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Abstract

Measurements of network traffic have shown that self-similarity is a ubiquitous phenomenon
spanning across diverse network environments. In previous work, we have explored the feasi­
bility of exploiting long-range correlation structure in self-similar traffic for congestion control.
We have advanced the framework of multiple time scale congestion control and shown its effec­
tiveness at enhancing performance for rate-based feedback control.

In this paper, we extend the multiple time scale control framework to window-based conges­
tion control, in particular, TCP. This is performed by interfacing TCP with a large time scale
control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited
by TCP as a function of "large time scale" network state, i.e., information that exceeds the hori­
zon of the feedback loop as determined by RTT. How to effectively utilize such information-due
to its probabilistic nature, dispersion over multiple time scales, and affection on top of existing
window· based congestion controls-is a nontrivial problem.

Our contribution is threefold. First, we define a modular c},.-tension of TCP-a function call
with a simple interface-that applies to various flavours of TCP-e.g., Tahoe, Reno, Vegas­
and show that it significantly improves performance. Second, we show that multiple time scale
TCP endows the underlying feedback control with proactivity by bridging the uncertainty gap
associated with reactive controls which is exacerbated by the high delay-bandwidth product
in broadband wide area networks. Third, we investigate the influence of three traffic control
dimensions-tracking ability, connection duration, and fairness---on performance.

Performance evaluation of multiple time scale TCP is facilitated by a simulation bench­
mark environment which is based on physical modeling of self-similar traffic. We explicate our
methodology for discerning and evaluating the impact of changes in transport protocols in the
protocol stack under self-similar traffic conditions. We discuss issues arising in comparative
performance evaluation under heavy-tailed workloads.

·Supported in part by NSF grant ANI-9714707.
tContact author. Tel.: (765) 494-7821, fax.: (765) 494-0739. Additionally supported by NSF grants Al\'1-9875789

(CAREER), ESS-9806741, EIA.9972883, and grants from PRF and Sprint.
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1 Introduction

1.1 Background

Measurements oflaeal area and wide area traffic have shown that network traffic exhibits variability

at a wide range of time scales and that this is an ubiquitous phenomenon which has been observed

across diverse networking contexts, from Ethernet to ATM, VBR video, and WWW traffic [9, 15, 19,

23,34,39]. A number of performance studies have shown that self-similarity can have a detrimental

impact on network performance leading to amplified queuing delay and packet 10s5 rate [1, 2, 12, 24,

25]. From a queuing perspective, a principal distinguishing characteristic of long-range dependent

traffic is that queue length distribution decays much more slowly-i.e., polynomially-vis-a-vis

short-cange-dependent traffic sources which exhibit exponential decay. These performance effects,

to some extent, can be curtailed by delimiting the buffer size which has led to a "small buffer

capacity-large bandwidth" resource provisioning strategy [17, 36]. A more comprehen.'iive discussion

of performance issues is provided in [30].

The problem of controlling self-similar network traffic is still in its infancy. Dy the control of

self-similar traffic, we mean the problem of regulating traffic flow-possibly exploiting the prop­

erties associated with self-similarity and long-range dependence---such that network performance

is optimized. The "good news"-within the "bad news" with respect to performance effects-is

long-range dependence which, by definition, implies the existence of nontrivial correlation structure

at larger time scales which may be exploitable for traffic control purposes, information to which

current traffic control algorithms are impervious. Long-range dependence and self-similarity of

aggregate traffic can be shown to persist at multiplexing points in the network as long as connec­

tion durations or object sizes being transported arc heavy-tailed, irrespective of buffer capacity

and details in the protocol stack or network configuration [14, 26]. How to effectively utilize large

time scale, probabilistic information afforded by traffic characteristics to improve performance is a

nontrivial problem.

In previous work [37], we have explored the feasibility of exploiting long-range correlation struc­

hue in self-similar network traffic for congestion control. We introduced the framework of Multiple

Time Scale Congestion Control (MTSC) and showed its effectiveness at enhancing performance for

rate-based feedback control. We showed that by incorporating correlation structure at large time

scales into a generic rate-based feedback congestion control, we are able to improve performance

significantly. In [38J, we applied MTSC to the control of real-time multimedia traffic-in partic­

ular, MPEG video--using adaptive redundancy control, and we showed that end-to-end quality
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of service (QoS) is significantly enhanced by utilizing large time correlation structure in both the

background and source traffic. The real-time traffic control framework is called Multiple Time

Scale Redundancy Control which improves on earlier work in packet-level adaptive forward error

correction for end-to-end QoS control [28, 32].

1.2 New Contributions

In this paper, we extend the multiple time scale traffic control framework to reliable transport and

window-based congestion control ba..,;ed on TCP. Tills is performed by interfacing TCP with a large

time scale control module which adjusts thc aggressiveness of bandwidth consumption behavior

exhibited by TCP as a function of "large time scale" network state, Le., information that exceeds

the horizon of the feedback loop as determined by round-trip time (RTT). The adaptation of MTSC

to TCP is relevant due to the fact that the bulk of currcnt Internet traffic is governed by TCP,

and this is expected to persist due to the growth and dominance of HTTP-based World Wide

Web traffic [3, 4, 9]' The effective realization of MTSC for TCP is nontrivial due to the following

com;traints: (a) large time scale correlation structure of network state is inferred by observing

the output behavior of a single TCP connection as it shares network resources with other flows

at bottleneck routers; (b) we engage probabilistic, large time scale information while instituting

minimal changes confined to the sender side; (c) we construct a uniform mechanism in the form of

a function call with a simple, well-defined interface that is applicable to a range of TCP flavours;

(d) performance of multiple time scale TCP should degenerate to that of TCP whcn network traffic

is short-range dependent.

Our contribution is threefold. First, we construct a robust, modular extension of TCP-a

function call with a simple, well-defined interface which adjusts a single constant (now a variable)

in TCP's congestion window update. The same extel15ion applies to various flavours of TCP

including Tahoe, Reno, Vegas, and rate-based extcnsions. We show that the resulting protocol­

Multiple Time Scale TCP (TCP-MT)-significantly improves performance. Performance gain is

measured by the ratio of reliable throughput of TCP-MT vs. the throughput of the corresponding

TCP without the large time scale component. We show that performance gain is increased as

long-range dependence is increased approaching that of measured network traffic. Second, we

show that multiple time scale TCP endows the underlying feedback control with proactivity by

bridging the uncertainty gap associated with reactive controls, which is exacerbated by the high

delay~bandwidth product of broadband wide area networks [21, 22, 35]. As RTT increases, the

information conveyed by feedback becomes more outdated, and the effectiveness of reactive actions

2



undertaken by a feedback control diminishes_ TCP-MT, by exploiting large time scale information

exceeding the scope of the feedback loop, can affect control actions that remain timely and accurate,

thus offsetting the cost incurred by reactive control. It is somewhat of an "irony" that self·similar

burstiness which, in addition to its first-order performance effects causes second-order effects in

the form of concentrated periods of over- and under-utilization, can nonetheless help mitigate the

Achilles' heel of feedback traffic controls which has been a dominant theme of congestion control

research in the 1990s. Third, we inve.'>tigate the influence of three traffic control dimensions­

tracking ability, connection duration, and fairness-on performance. Tracking ability refers to a

feedback control's ability to track system state by its interaction with other flows at routers. It is of

import when performing on-line estimation of large time scale correlation structure using per-flow

input/output behavior. TCP-MT yields the highest performance gain when connection duration

is long. Since network measurements have shown that most connections arc short-lived but the

bulk of traffic is contributed by the few long-lived ones [14, 26], effectively managing the long-lived

ones-by Amda!'s law-is important for system performance. We complement this basic focus by

exploring ways of actively managing short connections using a priori and shared information across

connectiOllii. With respect to fairness, we show that the bandwidth sharing behavior of TCP-MT

is similar to that of TCP, neither improving nor deproving the well-known (un)fairness properties

associated with TCP [22].

1.3 Simulation-based Protocol Evaluation under Self-similar Traffic

Our performance evaluation method is based on a simulation benchmark environment that is de­

rived from physical modeling of self-similar network traffic [26J. Setting up a framework where

the impact of changes in transport protocols-under self-similar traffic conditions-can be effec­

tively discerned and evaluated is a nontrivial problem. Feedback control induces a closed system

where the very control actions that are subject to modification can affect the traffic properties

and performance being measured. To yield meaningful experimental evaluations and facilitate a

comparative benchmark environment where "other things being equal" holds, the meaning of self­

similar traffic conditions needs to be made precise and well-defined. Physical models show that

self~similarity in network systems is primarily caused by an application layer property-heavy­

tailed objects on WWW servers, UNIX file servers [3, 9, 26J-whose transport, as mediated by the

protocol stack, induces selfwsimilarity at multiplexing points in the network. Moreover, the degree

of long~range dependence as measured by the Hurst parameter is directly determined by the tail

index (i.e., heavy-tailedness) of heavy-tailed distributions. Thus by varying the tail index in the
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application layer, we can influence-and keep constant across different experimental set-ups-the

intrinsic propensitity of the system to generate and experience self-similar burstiness in its network

traffic while at the same time incorporating the modulating influence of transport protocols in

the protocol stack. Related to the comparative performance evaluation issue, we discuss problems

associated with sampling from heavy-tailed distributions, and the solution we employ to facilitate

comparative evaluation.

The rest of the paper is organized as follows. In the next section, we give a brief overview

of self-similar network traffic, its predictability properties, and the method employed to achieve

on-line estimation of large time scale correlation structure. Section 3 describes the multiple time

scale congestion control framework for TCP, the form of the large time scale module including

its instantiation on top of Tahoe, Reno, Vegas, and rate-based extensions. Section 4 discusses

simulation issues and describes the performance evaluation environment employed in the paper.

In Section 5 we present performance results of TCP-MT and show its efficacy under varying re­

source configurations, couplings with different TCP, round-trip times, long-range dependence, and

resource sharing behavior as the number of TCP-MT connections competing for network resources

is increased. We conclude with a discussion of our results and future work.

2 Technical Background and Set-up

2.1 Self-similarity and Long-range Dependence

Let {Xtit E Z+} be a time series which represents the trace of data traffic measured at some fixed

time granularity. We define the aggregated series xfm) as

That is, Xl is partitioned into blocks of size m, their values are averaged, and i is used to index

these blocks. Let r(k) and r{mJ(k) denote the autocorrelation functions of Xl and Xj(m), respec­

tively. Assume Xl has finite mean and variance. Xl is asymptotically second·order self-similar with

parameter H (1/2 < H < 1) if for all k ~ 1,

m --} 00. (2.1)

H is called the Hurst parameter and its range 1/2 < H < 1 plays a crucial role. The significance

of (2.1) stems from the following two properties being satisfied:
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(i) r(ml(k) - r(k),

(ii) r(k) - ck-P,

as k ----t 00 where 0 < f3 < 1 and c > 0 is a constant. Property (i) states that the correlation

structure is preserved with respect to time aggregation, and it is in this second-order sense that Xl

is "self-similar." Property (ii) says that r(k) behaves hyperbolically which implies L~o r(k) = 00.

This is referred to as long-range dependence (LRD). The second property hinges on the assumption

that 1/2 < H < 1 as H = 1 - /3/2. The relevance of asymptotic second-order self-similarity for

network traffic derives from the fact that it plays the role of a "canonical" model where the on/off

model of Willinger el at. l [39], Likhanov et al.'s source model [24], and the M/GJoo queueing

model with heavy-tailed service times [8]-among others-all lead to second-order self-similarity.

In general, self-similarity and long-range dependence are not equivalent. For example, fractional

Brownian motion with H = 1/2 is self-similar but it is not long-range dependent. For second-order

self-similarity, however, one implies the other and it is for this reason that we sometimes use the

terms interchangably within the traffic modeling context. A more comprehensive discussion can be

found in [29]'

There is an intimate relationship between heavy-tailed distributions and long-range dependence

in the networking context in that the former can be viewed as causing the latter [14, 26]' We say

a random variable Z has a heavy-tailed distribution if

x --; 00 (2.2)

where 0 < a < 2 is called the tail index or shape parameter and c is a positive constant. That is,

the tail of the distribution, asymptotically, decays hyperbolically. This is in contrast to light-tailed

distributions---e.g., exponential and Gaussian-which possess an exponentially decreasing tail. A

distinguishing mark of heavy-tailed distributions is that they have infinite variance for 0 < a < 2,

and if 0 < a ::; 1, they also have an unbounded mean. In the networking context, we will be

primarily interested in the case 1 < a < 2. This is due to the fact that when heavy-tailedness

causes self-similarity, the Hurst parameter is related to the tail index by H = (3 - a)/2. A

frequently used heavy-tailed distribution is the Pareto distribution whose distribution function is

given by

Pr{Z ~ xl ~ 1 - (b/x)"

I That is, via its relation to fractional Brownian motion and its increment procCS5, fractional Gaussian noise.
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variability. Practically speaking, a heavy-tailed distribution gives rise to very large values with

nonnegligible probability so that sampling from such a distribution results in the bulk of values

being "small" but a few samples having "very" large values. Not surprisingly, heavy-tailedness

impacts sampling by slowing down the convergence rate of the sample mean to the population

mean, dilating it as the tail index a approaches 1. For example, pending on the sample size m,

the sample mean 2 m of a Pareto distributed random variable Z may significantly deviate from the

population mean a.kj(a -1), oftentimes underestimating it. In fact, the absolute estimation error

12m - E(Z)I asymptotically behaves <IS m(l/ct)-l (see, e.g., [10]) and thus for a. :::::; 1 care must be

given when sampling from heavy-tailed distributions such that conclusions about network behavior

and performance attributable to sampling error are not advanced.

2.2 Long-range Dependence and Predictability

Given Xl and Xi(m) , we will be interested in estimating Pr{XJ;ll xfm)} for some suitable aggre­

gation level m > 1. If Xl is short-range dependent, we have

for large m whereas for long~range dependent traffic, correlation provided by conditioning is pre­

served. Thus given traffic observations a, b > 0 (a t= b) of the "recent" past corresponding to time

scale m,

Pr{x(m) Ixim) ~ bj -" Pr{X(m) I X(m) = aj
1+1' T" t+l'

and this information may be exploited to enhance congestion control actions undertaken at smaller

time scales. We employ a simple, easy-to-implement-both on-line and off-line-prediction scheme

to estimate Pr{Xf;ll xfm)} ba."ied on observed empirical distribution. We note that optimum

estimation is a difficult problem for LRD traffic [5], and its solution is outside the scope of this paper.

Our estimation scheme provides sufficient accuracy with respect to extracting predictability and is

computationally efficient, however, it can be substituted by any other scheme if the laUer is deemed

"superior" without affecting the conclusions of our results. To facilitate normalized contention

levels, we define a map L : 1F4 -+ [1, s], monotone in its argument, and let x~m) = L(Xi(m)). Thus

x~m) :::::; 1 is interpreted as the aggregate traffic level at time scale m being "low" and L k :::::; s is

understood as the traffic level being "high." The process x~m) is related to the level process used

in [11] for modeling LRD traffic. We use L 1 and L 2 without reference to the specific time index i

to denote consecutive quantized traffic levels x~m), x~~l.

6



lrnlfo:L.....ILl
, ,

I"
J::
~.,

~':l .-.., _><,

, ,

, ,
TIilIr"'L.....lll TmIIi: lovoll1

Figure 2.1: Top Row: Probability densities with £2 conditioned on L 1 for a: = L05 with time scales

of 1 second (left) and 5 second (right). Bottom Row: Corresponding probability densities with £2

conditioned on £. for a: = 1.95.

Figure 2.1 shows the estimated conditional probability densities for a = 1.05 (long-range depcn·

dent) and 1.95 (short-range dependent) traffic for absolute time scales2 T = 1 second and 5 second.

The quantization level is set to h = 8. We use £1 and £2 without reference to the specific time

index i to denote consecutive quantized traffic levels x~m), x~~l. Therefore, in a causal system, the

pair (£1,£2) can be used to represent the current observed network traffic level and the predicted

traffic level based on the current observation respectively. For the aggregate throughput traces

with 0:' = l.OS-Figure 2.1 (top row)-the 3-D conditional probability densities can be seen to be

skewed diagonally from the lower left side toward the upper right side. This indicates that if the

current traffic level L 1 is low, say L) = 1, chances are that L2 will be low as well. That is, the

probability mass of Pr{L 2 I L 1 = 1} is concentrated toward l. Conversely, the plots show that

~The corresponding aggregation levels, expressed with respect to x;(m), are m = 100 and 500.
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Pr{Lz IL1 = 8} is concentrated toward 8. Thus for a = 1.05 traffic, conditioning at time scales t =

Is and 5s does help predict the future. The corresponding probability den..'iities for a = 1.95 traffic

are shown in Figure 2.1 (bottom row). We observe that the shape of the distribution is insensitive

to conditioning (i.e., Pr{L 2 I L 1} :::::: Pr{L 2 }) which implies the lack of predictability structure

at large time scales. At short time scales, both a = 1.05 and 1.95 traffic contain predictability,

structure toward which current protocols-feedback or otherwisc--are geared toward to. The large

time scale correlation structure is empirically observed to stay invariant in the 1-10 second range

(cf. the distributions for 1 second and 10 second time scales). Due to this robustness, as far as

predictability is concerned, picking the exact time is not a critical component. On the other hand,

to achieve reasonable responsiveness to changes in large time scale network state, we choose a time

scale closer to 1 second than 10 second. We use a 2 second time scale for this reason in the rest of

the paper.

3 Multiple Time Scale TCP

3.1 Multiple Time Scale Congestion Control

The framework of multiple time scale congestion control [37J, in general, allows for n-Ievel time scale

congestion control for n ~ 1 where information extracted at n separate time scales is cooperatively

engaged to modulate the output behavior of the feedback congestion control residing at the lowest

time scale (i.e., n = 1). The ultimate goal of MTSC is to improve performance vis-a.-vis the

congestion control consisting of feedback congestion control alone. Thus even when n > 1, if the

large time scale modules arc deactivated, then the congestion control degenerates to the original

feedback congestion control.

We distinguish two strategies for engaging large time scale correlation structure to modulate

the traffic control behavior of a feedback congestion control. The first method-Selective Slope

Control (SSC)-adjusts the slope of linear increase during the linear increase phase of linear in­

crease/exponential decrease congestion controls based on the predicted large time scale network

state. If network contention is low, then slope is increased, and vice versa when network contention

is high. This is depicted in Figure 3.1 (left). Selective slope control is motivated by TCP per­

formance evaluation work [20, 21] which shows that the conservativeness or asymmetry of TCP's

congestion control-necessitated by stability considerations-leads to inefficient utilization of band·

width that is especially severe in large delay-bandwidth product networks. By varying the slope

across persistent network states, SSC is able to modulate the aggressiveness of the feedback con-
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gestion control's bandwidth consumption behavior without triggering instability~theslope is held

constant over a sufficiently large time interval exceeding the RTT or feedback loop by an order of

magnitude or more. Due to the large gap in time scale, the feedback congestion control has ample

time to converge, and it perceives the slope shifts as stemming from a quasi-stationary system for

which it is provably stable. We have shown the effectiveness of SSC in the context of rate-based

feedback congestion control [37], and we adopt it as the basic strategy for realizing multiple time

scale TCP.

Low Contentiony illcrea.<ed Slope

Higb Conlentlon

~ flcerea.red Slojll'

Low Conlenlion

High Confenllon tv... A II A",I"W<, /VI, /I "A,I'VIA)./' ~VljJv"i lj{f'TvyY\(V H

). ,Pw,J0Jv' "A, !"Ii A//.~VVV ~ v lj{'vvy'l{V

i.vK' DC '.end Y Hi!:" DC i.en'/
£,:"el Shift

Figure 3.1: Left: Selective slope adjustment-Le., slope shift-during linear increase phase for high­

and low-contention periods. Right: Selective "DC" level adjustment-i.e., level shift~between

high~ and low-contention periods.

The second method for utilizing large time scale correlation structure 1n feedback traffic controls

is called Selective Level Control (SLC), and it additively adjusts ontput rate as a function of large

time scale network state, increasing the "DC" level when network contention is low and increasing it

when the opposite is true. This is depicting in Figure 3.1 (right). SLC is a more general scheme not

necessarily customized toward congestion control. For example, we have employed SLC successfully

for real-time multimedia traffic control where adaptive packet-level forward error correction is

applied to facilitate timely arrival and decoding of MPEG I video frames when retransmission is

infeasible [38J. It is a UDPlIP based videoconferencing implementation running over UNIX and

Windows NT where SLC is built on top of AFEC, an adaptive redundancy control protocol for

achieving user-specified encl-to-cnd QoS [28, 32].

3.2 Structure of TCP-MT

TCP-MT consists of two components: the underlying feedback control~i.e., particular flavour of

TCP-and the large time scale module implementing SSC. The large time scale module, in turn,
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is composed of tlrree parts: an explicit prediction module that extracts large time scale correlation

structure on-line, an aggressive schedule that determines the final magnitude of slope that is passed

to TCP, and a meta control which adjusts the range of slope values to be used by the aggressiveness

schedule_ SSC bases its computation on the lmderlying feedback congestion controlls (i.e., per­

flow) observable input-output behavior-number ofTCP segments transmitted as well as incoming

ACKs. Only the sender-side is augmented by the large time scale module; the receiver-side stays

untouched. The overall structure of TCP-MT is depicted in Figure 3.2.

Aggresslvencs.'

Schedule
E{l)

Metn Control y

bplicil

"'"".E!uu-I/_l
,,,
~ - - - - - - - - - - - - - - - - - - - - --'

TJ r----------------------, , '
t sse ',
,
,
I I: r",IirlrJ Ln..~1
,
,,
,,

Figure 3.2: Structure of TGP-MT_ Information extracted at large time scale TL in the Selective

Slope Control (SSC) module is used to modulate the bandwidth consumption behavior of TCP

acting at time scale Ts of the feedback loop (TL »Ts ).

The next sections describe the various components of TCP in more detail including the specific

instantiations on top of Tahoe, Reno, Vegas, and a rate-based extension of TGP.

3.3 Explicit Prediction

Per-connection, on-line estimation of the conditional probability densities Pr{L2 I L 1 = i}, i E

[1,h], is achieved via Bayesian estimation. On-line estimation can be accomplished using 0(1)

operations at every update interval, i.e., SSC's time scale TL . On the sender side, the explicit

prediction module of SSG maintains a 2·dimensional array CondProb[.][.] of size h x (h of: 1), one

row for each £ E [1,h]. The last column of CondProb, CondProb[£][h+I], is used to keep track

of ht, the number of blocks observed thus far whose traffic level map to £_ For each £' E [1, h]'

CondProb[£][£'] maintains the count he- Since
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having the table CondProb is tantamount to knowing the conditional probability densities. Given

a current observed traffic value a > a at time scale TL, we compute the conditional expectation

£ = E[L21 L1 = a] which is then used to index the aggressive schedule. A discussion of the

conditional expectation as a predictor for long-range dependent traffic can be found in [5J.

3.4 Aggressiveness Schedule

In the application of selective slope control, SSC makes the following assumptions about the under­

lying TCP. The magnitude of congestion window changes in TCP is parameterized by an aggres­

siveness constant a > O-typically a = 1 for the TCP flavours considered-and u is replaced by an

aggressiveness variable f.. That is, it is turned into a variable. We will use TCP(c;) to denote the

parameterized version of TCP. TCP(~) degenerates to TCP if c; = a. TCp(~I) is more aggressive than

TCp(e) if e> esince the slope of increase in the linear increase phase is strictly greater in one over

the other. The coupling of the large time scale module with TCP is completed by setting e= e(£2)

where £2 is the predicted contention level at time scale TL, computed by the explicit prediction

module. eO is called the aggressiveness schedule and is a decreasing function of £2 = E[L2 1 L 1].

A specific schedule of interest is the inverse linear .'ichedule given by

- A - a •
«L2) = --(L, -1) + a, 1" E [I, h)

h-I

where A repre.<;ents the maximum aggressiveness level. L2 = 1 yields the largest slope, and thus,

affects the most aggressive action, while L 2 = h yields the least aggressive action reducing to the

default slope e= u. In the latter, TCP-MT degenerates to the default action of its underlying

TCP. It is due to this asymmetry-motivated by [20, 21J-that we call selective slope control a

form of selective aggressiveness control3 . The meta control is responsible for setting the maximum

slope level A which, then, in the inverse linear schedule, determines the rest of the values. More

generally, the aggressiveness schedule is made to satisfy

£ ~ £' => «£) ~ «£'),

and each value 10(£) is computed separately, i.e., independently of the other values of e(·) by the

meta control. For TCP-MT, we have used the inverse linear schedule as the default aggressiveness

schedule. The generalized schedule can yield slightly improved performance, and it is used in

multiple time scale redundancy control for real-time data transport [38]. The threshold schedule,

ire ~ 9, 9 E [1,h],
otherwise.

3The generalization to ~ < a is of interest and a ta.~k for future work.
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is a performance evaluation tool which is used to discern the impact of statically modulating

aggressiveness. As 0 is increased, the underlying congestion control is made more aggressive.

3.5 Meta Control

The maximum aggressiveness parameter A can be set to a fixed a priori value, or more generally,

it can be adjusted dynamically as a function of network state. Since A itself governs the feedback

control behavior of the small time scale congestion control-i.e., TCP-dynamic adjustment of

A is a form of meta control. For a stationary or quasi-stationary (i.e., piece-wise stationary)

network environment, A is well-defined and the problem is to design a control that converges to

the equilibrium value of A, A-. A symmetric control law that converges to A* under stationary

and quasi-stationary conditions is given by

dA ~ {v,
dt -v,

if d7e!dA, > 0,

if d7e!dA, < 0,

eE [l,h],
eE [1, h],

where v> 0 is the adjustment factor. The control actions are conditioned on the current observed

contention level £1 = eE [1, It], and d,ddA l is computed with respect to the latest time block

classified into the same level e, e E [1, h]_ Stability analysis of symmetric congestion controls of

the above form can be found in [31]. When the network system is "congestion susceptible" in the

sense of having a unimodalload-thronghput curve, then asymmetry is needed to assure stability;

otherwise, a sufficiently small v > 0 suffices to achieve asymptotic stability [31]. The reason that

the multi-level feedback control system-feedback control of TCP coupled with the control law

governing SSG's meta control-remains stable in spite of a symmetric meta control lies in the large

gap between the time scales TL and Ts. Since A is held constant over time intervals of duration TL

while TCP's congestion control is active, by the stability property of linear increase/exponential

decrease control and Ts « TL , we have a quasi-stationary system that reaches stability during each

TL interval. The parameter A influences the output rate of the overall control system but it does

not determine it-the small time scale feedback congestion control acting at the time scale of Ts

is the dominant factor.

At the start, A is set to the default aggressiveness of TCP (Le., A(O) = a). For each non­

overlapping time block of size TL, the maximum aggressiveness A is dynamically adjusted such

that the reliable throughput at each level £1 is maximized based on the sign of throughput changes

with respect to A conditioned on the h levels. A is always kept positive and larger than a, A 2': a.

With A evolving in time, individual levels of aggressiveness are set in accordance with the inverse

linear schedule taking on values within the range [a, AJ.
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TCP Reno & Tahoe

Feedback Congestion Control

l:llmd +- cwnd+ ~,,,t,,J'

sslhresh +- cwnd!2

Coupling with SSC

TCP Vegas

TCP Rate

l:wnd t- l:llmd,

C1und-l,

cwnd+ c'::nd'
cwnd t-

l:llmd- W~T b,

if o<DiD<fJ,

if Diff>fJ

if iJ.1UT<O,

if 6.R:rl'>o

cwnd+ ~(;'2) if DifJ<o,
~wnd '

cwnd t- cwnd, if rt<fJifJ<fJ,

cwnd-l, if DiU>fJ

cwnd+ ~(L2) if 6.R'IT<O,
~wnd '

cwnd t-

l:wnd- Il;T h, if dR71?O

-b)." if d-,!d).,<O

Rate-based (ATM) " if d-r!d)">O,

~~ =
-h>',

if d-r!d).,>O,

if d-,!d>.<O

Table 1: Coupling of SSC with different flavours of TCP. Bottom row shows coupling with rate­

based control for ATM.

3.6 Instantiations of Couplings with TCP

This section describes the various instantiations of couplings with SSC based on different flavours

of TCP-Tahoe, Reno, Vegas, and a rate-based extension called TCP Rate. We also show a rate­

based congestion control for ATM as a reference which points toward the broad applicability of our

scheme. The couplings arc summarized in Table 1.

3.6.1 TCP Reno & Tahoe

Multiple time scale coupling for TCP Reno is constructed in two separate forms, one for its Conges­

tion Avoidance component and another for Slow Start. The latter is used as a further optimization.

By straightforward extension, the same couplings also hold for TCP Tahoe.

Congestion Avoidance During TCP Reno's congestion avoidance phase, the aggressweness

constant a as mentioned in Section 3.4 can be understood as the slope of the congestion window

change, i.e., cwnd t- cwnd + e:nd with a = 1. The coupling replaces a with &"(£2) and affects the

slope of the linear increase phase such that a more aggressive-but still linear-climb is initiated

during the next TL interval if the overall network state is deemed beneficial to do so.

Slow Start Whenever a timeout occurs, we make an association between the size of the cwnd
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and the current traffic level L1 , i.e., cwnd = cwnd(L1}. Based on the empirical association, we

set the slow-start threshold to be, ssthresh (- cwnd(L2 ), where cwnd is indexed by the predicted

traffic level L2. Similar ways of coupling can be constructed for Reno's Fast Recovery mechanism

for further optimization which would distinguish it from Tahoe.

3.6.2 TCP Vegas

TCP Vegas [6] tries to keep a proper amount of "extra" data in the network by keeping the

estimated difference between the Actual and Expected rate, Ditf, within pre-specified target bounds,

a < Diff < {3. If successful, this induces a mea.<>ure of proactivity by preventing, and thus reducing,

timeouts and retransmits leading to a more continuous flow. The coupling with TCP Vegas is

achieved through its modified Congestion Avoidance mechanism by modulating the slope of linear

increase when Diff < fr. Thus, except for the triggering event, the coupling instantiation is the

same as Reno and Tahoe.

3.6.3 TCP Rate

TCP Rate is a rate-based extension of TCP Reno which modifies Reno's Congestion Avoidance

procedure based on delay variation as shown in Table 1. In the control law, 0 < a < b, L,),RTT is

the difference of two consecutive RTT values, and r is the packet spacing of the corresponding ACK

packets. Coupling replaces the constant a of the increase part with £(L2 ). We use TCP Rate,

in part, to study the influence of the feedback congestion control module's tracking ability on the

effectiveness of the large time scale module SAC. The better the tracking ability of the underlying

feedback congestion control, the greater the performance gain due to coupling with SSC.

3.6.4 Rate-based Linear Increase/Exponential Decrease Control

The last row of Table 1 shows a rate-based linear increase/exponential decrease feedback congestion

control in the context of ATM where>. denotes data rate, , represents throughput, and J, b > 0

are positive constants. If increasing the data rate results in increased throughput (Le., d,/d>' > 0)

then a linear increase in the data rate is affected. Conversely, if increasing the data rate results

in a decrease in throughput (i.e., d,/d>' < O) then the data rate is exponentially decreased. In

general, condition d,/d>' < 0 can be replaced by various measures of congestion. In the coupling,

we replace the constant J by £(L2). The qualitative performance results when running on top of

UDP arc analogous to that of TCP and are omitted in the paper.

14



4 Simulation Issues for Self-similar Traffic Control

4.1 Protocol Stack Influence

Setting up a framework where the impact of changes in transport protocols-under self-similar

traffic conditions-can be effectively evaluated is a nontrivial problem. In traditional queueing

oriented performance evaluation for self-similar traffic [13, 17, 18], a queue is fed with self-similar

input-either from analytic source models or traffic traces-and the re.'>ulting queueing behavior

is observed and analyzed. Simulation ba."ied evaluation closely follows the analytical framework

comprised of an open-loop queueing system where the input is independent of network (i.e., queue)

state, and it is for this reason that simulation is frequently used to validate analysis which, for self­

similar traffic, has thus far been successful only in the asymptotic case where buffer capacity is taken

to infinity. It is difficult to generalize this set-up to performance evaluation of congestion control

since self-similar network traffic---either in trace form or as analytic source models-is produced by

the very protocols being studied (the "horse before the cart" problem), and furthermore, congestion

controls typically are feedback controls whose behavior is a function of network state leading to a

closed-loop system.

4.2 Physical Models

Physical models [14, 16, 26] address this problem by pushing the causality of self-similar burstiness

to the application layer which is supported by empirical evidence of file systems and WWW servers

possessing heavy-tailed object size distributions [9, 26]. The on-off model of Willinger et al. [39],

Likhanov et at's source model [24], and the M/G/co based input model [8], provide the theoretical

underpinning for why heavy-tailed traffic sources-multiplexed or singular-lead to self-similarity

and long-range dependence when source behavior is independent of other source behavior and net­

work state. Park et at. 's application layer model [26] addresses dependency issues arising from

feedback congestion control in closed-loop network systems. They show that aggregate traffic self­

similarity is an intrinsic property of networked client/server systems mediated by TCP/UDP/IP

protocol stacks where the size of the objects being accessed is heavy-tailed. In particular, there ex­

ists a linear relationship between the heavy-tailedness measure of file size distributions as captured

by a-the shape parameter of the Pareto distribution-and the Hurst parameter of the resulting

multiplexed traffic streams_ This is shown in Figure 4.1 (left). This relationship holds under the

fact that dependencies arising from inter-connection coupling at bottleneck routers which affect

the behavior of transport layer feedback congestion controls which, in turn, affect measured traffic
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Figure 4.1: Left: Hurst Parameter estimates for tail index C\:" varying from 1.05 to 1.95 when file

transport is mediated by TCP. Right: Application layer causality.

and performance, are incorporated. The induced self-similar network traffic, in terms of its traffic

characteristics, is insensitive to details in the transport layer protocols-TCP Tahoe, Reno, Vegas,

flow-control1ed UDP-although extremeties in control actions and resource configurations can affect

the property of induced network traffic, in some instances, diminishing self-similar burstiness signif­

icantly4 [26]. Thus by controlling the tail index parameter C\:" at the application layer, it is possible

to induce self-similarity at the link layer while incorporating the influence of transport protocols in

the protocol stade Furthermore, by fixing the application layer access pattern in conjunction with

0, we are able to facilitate a comparative performance evaluation environment where two different

transport protocols-e.g., one stemming from modifications to the other-can be evaluated under

the same network conditions with respect to the propensity of generating self-similar burstiness in

network traffic.

4.3 Sampling from Heavy-tailed Distributions

A core component of our comparative performance evaluation framework is sampling from heavy­

tailed distributions to generate file sizes at the application layer which, then, drive the rest of

the system. A random variable obeying a heavy-tailed distribution exhibits extreme variability_

Practically speaking, a heavy-tailed distribution gives rise to very large values with nonnegligible

probability so that sampling from such a distribution results in the bulk of values being "small" but

a few samples having "very" large values. Not surprisingly, heavy~tailedness impacts sampling by

slowing down the convergence rate of the sample mean to the population mean, dilating it as the tail

index a approaches 1. For example, pending on the sample size m, the sample mean Zm of a Pareto

4Refincd structure in the form of multiplicative scaling in short-range correlation structure has been recently

discovered [14]i it is conjectured to be attributable to TCP's feedback congestion control mechanisms [141.
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distributed random variable Z may significantly deviate from the population mean Ctk/(Ct - 1),

oftentimes underestimating it. In fact, the absolute e~timation error [Zm - E(Z)I asymptotically

behaves as m{l!o)-l (see, e.g., [10]), and thus for a ~ 1, care must be given when sampling

from heavy-tailed distributions such that conclu.'iions about network behavior and performance

attributable to sampling error are not advanced.

Sampling variations and error~ have a ripple effcct in that they in:8uence the average traffic

intensity at the network layer which, in turn, aHects performance measures such as packet loss rate

and mean delay. Of practical relevance is the case where a number of connections is used as "back­

ground" traffic for other connection~whose throughput behavior we observe as we make changes to

their control protocol. To ascertain the impact of long-range dependence on performance, we would

like to vary the tail index Ct while generating the same average traffic intensity at the link layer

so that observed performance differences are due to burstiness characteristics, and not sampling

variations. For example, in the case of the Pareto di~tributionwith population mean ak/(a -1),

to compare performance of the same protocol tmder al = 1.05 and a2 = 1.95 traffic conditions,

we would solve alkt!(O:l - 1) = Ct2k2/(Ct2 -1) for a pair of values (kl , k2) to keep the population

mean invariant while allowing the burstiness structure to differ. For light-tailed distributions---c.g.,

exponential, Gaussian-this method works fine. For heavy-tailed distributions, however, even with

"large" sample sizes [10, 26], the sample means of the respective distributions can significantly differ

which has direct bearing on the traffic intensities, rendering the performance results inconclusive.

Our approach is a form of sample path normalization where by varying (kl, k2)~while keeping

(Ctl, C(2) fixed-we reach a regime where the measured traffic intensities, on average, are constant

for a = al and 0:2. Since k1, k2 do not significantly impact the burstiness property of underlying

traffic as captured by the Hurst parameter-recall that H = (3 - 0:)/2 in the analytic models~

we are able to achieve comparability by normalizing traffic intensities while holding invariant the

traffics' long-range dependence properties.

5 Performance Results

5.1 Network Configuration and Simulation Set-up

We use the LBNL Network Simulator-ns (version 2)~as the basis of our simulation environment.

ns is an event-driven simulator derived from Keshav's REAL network simulator supporting several

flavors of TCP and router packet scheduling algorithms. We have modified ns in order to model a

bottleneck network environment where several concurrent connections are multiplexed over a shared
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bottleneck link. A rate-based extention to TCP-TCP Rate-was added to the existing protocol

suite as were a number of UDP-based unreliable transport protocols. TCP-MT was realized by

coupling SSC with the various versions of TCP under ns. Figure 5.1 shows a 2-server, n-client

(n::::: 33) network configuration with a bottleneck link connecting gateways G1 and G2 . The link

bandwidths were set at 10Mbps and the latency on each link was set to 5ms. The maximum segment

size was fixed at 1kB. Some of the clients-i.e., 32 connections-act as background traffic for other

connections by engaging in interactive transport of files with heavy-tailed sizes across the bottleneck

link to the servers (i.e., the nomenclature of "client" and "server" is reversed here), sleeping for

an exponential time between successive transfers. The connections whose performance we measure

are infinite sources-they always have data to send-executing the various flavours of TCP and

their corresponding multiple time scale extensions TCP-MT with the objective of maximizing

reliable throughput. We study fairness issues by increasing the number of TCP-MT connections

while keeping the background traffic flows the same and observing the resulting bandwidth sharing

behavior.

Figure 5.1: Network configuration with bottleneck link (G t , G2). Traffic flows from left-to-right.

For any assignment of bandwidth, buffer size, mean file request size, and other system pa­

rameters, by either adjusting the number of clients or the mean idle time between successive file

transfers, we were able to produce a target contention level. In a typical configuration, the first

32 connections serve as background traffic transferring files from clients to servers (or sinks) where

the file sizes were drawn from Pareto distributions with shape parameter 0:' = 1.05,1.35,1.65,1.95.

As shown in [26]' there is a linear relationship between a: and the Hurst parameter H of aggregate

traffic measured at the bottleneck link (GI, G2). H was close to 1 when a: was near 1, and H was

close to 1/2 when a: was ncar 2. A typical run lasted for 10000 seconds-simulated time-with

traces collected at lOms granularity. This potentially yields 1 million data points for a single run

which helps offset some of the variability associated with heavy-tailed sampling, in addition to the

sample path normalization method described in Section 4.3. The basic performance evaluation

set-up-with variations-has been employed in previous studies [26, 27, 33] where the focus has

been on causality and performance impact issues of self-similar network traffic.
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5.2 Basic Performance Characteristics of Selective Slope Control

5.2.1 Unimodal Throughput Curve

We measure the incremental benefit gained by applying aggressiveness in the form of slope control

selectively, first, by applying it only when the chances for benefit arc highest (i.e., 1.2 = 1), then

second highest (i,2 = 2), and so on. Eventually, we expect to reach a point when the cost of

aggressiveness outweighs its gain, thus leading to a net decrease in throughput as the stringency

of selectivity is further relaxed. We use the threshold schedule-aggressive action is taken if,

and only if i,2 ~ () where () is the aggressiveness threshold~to demonstrate this phenomenon.

Figurc 5.2 (left) shows the throughput vs. aggressivcness threshold curve for threshold values in

the range 1 ~ () :S: 8 for a = 1.05 traffic. We observe that the curve is unimodal with peak at () = 4.

If () = 8, this corresponds to the case where aggressiveness is applied at all times, i.e., there is no

selectivity. ,.
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Figure 5.2: TCP Reno. Shape of throughput curve as a function of aggressiveness threshold for

three levcls of background traffic 5Mbps (left), 2.5Mbps (mlddle), and 7.5Mbps (right).

5.2.2 Monotone Throughput Curve

Although the unimodal throughput curvc is a representative shape, two other shapes­

monotonically increasing or decreasing-are possible depending on the network configuration. The

shape of the curve is dependent upon the relative magnitude of available resources vs. the magnitude

of aggressiveness. If resources are "plentiful," then aggressiveness is least penalized and it can lead

to a monotonically increasing throughput curve.' On the other hand, if resources are "scarce" then

aggressiveness is penalized most heavily and this can result in a monotonically decreasing through­

put curve. These phenomena are shown in Figure 5.2 (middle) and (right), respectively. TCP-MT

is designed to operate under all three network conditions finding a near-optimum throughput in
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each case. The most challenging task arises when the network configuration leads to a unimodal

throughput curve for which finding the maximum throughput is least trivial. That is, neither

blindly applying aggressiveness nor abstaining from it are optimal strategies. SAC's adaptability

is also useful in nonstationary situations where the network configuration can shift from one quasi­

static throughput state to another. Figure 5.3 shows the throughput vs. aggressiveness threshold

curves for the previous set-up except that TCP Reno was replaced by TCP Rate. We observe

that both performance as well as curvature of the throughput curves have increased which is, in

part, due to TCP Rate's superior tracking ability (cf. Section 5.2.3) which allows SSC to extract

large-time scale correlation structure more effectively. Figure 5.3 also shows the marginal impact

of employing SSC in Slow Start, in Congestion Avoidance, and in both.
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Figure 5.3: TCP Rate. Shape of throughput curve as a function of aggressiveness threshold for

three levels of background traffic 5Mbps (left), 2.5Mbps (middle), and 7.5Mbps (right).

5.2.3 Tracking Ability

The tracking ability of the underlying feedback congestion control can exert a nonnegligible influence

on performance and thus impact the effectiveness of selective slope control. The better the feedback

congestion control at tracking network state, the more accurate the large time scale correlation

structure extracted, hence resulting in more effective control actions. This dependence of TCP­

MT on TCP stems from SSC using TCP's per-connection output behavior to estimate network

contention at large time scales. This is more efficient-in terms of overhead-than constructing

a separate state observation module that sends probe packets into the network to estimate state,

or assume otherwise cooperation by the network. We measure the trading ability of TCP Reno,

Vegas, and Rate by computing the correlation coefficients of their reliable throughput with the

aggregate background traffic at the bottleneck link (G1,G2). Effective tracking implies that when

background traffic level is low-i.e., available bandwidth is high-reliable throughput should be
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high, and vice versa. Hence, under perfect tracking, the correlation coefficient computed should

equal -1. The computed coefficient values for Reno, Vegas, and Rate are shown in Figure 5.4 (left).

We observe that TCP Rate exhibits the best tracking ability followed by Vegas and Reno. Reno's

reduced tracking ability can be understood in terms of Reno's linear increase phase during which

speedy and accurate discerning of available bandwidth is impeded. Another feature we observe is

that as round-trip time increases, tracking ability decreases due to the outdatedness of feedback

information which is characteristic of reactive controls. Figure 5.4 (right) shows the correlation

coefficients for the same set-up with the difference that SSC was coupled onto TCP Reno, Vegas,

and Rate. We observe that all curves have shifted toward -1 indicating a synergy effect stemming

from coupling which enhances the tracking ability of TCP-MT vis-a.-vis TCP due to improved

timeliness of its actions.
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Figure 5.4: Left: Tracking ability in terms of correlation coefficient for TCP Reno, Vegas, and

Rate. Right: Synergy effect increasing tracking ability when SSC is applied to TCP Reno, Vegas,

and Rate.

5.3 RTT and Proactivity

An important-perhaps the most important-property of multiple time scale TCP is its ability to

mitigate some of the cost of reactive congestion control when subject to long round-trip times. As

the RTT associated with the feedback loop increases, the state information conveyed by feedback

becomes more outdated, and the effectiveness of reactive actions undertaken by TCP diminishes.

The penalty is especially severe in broadband wide area networks where the delay-bandwidth prod­

uct increases proportionally with delay or bandwidth. TCP-MT-by exercising explicit prediction

at time scale TL which dominates the time scale Ts of the feedback loop-is able to bridge the

uncertainty gap and affect actions that remain timely and accurate thus offsetting the cost incurred
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by reactive control. Figure 5.5 shows performance gain as a function of RTT where performance

gain 'Y is defined as

ATCP-MT - A TCP
,~

A TCP

where A Tcp is the reliable throughput of TCP~for any fixed particular flavour~and ATcP_MT

is the reliable throughput of the corresponding multiple time scale extension. Thus assuming

ATcP_MT ~ ATCP, 'Y ~ 0 represents the percentage of improvement achieved by TCP-MT over its

underlying TCP.
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Figure 5.5: Performance gain as a function of RTT when coupling SSC on top of TCP Reno, Vegas,

and MT. The increasing gains with RTT show proactivity of TCP-MT.

We observe that performance gain amplifies as RTT is increased, reaching up to 45% in the case of

TCP Rate for RTT = 450ms. Thus SSC endows the underlying feedback congestion control with

proactivity which amplifies as the feedback loop is increased. We can also relate the performance

gain in Figure 5.5 with the tracking ability shown in Figure 5.4, both of which are obtained from the

same set-up. We observe that the tracking ability of the underlying feedback congestion control

directly impacts performance. In fact, in spite of the diminished room for improvement when

going from TCP Reno to Vegas to Rate (the better the feedback congestion control is able to

utilize available bandwidth, the less unused bandwidth there is for TCP-MT to further exploit), we

observe a robust-even increasing-performance gain when SSC is coupled on top of ever "better"

feedback congestion controls.

5.4 Impact of Long-range Dependence

Another dimension of interest is the impact of long-range dependence on performance. As a '\or 1,

H /" 1 (empirical network traffic has Hurst parameter H :::::: 1), and the strength of large time
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scale correlation structure increases. Figure 5.6 shows performance gain for a = 1.05,1.35,1.65,

and 1.95 background traffic. First, the throughput level for the feedback congestion control (not

shown here) is higher for a = 1.95 traffic than a = 1.05 traffic. This is as expected since self-
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Figure 5.6: Impact of long-range dependence a = 1.05,1.35,1.65,1.95 on TCP-MT performance.

similar burstiness is known to lead to degraded performance unless resources are overextended at

which point the burstiness associated with short-range dependent traffic can dominate, determining

queueing behavior. More importantly, we observe that performance gain increases by a factor more

than 2 for a = 1.05 background traffic when compared with the corresponding gain for a = 1.95

traffic. This indicates that self-similar burstiness-although, in general, detrimental to network

performance--possesses structure that can he exploited to reduce its negative performance impact.

Figure 5.6 shows that the more long-range dependent the network traffic, the more structure there

is to exploit.

5.5 Short Duration Connection Management

Network measurements have shown that most connections are short-lived hut the bulk of traffic is

contributed by the few long-lived ones [14, 26]. Thus, by Amdal's law, effectively managing long­

lived connections is of disproportionate import. In fact, since about 80% of current Internet traffic is

governed by TCP, a trend which is expected to persist due to the growth and dominance of HTTP­

based World Wide Web traffic [3, 4, 9], managing long-lived TCP Hows takes on special relevance.

Nonetheless, since most connections are short~lived (6-8 TCP segments or lessL improving service

to short-lived flows-to the extent possible-is a desirable objective. Two constraints that are

intrinsically difficult to overcome are: (a) it is infeasible to consider performing per-connection,

on-line estimation with any degree of accuracy when connection duration is short; (b) when a

transmission consists of a few segments, even feedback control is of limited utility [20]. We consider
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three cases wi~h successivcly decreasing connection duration times and the effectiveness of open-loop

and closed-loop control. In Case I, an accurate, a priori conditional probability table is assumed

given, and a connection accesses this table to cngage SSC, by-passing its explicit prediction module

which is disabled. In Case II, on-line prediction is engaged for 300 seconds before turning on the

aggressiveness schedule of SSC. In Case III, after affecting on-line prediction for 30 seconds, SSC

is activated full-fledged. Table 2 gives performance results showing the performance gain for the

three cases when a connection is run for 100, 500, 1000, and 2000 seconds after estimation, if

any_ We observe that the performance gain is highest fDr for Case I when the connection duration

Short Conn. lDOscc 500scc 1000sec 2000scc

Ca"e I 25.4% 23.2% 31.6% 29.7%

Case II 4.5% 13.75% 20.23% 25.39%

Case III 6.3% 9.2% 19.2% 27.2%

Table 2: Performance gain for short SAC connections. Case I: with an a priori conditional proba­

bility table. Case II: SAC is on after on-line training for 300sec. Case III: SAC is on aftcr on-line

training for 30sec.

is shortest. Case III possesses the least accurate table and thus yields the smallest performance

gain among the three ca."ies. As connection duration increases, the performance impact of SSC for

Case III eventually catches up with that of Case II and I. These results indicate that although

SSC is optimally suited fDr long-lived connections, it can yield performance gains even for short

connectioIlli depending on the exact duration and availability of a priori information. The approach

ofllsing a priori information-by inter-connection sharing and statefulncss-also holds promise from

an estimation perspective due to the fact that under long-range dependent traffic conditions, the

CDnditional expectation estimator £2 = E[L2 1 L 1] can be shown to degenerate to E[L.J under

certain simplifying assumptions [5J. That is, extrapolate the current traffic level as the traffic level

for the next TL interval.

5.6 Symmetric Meta Control

Section 3.5 discussed the role of meta control for dynamically adjusting thc maximum slope level A

within SSG. The stability of the symmetric meta control depends on the adjustment factor 1/ where

1/ sufficiently small leads to asymptotic stability, and bigger 1/ values lead to oscillatory behavior.

Figure 5.7 shows the dynamics of the symmetric meta control for different adjustment factors 1/

where the value is successively increased by a factor oftive. As expected, we observe that the larger
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v, the more pronounced the resulting oscillation. What is more interesting is that the traces show

that in all three cases, the symmetric meta control "settles" to a common A value of 6 with the

magnitude of oscillation around A determined by v.
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Figure 5.7: Dynamics of symmetric meta. control as a function of adjustment factor v and the

resultant evolution of A. Top: 1I = 0.01. Middle: 1I = 0.05. Bottom: v = 0.25.

Figure 5.8 shows throughput performance for static vs. dynamic setting of maximum aggressiveness.

The unimodal curve shows reliable throughput for the static case where A is set to a fixed a priori

value in the range 1-10. The throughput corresponding to the dynamic meta control is shown by

the upper dashed line. It closely approximates the performance of the optimal static maximum

aggressiveness value A = 6. In general, it i~ difficult to know a priori what A should be for a given

network configuration, and dynamic meta control is needed to address tillS problem. The lower

dashed line shows the throughput for TCP Rate as a reference.

5.7 Fairness

TCP·MT is designed to run in shared network environments where multiple connections compete

for available resources. We investigate the behavior of TCP-MT with respect to fairness when

multiple connections engage in SSC. We compare the bandwidth sharing behavior of TCP-MT

flows with that of multiple TCP Reno connections. We show that fairness is well preserved when

SSC is applied on top of TCP in the sense that bandwidth sharing behavior-and the resultant
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Figure 5.8: Throughput performance with different maximum slope levels A.

fairness property-is qualitatively the same as TCP. This also implies that sse suffers under the

same fairne..'is problems as TCP such as those associated with long- and short-latency connections,

packet sizes, and window sizes. The results arc based on the set-up shown in Figure 5.1 except

for an increase in the bottleneck link bandwidth to 20Mbps to accommodate up to 18 TCP-MT

connections for a total of 50. The mean traffic rate of the first 32 connections-Le., non-SSe

background traffic sources-is held constant at 5Mbps. Figure 5.9 (right) shows that as we increase

the number of TCP~MT connections from 2 to 18 (i.e., 33rd connection and beyond), bandwidth

continues to be shared fairly in the max-min sense. The ~pread in individual throughput-even for

18 connections-stays within a narrow range with the individual share decreasing as the number of

TCP-MT connections is increased. Figure 5.9 (left) shows the corresponding performance figures

when TCP-MT is replaced by TCP Reno. We observe a qualitatively similar behavior as before.

Table 3 gives more detailed information in the form of total throughput and range of throughput
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Figure 5.9: Bandwidth access: Dashed line denotes mean throughput of multiple connections;

dark marks show spread of individual throughput. Left: Multiple TCP Reno connections. Right:

Multiple TCP-MT connections.
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values for individual connections. The first row of Table 3 shows that the total throughput of

TCP-MT increases with the number of connections up until n = 6 after which it begins to decline.

However, as the number ofTCP-MT connections is further increased, the amplification oCthe overall

aggre..'>Siveness-due to its additive nature-asserts a negative impact on throughput, eventually

yielding a net decrease. A similar result holds for TCP Reno due to the amplification in overall

aggressiveness as the number of concurrent feedback congestion control connections is incre~ed.

Total Thr. 1623.2 1725.0 1764.0 1738.0 1692.0 1609.9 1537.9 1405.9 1251.0

Avg. Thr. 811.6 431.2 294.0 217.2 169.2 134.2 109.8 87.9 69.5

Ma....:. Thr. 821.6 439.1 302.2 227.3 179.4 143.7 120.3 94.2 78.4

Min. Thr. 801.6 418.6 286.7 207.4 154.3 116.2 93.2 77.2 54.9

Tdble 3: Multiple TCP-MT connections. The first row shows the total throughput achieved across

all connections; the remaining three rows show the mean and range of individual throughput.

6 Conclusion

In this paper, we have shown that the multiple time scale congestion control framework [37] can

be successfully applied to TCP yielding its multiple time scale extension, TCP-MT. The large

time scale unit-selective slope control-is modular with a simple, well-defined interface which

allows the same module to be coupled on top of various flavours of TCP including Tahoe, Reno,

Vegas, and a rate-based extension. The relevance of this work derives from the fact that network

traffic has been shown to exhibit self-similarity and long-range dependence, and TCP is a dominant

protocol governing the bulk of current Internet traffic which is expected to persist into the future

due to the growth of HTTP-based World Wide Web traffic. An important property of TCP-MT

is its ability to mitigate the performance cost of reactive congestion controls which is especially

severe in broadband wide area networks where the delay-bandwidth product is high. The relative

performance gain of TCP·MT over its underlying feedback congestion control was shown to increase

as the RTT of the feedback loop is increased, thus imparting much needed proactivity.

Current work is directed at implementing TCP-MT over TCP Reno in the LimlX and Solaris

kernels, and carrying out performance measurements over wide area network environments. We

are also extending the short duration connection management work by employing a priori state

information to improve service-I.e., average completion time-when transmissions comprise of

only a few segments.
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