user-level "off-the-shelf' distributed operating sys-
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tem3-DUNES-that, in addition to incorporating the aforementioned performance enhancement

features is efficient, easily deployable, transparent, and extensible. The architectural features,

individually, have limited appeal. However, when combined, they coalesce into an approach to

distributed operating system design whose properties render it practically viable. We elaborate on

each of the features below:

• Off-ike-shelf Our system is "off-the-shelf" in the sense that it runs on top of commodity

operating systems imparting distributed OS functionalities while respecting the existing ap­

plication base. As a by-product, it is easily deployable and portable in the sense that the same

architecture can be fitted on different commodity operating systems (e.g., UNIX, Windows

NT) and hardware platforms.

• Transparent The first form of transparency is a side effect of the off-the-shelf feature in

that existing applications need not be recompiled-just .elinked with a modified system call

library-to run on DUNES. This significantly reduces the barrier faced by new operating

systems and computing environments being adopted by existing systems.

The second form of transparency is junctional transparency where DUNES ensures that vari­

ous forms of dependencies including process-to-process and process-to-file depencies arc trans~

parently maintained by the system in the presence of dynamic scheduling. Thus, for example,

if a process migrates to another host, its existing dependencies continue to be preserved com­

pletely transparent to the process.

The third form of transparency is semantic transparency where, in the process of achieving

functional transparency, the semantic correctness of application execution is ensured. DUNES

provides a complete single system image to the user which extends to semantic correctness:

a concurrent application running under DUNES across multiple workstations achieves a se­

quentially consistent execution as its counterpart on a single processor host. In particular,

DUNES preserves single processor UNIX semantics.

• Efficient Our system implements distributed OS functionality with minimal overhead by

implementing the functionalities as a thin layer above the system call layer, i.e., the interface

to the set of services exported by a kernel. If kernel modification-thus violating both the

off-the-shelf and transparency features-is not an issue, the same modifications can be imple­

mented inside the kernel, however, yielding no performance difference except that the added

instructions would be executed in kernel mode.

• Extensible Our system is easily extensible with respect to its functionality including differ­

ent conflict resolution schemes ("who gets what" policy), real-time scheduling for multimedia

:lit is, at the same time, a software system support environment in the sense that all the features are implemented

as user-levellibrarics, albeit, at a "low level" as explained below.
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tasks and other QoS-sensitive applications, and run-time system state monitoring. The lat­

ter is used to facilitate dynamic communication-sensitive load balancing. Extensibility is

a by-product of DUNES' library operating system approach to imparting new or extended

functionality.

Our goals are ambitious in the sense that we seek the "best of both worlds" by designing a dis­

tributed operating system that is easily deployable using the technique of libra'il) opemting systems

to impart distributed as functionality while delivering significant performance improvements which

approach that of kernel-based distributed operating systems. Distributed as functionality is in­

jected into a commodity OS-our implementation is in the context of UNIX (SunOS 5.5.1) on

both Spare and x86 architectures-by redefining the service access point or system call interface

(mostly wrapper code trapping to syscall in Solaris) to kernel services, replacing the system call

library with our modified library and relinking applications with the new library. Thus applications

need not be recompiled. This method of adding functionalities has been used in the past, among

other things, to facilitate user-level checkpointing and process migration in UNIX [51, 53]' and it

can be viewed as part of the general framework of library operating systems [47] to extending as
functionality.

In the context of concurrent application development for parallel and distributed applications,

the programming model that DUNES exports to the programmer is one of writing concurrent pro­

grams for a single processor UNIX environment. If the concurrent application is correctly written

for a single processor environment, then DUNES guarantees that it will execute correctly in the

distributed resource environment. If the granularity of an application's concurrency is variable

and thus controllable by the programmer, then, as with parallel architectures, sufficient granular­

ity needs to be imparted such that parallelism-if beneficial-can be exploited over a workstation

network environment. This can also be affected with the assistance of parallel compilation tools

that transform a serial program---oftcntimcs annotated-into a concurrent form suitable for par­

allel cxecution. If DUNES' communication-scnsitive load balancer does not deem beneficial to

distribute load at the granularity allowed by the concurrency of the application, then, as with

parallel computers, multiple application processcs are schcdulcd on a single host.

The rest of the paper is organized as follows. In the next section we summarize related work.

This is followed by Section 3 which describes the basic DUNES architecture including its func­

tional and performance features. In Section 4 we describe communication-sensitive load balancing

where all of the performance-oriented features are brought together to affect integrated computa­

tion/communication control. Section 5 shows performance results of a DUNES implementation for

Solaris UNIX (SunOS 5.5.1) on both Spare and x86 architectures measured over private, controlled

LAN-based workstation network environments. We conclude with a discussion of our results and

future work.
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2 Related Work

There are many distributed computing platforms and distributed operating systems currently in

existence [8, 20, 24, 48, 51, 55, 68, 69J. The former are spearheaded by recent developments

in network computing [G8, 70, 71] where the primary focus has been on enabling technologies

that achieve platform independence and allow heterogeneous distributed resources to be harnessed

across networked environments. Distributed operating systems, for the most part, are written

from scratch and are kernel-based: distributed as functionalities are resident inside the kernel.

Building a complete distributed operating system from scratch is a monumental task. A subarea

of operating systcms---extensible operating systems [9, 29, 32]-trics to make the building of new

functionalities and reuse of existing functionalities easier through various means. In all cases, there

is a well-defined interface to kernel services and other predefined services.

The microkernel approach to operating system design tries to make the functionality exported

by a kernel minimal with behavioral customizations carried out at the user level. The exokernel [29J

is an extreme instance where management functionality is separated from protection functionality

and only the latter is provided by the kernel. Thus memory management, scheduling, and other

traditionally kernel-based services are now implemented at the m.er-level allowing for maximum

user control and flexibility. It is clear that a complete distributed as can be built at the user level

on top of Xok-the exokernel for x86-based machines-and exported as a set of libraries, also called

library operating systems (libOS) [47J. A key question associated with the microkernel approach is

whether the resulting systems perform as efficiently as their monolithic brethren (e.g., UNIX).

The library as approach to imparting resource management functionalities, to some extent,

blurs the dividing line between "hard core" distributed operating systems of the past-by def­

inition, kernel-based-and the abundance of network computing platforms today. In the libOS

approach, resource management functionalities-including some only previously found inside the

kernel even for microkernels-arc purposely implemented using user-level libraries. Whether the re­

sulting system is called a software support environment or distributed operating system is a matter

of taste and interpretation. Our approach to imparting distributed as functionality to commod­

ity operating systems can be viewed as an instance of libOS, albeit interfacing with a monolithic

kernel rather than a microkernel. We seek the best of both worlds-transparency from network

computing and efficiency from distributed operating systems. The most challenging technical (Le.,

mechanistic) aspect of distributed as functionality-process migration-can be achieved at the

user-level on top of commodity UNIX [51, 53, 60] and forms the starting point for facilitating full

distributed as functionality.

Some kernel-based process migration facilities include those in Amoeba [69J, Clouds [24], V [20J,

MOSIX [8]' and Charlotte [31), to mention a few. The 'lUi system [65) is interesting from the

perspective that it supports process migration across heterogeneous machines. Process migration

for heterogeneous environments is also studied in [13J. However, due to the significant translation

cost involved, it is rarely considered a viable dynamic load balancing strategy. A survey of process
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migration mechanisms and related issues can be found in [64J.

Our system is similax to Condor [51J in that it follows the latter's user-level process migration

scheme. However, unlike Condor, our dynamic process migration mechanism handles dependencies

arising from interprocess communication, network communication, process creation, and file access

while maintaining transparent bindings consistent with UNIX semantics. Condor is restricted to

migrating "stand-alone" processes with support for remote files access using RPC. Our process

migration facility supports dynamic process creation using fork and related activities (e.g. , exec),

and thus increases the set of applications that can be supported. This is important from the

perspective that present day applications tend to engage in some form of interaction-frequent or

infrequent-with other applications and resources, and thus maintaining dependencies correctly

with respect to standard UNIX semantics is an important requirement.

Another related system is GLUnix [37]. However, GLUnix does not support process migra­

tion and dynamic load balancing, and it docs not possess the performance enhancement features

of DUNES. A similar observation holds for PVM (Parallel Virtual Machine) [68], an execution

environment for the development and execution of large concurrent and parallel applications that

consist of many interacting, but relatively independent, components. MPVM [18J and Dynam­

icPVM [25J are extensions to PVM that support process migration. They follow the approach used

by Condor to checkpoint and restart processes.

The benefit of prefetching and caching has a long history spanning a number of areas from

database systems, to file systems, to computer architecture and operating systems, and has gained

renewed interest due to the proliferation of networked systems where latency hiding has become im­

perative for performance [1, 38, 59]. Sprite [54], for example, adopts non-write-through file caching

employing a simple cache consistency mechanism and it is shown that "client side" caching­

corresponding to our passive end-point caching-can reduce both server and network load signif­

icantly. The DFS file system of OSF's Distributed Computing Environment (DCE) implements

a token-based cache consistency mechanism with expiration timers which effectively yields a sin­

gle writer/multiple reader semantics which, in turn, conforms with UNIX semantics. Our passive

end-point caching mechanism adopts a token-based cache consistency mechanism similar to DFS'

scheme. This is motivated by the relative simplicity of implementing single writer/multiple reader

semantics. A recent study by Guy et al. [38] has shown that an optimistic replication policy based

on the former leads to satisfactory performance and provides room for further improvement.

3 Architecture of DUNES

3.1 Overall Structure

DUNES (Distributed UNix ExtenSion) is a distributed operating system designed using the ap­

proach of library opemting systems [29]. Operating systems export a number of services executed

by the kernel via the interface of systems calls, e.g., in the case of UNIX, the system call stubs in

8



User
S"'~

"Keruel u C
Roulines e _q.u

Applic.uions &

Non-kernel OS Routine..

I Sy~lcm Call Inlcnace

, I

UNiX Opualillg SYSll!nl

u.,
Spocc

Encoprublinn

Kcmcl __
Routine..

Applications &
~ Non-kcmol OS Routines

-------f SystemCillIntc:rfac:e I

"" , ·d" ~,

~~g 0" u ~ 'I: ~~ ,- " •
~~.u ,; "• ~ B

Hardw=

DUNES

Figure 3.1: Left: Structurc of typical UNIX operating system. Right: UNIX operating system

augmented by system call encapsulation and DUNES resource management routines.

the standard C library. Since all kernel services must bc accessed through this narrow, well~defined

corridor, by modifying the system call interface ncw functionalities can be added to the operating

system without changing the kernel.

In addition to user~level extension of operating system functionality, this approach allows an

existing application base to be run without recompilation by relinking with the modified library

thus achieving backward compatibility. These features, in turn, are conducive to deployability in

the sense that a stand-alone commodity as can be turned into a distributed operating system

just by installing a new library. Proximity and intimate control over system resources, short of

changing the kernel, are preserved via a thin, transparent encapsulation layer which distinguishes

this approach from network computing based approaches which are prone to introduce significantly

more overhead. Transparency and deployability, we believe, represent an important advantage over

kernel based distributed operating systems which, in spite of their numerous manifestations [8, 20,

24, 55] have as yet achieved only partial success at wide-spread use due to the practical burden

of incompatibility and inertia posed by stand-alone commodity operating systems. Figure 3.1

illustrates this design methodology.

The library as approach to designing distributed operating systems can be applied to both

microkernels and monolithic kernels where in one extreme instance of the former-MIT's exoker­

nel [29]-except for protection functionality, all other resource management functionalities including

memory management are performed by user-level library routines. This degree of customization

allows the potential for increased efficiency, an active area of operating systems research. As we

seek the "best of both worlds"-transparency and efficiency-in the case of monolithic kernels (e.g.,

UNIX), to approach the efficiency level of microkernel based designs and kernel based distributed

operating systems, we implement a set of performance enhancement features and resource control
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mechanisms aimed at hiding intrinsic efficiency limitations and thus improving performance.

3.2 DUNES Components

In this section, we give an overview of DUNES' architectural components which consist of functional

and performance features. The functional components form the basic layer of enabling mechanisms

that allow distributed resources across a workstation network to be transparently shared and the

system state to be transparently and efficiently monitored. The performance enhancement compo­

nents are features built on top of the functional components and they facilitate the efficient sharing

of distributed resources through pull/push based caching of active and passive end-points, demand

paging of process state, and integrated computation/communication control.

3.2.1 Functional Features

Transparent Processor Sharing As with other distributed operating systems and distributed

computing environments, a principal component of DUNES is the transparent enabling of processor

sharing across different workstations which facilitates increased system throughput and application

performance if the associated overhead is not "too large. ll The primary enabling feature of trans­

parent processor sharing is process migration. Techniques for transparent process migration using

user-level libraries for checkpointing and restart are well-known [51 , 53, 60] and we follow an anal~

ogous strategy in our own implementation.

First, application binaries, when being relinked with the modified system call library, are also

linked with the DUNES start-up routine MainO which, after initialization, transfers control to the

application binary proper by calling mainO. DUNES' start-up routine essentially installs an "all­

purpose" signal handler for the SIGUSRI signal which encapsulates three separate functionalities:

one, responding to the load balancer's command to checkpoint for subsequent process migration,

two, to respond to timeLcreate's alarms for periodic logging of run-time monitored short-term

communication and computation information, and three, for checking if the signal originated from

the user process itself, in which case, the user's signal disposition is invoked. The checkpointed

image is then migrated by a process migration daemon to its counterpart on a designated destination

host.

A migrating process maintains state information on the host where it was initially staJ:ted­

called the home base-in the form of a proxy process that subsequently handles its process-to-process

and other dependencies transparently. This is done by execing the proxy code from inside the

application process-the last action of the DUNES SIGUSRI signal handler after checkpointing­

which then inherits the relevant properties of the migrated application process. The migrated

application process also maintains a corresponding remote proxy on the destination host which, in

addition to acting as a liaison, also carries out other functionalities including managing the local

cache for passive and active end-point caching. The home base proxy, by monitoring all open

descriptors belonging to the migrated application process (using select) on the home base, is then
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able to transparently handle the dependency relations described below.

If a migrated process is subsequently migrated again, then all state information on the previous

remote host is deleted and the configuration reached is indistinguishable from the previoUB migrated

configuration: home proxy on the home base and remote proxy and mlgrated application process

on the destination host. Thus repeated migration does not increase the complexity of the system

state. A snapshot of the system-when restricted to the state information for a single migrated

process-is shown in Figure 3.2. After migrating process P from host A to host B, what remains

is the triangle relationship between mlgrated process pi via remote proxy R to home proxy H.

Transparent Dependency Maintenance Transparent process migration, for isolated processes,

is a straightforward matter. All processes have some form of dependency (e.g., parent/child relation

in UNIX), but more importantly, most processes engage in some form of activity such as file access,

interprocess communication (IPC) on a single host, and network communication over separate

hosts. Furthermore, a process, after migration, may fork off another process which can complicate

the picture significantly. Transparently maintaining dependencies in the presence of mobility using

user-level techniques is a nontrivial challenge. Condor [51], for example, supports transparent file

access but does not allow process migration in the presence of IPC, network communication, or

fork. One practical justification for this is that, other things being equal, the processes that benefit

most from migration are isolated processes. Transparent file access, even for the most rudimentary
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processes, is a necessity and this is provided through various means including interfacing to a

network file system (if one exists).

However, more and more, processes engage in some level ofIPC and network commumcation­

for some applications such as parallel computing applications the communication/computation

ratio can be exceedingly high-and excluding them from dynamic load balancing may incur a

significant opportunity cost [40, 41). DUNES provides the mechanisms for maintaining dependencies

transparently, and the issue of whether for certain processes it would be beneficial to migrate is left

to a performance enhancement feature-the communication-sensitive load balancer-to decide. In

this way, we have the option of engaging in migration when it is beneficial to do so even in the

presence of nontrivial interprocess coupling (d. the sections on performance measurements), and

refraining from doing so if it is deemed detrimental.

Another important aspect of maintaining dependencies transparently is the issue of correctness

and semantics. If transparency is "provided" but program execution correctness-according to some

fixed criterion-is not preserved, then the resulting system can be potentially perilous, burdening

the programmer with additional concerns. DUNES' functional features provide single processor

UNIX semantics which, in turn, is based on the notion of sequential consistency. The programmer

can write concurrent code with single processor UNIX semantics in mind and the transparent

dependency mechanism will guarantee that its execution will be sequentially consistent with the

program's execution on a single processor UNIX system.

When a process P migrates from a host, it leaves a proxy process H on that machine. On the

destination machine a proxy process R is created (see Figure 3.2). The application process talks

to R through a pipe and R talks to H over the network using TCP. For every system call that a

migrated application invokes, a request is sent to R which is forwarded to H. H executes the syscall

call on behalf of the application process and sends the result back to the application process through

R. As H is exeeed by the application process, it inherits file descriptors, signal dispositions, and

other relevant properties leaving the dependencies intact for transparent maintenance.

When a migrated process migrates again, R on the current host is terminated and started on

the new host. This ensures that there is no dependency left on the host on which a migrated process

was previously executing. When a migrated process forks, a similar structure (H and R) is created

for the child process. This ensures that the child process can be separated from the parent process

for further migration. Subsequently, except for the parent-child relationship and all that it entails,

the child is an autonomous entity and the resulting configuration is indistinguishable from one

where the child process would have been forked first---on the home base-and then migrated. In

other words, the two operations commute.

Communication and Computation Monitoring The library as approach to distributed

operating system design has the beneficial side effect that run-time monitoring of communica­

tion activities can be done transparently, accurately, .and efficiently. Since all process-to-process
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Figure 3.3: Left: Active end-point caching. Right: Pa.'lsive end-point caching (the proxy process

on the destination machine RPXY acts as the page manager).

or process-to-file communication must go through system calls4 , by implementing simple count­

ing mechanisms inside read, write, send, receive, and other I/O related system calls on a per

descriptor basis, the communication behavior of application processes can be readily monitored.

Computation information such as CPU utilization on a per process basis is maintained by the kernel

(e.g., /proc file system for Salaris) and can be periodically queried to obtain both long-term and

short-term behavioral information. In DUNES, run-time communication and computation moni­

toring is used by the communication-sensitive load balancer to affect distributed scheduling based

on an integrated approach to computation and communication control.

3.2.2 Performance Features

Active End-Point Caching When communicating processes ou a single host are split apart

onto separate hosts or processes engaging in network communication are migrated to more "dis­

tant" hosts-either physically (link latency and physical bandwidth) or logically (queuing effects

and available bandwidth)-then even though the resulting action may yield a net gain in system

throughput and application completion time, the performance benefit can be further improved if

the effective communication cost is reduced by employing a form of push-based caching. For ex­

ample, in the case of fifo or pipe based IPC turning into network communication due to process

migration, whenever a write is executed, the data is immediately shipped to the reader (in the case

of multiple readers to the most "likely" reader) such that when a reader executes a read operation,

40ne exception is IPC through mapped shared memory segments although, if efficiency is not a consideration

(shared memory is thc fastest form ofIPe and is used, by convention, with this in mind by application programmers),

then even this can be done.
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the data is already in the reader's local cache and access time is close to the cost of a local read.

In the multiple reader case, some care has to be taken to prevent one reader (i.e. , process) from

being starved by another5 as well as making sure that the cached data is shipped to the correct

destination given that IPC and network communication data is of a consumable nature.

Active end-point caching not only hides communication latency but it also enables scheduling

actions involving process migration to be fruitful when, without, the same actions may be deter­

mined to be detrimental. Thus this leads to further opportunities for performance improvement

which would otherwise not be accessible. Of course, this assumes that a distributed scheduler is

able to make use of run-time communication/computation information appropriately by performing

accurate cost/benefit analysis of various possible actions. This issue is discussed in the design of

communication-sensitive load balancing.

Figure 3.3 (Left) shows a typical scenario involving a read-shared fifo accessed by two or more

migrated processes. One of the migrated processes' proxy takes charge as the cache manager. The

other proxies contact the cache manager to get the cached data. When applications that run on

the home base want to access data from the active end-point, they too have to contact the cache

manager. This access subsequently disables caching to reduce the overhead for processes running

on the home base.

Passive End-Point Caching Analogous to active end-point caching, pa.'3sive end-point caching

uses a push-based or prefetching mechanism to hide communication latency when files are accessed

remotely by a process due to separation. Network file systems (e.g., Sun NFS) employ caching to

reduce access times. DUNES, by default, does not assume the existence of a network file system

to achieve generality-optimizations to interface with particular network file systems, if detected

to be present, are in progress-but rather engages in its own push-based caching scheme. We use

a page-based system with k (by default k = 2) pages and page size S (by default S = IkE) with

LRU page replacement policy (see Figure 3.3 (Right)).

DUNES implements single writer/multiple reader semantics using a cache consistency manager

which is consistent with single processor UNIX semantics. The granularity of access is on a per-page

basis, and as is well-known, there is a trade-off between page size and frequency of conflict, with

increased granularity carrying a commensurate management overhead cost. Single writer/multiple

reader semantics is the simplest but also most restrictive cache consistency protocol. However,

previous studies on read/write access in UNIX file systems and more recent studies for collaborative

workgroup environments [38] have shown that concurrent read/write access-and even more so for

write/write access-to common files is a infrequent event which, by Amdahl's Law, warrants the

use of more optimistic consistency protocols.

Demand Paging of Process Image When migrating a process, there are two costs involved-a

fixed cost and a variable cost. The fixed cost consists of setting up the proxies and the variable cost

5This may still be correct with respect to single processor UNIX semantics but a programmer oftentimes relies on

implicit performance assumptions that the timesharing class of UNIX schedulers provide.
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depends on the size of the process image-in particular, its virtual address space-being migrated.

In [26], different methods of transferring virtual memory are discussed. They apply to systems

where process migration is supported by the kernel. One of the promising approaches (described

in [26]) is the method used by Accent [75] called the copy-on-reference mechanism. Here, when

a process migrates, only the process state is transferred. The migrated process begins execution

almost immediately. Virtual memory pages are transferred only on demand, resulting in short

delays during execution.

In DUNES, a mechanism similar to Accent's copy-on-reference mechanism is incorporated.

When a process is checkpointed, the checkpoint image is written to disk and the virtual memory

freed. Only the text segment along with the process state is transferred to the destination machine,

and the other segments are transferred on demand. When a checkpointed process is restored, all

mappings other than the mapping of the text segment are maJ.·ked inaccessible. When an address

within a segment marked inaccessible is accessed, a SIGSEGV signal is delivered to the application

process. From the fault address, it is determined whether the address is valid or invalid. If the

address is valid, the corresponding page is restored from the source machlne's disk and is marked

accessible. When control returns from the signal handler, the process continues execution from

where it left off. Further optimizations, such as freezing the process on the source machine rather

than writing the image to disk, are possible. These optimizations can further reduce the start-up

time after migration.

Communication-Sensitive Load Balancing A principal lesson learned from load balancing

is that, in the case of dynamic load balancing, processes best suited for migration are those that

are largely independent, long-lived, and small in size. When this is not the case, the gain obtained

from a more balanced load can be outweighed by the resulting amplification of communication cost

as well as the overhead associated with process migration itself.

Critical to the success of communication-sensitive load balancing is a method for cost/benefit

analysis that accurately estimates or predicts the "goodness" of the configuration reached after

the execution of an action that may involve one or more process migrations. This, in turn, is

dependent upon an effective measure of goodness. We define such a measure called progress rate

which incorporates both communication and computation requirements-as exhibited by a process'

behavior--;-whlch is related to the communication/computation ratio of a process. With the assis­

tance of our run-time monitoring mechanism, we are able to predict the progress rate of a potential

next configuration, and by comparing with the measured (or observed) progress rate of the current

configuration, determine the ranking of candidate actions and decide whether it is worthwhile to

take an action. The communication-sensitive load balancer-centralized or distributed-uses the

predicted progress rate of candidate configurations and iteratively takes actions until nO further

performance improvement is deemed possible. The progress rate estimation procedure is accurate

as long as actions involving process migrations are nonoverlapping and admits an efficient form of

distributed control.
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We note that one other important factor in the success of dynamlc load balancing is the process

lifetime distribution of application processes. Given the progress rates of two different configura­

tions, there is a break-even point, parameterized by the cost of process migration itself, where only

if the process' lifetime is longer than a certain period~which itself depends on progress rate-is

process migration beneficial. Recent work [40, 41] in process lifetime distribution of UNIX processes

has shown that process lifetimes are heavy-tailed (i.e., the tail decays hyperbolically, not exponen­

tially) which allows effective prediction due to the presence of long-range correlation structure.

Lifetime prediction is a separate subject matter unto itself of independent interest and is not part

of the scope of this paper. In the remainder of the paper, we assume suitably long-lived processes

where the estimation of predicted progress rate is the primary concern.

4 Communication-Sensitive Load Balancing

The following sections describe the various components of communication-sensitive load balancing

including a definition of the resource allocation problem, progress rate, its estimation, and the

overall structure of the integrated load balancer.

4.1 Integrated Resource Allocation Model

The hardware resources and their configuration arc described by a graph structure called the

resource relation graph. A similar graph structure is used to describe processes, their couplings

which includes interprocess dependencies as well as dependencies on other software resources such

as files.

First, let us define the resource relation graph or simply resource graph. A resource graph is a

directed graph given by a four-tuple QR = (VR,ER,fR,9n) where Vn denotes the set of nodes or

hosts and ER ~ VR X VR denotes the set of links connecting the hosts. The links can, but need

not, represent physical connections. In general, they represent logical connections or paths over an

internetwork which could be as simple as a single hop on a LAN.

In : Vn ----1 IRs, s ~ 1, is a function that characterizes the resource configuration on the hosts.

For example, if s = 2, then the first component might refer to the number of processors or CPUs on

a host and the second component may represent the clock rate. 9R: ER --7 JR.'-, r ~ 1, characterizes

the property of a link which may include components such as bandwidth and link latency. In,9n

may be generalized to represent more complex resource characteristics (e.g., processors on a given

host may possess different clock rates).

Let us define the process relation graph or simply process graph which depicts the various

dependencies that processes possess both with respect to inter-process couplings and other software

dependencies. A process graph is a directed graph given by a four-tuple Qp = (Vp U V~,Ep'f' A)
where Vp denotes the set of processes, Vp denotes the set of all other software objects (e.g., files),

and Ep ~ Vp x (Vp UVp)denotes the set of inter-process and process~to-softwaredependencies.
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'Y : Vp -+ lIlr gives the communication/computation ratio of a process which is one way to

capture its dynamic behavior. Thus for k E Vp, the larger 'Y(k) the more I/O intensive process k

is. )..; £p -+ II4 is a refinement of'Y and represents the coupling of processes to other processes or

software resources. ). and 'Y satisfy

-y(k) = I: A(e),
cEcp

k E Vp, e contains k.

Thus the process graph may be defined as a triple where 'Y is then defined in terms of )..

4.2 Progress Rate and Optimal Scheduling

A resource assignment or simply configuration is a function ( : Vp U V~ -+ Vn that assigns every

process and software resource to a host, in general, many-to-one. In this paper, we will be concerned

with the situation where all software resources belonging to V~ are assigned to a fixed host. That

is, for all k E V~ there exists i E VR such that for all ~ we have ((k) = i. Fixing such an assignment

of V~, let 3 denote the set of all configurations ( that obey the fixed assignment.

To introduce performance, we next define the progress rate of a process. The progress rate

V{ : Vp -+ lR.t, given a configuration ( E 3, is a function that quantifies how fast a process k E Vp

progresses with its computation. For example, V{(k) may represent the number of process k's

instructions executed per unit time given the resource assignment e. Clearly, progress rate will

depend on configuration, and conversely, the "goodness" of a configuration may be measured by

the progress rate that it induces over all processes in the system. This leads to the average progress

rate, given configuration~, of all processes in the system

For typical process and resource graphs and resource assignments ~ E C, we would expect the

following monotonicity properties to be satisfied:

and (4.1)

where k E Vp and fa(i), gn(i) are the resource properties6 . That is, as resources are increased­

other things being equal-the progress rate of an application is not adversely aHected if not helped.

For some resource properties (e.g., link latency), the monotonicity relation may occur in the negative

direction, e.g., increased link latency is "bad." However, by a change of variables, they can always

be formulated in a uniform way. For some pathological cases, an increase in resources may result

in a decrease in progress rate for one or more application processes. We will exclude such cases

from the model.

GIn (4.1) we have assumed, for simplicity of exposition, that !R{i), gR(i) are scalar quantities. Similarly, we use

continuous notation to keep the cluttering of notation to a minimum. Their discrete counterparts are straightforward

to derive.
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The aforementioned development allows us to formulate a static optimization problem corre­

sponding to the optimal resource allocation problem:

(4.2)

This problem can be shown to be NP-hard. The proof is omitted for brevity.

Theorem 4.3 The decision problem corresponding to the optimization problem given in (4.2) !s

NP-hard.

Thus far the resource allocation problem we have formulated is a static optimization problem.

The dynamic optimization problem where both the process graph and resource graph are func­

tions of time-e.g., load arrival process for process graph and structural perturbations for resource

graph-is straightforward to formulate but even more difficult to attack than the static counterpart

which is already NP-hard.

We take the quasi-stationary approach to solving dynamic optimization problems [34J where

we assume that the nonstationary system can be decomposed, in time, into stationary segments

during which a solution procedure to the stationary problem-incorporating both computation and

communication costs-is applied.

4.3 Iterative Load Balancer

An elementary operation in the integrated scheduling algorithm will be the approximation of the

progress rate difference of two configurations {, {' E B

In particular, given a configuration {, we will be interested in the set of configurations

N(() = {(' E B, 3i E Vp, '1k E Vp \ {i},((k) = nk) and ((i) f ni)}.

That is, N(~) consists of all configurations where the process-to-host assignment differs with { on

a single process. Thls is, for example, the case when a single process is migrated from one host to

another host for a given configuration.

Since~, by definition, incorporates both computation and communication requirements as well

as their costs under the configuration {, if d((, {) > () for some () > 0, then process migration as

dictated by {, e would be warranted to improve performance. This also implies that () need only

be a function of process migration cost-an easily estimable quantity-and the lifetime duration

of processes which has been investigated in [40, 41]. For certain parallel computing applications,

process lifetimes can be on the order of minutes, hours, if not days, and the process migration cost

becomes a negligible factor.

18



4.4 Conjoint Computation/Communication Scheduling with Progress Rate

As a first step to estimating d(e, '), let us consider the case of mutually independent or isolated

processes that do not engage in interprocess communication with each other. Let k, E E Vp be two

such processes. By definition, A(k,E) = A(E,k) = O. That is, their coupling is zero.

Fix two hosts i,j E VR where '(a) f i,j, for all a E Vp. That is, they are empty. Assume

that all hosts engage in head-of-line processor sharing (PS) [36, 49) when scheduling processes, the

basic template on which most OS processor scheduling algorithms are based. Assume a slotted

system with equal time slots; this is used in modeling the ON/OFF (i.e., computation vs. blocking)

behavior of processes where, during a time slot, a process is either ON or OFF.

Let Pi, 0 ::; Pi ::; 1, be the utilization of host i and let PiCk) be the utilization attributable

to process k. Clearly, if k is the only process running on i, then Pi = PiCk). We will denote

this single-process-alone-on-a-host utilization by Uk (fix a reference host or assume all hosts are

homogeneous). In all of the above, we assume "long-lived" processes in the sense of infinite lifetime

and for which the ratio Ctk exists. Also, note that

. V,(k) T
ak = Pirkl = lim -'-'-p.-C-

T--->oo LT

where T is the unit of time over which progress rate is measured, LT is the maximum amount

of work (e.g., number of instructions) executable within time T, and , is any configuration that

assigns process k, and only k, to host i. When T is fixed, we will sometimes call V(.(k)T/Lr the

progress rate of process k when there is no confusion.

The basic question we wish to answer is: given two mutually independent processes k, eE Vp

with ratios O::b ae, what are their progress rates pi(k), PiCE) when jointly scheduled au the same

host i. This is needed in estimating the predicted progress rate stemming from migrating process

k onto the same host as process E.

Lemma 4.4 (Two-Process Utilization) Let k, eE Vp be two mutually independent processes,

i.e., A(k,£) = A(e, k) = 0, with single-process-alone-on-a-host ratios Ctk, Ue. Then if k, e are jointly

scheduled on host i E VR implementing PS processor scheduling,

a,
pi(l) = 1+ 'CtkCte

(4.5)

with probability 1 where the probability space is with respect to picking (uniformly) randomly from

the set of aU processes with ratios Ctk,Cte, respectively.

Clearly, Pi = Pi(k) + pi(P.) = (Uk + Ct,e)/(1 + Ctkll'e). The lemma can be generalized to n ~ 0

processes. Since the ak's are observable quantities, the progress rate of candidate configurations

can be computed. Figure 4.1 illustrates the scheduling of two processes k, eE Vp with their given

single-process-on-a-host profiles and the resulting joint schedule under PS scheduling.
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Figure 4.1: Joint scheduling of two processes k, £ with given single-process-alone-on-a-host profiles

using PS and the resulting schedule.

Proof oj Lemma 4.4. The trace of process k, when scheduled alone on host i, can be viewed as a

random sequence

where xt, x~, ... are i.i.d. binary random variables with Pr{ x~ = I} = D:k, Pr{ x~ = O} = 1- CXk

where "x~ = 1" represents the event that at time slot n process k occupies the CPU and "x~ = a"
means that the CPU is idle. Similarly for process t.

First, consider conjointly scheduling xf and xf. Using PS scheduling, if the values are 00, then

neither process requires the CPU and thus the first slot remains idle. If the values are 01 or 10,

then only one process needs to access the CPU, the slot is allocated to one of the processes, and

thus, is utilized. If the values are 11, PS scheduling dictates that processes k, I!. be serviced each

with rate 1/2 during the next two time slots.

Let Y = YIY2'" Yrn . .. denote the random variable obtained by applying PS to x k and x e

iteratively. Based on the above, the process of obtaining y may be viewed as depending on an

infinite trial of a four-sided coin toss with outcomes 00, 01, 10, 11, respectively, each with probability

(1 - a,.)(l - at), (1 - adae, ak(1 - alJ, and akae. Given m ~ 0, let Ak(Y, m) denote the total

time interval-which must equal an integer number of time slots-in the prefix yrn = YIY2· .. Yrn

where process k has been scheduled. Then

.(k) - 1· A,(ym,m)PI - 1m .
m--+oo m

(4.6)

Assume n trials of the four·sided coin toss have been executed. Let Bra denote the number of

10 outcomes and let Bfl denote the number of 11 outcomes. Then it follows that

m=n+Bfl
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where m is the length index from equation (4.6). On the other hand,

Thus, (4.6) can be rewritten as

(k) li Bro + Bfl I' Broln + Bi1dn
p' - = m = lID

• n---}oo n + Bi\ n---}oo 1 + B1l/n .

Since the four-sided coin toss sequence defines a multinomial distribution, Bio, Bill obey binomial

distributions with Bfo ,... B(n, ad1 - ai)), Bfl '" B(n,O'ka,t}. But, then, by the Strong Law of

Large Numbers,

Pr{ lim Bfdn = akO'e } = 1,
Il---}OO

and similarly for Bro' Hence,

(k)
as O'd1 - at) + akae O'k

Pi " --+ = .,--,---=--
1 + O'kUe 1 + akO'e '

and by a symmetric argument Pi(f) as) O'ef(l + O'kO't). •
The lemma-as far as we know-is not covered by previous results in PS scheduling due to

the difference in arrival process modeling. Our model of a process-and quantified by ak-is

of a "process" where the ON periods are characterized as instructions be they from arithmetic

calculation or from instructions needed to carry out I/O where CPU scheduling is partially involved.

The OFF periods are blocking periods where a process is waiting on one or more events to occur,

either related to communication or other interrupts. Thus this empty or idle period is consequent

or causal to the last instruction executing and is not "forgetful."

In traditional task modeling [36, 49J, the task arrival process is not of a single task in the blocking

sense of above but rather of sequential tasks whose interarrival time obeys a fixed distribution (e.g.,

exponential, heavy-tailed). This implies that if two tasks arrive sequentially separated by some time

interval T apart, then if the server or CPU is still busy with the first task after T time units have

elapsed, the second task can be immediately scheduled after the first task has been serviced. This is

not the case, however, for the blocking task model. Following is the generalization of Lemma 4.4 to

n processes. The proof is a straightforward extension of the counting argument used in Lemma 4.4

and is omitted here for brevity.

Lemma 4.7 (n-Process Utilization) Consider n mutually independent processes with single­

process-alone-on-a-host ratios ak, k E [l,nJ. Then if the n processes are jointly scheduled on host

i E VR implementing PS processor scheduling,
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with probability 1 where xr(s) E {O, I} and the binaTy vecto?' (xt{s), X2(S), ... , Xn(s), 1 ::; s ::; (~),

TespTesents the s'th element in a canonical ordering of e:).
Clearly, when the number of processes n is "large" the expression given by (4.8) is computationally

expensive to evaluate. However, in most instances, non-application processes (e.g., system processes

and various management daemons), collectively, take up only a small fraction of CPU utilization

unless thrashing or other degenerate situations arise. Thus the evaluation, in practice, need only

be done for small values of n which makes computing Pi(k) on-line feasible.

As an application of Lemma 4.7, consider migrating a process k from host i to host j (i f:- j)

where the former has nj resident application processes and the latter has nj. After migration host j

will have nj + 1 processes and i will have nj -1 processes. Since the single-process-alone-on-a-host

ratios can be measured on both hosts, it is possible to use Lemma 4.7 to compute the predicted

or estimated progress rate of the candidate configuration prior to actual migration, and if it is

deemed larger than the current configuration's progress rate, issue a migration. Generally, given

a configuration~, we estimate the progress rates associated with configurations belonging to N({)
and choose the maximal one if its predicted progress rate exceeds that of {.

4.5 Communication Dilation

The previous scheduling results apply to a group of mutually independent, i.e., >'(k, £) = >.(£, k) =

0, processes. That is, although each process is still blocking, the blocking does not stem from

dependence with other processes in the group of processes considered. If there is coupling, however,

splitting apart coupled processes can lead to the amplification of a process' blocking component

thus reducing its single-process-alone-on-a-host ratio. Conversely, if coupled processes located at a

distance are brought closer together-either in terms of physical proximity or effective bandwidth­

then the process' blocking component contracts thus leading to an increase in the single-process­

alone-on-a-host ratio. The dilation effect is illustrated in Figure 4.2.

Thus, for coupled processes, O!k, k E Vp, is a function of configuration {, Le., O!k = O!k({).

When moving from con.figuration ~ to configuration e E N({), the resources assigned by {' to

meet the couplings of migrated process k will change. For some aspects of process k the allocated

resources-e.g., bandwidth or processor share-will have increased whereas for some other aspects

they will have decreased. By relation (4.1), the reassignment of resources will affect k's progress

rate. When using Lemma 4.7 to predict progress rate ~/(k) under the candidate configuration {',

we need to first estimate O!k(() to obtain an accurate estimate of ~/(k). Let

We call 6 ~ 0 the dilation factor associated with process k with respect to the configuration pair

({,{'). The smaller 0, the more communication penalty is incurred by configuration ( vis-a-vis

configuration {, and vice versa? We estimate 6 in the following way.

7To call 0 "dilation factor" is, to some extent, a misnomer since if 6 > 1 then it affects a contraction.
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Figure 4.2: Effect of communication dilation on process k's execution profile due to migration to a

"distant" host.

Let Ak,e be the traffic rate-measured in bits per second (bps)-between process k and process

£. Let Ak be the total traffic rate impinging on k. Ak,e is maintained dynamically by DUNES'

run-time monitoring facility. Let

Oi,; = L Aa,b

a,b: {(a)=i,
{(b)=j

where i = e(k) and j = ~(£). That is, Gi,j is the total traffic rate between the two hosts i,j where

k and £ reside. Let Bi.,i be the total effective bandwidth between i and j. We compute Gby

Ae,m G
-A I,m

k

where Ge,m is the dilation factor due to coupling between processes £ and m where one of them is k.

That is, 0 is computed as the weighted sum of the oe,m's where the latter are normalized by their

corresponding traffic intensity. Ok,e, in turn, is estimated by

, r(BiJ/CiJ)
Uk e=

, r(Bi'J/Ci'J)

where r(x) = xl(1 - x) is the steady-state M/M/l queue length formula, if = e(k) is the new

location of process k (note that since e E N(e), all other processes remain in their previous

locations), and Gi',j, Bi',j are the corresponding total traffic rate and effective bandwidth values

for configuration e.
Thus, Ok,e = 1 if configuration e does not lead to a change in resources allocated to facilitating

the coupling between k and £. On the other hand, if the resources allocated to the coupling between
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k and £. are shrunk-i.e., Bi',j/Gi,,j > Bi,j/Ci,j, and hence, r(Bi',i/Gi',j) > r(Bi,j/Ci,j)-then

Ok,l < 1 and the consequences of increased communication cost are suffered accordingly. In fact,

r amplifies this difference penalty the closer Bi,i/Gi,i is to 1, Le., network utilization is reaching

saturation.

5 Performance Measurements

5.1 Experimental Set-Up

The experiments described in---£he--{oHow-i-llg-sect-ions-were---eonduet-ed-on-dedicated LAN clusters

in the Network Systems Lab (NSL) which is equipped with ten x86-based machines, each with

a Pentium II processor at 399 MHz running SunDS 5.6, and four UltraSparc 1+ workstations

running SunOS 5.5.1. These machines are connected via two 100 Mbps FastEthernet switches­

one connecting the ten x86 machines and the other connecting the Spare workstations-as well as a

FORE ATM switch to which all UltraSparcs and two dual processor Intel machines are connected

to. Some experiments requiring more machines were conducted in a separate lab equipped with

twenty x86 machines, each with a Pentium processor at 90 MHz, running SunDS 5.5.1. These

machines are connected via a 10 Mbps Ethernet.

m~inO

I
Sl = gCITimerO;
retV:l1 = system_c:lIl(:lI"gl. :lI"g2, ...);
cd = getTimerQ:
prinlf("Cost = %g\n", cd - sl):

double gelTimerO
I

SLruCI Limevaltp;
gettimeofday{&tp, NULL);
return (tp.tv_scc·le6 + tp.tv_us.ec):

Figure 5.1: Sample code used to measure the overhead associated with the encapsulation of system

calls. systeID.-call can be read, yrite, fork and any number of other system calls.

All times reported in thls section are wall clock times measured using the gettimeofday system

call with microsecond granularity (see Figure 5.1). Using the wall clock time ensured that the

overhead introduced by DUNES was taken into account. For some test cases such as when measuring

the performance of read and 'Write system calls where the cost depends on transient effeets---e.g.,

availability of data in the local cache managed by DUNES-the performance cost measurements

were amortized by repeating the operation a number of times (by default 100).
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5.2 Cost of Process Migration

The cost of process migration consists of three parts, one, checkpointing a process image on the

resident host, two, sending the checkpointed image and text over the network to the destination

host, and three, restarting the process on the remote host. The overall migration cost, Cp , can be

modeled as a linear equation

Cp=aS+b (5.1)

where S is size of the checkpointed image (in Mbytes). The slope constant a , in turn, consists

Df three parts, a = al + a2 + a3, where the first two components represent the checkpointing and

restarting costs and the third component represents the network transfer cost. Of the three, the

network transfer cost is the dominating cost and a3 is estimated by tracking the available bandwidth

between the source and destination hosts.

Figure 5.2 shows an instance of process migrating cost as a function of process image size when

transferred over a 100 Mbps FastEthernet LAN. The estimated process migration cost---stationary

during the migration experiments-is given by the linear equation Cp = 0.49 S + 0.59. When

using paging with copy-on-reference the initial transfer cost is significantly reduced, however, the

overall cost accrued during the lifetime of a process as it changes its working set is incremental and

strongly application dependent. The proper accredation of the latter is a more difficult task and

under current investigation.
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Figure 5.2: Cost of process migration as the image size of a process increases; Cp = 0.49 S + 0.59.

5.3 Overhead Associated with Encapsulation of System Calls

In the following sections on performance measurements, we first identify the pure overhead incurred

by DUNES as an additional software layer. We then proceed with measuring the effect of the various

performance enhancement mechanisms, culminating in the demonstration of the overall net benefit
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of DUNES when the performance mechanisms are brought together by the communication-sensitive

load balancer to achieve parallel application speed-up and increased system throughput.

As system calls in DUNES are encapsulated by our modlfied library, there are additional costs

involved when system calls are invoked. Table 1 shows the overhead due to this encapsulation.

The caching mentioned in the table corresponds to passive end-point caching. When caching is

enabled, processes initiated on the home base have to contact the cache consistency manager when

performing file access, thereby increasing the access times. In all other cases, the overhead observed

are due to the interposed wrapper code to syscall. We note that this interposed code, which allows

system calls to implement DUNES' functional and performance features, almost doubles the cost

of system calls.

Method open lseek read write fork (parent) fork (child)
raw UNIX 86.0 27.7 22.6 24.2 1362.2 5406.8

caching disabled 129.0 47.7 42.0 46.0 5594.2 9057.7

caching enabled 959.8 641.5 618.3 622.9 5638.5 9135.0

Table 1: System call execution time (in microseconds) for processes on home base (no migration)

in single host configuration.

As a rule of thumb, system calls--even without the added overhead of DUNES-are known to

be expensive and their frequent use is discouraged. Most application programs make infrequent

calls to system calls, directly, or indirectly through the standard I/O library which adds further

user-level processing before making one or more system calls. Moreover, the expensive nature of

system calls comes from processing carried out in kernel mode such as when executing read or

yrite with variable length payloads.

5.4 Cost of System Calls for Migrated Processes

Section 5.3 showed DUNES' overhead in its worst possible light, namely, when no parallelism is

present and DUNES runs as a single host operating system. In this and following sections, we show

the effect of DUNES' functional and performance features when two or more hosts are present and

DUNES performs as a distributed operating system.

First, in a two host situation, for migrated processes, if caching is disabled, all system calls are

routed to the home proxy through the remote proxy. On the other hand, if caching is enabled, the

data is obtained from the remote proxy, assuming data is locally available. Cache misses can cause

system calls to block and consequently slow down a process.

Passive end-point caching-disabled Table 2 compares the cost of executing system calls

with and without passive end-point caching. When caching is disabled, each system call invocation

incurs an overhead of sending messages to the home proxy to fetch data. In Table 2, the second

row reflects this overhead.
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Figure 5.3; Cost of read (left) and yrite (right) system calls with caching enabled showing the

effect of cache misses and flushes.

Passive end-point caching-enabled In Table 2, the third and fourth columns of the third row

show that cachlng reduces the cost of read and write operations by a factor of 3. If the underlying

network is slow or congested, the benefit of caching is further amplified. For system calls such

as open, the home proxy needs to be contacted to keep the system in a consistent state. This

increase in cost can be seen in the same table. When file offsets are shared by processes, each file

access incurs an additional overhead of updating the offset maintained at the cache consistency

manager. This effect can be discerned for the lseek system call. The cost of fork for a migrated

process is about 6 times as high as a non-migrated process as it involves three separate forks (cf.

Section 3.2.1) and their initialization.

Method open lseek read write fork (parent) fork (child)

raw UNIX 86.0 27.7 22.6 24.2 1362.2 5406.8

caching disabled 1242.3 172.3 674.8 652.4. 84689.3 32637.0

caching enabled 2053.7 5145.3 227.1 215.8 71468.0 29916.2

Table 2: System call execution time (in microseconds) for migrated processes in two host con£gu­

ration.

Figure 5.3 shows the cost of each read and write system call over a total of 100 invocations.

The amount of data read/written at each invocation was 32 bytes with a cache page size of 1024

bytes. For the read system call, the spikes in the plot correspond to cache misses and for the yrite

system call, the spikes correspond to cache flushes. The spike at the beginning is unusually high

due to the fact that the cache is initially empty.

Active end-point caching Table 3 summarizes the performance results for active end-point

caching. Active end-points are cached using a push-based scheme. When data is available, it is

pushed over to the host where the application process resides and then cached locally. Only read

system calls benefit from active caching as writes have to be flushed immediately.
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Figure 5.4: Completion time with increasing number of hosts to demonstrate the effects of load

sharing. Left: Client/server communication set-up. Right: Completion time for active caching

enabled and disabled.

On our testbed, without the presence DUNES, a read system call takes 8.4 Its and a write

system call takes 7.6 ps to execute for a payload of 32 bytes. The row with lel write/rrnt read in

Table 3 shows the effect of caching. Without caching, the cost of a read system call is 992.8 IJ-S

and with caching, it reduces to 173.8 Ils which is a speed-up of 6. All other values are the same for

both cache enabled and disabled cases.

5.5 Effect of Load Sharing

We increase the number of hosts participating in a concurrent application and show how this can

affect performance measured by application completion time. Figure 5.4 (Left) shows the experi­

mental set-up. We have one server process (8) and sixteen client processes (C) who communicate

using fifos. The server process sends a series of messages to each client who, after some computa­

tion, send their results back to the server. This is a generic template for master/slave applications

such as those arising in molecular sequence analysis and other application domains.

lnitiallYl the server and clients run on a single host. Subsequent experiments involving multiple

hosts migrate processes to other hosts when balancing load. Figure 5.4 (llight) shows completion

Caching of active end-points enabled
Method read write

lei write/lei read 24.8 21.6

rmt write/lel read 1069.0 1073.8

lei write/rmt read 173.8 23.7

rmt write/rmt read 1508.7 1509.2

Caching of active end-points disabled
Method read write
lei write/lei read 22.0 22.8

rmt write/lei read 1070.7 1073.8

lei write/rmt read 992.8 23.1

rmt write/rmt read 1530.3 1531.1

Table 3: read and yrite system call execution times (in microseconds) for active end-points. lei

refers to a process running on the home base (without migration) and rmt refers to a process

running on a remote machine after process migration.
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time as the number of participating hosts is increased from 1 to 16. We observe that due to

communication overhead parallel speed-up saturates. The effect of active caching is discerned by

the downward shift in the completion time curve. At the point of saturation (8 workstations), the

performance gain due to active caching is about 50%.

5.6 Communication-Sensitive Load Balancing

5.6.1 Effect of Communication

Consider two application processes that repeatedly follow each computation phase with a communi­

cation phase to exchange their results. Instead of running the two processes on a single host, we can

split the processes onto separate hosts thereby potentially decreasing completion time. (Note that

the application processes still use a fifo to communicate even though they are on different machines

due to DUNES' functional transparency mechanism.) The benefit of parallelism is affected by the

amount of communication these processes engage in-the greater the level of communication, the

lesser the potential benefit.
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Figure 5.5: Left: Completion time with varying computation/communication ratio. Right: Three

process scenario: Pw writes to Pr while Pi does no communication. Completion times when (1) no

process is migrated, (2) Pw is migrated, (3) Pr is migrated, (4) Pi is migrated.

In Figure 5.5 (Left), we show the results of running two processes whose communica­

tion/computation ratio can be varied. We notice that as the relative amount of communication

increases, in the single host scenario, the completion time also increases. In the two host sce­

nario with one migrated process and active caching disabled, we observe that the communication

cost-as the communication/computation ratio increases-is significantly amplified when caching

is disabled. On the other hand, when active caching is enabled, for a communication/computation

ratio up to 5, the completion time for the two host-two process set-up is smaller than that of the

single host set-up. That is, the latency introduced by network communication is effectively hidden

and a net parallel speed-up is achieved. When the communication/computation ratio is increased

further, then it becomes detrimental to split the tightly coupled processes apart and scheduling on
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a single host becomes the optimal choice.

Figure 5.5 (llight) shows the results for a scenario where we have three processes, two of which,

Pr and Pw , communicate with each other (Pw writes to Pr ) while the third process (H) runs

in isolation. If the coupling between Pr and Pw is nonnegligible, process H-other things being

equal-is the best choice for migration. Figure 5.5 (Right) shows the completion times of the three

processes for four configurations, one, when no process is migrated, two, when Pw is migrated,

three, when Pr is migrated, and four, when H is migrated. We observc that migrating Pw yields

the worst performance, giving completion times that are higher than when all three processes are

scheduled on a single host. Migrating Pr gives a slight speed-up over the single host scenario, and

migrating Pi yields superior performance via-a.-vis all other cases.

5.6.2 Monitoring Communication

As each system call that performs I/O-on a per descriptor basis-has a counter, we can easily

monitor the communication rate between processes. To demonstrate this, consider three processes

where one process talks to the other two in a 1:10 ratio. The processes were run and the load

balancer sampled the communication pattern every 5 seconds. The observed values are shown in

Figure 5.6 (Left). We see that the measured data rate ratio is about 1:9.5, which is very close to

the real ratio .
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Figure 5.6: Measured data rate ratio for two process benchmark set-up for active (left) and passive

(right) end-points.

To show the monitoring measurements for passive end-points, we considered two processes that

accessed a file at different rates. One process accessed the file two times more frequently than the

other process. Figure 5.6 (Right) shows that the monitored rate is close to the real rate as dictated

by the application's intrinsic structurc. The DUNES load balancer uses this and other run-time

monitored information when making communication-sensitive load balancing decisions.
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5.6.3 Load Balancing

DUNES' communication-sensitive load balancer dynamically balances load based on the progress

rate measure. The load balancer estimates the progress rate associated with various candidate

configurations and takes action only if the predicted progress rate of a candidate configuration is

deemed larger than the measured progress rate of the current configuration.

To show how the communication/computation ratio can affect predicted progress rate, the re­

sulting load balancing decisions, and ultimately application performance as measured by completion

time, we consider a set-up involving two processes that communicate with each other, scheduled

on a single host. We vary the relative frequency of writes and reads to get different communica­

tion/computation ratios as before.
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Figure 5.7: Left: For active end-points, the current measured progress rate and the predicted

progress after migration are shown as a function of the communication/computation ratio. Right:

The corresponding completion time for single host configuration vs. migrated configuration.

Figure 5.7 (Left) shows the measured progress rate of the current configuration-i.e., the two

processes are scheduled on a single host-vs. the predicted or estimated progress rate when one of

the processes is scheduled on a separate host as a function of the communication/computation ratio.

The average per process progress rate for the single host configuration stays at 0.5 independent of

the communication/computation ratio due to the fact that the processor on the single host is fully

(and equally) utilized by the two processes, for both computation and I/O induced consumption of

CPU cycles.

For the predicted progress rate for the migrated configuration, however, the estimated progress

rate decreases as the communication/computation ratio increases reflecting the increased communi­

cation cost and its detrimental effect on splitting apart tightly coupled processes. Figure 5.7 (Right)

shows the corresponding completion times as a function of the communication/computation ratio.

Given an accurate estimate of the predicted progress rate, the completion times show that fruitful

migrations can be initiated and unfruitful ones avoided.
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5.7 Performance of Parallel Iterative Linear Equation Solver

5.7.1 Problem Domain

In this section, we show the performance of DUNES at facilitating parallel distributed computing

for a parallel iterative procedure for solving linear equations. Consider the problem of solving a

system of linear equations Ax + b = 0 where A = (aij) is an m x m matrix. Finding a numerical

solution for x can be formulated as a fixed point problem [10] which, in turn, can be solved by the

iterative procedure

If the spectral radius of A is less than 1, the iteration can be shown to converge.

A generic sample code used for implementing the iterative procedure is shown in Figure 5.8.

After initialization, there is a loop within which a computation phase is followed by a communication

phase followed by a barrier call to synchroni7.e then followed by a termination check. Given n

processes, each process is assigned min variables which it is responsible for updating. The updated

values are then mutually exchanged using regular IPC (e.g., fifO). The barrier function call

contacts a barrier server process and returns when the server process sends back a go-ahead message

after synchronization.

mainO [
readlnputO;
for(;:) {

updatcXO;
scndUpdalesO;
receivcUpdatcsO:
banier_syncO;
diff"" compulcDiffO:
if (lCnninme(diff))

break;

Figure 5.8: Sample code used in the parallel iterative algorithm to solve system of linear equations.

The generic code template shown above is indicative of many other applications amenable to

parallel iterative solutions and thus is representative of a variety of computational procedures. The

application programmer is oblivious to the workstation network computing environment wherein

the application processes will be executed, writing the program with a single system image in mind.

The only responsibility is one of indicating granularity (i.e., n). Arduous details of performing IPC

and other standardized tasks can be alleviated with the help of user-level library routines that let

the programmer focus on the computation part which is the core distinguishing component across

different applications.
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5.7.2 Parallel Application Speed-Up

Figure 5.9 (Left) shows application performance measured by average completion time as a function

of granularity-i.e., number of processes-when all processes are scheduled on a single host vs. when

each process is scheduled on a separate host by DUNES via process migration. The matrix in the

benchmark problem instance tested was of size (3000 x 3000). The top plot for the single host

schedule shows an increase in completion time as the number of processes is increased which is due

to the overhead caused by IPe between processes on a single host. The bottom plot shows the

completion times when DUNES is allowed to schedule processes by mlgrating each process to a

separate host.
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Figure 5.9: Left: Application completion time as a function of the number of processes participating

in the computation when all processes are scheduled on a single host vs. when each process is

scheduled on a separate host. Right: Application completion times for same set-up except that

checkpointing of intermediate results is done periodically to achieve fault-tolerance.

Figure 5.9 (Right) shows application performance for the same set-up as before except that the

application code of Figure 5.8 was augmented to implement periodic checkpointing of its interme­

diate results---e.g., to impart fault-tolerance when a computation is extremely long-lasting such

as in cryptographic computations-which then induces periodic file I/O. Figure 5.9 (Right) shows

that when all processes are scheduled on a single host, IPC overhead increases completion time, as

before, and periodic file I/O causes the completion time curve to be shifted slightly upwards.

The middle plot shows completion times when each process is scheduled on a separate via

migration, however, with passive end-point caching turned off. We observe that up to 3 processes

(and hosts), the application experiences parallel speed-up. However, with four or more processes,

the communication cost induced by writing the checkpointed intermediate values periodically to

the home base begins to dominate and completion time increases henceforth. The bottom plot

of Figure 5.9 (Right) shows application performance when DUNES' passive end-point caching

mechanism is active. Client side passive end-point caching allows remote file I/O that would

require network communication to be handled by local disk I/O and thus hide the communication

latency.
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5.7.3 Impact of Process Lifetime

Thus far we have only considered long-running processes, with or without dependencies, and the

benefit gained by performing dynamic load balancing while incorporating the associated commu­

nication costs. In general, many types of processes are short-lived, and in such cases, the overhead

due to migration can overshadow any gain obtained from a temporary increase of progress rate.

For example, in [40, 41J it is shown that the lifetime distribution of UNIX processes is heavy­

tailed which carries the implication that most processes have very short life spans (e.g., utility

commands such as Is executed under a shell). However, by the same token, heavy-tailedness also

implies the existence of a few very long-lived processes who are then potential candidates for

dynamic load balancing. In fact, heavy-tailedness implies the existence of nontrivial long-range

correlation structure [57] which can then be exploited for prediction purposes. In essence, if we

observe a process running for some time interval T that is "not too small," then the conditional

probability that the process will continue to run for a uvery long" while is high.
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Figure 5.10: Completion time comparison of processes with varying life spans with, and without,

migration.

Figure 5.10 shows completion time comparison of processes with varying life spans with, and

without, migration. Our set-up has two processes participating in the iterative linear equation

solver for a matrix of size (3000 x 3000) and process migration cost of 15 seconds. The process

migration cost is only dependent on the image size, however, the lifetime of the iterative linear

equation solver is also a function of the values in the matrix A, and hence by suitable varying

the dominance of A-the smaller the spectral radius of A, the faster the convergence rate of the

iterative solution procedure-the lifetime of the application can be controlled.

The left bar plot of Figure 5.10 shows the completion time for a particular instance of A when

the two processes are executed on a single host (left bar) and when one of the processes is migrated

to a separate host. The time when process migration is instantiated, the process migration cost,

and the remaining completion time after migration are shown delineated (right bar). When the

two application processes are scheduled on a single host, the average progress rate is 0.5 whereas

if they are scheduled on separate hosts it jumps up to 0.96. The middle and right bar plots show
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instances of A which lead to successively shorter lifetimes, in fact, so much so that migrating a

process-in spite of the increased progress rate of 0.96-leads to a higher completion time than

leaving the processes on the same host. DUNES provides the means to estimate the progress of a

candidate configuration and the associated progress migration cost, however, it does not provide a

method for estimating the process lifetime which, in turn, is a function of progress rate. Process

lifetime prediction is a subject maUer onto its own of independent interest and beyond the scope

of this paper.

5.7.4 Dynamics of Progress Rate Based Load Balancer

This section shows a distinguishing characteristic of dynamic load balancing based on the progress

rate measure and its effect on performance.

First, consider 4 processes that work on solving a system of linear equations with two hosts

available for processor sharing. Figure 5.11 (Left) shows the trace of the 4 processes being scheduled

by DUNES' communication-sensitive load balancer. Initially, the 4 processes reside on a single host

with the second host being idle. After 10 seconds, one of the processes in migrated to the idle host.

The migration is triggered by a progress rate calculation that dictates that migrating a process to

the idle host will increase overall progress rate. Subsequent to the first migration, another progress

rate calculation for the candidate configuration involving migrating a second process reveals that

.this is beneficial and a further migration is triggered which leaves two processes on each host. As

a result of this sequence of dynamic load balancing decisions, the processes terminate after 126

seconds. Suppose we did not intiate any migration. Then the completion time would have been

187 seconds. On the other hand, if we had stopped after one migration, then the completion time

would have been 154 seconds.
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Figure 5.11: Left: Thace of 4 processes solving a system of linear equations with 1000 variables.

Migration of processes is triggered by the estimated progress rate. Right: Completion time of 4

processes when (1) scheduled a single host, (2) processes are migrated one at a time to separate

hosts, (3) two of the four processes are migrated to a separate host simultaneously.

The previous trace is not surprising as it agrees with the heuristic approach of "balancing"
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the load by putting two processes a piece on each host which, in this case, is the optimal load

assignment. Suppose we have 4 processes running in isolation-i.e., they do not communicate with

each other---on a single host. We can either let all four processes run on a single host, or migrate

two of the [our processes to the idle host simultaneously (corresponding to the above situation),

or migrate one process at a time to the second host when the progress rate estimation dictates so.

Other things being equal, one may expect migrating two processes simultaneously to the idle host

to be the optimal load assignment. We show that this need not be the case.

Consider 4 processes each of which requires 1 time unit (it can be any fixed, equal time unit) to

complete. When scheduling two processes on each host, the average completion time is 2 time units

((2 +2+2+2)/4 = 2). On the other hand, if we migrate one process at a time-as dictated by the

progress rate calculation-then the average completion time is 1.67 ((1 + 5/3 + 2 + 2)/4 = 1.67).

Thus when each process is long-lived, the absolute performance difference between the two schedules

can be significant. Figure 5.11 (Right) shows measurements of an isolated benchmark application

(not the linear equation solver) and the resulting completion times when all processes are scheduled

on a single host, when processes are scheduled according to the progress rate measurc--l.e., 4/0 r--t

3/1 I-t 3/0 I--t 2/1 r--t 2/0 r--t 1/1 r--t O/O-and when two processes are simultaneously placed on the

idle host. We observe that progress rate based scheduling yields the optimal assignment.

6 Conclusion and Discussion

We have described DUNES-a library distributed operating system-its features, both functional

and as it pertains to performance. DUNES extends the functional capabilities of previous user­

level dynamic load balancing systems, in particular, Condor, achieving transparent dependency

maintenance in the presence of process-to-process and process-to-file couplings while preserving

single processor UNIX semantics_

DUNES implements a number of performance enhancement features including push­

based caching of active and passive end-points, demand paging of process checkpoints, and

communication-sensitive load balancing all aimed at reducing the communication cost associ­

ated with migrated processes. Communication-sensitive load balancing implements a form of

cost/benefit analysis based on a measure of "goodness" of resource allocation configurations called

progress rate which, with the help of run-time monitored system state, allows detrimental load

balancing actions to be avoided and potentially fruitful actions to be instantiated.

We have shown performance measurements of an implementation of DUNES for Solaris UNIX

on LAN-based workstation networks which, starting with a quantification of its raw overhead, pro­

gressed toward showing its performance benefit with respect to application completion time and

system throughput. The main thrust of future work is directed at extending the communication­

sensitive load balancing model to incorporate real-time CPU scheduling to facilitate both guaran­

teed and best-effort services to time-constrained and QoS-sensitive applications.
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