View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2002

Development of an Infrastructure for the Management of Smart
Homes

Ramkumar Natarajan

Aditya P. Mathur
Purdue University, apm@cs.purdue.edu

Report Number:
02-022

Natarajan, Ramkumar and Mathur, Aditya P, "Development of an Infrastructure for the Management of
Smart Homes" (2002). Department of Computer Science Technical Reports. Paper 1540.
https://docs.lib.purdue.edu/cstech/1540

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4971888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DEVELOPMENT OF AN INFRASTRUCTURE FOR
THE MANAGEMENT OF SMARTHOMES

Ramkumar Natarajan
Aditya P. Mathur
Baskar Sridharan

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD TR #02-022
October 2002

Development of an Infrastructure for the

Management of SmartHomes

Status Report and Research Plan

April 5, 2001

Ramkumar Natarajan, Graduate Student
Aditya P. Mathur, Professor
Baskar Sridharan, Graduate Student

Software Engineering Research Center
Department of Computer Sciences

Purdue University

West Lafayette, IN 47907, USA

Financial Support from:

British Telecom

Telcordia

Contents
1 Introduction

2 SmartHomes

2.1 WhatisaSmartHome?« . v o ot e e e
2.2 Why SmartHomas?t it e e e e e
2.3 Why manage SmartHomes?
2.4 Requirements for the management of SmartHomes
2.5 Bvent notification and correlation L oL
2.6 Embedded (EA) versus distributed applications (DA}

Research Issues

3.1 Solutions to the SmartHome management problem
32 Questionsofinteresto v ottt i e e e
32) INtruskveDESS . . « v v v v v v @t v b s e v m e e e e e e e e e
3292 Sealability -« i i e s e e e e e e e e e
3.2.3 Support for helerogeneity o i oL
3.24 Support forsecuremanagemento e e e
3.2.5 Support for remofe maintenance 0.
3.2.6 Support for the generation of management applications

Summary of past research

4.1 Architecture of the infrastructure for the managementof DA
4.1.1 Components of the architecture
4.1.2 Zone-based partitioning e e
413 UsingHebashtomanageaDA,
414 TmplementationofWabash.,

42 Featuresof Wabash . . . - v v« v e v v v b v v st s st e s
4.2.1 Specilying project information for testing and management
4.22 Performance mMeasUTes . . « « + - - « o = = s s s o o o s o s v o o v 0w o
4.2.3 Coverage measurelments . « . v + v o s o v v v o v 0 vt e e e
4.24 Interface mutation and fault injection
4.2.5 FEvent-based monitoring and control e
4.2.8 _State informationofacomponent L Lo oo

4.3 Evaluation of the infrastructure for the managementof DA
4.3.1 Intrusiveness with respect to thesourcecode
4.3.2 Intrusiveness with respect to service latency
433 Heterogemeity . . . » . v v v v i vt it i e e
4.3.4 Related work . . . & . o i i i e e e e e e e e e e

4.4 Architecture of the infrastructure for the management of EA

o0 00 ~ @ wr

10

11
11
12
12
12
13
13
13
13

4.5
4.6

4.7
48

44.1 Components of the architectureo e,
44.2 Implementation of HomeWabash
Features of HomeWabash . . - v v v s v s e s o v e na s o n s o v
Evaluation of the infrastructure for the managementof EA
4.6.1 Intrusiveness with respect to thesourcecode
462 Heterogeneity o v v i it it e e e
463 Reatedwork e e
A XML based Policy-Driven Management Information Service.
Architecture of a Management Information Server

Research Plan

5.1

5.2

5.3

" 54
8.6

Evaluation of Wabash o .. i it e e e e e e e
500 Scalabilify v v h e
5.1.2 Support for automatic generation of management applications
Evaluation of HomeWabash o o v v o v o v v v o e s b e e e
5.2.1 Heterogeneity o ot i e e e
522 Scalability« . v v v e e e e e e
5.2.3 Support for remote maintenance e e
5.24 Support for automatic generation of management applications
Automatic generation of customized,“pluggable” management applications . . .
Architecture of the EBRNC system v o v v v vt o m v o v oo
TestingEAand DA e e e e e e e

Acknowledgments
References

Appendix A: Document Type Definition for Event Notifications

28
23
28
28
29
29
29
29
30
30
31
33

33

a3

35

1 Imtroduction

This paper is 2 sumtary of our research in the area of maragement of distributed and em-
bedded applications. This section, in particular, highlights the research context and explains
the problem of interest to us. A summary of our accomplishments so far and a research plan
appears in Sections 4 and 5, respectively.

The SmartHome project grew out of our vision of a society that is getting increasingly
“connected” amongst its living beings and the devices they use. The long term goal of this
project is to develop and experiment with technologies with the potential to improve the
lifestyle of humans across various sectors of the society by making use ol current and [uturistic
computing and nctworking technologies. The powerful and low cost integrated circuits available
now, the ultra thin and flexible circuits anticipated in a few years, and the more futuristic
molecular devices, are all likely to assist humans in improving their lifestyle. We want to
understand how these technologies could help humans in managing, and improving from its
current state, their day-to-day life. We also want to develop an infrastructure that will allow
efficient management of collections of devices that can be monitored and controlled via the
Internet. Following are the key objectives of the SmartHome praject:

1. Understand how the current and future technologies could assist in the “smartjzation”

of devices and homes.

2. Develop an infrastructure for the management of smart devices and homes. Such an
infrastructure must be useful to individual home owners as well as to the service-provider
industry likely to mushroom around SmaxrtDevices and SmartHomes.

3. Set up experimental SmartHomes for the evaluation of the infrastructure and obtain feed-
back from the potential users of this technology.
2 SmartHomes
We answer the following questions to expose the context of our research.
1. What are SmartHomes ?

2. Why are SmartHomes needed ?

3. What are the management needs for SmartHomes ?

We then enumerate a set of requirements that we believe are crucial for the management
of SmartHomes. Events and actions

2.1 What is a SmartHome?

A SmartHome is a physical domain comprised of devices {(hardware and soflware) owned by
one or more individuals that can be monitored and controlled via the Internet. SmartSpace
is perhaps a more generic name for a SmartHome. A traditional home (space) becomes a
SmartHome (SmartSpace) when it contains one or more SmartDevices. However, a ship ashore
or a sailing boat also becomes a SmartHome when either contains one or more SmartDevices.
Thus, our definition of a SmartHome is general enough to encompass a variety of “physically
enclosed” and “privately owned” networks that connect a host of devices to the Internet or an
Intranet.

We are liberal about the kinds of devices allowed inside a SmartHome. Of course well known
computing devices and petipherals are considered as SmartDevices and can be made smarter
with the addition of hardware and soltware. Also, traditional devices such as a refrigerator,
VCR, TV, video camera, video game console, lights, garage door, microwave oven, dog food
dispenser, etc. found in many homes, can be upgraded with hardware and software and
connected to a network. Such an upgrade and connection transforius an otherwise non-smart
device into a SmartDevice.

Devices such as parts of a boat, parts of an automobile, personal clothes, furniture, art ware,
etc. are not prevented from being parts of a SmartHome. Existing and future IC technology
will in all likelihood make it possible for such devices to be made smarter. For example, a
SmartShixt could communicate with the washer and inform the person who put it inside the
washer that the washer could not be set to the right cycle because this shirt has been mixed
with the wrong set of clothes. A smart chair might adjust its contour to that of the person
sitting on it simply by recognizing the person about to sit. A SmartSeat inside a car might
adjust jts position by recognizing the driver or the passenger. Obviously, there is ro limit to
creative thinking and smartization of devices.

Figure 1 shows several SmartDevices connected to a Local Network and, through a Gate-
way, to the Internet or an Intranet. All devices in this figure, shown inside a boundary, are
assumed to belong to one or more owners. Devices such as a VCR, refrigerator, automobile,
and the oven, that are found in most homes, might be connected via a gateway to the Internet.
Devices such as a heart rate monitor, blood analyzer, and CATSCAN equipment, might be
connected via a special gateway to an Intranet owned by a Hospital. We do not constrain the
Local Network and the Gateway in any way. Thus, for example, devices in a mobile hospital
might be connected amongst themselves via a wireless network and in turn via some sort of a
Gateway to an Intranet that connects other mobile hospitals.

Figure 2 shows the relationship between SmartHomes and the three types of management
entities enumerated earlier. Note that a Manufacturer and a Service Provider could enter a
SmartHome via the Internet or the Intranet. The owner could enter the SmartHome owned
either via the Internet/Intranet or directly from within. For example, while at home the owner
might access the TV and program it using on-screen menu whereas from outside of the home

Boundary of Ownership

SmantDevice |.........oiviviiiicceeniennneen...| Smmart Device

3 A

[A
Local Communications Nctwork

Intermet/Intranet

Figure 1: Connection of devices within a SmartHome to the outside world. The Gateway could
be a special purpose device, such as a Residential Gateway from Telcordia Technologjes, or a
commodity Personal Computer.

she might program the same TV via the Infernet.

2.2 Why SmartHomes?

The expansion of the Internet and the reduction in the cost and size of integrated circuits
has given birth to 2 new breed of devices. These are devices that contain programmable logic
which allows reconfiguration to suit individual tastes and requirements. The Internet allows
such devices to be managed from almost anywhere in and outside the world. Programmability
and connectivity of the devices entices people to use them in ways that could only be dreamed
of in the past.

As an example, “fault tolerance” is introduced in the purchasing process when a soft drink
can be purchased through a cell phone. Thus, if someone forgets to carry cash, or does not
have the correct change, the cell phone provides an alternative way to meet one’s need, that is
to have a drink. Personal security, scheduling of ertertainment, calling for medical assistance,
providing medical assistance, are only a Iew of a variety of tasks that could be vastly improved
with the widespread use of SmartHomes. In summary, it appears that SmartHomes will likely
improve the overall quality of the individual lifestyle and hence their need.

Smart Hame Freseersessrcrisinisicinsnnsiinann Smart Home

A 4

Y h 4

[meway J .. { Goroway]

3 A

— |

Intemet/intranet
Manufaciurer Service Provider
Mimufaclurer Service Provider

Figure 2: Accessibility of SmartHome to owaers, Service Providers and Manufacturers.

2.3 Why manage SmartHomes?

Management of SmartHomes is necessary to ensure that the needs of its users are met in a
timely and efficient manner. In the context of SmartHomes the term “management” refers to
the monitoring and control of individual, or a collection of heterogeneous, devices. Monitoring
is the checking of one or more status indicators. Control is exercising of actions that could
alter the state of the device. Remote checking of whether or not an ATM is out of cash
or checking whether or not a water softener is low on salt are two examples of monitoring,.
Remotely commanding a blood analyzer is an example of control. Though the remoteness of
the operations is not essential to their being management tasks, it does seem to make them
more useful.

To understand management needs of SmartHomas, we identify three categories of people or
organizations who will likely need to manage SmartHomes. These are (a) individuals who own
the devices, (b) organizations that are required to service the devices, and (¢} manufacturers
of the SmartDevices. A home owner belongs to category (a), 2 department store, such as
Sears, to category (b), and a manufacturer, such as Sony, to category (c). Whereas people
in category (a) and organizations in category (b) are expected to be directly involved in the
day-to-day management tasks, manufacturers in category (c) are likely to be concerned with
the provision of suitable features in the embedded software for effective management. For
example, the manufacturer of a SmartCar ought to be concerned with what features to provide

for the owner to remote monitoring and control and for the auto-dealer to check, and perhaps

service it, remotely.

2.4 Requirements for the management of SmartHomes

Table 1 lists what we perceive to be the management needs, or requirements, of people and
organizations mentioned earlier. It is reasonable to cxpect that individuals and organizations
in the managerial roles will nced to monitor and control the devices. However, their specific
requirements might differ. For example, a Service Provider might not be interested, or autho-
rized, to monitor the channel being currently viewed by the Owner. Also, the Owner might
nol be intercsted, or authorized, to check the stalus of the fuel injection system inside an
automobile.

The Service Provider and the Manufacturer are likely to have similar requirements. How-
ever, one might or might not authorize the other to perform certain monitoring and control
tasks. For example, the Manufacturer might provide a special [eature in the embedded software
that controls the automobile engine. Using this feature the Manufacturer would be able to
download performance data. This data might be important enough to the business of the Man-
ufacturer to not allow access to others including the Service Provider. The Service Provider
might also restrict the Manufacturer from obtaining information about the service agreement
that it has signed with the Owner.

2.5 Event notification and correlation

Event notification and co-relation mechanisms are common in distributed systems. Event based systems allow
for loose coupling of components and enable building complex interactions among components of a distributed
system.

The following are a few reasons why an Event Recognition, Notification and Co-Relation (ERNC) system
would be beneficial as a component in the infrastructure for the management of SmartHomes.

e Asynchronous inferaclion: Using the ERNC, one have asynchronous interactions with components
of a SmartHome. Thus, for example, instead of a user checking every 10 minutes whether a washing
cycle is done, a smart washing machine combined with the ERNC can be programmed to notify the user
(via e-mail or other means) upon completion of the washing cycle.

o Aulomalion of repefitive lasks: A key benefit of managing SmartHomes is that it promises to
improve the perceived quality of life of its users. This benefit can be further augmented by automating
mundane and repetitive tasks. Thus, for example, with a SmartLock and the ERNC, the home security
system can be enabled automatically each time the SmartHome is locked.

o Allow complez interactions belween devicess The ERNC can be viewed as a mechanism for
embedding intelligence into the HomeWabash sysiem. For example, the ERNC can be used to dim the
SmartLights soon after the SmartProjector is tumed on. While the SmaxrtProjector by itself

Table 1: Requirements for the management of SmartHomss.

User Category | Requirement Explanation
Owner Monitoring Check the state of any device owned.
Control Send a control command to any device owned.

Access specification

Event specification

Specify access controls.

Attach time and state dependent actions Lo de-
vices owned.

Service Provider

Monitoring

Control

Access specification

Event specification

Service assignments
Service schedule

Accounting

Check the state of any device under contract. The
slate space to be monilored will likely be different
than the one that can be monitored by an owner.

Send a control command to any device under ser-
vice contract. The control command set will likely
be different than that for the owner.

Specily access controls to servicemen and owners.

Attach time and state dependent actions to
devices.

Assign devices to specific service personnel.
Schedule on-site and remote maintenance services.

All finance refated services,

Manufacturer

Monitoring and Control

Upgrade

Perhaps all Monitoring and Control needs of the
Serviee Providers will also be the needs of the man-
ulacturers. However, the manufacturer may need
special access to the devices for the purpose of
servicing and obtaining performance data. This
could be provided by the Service Provider.

Device manufacturer might want to upgrade em-
bedded software on all devices of a kind. This
could also be done by the Service Provider,

may be capable only of producing a notification of an "on” event, when coupled with the ERNC itcan give

the user the illusion of being a co-ordinated smart-device aware of other devices and their interactions.

o Allow inleraclions belween heterogeneous devices: A Kkey requirement of the HomeWabash
system is the need to handle heterogeneily. We do not expect a single standard for smart-devices or for
their management. Nor do we expect a single standard for communication mechanisms between and 10
SmartDevices. However, from a user’s perspective, it is of preat advantage if this heterogeacity is
hidden and instead a consistent interface is presented for monitoring and control. The ERNC can facilitate
the interaction between heterogeneous devices through the loose coupling presented by the event-response
mechanism. The power of using the ERNC as a building block to a complex management system is
that no component needs to be designed to work specifically with any other component. For example, a .
Bluetooth enabled PDA can send a song title to an IP enabled MP3 player which then downloads this song
to be played later. While the PDA and the MP3 player may not have been designed (o interact, or indeed
even be aware of each other's existence, the ERNC system provides a flexible coupling mechanism that

facilitates interactions between these devices.

» Facilitate gregter reach for SmartDevices. We expect SmartDevices o have a limited scope
in terms of their communication capabilities. Thus a device cannot be expected to make use of the
diverse array of communication mechanisms (o interact with the user. However, this restricion can be
overcome when the device is coupled with an ERNC system that does not have the same [imitations as
the device. The complexity of managing the diversity in communication mechanisms o the user is now
handled by the ERNC similar (o0 how a Residential Gateway handles the complexity of communicating
with an individual device. For example, a washing machine may only be capable of praducing a simple
notification to the local Residential Gateway. Using the ERNC, this notification can be forwarded based
on the user’s current location and envirenment, to her e-mail, mobile phone, pager, car dashboard, etc.

2.6 Embedded (EA) versus distributed applications (DA)

We are concerned with the management of embedded applications (EA) and distributed applications (DA). In the
context of SmaxrtHomas, embedded applications are those that reside inside a SmartDevice. The software
that resides inside 2 VCR, a Microwave oven, an automobile, CATSCAN equipment, etc., constitutes embedded
applications. A collection of comporents, perhaps distributed over many computers across the globe, to manage
a proup of SmartHomes, is an example of a distributed application. An embedded application could be
disiributed. For example, most automobiles cortain several microprocessors controlled by software components
that communicate amongst each other to realize an automobile function. Modem airplanes also have similar
applications that are embedded as well as distributed. In addition to the embedded applications being distributed,
the services for these devices may likely be realized using distributed applications. For example, a Home
Management Service for managing SmartHomes may be a distributed, component-based application.
Considering that embedding and distribution are the likely characteristics of applications in the context of

SmartHomes, we use the following terminology for the purpoese of this work:

Embedded applications (EA) are intended 10 control a single SmartDevice and are hosted physically in

10

some form of memory (e.g. flash ROM, atomic disk, etc.) that resides within the device (o be managed. An
embedded application may or may not be distributed.

Disliributed applicalions (DA} are collections of at least two or mare components hosted on one or more
computers and provide services using some variant of the client-server model. A component may be replicated
to improve its accessibility.

Inis likely that EAs are significantly more constrained than Dis in terms of the computing resources available
to them. This will likely affect their architecture. For example, it is unlikely that an EA, even though distributed,
uses 2 CORBA 3.0 or a DCOM implementation whereas a DA could. Certainly, progress in hardware technology
could change this belicf. However, when compared in relative terms, an EA is likely to be more constrained than
aDA.

3 Research Issues

A careful examination of the requirements for the management of SmartHomes leads to the formulation of key
research issues. One can imagine a multitude of approaches o fulfill the requiremnents listed in Table 1 for the
management of SmartHomes. For our discussion we identify and examine two approaches. These approaches

are: (1) individualized solutions and (2) standardized solutions.

3.1 Solutions to the SmartHome management problem

To understand the strengths and weaknesses of the two approaches mentioned above, consider a Service Provider
who wants to enter into the business of servicing a kind of Intemet appliance. The software infrastructure required
to run such a business would necessarily include components to monitor and control the devices the appliances
to be serviced. To maximize its profit potential, a Service Provider might want to manage a diverse postfolio
of appliances rather than one-of-a-kind. Diversity in portfolio would imply different types of appliances from
manufacturers. Under the individualized selufion approach, each manufacturer develops its own monitoring
and control interface thereby increasing the likelihood of incompatible monitoring and control interfaces for the
appliances under service. Such incompatibility adds to the complexity of the software components for monitoring
and control and hence to the cost of their development and maintenance. Expansion of business by acquiring
one from another Service Provider will likely lead to the increase in software complexity. Other components
of the software infrastructure, such as those that deal with accounting for pay-per-use appliances, or provide
individualized services to the Owner, or assist in organizing a large domain of use into smaller subdomains for
the ease of management, are also likely to face the problem of *‘added complexity™.

Under the siandardized solution, we foresee a software infrastructure consisting of components that
provide features to meet the basic needs of the three categories of users and managers of nppliances. These
components are used by a number of manufacturers and Service Providers. The components are extendible to
meet special needs. Note that standardized solution does not imply a unique infrastructure, but it does imply
the existence of perhaps several infrastructures for management one of which is selected for use by a Service

Provider depending upon its characteristics.

i1

3.2 Questions of interest

Discussion in the previous subsection leads to the imporiant question that is driving our research: ¥ What
should be the soflware infrastructure for the managementi of SmartHomes ?” We split this generic

question into the following research questions:

1. What should be the architecture of the infrastructure ?

2. How should an infrastruciure be evaluated ? We expect to identify and, where possible, quantify the key
describing characteristics of infrastructures so that competing solutions could be compared.

We do not expect a unigue answer to the first question above. Perhaps there are different architectures
suitable under different management scenarios. By the term “‘architecture of the infrastructure'’ we mean a
listing of the key components of the infrastructure, the relationships amongst these components, features offered
by each component, and any special characteristic of each component [9].

Evaluation of the infrastructure is essential o our research. We have idemified the following characteristics

against which we plan to evalvate management infrastructure developed in our research.

1. Intrusiveness

2. Scalability

3. Support for heteropeneity

4. Support for secure management
5. Support for remole maintenance

6. Support for the generation of management applications

In the following subsections we explain each of the above characteristics.

3.2.1 Intrusiveness

Intrusiveness is 2 measure of the extent 10 which the infrastructure (a) reguires a change to the application
code, (b) degrades the performance of the entity being monitored, and (¢} alters the state of the entity under
observation. In a SmartHoma, for example, it may be desirable that the current operation of a blood anakyzer be
not affected in any way when its state is monitored. Also, when the monitoring and control needs change, one
shoutld not have to modify the application code in order to accormmodate the new needs.

3.2.2 Scalability

Scalability is a measure of how the infrastructure performs when the number of devices being monitored and
controlled increases. Performance of the infrastructure could be measured as, for example, (i) the time to monitor,
(ii) the time to send control signals (o a device upon the occurrence of an evemt, (iii) the ease of distribution and

reallocation of management personnel, and (iv) the time to upgrade embedded applications.

12

3.2.3 Support for heterogeneity

Support for heterogencity refers to that aspect of the design of the infrastructure which allows its users to
easily adapt new SmartDevices into a management domain. It is difficnlt to quantitatively measure this
aspect of the infrastructure as it is perhaps always possible to accommodate any SmartDevica by appropriate
moadification of the management application. Hence, it is the ease with which new devices could be inducted
into a management domain that becomes the distinguishing characteristic of a **good’’ infrastructure, In DAs
heterogeneity arises due to the use of different technologies. For example, a management application might
employ a mix of components that usc CORBA [12], Java RMI [1], and JINI [2]. Monitoring and control of such

applications raises interesting questions.

3.2.4 Support for secure management

Secure management and support for it refers to the use of techniques for managing SmartHomes in a secure
way. A fully secure infrastructure implies that, when nsed correctly, the management application built around
this infrastructure will make it impossible for intrusion and misuse of monitoring and conitrol operations by

unauthorized indjviduals.

3.2.5 Support for remote maintenance

Support for remole maintenance refers to those features in the infrastructure that allow Service Providers and
Manufacturers to remotely enter a SmartDevicas, identify the cause of any problem already reported or likely
lo occur, and, if possible, make repairs. In a sense this is akin to debugging remotely but within the environment

of its use.

3.2.8 Support for the generation of management applications

Support for the generation of management applications refers to those components in the infrastructure that are
intended for assistance with the generation of management applications given a specification of the management
tasks. We believe that all categories of users would need to develop new management applications lo induct
new SmartDevices into their management domain and to satisfy previously unsatisfied needs. Qur goal is to
provide components in the infrastructure that will assist with the development of such applications.

4 Summary of past research

We describe the architecture of two infrastructores for the management of EA and DA, summarize the important
characteristics of their implementation, and present results obtained from experiments designed to evaluate them.
4.1 Architecture of the infrastructure for the management of DA

The infrastructure for the management of DAs was designed and implemented to manage applications that
use CORBA. These applications consist of several components that are often replicated and distributed across

muitiple computers. The components, both clients and servers, are usually unaware of the locations of those

13

from which they need to obtain services and communicate via a Object Request Broker popularly known as
ORB. An owner of CORBA components is oflen interested in their monitoring and control. The architecture
described in this section was designed and implemented to allow scalable and non-intrusive management of
CORBA components.

In (his architectore, named Wabash, scalability is achieved primarily through the vse of zone-based
parlilioning and non-intrusiveness through a clever positioning of components called *‘Local Listeners'".
Several key features of Habash also distinguish it from other similar systems. These features include the abilicy
to perform dynamic load testing of servers, tesling of servers via interfaces, and the ability to allow local and
distributed management. The novel elements of the architecture and its implementation are summarized in the

remainder of this section.

4.1.1 Components of the architecture

Figure 3 shows the components and their interactions as found in Wabash. For our discussion, let CM denote a
component to be managed in a DA. Various components of Wabash are described below. The advantage offered
by each component is explained in Section 4.3.4.

Local Listener (LL):Each CMisencapsulated by an LL. Alf requests sent to or from CM must go through
the IL. The LL is the supplier of information regarding a CM. For example, the LL is the source for all events
that occur at CM. The request emanating from and (he responses received at a CM are viewed as events. The
LL maintains and supplies component specific information such as the component's name, number of exported
interfaces and certain performance statistics. In addition, the LL stores manager specified event-action correlation
pairs and recognizes events that occur at CM. The LL also executes the comresponding actions associated with an
event. LL uses information from CM’s interface to provide the functionality.

Monitor (MR):The MR provides services for monitoring one or more CM(s) and for parsing and delegating
event-action cormrelations. For example, for an event that involves more than one CM, the MR component parses
the event description and delegates the recognition of the local events to the appropriate LL.

Contrellar (CR): The CR provides services for controlling one or more CM through the LL. For example,
CR provides a stop(} that can be used to dynamically stop the CM from servicing requests. The stop() service
also provides for a fine-grained control over the requests. For example, it is possible to specify that CM stop
servicing certain requests only if they arrive from clients that reside in a certain network. The MR and CR

provide features for managing the CMs in one zone and hence constitute the zonal manager.

Database Managar (DB): The information and state of each CM is incrementally updated and stored in a
database, DB exports services for storing in and retrieving data from the database.

Zonal Services Gateway (ZSG): The ZSG serves as the gateway to access Lhe services of the various
components within a zone. For example, the LL uses the ZSG 10 access {he services of the MR and CR. Similarly,
the services of the LL can be accessed through the ZSG.

In addition to the above mentioned components, the architecture also includes a User Interface (UI) component
for managing the DA.

14

4.1.2 Zone-based partitioning

In is likely that components of the DA are distributed over a wide geographical area with differing ownerships
and communication speeds among the components. It was therefore decided to allow a manager to establish
a one-level hierarchy of components by partitioning the space of components into logical zones. Each zone
cansists of a collection of components managed independently of components in other zones. In the description
below we assume that the management of companents is under the control of a human being who is referred 10
as “‘manager’’.

The partitioning of the components into zones may be based on several criteria such as ownership and
communication bandwidth, We consider the case where components are owned by one or more managers each
of whom may have different levels of access. Even though owned by dilferent individuals, the components
may collaborate to present a single service Lo their clients. Each set of components owned by an individual
may receive management requests from the other. Partitioning the deployment space into distinct, thongh
communicating, zones facilitates the application of access restrictions for managing the compoenents and also
simplifies the management of these components. For example, for an application deployed in two different
zones, it is possible to assign one administrator for managing each zone. The administrator for a given zone may
be granted access-permissions only for compaonents deployed in the zone of responsibility. It is also possible to
assign (o a single administrator the responsibility for the management of two or more zones.

Type of the communication links, thatl connect the various components, could be another criteria for
partitioning. For example, components that communicate using a single LAN can be grouped under a single
zone. Typically, though not necessarily, components deployed over a single LAN are owned and managed by
the same organization. Hence, the management needs of the administrator for these components are more for the
locally deployed components than for those that may be deployed across a WAN. Hence, it would be beneficial

to assign a zonal manager for managing each local group.

4.1.3 Using Habash to manage a DA

The DA can be managed manually, eutornatically, or using a combination of the two. For manual
management, a manager selects the appropriate component using the UI and a sujtable command is sent to the
selected component. The Ul sends the command to the component’s ZSG. The ZSG then forwards the request
1o the component’s LL, The DA can be antomatically managed using event-action correlations. For example, a
sequence of management commands, referred to as actions, can be executed upon the accurrence of an event
at a component. The event-action pair is sent to the ZSG through the UL The ZSG sends the information (o the
MR for parsing and delegation. MR sends the local events to the CR and also to the appropriate LL. Upon the
occurrence of the event at a component, the corresponding LL directs this event to the MR through ZSG and also
executes the action(s) corresponding to this event.

Managing a DA manually or automatically requires that the requests and responses go to the component
through LL. Upon the arrival of a request at 2 LL, the following actions are taken before the request is forwarded

to the component:

» The request is time-stamped with its local time of arrival.

15

User
interface

Zanal Manager Zonal Manager

pB

DB

©E e O

.......%He.i.................,. Zone n

Figure 3: Components of the infrastructure for the management of DA.

The performance statistics for CM are updated.
e Auributes of the request are sent to MR,

e An event-action list is consulted and appropriate action is taken if specified in the action part of the

event-action pair.

4.1.4 Implementation of #Habash

The proposed architecture has been implemented using JDK1.2 and Visibroker 3.4 [11]. All components of
Habash 2.3 are implemented as CORBA components and hence the communication between them is via the
ORB. The LL is implemented as a CORBA. interceptor. Though Visibroker 3.4 does not support portable
interceplors, the subsequent versions of Visibroker do and hence the LL module can be extended to work with
various implementations of CORBA. A flat-file representation of a database has been implemented.

4.2 Features of Wabash
Wabash provides the following features:

1. Performance of the individuat objects and the application.

2. Measurement of method and inferface coverage

16

Table 2: Performance m res at 1 level,

Property Appliction | Object Level | Interface { Method

Level Level Level Level
Name v v v
Host Machine Name Vv

7 of unnamed objects

of named objects
Started at

Up Time

of hits

of interfaces

ol methods
Maximum Latency

SNSRI

<<l
< el
<<

Minimum Latency

Average Latency

LKA

Memory usage

3. Mechanism for faull injection.
4. State of the components at each level of hierarchy.

S. Mechanism for event-based monitoring and conirol.

Each application is viewed at different levels of granularity, namely, application level, object level, interface
level, and method level. The above features are implemented at each level of the hierarchy of an application as
described below.

4.2.1 Specifying project information for testing and management

Before Wabash can be used to test or manage an application, some static information regarding the application
is obtained. The association between machines and zones is specified. The information regarding the servers and
the machines on which they are hosted is also specified. This static information is stored in a database and is
referred to as a project,

4.2.2 Performance measures

Wabash collects performance statistics at each level of the hierarchy. The performance statistics can be viewed
at run-time. They are also logged on to a stable storage for post-processing and other analyses. Table 2 shows

the statistics collected at each level.

17

4,2,3 Coverage measurements

Traditional testing of sequential programs involves maximizing the code coverage of the various components of
theapplication. Current research in the area of testing of component-based applications focuses oninterface-based
coverage criteria. Wabash aids in testing component-based applications by providing coverage information for
the various interfaces exported by the application. It provides a graphical view of the ratio of hils/total-hits,
and the percentage of the interfaces covered at each object, as a pie-chart. The coverage information helps the

tester visualize an increase in interface and method coverage while running various tests.

4.2.4 Interface mutation and fault injection

The current architecture supports mutation of the elements of an object’s interface. The tester can use this feature
1o create, activate and deactivate mutants of the methods in an interface and thereby evaluvate the adequacy of a
test suite. The mechanism that creates mutants is also used for the injection of faults at component interfaces.
These faults include server crash, delayed response, and invalid response. The following mutants are generated:

e Swap any two parameters.
o Increment/Decrement an integer by one.

e Substitute a value of a parameter by null.

4.2.5 Event-based monitoring and control

This feature allows a user to specify an event of interest and to attach an action. The action is executed upon the

occurrence of the associated event.

4.2.6 State information of a component

The tool also collects and displays state information at each level. A state of a component at a level is defined to

be one of the following:

e INACTIVE - when a component has been statically defined to be a part of the application but has nat
been started.

e DENY - when a component has been started but all requests to the component have been denied service.

e ALLOW - when a component has been 5tarted and all requests are allowed service.

ALLOW is the default state of a component. The state of a component may be affected when a
canirol_aetion is applied to it. In addition 1o the control_actions specified earlier, two special control actions
are assumed to be pre-defined for any application. These are the siarl and slop actions applicable to any
component. start is assumed to start a stopped compenent and siep stops a running component. Upon the start
of a component, all components contained inside it are also started. For example, when a server is siaried, all
the objects in the server are also started. Similarly, when an object is started, all the interfaces exported by the

object are started.

18

For components at each level, Habash displays the current state of all the components contained inside, The
stale of a component can be changed unconditionally by choosing any component and applying a control action

on an Anyevent.

4.3 Evaluation of the infrastructure for the management of DA

Section 3.2 lists the crileria we propose for the evaluation of a management infrastructure. The crileria are
described with a focus on the embedded nature of the applications. Though ke basic criteria remain unchanged
in the context of distributed applications, the semantics and relevance of the criteria do change. For example, in
the context of EA, heterogeneity refers to the ability to support different types of device technologics whereas
in the context of D4, it refers to the ability of the same management architecture to suepport different types of
distributed systems technology. Similarly, in the context of EA, intrusiveness with respect to the service latency
is not as relevant as in the context of DA. In the remainder of this section, we describe the sernantics of the criteria
enumeraled in Section 3.2 and describe the evaluation of our architecture based on these criteria.

4.3.1 Intrusiveness with respect to the source code

As mentioned in Section 3.2, 1, minimal intrusion is a desirable characteristic of any infrastructure for management.
The components of the architecture interact with the CM through the services exported by its LL which is the
only component that interacts directly with the CM. Hence, it is important that the LL be minimally intrusive. In
our implementation, LL has been implemented as a CORBA interceptor. A CORBA interceptor can be loaded at
run-time into the same address space as the compaonent itsel Fwith no change or only a minor change to the source
code of CM. The change to the source code depends on the language in which CM has been implemented. If the
CM is implemented in Java, then some CORBA implementations can load LL at run-time into the component’s
address space. Also, this can be done without any modification to the source code. A CM implemented in
C/C++ may require a small modification (o instruct the CORBA implementation to load LL into the component’s
address space.

4.3.2 Intrusiveness with respect to service latency

It is important that the management architecture have very little, if any, effect on the latency of the services
exported by the CM. We evaluated a prototype implementation of the architecture 1o determine the overhead
of the architecture on the latencies of the exported services. We conducted experiments on a large, four-tiered,
CORBA-based telecommunication application written in Java. The application was under development at
Telcordia Technologies. At the time of experimentation, this application consisted of over 100,000 lines of code.
Hence, non-intrusiveness with respect to the source code was an important criteria. For our experiments, we
selected the services of a high-volume component of the application. The objective of the experiment was to
determine the effect of the management architecture on the latencies of the services. We found the overhead to
be between 4.65%-6.2%. More detaiis of the experiment are found in [16].

19

4.3.3 Heterogeneity

In the context of DA, heterogeneity is the ability of the architecture to manage DAs built using different
distributed-systems technology such as CORBA, DCOM, Java RMI etc. The architecture we have built is used
(o manage CM using LL. The various components of its architecture communicate with LL.. Though the current
implementation of the architeclure uses CORBA to realize the components, it does not restrict Lhe architecture’s
heterogeneity. We can manage a DA, if we can implement aLL, and also provide access to the CORBA services
exported by MR, CR, and DB. This implies that ZSG may have to act as a gateway, i.e. communicaie with the
zonal manager using one technology and with the LL using another. For example, to manage Java RMI based
D4, the services of LL needs to be exported using Java RMI. Also, the ZSG needs to communicate with LL
using Java RMI and use CORBA to communicate with the MR, CR, and DB. Though we can manage DA by
implementing L1. appropriately, it may not be possible to load LL into CM's address space with only a minimal
modification to the CM's source code.

We are yet to evaluate the archilecture for scalability, security and support for automatic generation of
management applications. This task is proposed to be completed in the future.

4.3.4 Related work

In this section, we describe briefly the work related to the management of distributed systems and compare this

with ours.

MOTEL: MOTEL [13] provides for run-time monitoring and testing of pre-defined properties of object-oriented
distributed applications. MOTEL defines a set of twenty events for modeling and expressing the behavior of
such applications using linear temporal logic. MOTEL monitors the behavior of the sysiem by monitoring the
occurrence of (he corresponding events. It uses a single observer to monitor the occurrence of the events. These
events are then used to test whether or not the system violates the specified behavioral constraints. It achieves
the twin tasks of run-time monitoring for occumrence of the events and testing for violation of the behavioral
constraints by instrumenting the source code of the application. The process of instrumenting the source code is
automated. MOTEL has been implemented for CORBA-based distributed applications.

HiFi: HiFi [7] uses an event-based abstraction for modeling and monitoring the behavior of distributed
applications. It provides for the specification of the events to be observed at run-time. Each event can be attached
to an action which can be used for steering the application. HiFi uses a hierarchical system of observers to
monitor the occurrence of events. This minimizes the intrusion of the monitoring system on the performance of
the application. HiFi, like MOTEL, instruments the source code of the application to achieve its task.

MOSS: MOSS (8] is a system for monitoring and steering of parallel and distributed applications. It provides
features for monitoring and steering of distributed applications by creating objecis that mirror the state and
methods of the application. In addition to mirroring the state and methods of the original application, the objects
also include additional state and metheds for the purpose of monitoring and steering. These *‘mirmor’’ objects
are analogues of the original application as they share the state via monitoring and implement the methods via
remote method invocation. The act of steering is performed through the application object’s original methods
via remote object invocation. MDSS has been implemented for CORBA-based distributed applications. For the

20

purpose of monitaring and steering, HOSS requires a modified IDL. compiler for producing an instrumented
stub/skeleton. The IDL compiler instruments the get and set methods for the aiributes to perform monitoring.
The object metheds are also instrumented for the purpose of sieering.

In the above, we see three approaches for incorporating the monitoring and control code into the distributed
application. All three use some form of instrumentation either at the level of the source code or the interface
code. MOTEL and HiFi instrument the source code while ¥0SS instruments the interface by modifying the
stub and skeleton. The main strength of Wabash, in comparison to the above approaches, is the lack of
instrurnentation at any level. Wabash uses LL for monitoring and control. Since LL has been implemented as a
CORBA interceptor, for CORBA-based applications written in Java, LL can be incorporated inlo the distributed
application at run-time by simply specifying the location of the cade base for LL as a command line argument to
the Object Request Broker. This criteria is important for heterogeneity - the lesser the amount of instrumentation
required, the more is the support for heterogeneity and more casier to support distributed applications written in
languages other than the one for which the management system is designed.

Unlike MOTEL and MOSS, Wabash uses a zone-based partitioning approach for improved scalability with
each zonal manager handling those monitoring and control functionality that pertain only to the components in
the assigned zone. This approach is similar to the hierarchical system used by HiFi. Whereas HiFi uses a
multi-leve) hierarchy, Habash only employs a single level. For applications where the frequency of the events
is.low and the number of components in the system is siall, the single level monitoring architecture performs
better than a muld-level hierarchy [7].

. Both Wabash and HiFi provide the ability for dynamic specification, nolification, and action correlation
of events. Wabash also provides for dynamic, fine-grained control of the components. This feature is missing
from the three approaches presented earlier even though MDSS provides for some limited form of control through
program steering.

As mentioned earlier, the LL component of Wabash is a CORBA interceptor that uses only the information
obtained from the interface of the components. This provides for the abitity to dynamically penerate clients for
the components. This feature, not present in the three systems reviewed above, has been used to provide dynamic
load testing functionality in Habash.

4.4 Architecture of the infrastructure for the management of EA
4.4.1 Components of the architecture

Figure 4 shows the architecture of the infrastructure for managing an embedded application (EA). Components
of this infrastructure are described below.

Gateway: The Gateway provides uniform access o the services exported by the EAs (labeled D1, D2, D3,
and D4 in Figure 4). Tt helps connect the Eds to an Intranet or an Internet. The Gateway component is made
up of (1) Event Recognition, Notification and Correlation Component (ERNC) and (2) Device Communication
Component (DC). ERNC, in the Gateway, is responsible for recognition and notification of events that occur at
the EA that are attached to the Gateway. ERNC maintains the list of interested events and the corresponding
actians. On occurrence of an evenl, it consults the list and takes the appropriate action. It also notifies the Proxy

21

User Proxy /
Interface Munager -\® /

Figure 4: Components of the infrastructure for the management of EA.

® ® @ ¢

Manager. DC acts a bridge between the devices and the outside world. The complexity of communicating with

heterogeneous devices is the responsibility of DC.

Proxy and Proxy Manager: The Proxy provides the interfaces for remote access and management of an EA.
Each proxy is mapped 10 an EA, The Proxy Manager (PM) provides a uniform interface for the creation and
management of the proxies through the Proxy Communication (PC) component. PC exports the interface of the
proxies for access using different communication protocols such as CORBA, Java RMI and HT'TP. The Proxy
Manager also contains an ERNC component that delects events that occur at the proxies. For example, when a
user wishes to access to the functionality of a device from a remote location, the request Is sent to the device
through the corresponding proxy. Such events, related to the invocation of certain device functionality, are
detected and notified by ERNC.

In addition 10 the components mentioned above, the infrastmcture also contains a user interface component
through which the services of PM can be accessed. Ul can be used by (1) a home owner to manage the EA or
(2) a service provider to manage the gateway, proxies and the proxy manager.

4.4.2 Implementation of HomeWabash

Figure 5 shows the components and their interconnections of HomeWabash, an implemeatation of the
infrastructure for managing EA. The proxy and the management components have been implemented using
JMEX [3] and Java Beans, respectively. The proxies are implemented as JMX MBeans and are dynamically
configurable. The interfaces exporied by the proxies are exposed through CORBA, Java RMI, and HTTP. The
proxy manager has been implemented as a JMX MBean Server. HomeWabash has been implemented using
JDMK which is Sun Microsystems® implermentation of the JMX specification. The functionality of each device
is mapped by the corresponding proxy. The functionality of the proxy is dynamically queried and exported
as a WML interface to the home owner by a Java servlet. The Java serviet is hosted inside a firewall, The

implementation lets a user to remotely monitor and control the devices using a WAP-enabled device.

22

wor xo_ (o)

HTTP HA M

Uscr CORBA [CORBA TEEE |
Ymterface MS |) - i
_(i Gateway 1394

RMI (ga 7) [RMI Bluetooth

. (ﬂ IDBC

JDBC
Web Server |

Firewall

wf”) WAP Web Server 2 "'_L HTML
Client Client

Figure 5: An implementation of HomeWabash for the management of EA,

4.5 Features of HomeWabash

HomeWabash is expected to be used by three calegories of users: Home Owner, Service Provider, and
Mamufacrurer. The features of HomeWabash provide for the management tasks listed in Table 1. Each of these
tasks can be performed using any WAP-enabled device such as a cell-phone, a Handheld device, and a Web
browser. For example, the Home Owner can control devices owned using a cell-phone while a Service Provider
can instantate, register and deploy proxies for devices incorporated in the SmartHome. A Manufacturer can
use a Web browser to detect the malfunctioning of a device and can up-load new code into a SmartDevice.
HomeHabash also provides for the persistant storage and retrieval of user profile, usage and accounting
information, and proxy state. Persistant storage of the proxy state helps in providing better fault-tolerance against
failures of HomeWabash.

4.6 Evaluation of the infrastructure for the management of EA

4.8.1 Imirusiveness with respect to the source code

The EAs are managed through a corresponding proxy component by mirroring the services of EA in the proxy. This
approach does not require any change to EA’s source code and hence the proposed architecture is non-intrusive
with respect to the source code of EA. However, this implies that the proxies are coupled,though loosely, to the
EA. Hence different types of proxies are required lo manage different types of EA and a change in the services
exported by EA may require a change in the proxy as weil.

23

4.6.2 Heterogeneity

Heterogeneity, in the context of B4, is the ability to manape a mix of device communication technologies using a
single archilecture. Heterogeneity is handled by the Gateway component which provides an uniform mechanism
to access the services of EA. For example, to manage a mix of devices that are based on the technologies such
as Bluetooth, IEEE 1394, X10, etc., the Gateway must be capable of communicating with the device using
the corresponding technelogy. This would ensure the support for managing heterogencity though at the cost of
considerable complexity in the Gateway component.

The architecture of HomaWabash has not yet been evaluated for its scalabilily, security, support for remote

maintenance and support for automatic generation of management applications.

4.6.3 Related work

In this section, we briefly describe related research in the area of management of SmartHomes and compare it

with ours.

Autolan: The AutoHan [14] system is a reference implementation of a SmartHome. AutoHan provides for
remote management of SmartHomes. The devices in the AutoHan implementation export their services using
XML [4]- The services are published as events and registered with a device registry named DHan. The devices
use the Universal Plug and Play (UPnP) [5] Generic Event Notification Architecture (GENA) 1o send and receive
events, The devices are monitored by subscribing to the events and controlled by modifying the device attributes
in the DHan registry. The events themselves are transported to and from the device using HTTP. The IHAN
residential gateway connects the devices to the Internet and provides for remote access.

08G1: The Open Services Gateway Initiative (0SG1) [10] focuses on the residential gateway that connects the
devices to the Intemet. 0SG3 defines a Java-centric set of APIs to allow devices to bind to the restdential gateway
and thereby export their services for remote access. It also defines APIs that allow certain services such as a
Digital Music Library Service or Security Service (o bind to the gateway and hence push these services 1o the

devices.

VESA: The VESA Home Networking Committee [6] proposes a home network architecture based on XML. In
this medel, each device holds an XML page that describes the attributes and services exported by the device.
The device can be monitored by reading and parsing the XMI page and it can be controlled by modifying the
XML page. This requires the devices (o parse XML data.

HomeHabash, like the other approaches described above, requires the use of a residential galeway for
remole access to the services offered by the devices. All the three approaches described above require changes to
the device, and hence to the E4, for management. For example, AutcHan requires an IP stack running on these
devices, VESA requires the devices to be capable of handling XML data, and 05G1 requires the devices to rin a
Java Virtual Machine(TVM). It may be possible for each of these requirements (o be incorporated in the future
devices but we believe that there will be no single specification/standard that all devices will meet. Hence it is
important to handle this heterogeneity without any assumption about the kind of support in the device. 08G1, to
some extent, is based on this assumption, i.e. as long as the device supports a JVM, the 0SG1i archilecture can

be used for ils remote management.

24

Unlike AutcHan and VESA, Wabash does not require the devices to adhere to any one management
standarci/specification. Instead it is based on the assumption that there will be multiple standards used by
the devices. Hence, HomeWabash, like 0SGi, moves the complexity from the device o the residential
gateway. In the HomeWabash architecture, the Gateway component is assumed to be able to communicate with
heterogeneous device types. The moving of complexity to the residential gateway has an advantage that it can
even support devices that do not run a EA. The current implementation of HomeWabash supports the control of
X10 and IEEE 1394 devices which do not host an EA, Such devices are controlied through additional hardware
in the residential galeway. This hardware can, for example, attach itself lo the TEEE 1394 bus and sense the
activity an the bus. This additional complexity in the residential gateway has the following advantages over the
other approaches: (i) it does not require the device lo run any specialized application and (ii) it does not require
the device to implement any specialized protocol.

None of the other approaches, discussed above, use the proxy-based management as employed in
HomeWabash. The proxy-based approach de-links the management architecture from the device network
and hence leads to increased flexibility. For example, HomeWabash implementation uses the Java-based JIMX
management architecture. However, it is also possible to implement HomeWabash using CORBA-based Wabash
architecture where the proxies are the CORBA-components to be managed. The proxy-based approach has its
limitations. For example, it is posstble that the state of the proxy and the actual device may not be synchronized
at all times. This could happen when the device’s state has been changed from within the SmaxtHome physically
and the proxy’s state has not yet been updated.

4.7 A XML based Policy-Driven Management Information Service

Due to the rapid growth in the number and flexibility of services in current networks and integration across
organizational boundaries, present day and evolving distributed systemns tend to be highly heterogeneous and
dynarnic. A management solution to such systems must possess the following attributes:

» Ability to delegate authority to the lowest possibie level to handle the sheer scale of Intemet based
distributed systems.

¢ A vendor and implementation and operating system neutral information model for resource managermnent
to facilitate the interchange of management information. Such an information model should be capable
adequately representing any entity of the system and is important given the heterogeneity and dynamic
nature of emerging distributed systems.

e Ability to be configured at rup-time to meet emerging requirements, either by providing additional
functionality or by adapting to environmental changes. This ability is required to handle the dynamic

nature of evolving network systems.

o Ability to interact and cooperate with other management solutions, in order to deal with inter-organizational

integration and interaction.

Next we describe a prototype implementation of a management information server that can be used as a
building block in creating 2 management system that exhibits the above properties.

25

Mmmagement lofarmalion Service Netmork

Management I.ulnm.ulhn
(Esmav);

Maps el Pulicics

Mansgement Infosyoalive
{Evenln)

AS

Applxation Syviem Compoasia

Legend

MIS = Munagerment laformeiion Senver
NE - Nevwork Elcrorst
AS - Applcatim Senwt

Figure 6: Architecture of 2 Management System built around a Management Information

Server.

4.8 Architecture of a Management Information Server

In the context of the management of SmartKomes, management information consists of events and management
policies. Events are generated by application components such as software objects, servers, smart appliances,
and network elements. They typically provide operational data about the application. Policies are generated by
management systems and are an expression of directives from the management that drive the application towards
meeling goals specified by the management. At the information server level, policies would constitute a set of
event-action pairs that express the management goal. These lower-level policies would be derived hierarchically
from a set of higher-level policies that describe the management goal in increasingly abstract terms.

Our Management Information Server (MIS) is a management system component that receives events from an
application components and acts on them based on specified policies. Thus, the management information server
can be viewed as a generic extension of the basic unit of a publish and subscribe service. The type of actions
that a MIS can perform on the information it receives can range from simple subscription based forwarding to
sophisticated aggregation, filtering and logging of informaticn. In addition, custom extensions can be provided
to initiate specific actions based on recognized information. Figure 6 shows the architecture of our management
system and where the proposed MIS fits in this architecture.

One sample usage scenario of the MIS is in managing a diverse set of web servers capable of externalizing
events in some form. In this case, we can convent the externalized evenis jnto XML fragments which will form

management information input to our MIS. The manager can now specify policies that take different actions,

26

either on the application system’s components or otherwise, based on events. As an example, a policy to divert
traffic or alert administrators in the presence of high loads can be enforced on a web server that 1s capable of
providing traffic events per unit time.

The palicies and management information in our system are specified in XML. We use a generic template
for all incoming communications to the server. This consists of a standard template for a message that is divided
into a header and body. The header serves as a wrapper that contains essential information such as message type,
origin, destination, authorization information (if needed), timestamp etc.

Using the header, the server identifies the message and passes it on to appropriate subsystems for further
processing. The body of a message also has a generic template that is determined by the contents of the message
header. For insiance, an event message would have a body that contains event type, event priority, timestamp,
event text and other such event related clements,

Similarly a policy message would have a body that contains policy user (the intended subsystemn that should
use this policy), policy data (the actual policy contents), activation timestamp, active interval and other policy
related efements. Each of these elements themselves can be XML fragments that can be further interpreted. For
instance, the policy data can be a XML fragment that specifies the event template and the actions to be taken
when events matching the lemplates are detected. Due 10 the self-descriptive nature of XML documents, we
believe that this model will lead 10 easy extension of the generic templates to maich any particular representation

of events and policies chosen by the user.

FBANIYY UONEIRRURGD)

Figure 7: Architecture of the Management Information Server.

Figure 7 shows the intemal architecture of a management information server. The operation of each
functional block (sub-syster) in the archilecture can be independently controlled through management policies.
The server prototype has been built in Java, and components of a single information server are capable of being

27

distributed over a nelwork or can be run on one machine.

The router component provides the flexibility and extensibility of the system by identifying the generic
templates and classifying messages based on this, passing them on 1o the relevant subsystem. The policy
handler and policy registrar handle and store policies, respectively. The event handler uses policy registrar
services to determine actions to be taken on receiving events from the application system components. The
event Jogger is used to log events into a database for later analysis and audits. The event filter is the means by
which intelligence and authority is delegated to the MIS. It aids the management decision-making process by
performing sophisticated prioritization, filtering, aggregation, averaging, threshold detection and other operations
on incoming events. The forwarder and registry service combine to form an efficient addressing unit to perform

conventional subscription based forwarding of events.

5 Research Plan

Our goal is to design, build, and evaluate an infrastructure for the management of SmartHomes. Towards this
end we have identified EA and DA to be the key types of applications in SmartHomes and have identified
intrusiveness, heterogeneily, scalability, support for security, support for remote maintenance, and support for
automatic generation of management applications as criteria for evaluating and comparing different architectures
of the infrastructure. 'We have developed architectures, Habash and HomeWabash, for the management of
DA and EA respectively. Wabash and HomeWabash have been evalualed with respect to the intrusiveness and
heterogeneity criteria and compared against similar architeciures reported in the literature. In this seclion, we

outline our plan for research in the near future,

5.1 Evaluation of Wabash

Section 4.3 describes the evaluation of the Wabash architecture with respect to the intrusiveness and heterogeneity
criteria. In the following we outline how we propose to conduct further evaluation.

5.1.1 Scalability

We intend to evaluate the scalability of the architecture by obtaining quantitative measurements. The number of
components to be managed and the bandwidth of communication links between the zones are most likely to be
the key factors in determining the scalability of the architecture. We intend to obtain quantitative measurements
of scalability by varying the two factors and then measuring the overhead of the architecture on (i) the service

Tatency and (i) the response time of management commands,

5.1.2 Support for automatic generation of management applications

Our future work in the area of building management infrastructure will focus on the generation of management
applications. For this purpose, we intend to perform gualitative evaluation of the architecture for its support
in generating management applications. The likely characieristic of a **good’” support for such a cause would
be the ability to “‘plug’’ in a new component into the architecture without requiring any modification. For
exarnple, the architecture currently supports the monitoring and control functionality. Suppose that it is required

28

to generate a2 management application to dynamically display the interactions between the components. Ideally,
it must be possible to simply “‘plug’’ in the new companent, that incorporates the new feature, into the existing

architecture.

5.2 Evaluation of HomeWabash

Section 4.6 describes the evaluation of the HomeWabash architecture with respect to intrusiveness and
heterogeneity. We are yet to evaluate the architecture with respect to the remaining eriteria. Though support
for secure management is important in the management of SmartHomaes, it is not focus item in our research.
In the following subsections, we describe our plan to complete the evaluation of the HomaWabash architecture
with respect to heterogeneity, scalability, support for remote maintenance and support for automatic generation

of management applications.

5.2,1 MHeterogeneity

We believe that the support for heterogeneity is a key criteria for evaluating any archirecture for the management
of EA. There are at least two reasons in support of this belief. First, many «evice communication technologies
such 25 X10, IEEE 1394, Bluetooth, eic. are expected to share the market of SmaxtHomes. Hence it is
imporiant for the architecture not be biased towards one or the other technology. Second, there are several
competing communication standards for devices, each with their own advantages and disadvantages. These
standards, at least those that survive, will likely have a share in the market of SmartHomes and hence the
architecture must not be biased in favor or against one standard. We intend to perform qualitative evaluation for
the support for heterogeneity by experimenting with various devices and device communication protocols and
studying their impact on the components of the architecture.

5.2.2 Scalability

The HomeWabash architecture can be used by a Service Provider to manage one or more SmartHomes or a
Home Qwner to manage his/her SmartHome. Scalability of the architecture is important for both, In both cases,
(a) the number of devices and {b) the bandwidth of communication links that connect the residential gateway to
the Intemnet or an Intranet, are most likely to be the key factors in determining the scalability of the architecture.
We intend to evaluate the architecture by varying (a) and (b) and studying the impact on factors (i)-(iv) described
in Section 3.2.2.

5.2.3 Support for remote maintenance

Remote maintenance of the device is akin to remote debugging. During debugging of software, the state of the
application is often required. It may also be required (o invoke certain methods exported by the application. The
HomeWabash architecture supports remote access to the device through the Proxy and the Gateway components.
The state of the device can be obrained by extracting the state of the proxy. However, the state of the proxy
and the device may not be synchronized. Invoking methods on the proxy does not have the same problem as
the corresponding method, exported by the device, is invoked synchronously. The HomeWabash architecture
does not fully support the task of remote maintenance. We intend to identify techniques, suitable in the context

29

System 1o be
Managed (SM)
Managemenl
Infrastructure (Iy —= Process(P) ™ Application

Management —»
Requirements (R)

Figure 8: Process of gencrating management applications.

of SmartHomes, for tightly coupling the proxy’s state with that of the device. We then intend o evaluate the
support for this task qualitatively and also quantitatively.

5.2.4 Support for automatic generation of management applications

As our future work will focus on the automatic generation of applications for managing SmartHomes, it is
important to evaluate the HomeHabash architecture with respect to this eriteria. A key characteristic of the
architecture would be its ability to let new components be plugged into the KomeHabash architecture seamlessly
and without requiring any modifications to the architecture. For example, using the current implementation of the
architecture, it is possible to capture the occurrence of events such as a play or fasiforiward request to the VCR.
For example, if one would like to automatically generate a new management application that is also capable of
melering the usage of requests, then it must be possible to dynamically plug in the new component into the
HomeWabash architecture. We intend to qualitatively evaluate the archilecture with respect to this criteria.

5.3 Automatic generation of customized,“pluggable” management applica-
tions

We have described two archilectures for the infrastructure needed for the management of SmartHomes. Our
future work in this area will focus on creating a process that will use the infrastructure for the automatic
generation of management applications for SmartHomas. The generated application must be **pluggable’’ i.e. it
must allow a new component to be dynamically loaded into the management architecture at run-time and without
requiring any modification to the architecture. The management application must also be capable of handling
customized specifications of the topology and interconnection of the devices in the SmartHome. Figure 8 shows
the process (P) for generating management applications. To generate the managemeni application, the process

would use the following inputs:

o System (SM) to be managed
o Infrastructure (I) for the management

e Requirements (R) for the management

We plan to focus on identifying the needs and issues in creating such a process and building and evaluating

a tool that automatically generates customized management applications.

30

5.4 Architecture of the ERNC system

An Event is an asynchronous occurrence containing parameterized details of an activity that has occurred within
a distributed component. [15] For the purpose of the ERNC, we identify the following components that can

generale events:

s Devices
¢ Residential Gateway
Device Proxies

¢ Proxy Manager

As listed in Table 1, Home Owners, Service Providers and Device Manufacturers might all require the services
of the ERNC system. However, their requirements from the ERNC system could be different. In addition, the
level of access that they have to the ERNC system would also be different. While their requirements might
be different, the essential task that each of them expects the ERNC 1o perform would remnain the same. The
following would be the essential task that would be accomplished by the ERNC systern:

On the occurtence of specified event(s) take the following action(s).

The difference is thus modeled not through the functioning of the ERNC but through the specification of events
and actions by the various categories of users.

The following model of the SmartHome system is used in constructing the ERNC system:

The physical devices are assumed to be capable of genemting notifications corresponding to events that can occur
within. Further, we assume that these notifications can be received by the Residential Gateway. Note that under
some circomstances, the notification may not be direcily generated by the device, but the Residential Gateway
can itself detect the occurrence of the event and generate an appropriate rrotification. However, from the ERNC's
viewpoint, such notifications are considered as directly criginating from the corresponding device. Devices may
or may not support a query and extraction of al! possible notifications that it can generate. While we do not
make this a requirement, the support of such query mechanisms enable easier interfaces. Given this model, our
primary focus is not on how devices generate notifications, or how these notifications can be received. Instead,
we focus on how the ERNC can interpret, match and take appropriate actions based on these notifications and
on providing a flexible and powerful specification mechanism for event notifications and event-action pairs.
With the above model of SmartHomes, we can examine all communications going into the ERNC system as
messages. Thus, both notifications of events and the specification of event-action pairs enter the ERNC system
as messages. We have chosen to represent these messages as well formed XML documents. XML has the
following benefits that we believe make it suitable for this purpose:

e Expressiveness

s Simplicity

31

¢ Human readable
o Easily parsed using commercial tools
e Easily transported across various communication mechanisms

e Vendor, Operating System and implementation neutrality

Appendix A lists the initial Document Type Definition (OTD) we have defined for specifying notifications and
event-action pairs. As shown, every message consists of a fixed header and a variable body. The header identifies
the type of the message used in the interpretation of the body. This allows the definition of an extensible set of
messages where new message types are identified using the header and handled accordingly.

While the ERNC system is based on event notifications modeled as well-formed XML documents, we do not
expect devices to be capable of generating notifications consistent with the format we have specified. Instead,
we envision the use of translation mechanisms at the Residential Gateway that will translate the native device
notifications into the corresponding template that the ERNC can recognize and act upon. This s in keeping with
our architecture where the heterogeneity at the device level is handled by the Residential Gateway.

The device proxies can be designed (o produce notifications in the desired format. However, if this is not
possible (for instance, the device proxy was written by a different vendor and there is no access to the source
code), a similar approach like the one used for devices can be adopted, where filters are used to ranslate device
proxy notifications into the desired format.

In the current implementation, we have modeled the ERNC system as a service in the HomeHabash system.
This service is provided by an Event Engine MBean that is repistered with the JMX MBean server. With this
representation, the ERNC system from a Home Owner's perspeclive, acts like any other device proxy. The
ERNC system depends on the underlying communication technology used in the implementation of device
proxies, for the distribution and delivery of notifications. The sysiem leverages the JMX notiftcation mechanism
for the distribution and delivery of notifications, Identification of 2 common means for distribution and delivery
of notifications in the presence of different communication mechanisms would be a focus area for future work.

An important part of our work will be identifying the requirements for a ERNC system in this setting and
developing the ERNC message specification to enable the handling of a diverse set of event-action pairs and
notifications. The requirements for the ERNC system needs to be thought out not only from the point of view of
the Home Owner, but also from that of the Service Provider and Device Manufacturer.

The impact of the ERNC systern on the evaluation criteria specified for HomeWabash needs further analysis.
A well-designed ERNC system can facilitate the goal of automatic generation of customized "pluggable”
management applications. However, the impact of such a flexible ERNC system on the scalability, latency and
intrusiveness of the solution needs to be analyzed.

By implementing management policy at all levels, our proposed MIS-based architecture differs from
conventional publish-subscribe semantics based systemns. With the MIS we have developed a building block
for an exlensible, flexible management solution capable of handling heterogeneity. Future work involves
experimental evaluation of the system in handling helerogeneity apart from efficiency, overhead and scalability
of the system. The benefits and lumitations of XML in expressing policies and events in such a scenario also
need to be further analyzed.

32

5.5 Testing EA and DA

Testing of various components of an embedded and distributed applications often poses tough challenges.
Traditionals techniques for testing software can be applied if the components are tested in-house. For example,
when the owner of a camcorder reports a malfunctton, the manufactorer could reproduce this malfunction
in-house, test the application embedded within the camcorder, debug it, remove the error, and download the
upgraded application via the internet. However, it might not be always easy or desirable to aempt to reproduce
behavior in a laboratory setting. Instead, one might want (o do so in-situ, i.e. while the presumably matfunctioning
device or an software component is in its normal domain of operation.

We wish to study how monitoring and control mighe aid in remore testing and debugging of both EA and
DA. This study is expecled to lead to monitoring and control features specially suited for testing and debugging.
Note that typical sofiware debuggers can be abstracted as monitoring and control applications. We are interested
in studying how the management infrastructure can itself support remote testing and debugging tasks.

Acknowledgements

Qur sincere thanks 1o Balakrishnan Dasarthy, James L. Dixon, Frederick D. Porter, David Waring of Telcordia
and David Griffiths, Richard Denuis, and Paul McKee of British Telecom for their support and the time they
spared to discuss with us various critical issues in the SmartHome project.

References

[1] hup:/java.sun.com.

(2] hutp:f/java.sun.comjini.

{31 bup:#iavasun.com/producis/TavaManagement/.
[4) hup:/rwww.w3corg/XML.

[5]1 http:/www.upnp.ofp.

[6] http://www.vesa.org.

[71 E. Al-Shaer. “Hierarchical Filtering-based Monitoring Architeclure for Large-scale Dis-
iribuled Systemns”, PhD thesis, Old Dominion University, July 1998.

[8] G. Eisenhauer and K. Schwan. ‘‘An Object-based Infrastructure for Program Monitoring and Steering’’.
In Proceedings of the SIGMETRICS Symposium on Parallel and Distributed Tools, pages
10--20, Welches, OR, USA, Anpust 1998,

[9] David Garlan and Mary Shaw. “An Iniroduction fo Software Architeclure - Advences in
Software Engineering, volume 1, World Scientific Publishing Company, River Edge, NJ, 1993.

33

[10] L. Gong. ‘‘A Software Architecture for Open Service Gateways”. IEEE Mnternet Compuling,
5(1):64--70, February 2001.

[LI] Visibroker for Java Programmers Guide. Version 3.2. Inprise Corporation, San Mateo, CA, USA.

{12] Object Management GroupInc. The Common Qbject Request Broker: Archileclure and Speci-
fication (CORBA). Revision 2. John Wiley, 1995.

[13] X.Logean. ‘“Monitoring and Testing Tool for Distributed Applications’’. Teclinical report, Swiss Federal
1nstitute of Technology, 1998.

[14] U. Saif, D. Gordon, and D. J. Greaves. *‘Intemet Access o a Home Area Network’”, {EEFE Internet
Computing, 5(1):54~63, February 2001.

[15] Spiteri, M.D. and Bates, J. An archileclure lo support storage and reirieval of events Proceedings
of MIDDLEWARE 1998, IFIP International Conference on Distributed Systems Platformns and Open
Distributed Processing, Lancaster, UK. Sept. 1998.

f16] B. Sridharan, B. Dasarathy, and A. P. Mathur. “*On Building Non-Intrusive Performance Instrumentation
Blocks for CORBA-based Distributed Systems'”. In Proceedings of the th IEEFE International
Computer Performance and Dependability Symposium, pages 139--143, Schavmburg, IL, USA,
March 2000.

34

Appendix A: Document Type Definition for Event Notifications

<!DOCTYPE message [

<!ELEMENT message (head, body)>

<IELEMENT head (sender, dest, authinfo, messtype, time)>
<IELEMENT sender (type, desc, opt?)>
<!ELEMENT dest (type, desc, opt?)>
<!ELEMENT authinfo EMPTY>

. <IELEMENT messtype (#PCDATA)>

<IELEMENT time (#PCDATA)>

<IELEMENT type (#PCDATA)>

<'ELEMENT desc (simpledescr|devicedescr)>
<1ELEMENT simpledescr (#PCDATA)>

<IELEMENT devicedascr (hostname, mgrname, domainname, devicename)>
<)BLEMENT hostname (#PCDATA)>

<!ELEMENT mgrname (#PCDATA)>

<'ELEMENT demainname (#PCDATA)>

<'ELEMENT dovicename (#PCDATA)>

<!ELEMENT opt (#PCDATA)>

<1ELEMENT body (info, text)+>

<!ELEMENT info (name, oldvalue, newvalus?)>
<!ELEMENT name {#PCDATA)>

<!ELEMENT oldvalue (#PCDATA)>

<!ELEMENT newvalue (¥PCDATA)>

<!ELEMENT text (#PCDATA)>

1>

Document Type Definition for Event-Action Pairs

<!DOCTYPE message [

<!ELEMENT message (head, body)>

<!ELEMENT head (sender, dest, authinfo, messtype, time}>
<1ELEMENT sender (type, desc, opt?)>

<!ELEMENT deat (type, desc, opt?)>

<!ELEMENT authinfo EMPTY>

<'ELEMENT messtype (#PCDATA)>

<'ELEMENT time (#PCDATA)>

<!ELEMENT type {(#PCDATA)>

<ELEMENT desc (simpledescr|devicedescr)>

<!ELEMENT simpledescr (#PCDATA)>

<!ELEMENT devicedescr (hostname,mgrname,domainname,devicename)>

35

<!ELEMENT opt (#PCDATA)>
<!ELEMENT body (eventactionpair)+>

<1ELEMENT aventactionpalr (eventtemplate, actionlist, activateat?, validinterval?)>
<!ELEMENT eventtemplate (headertemplate, bodytemplate?)>

<!ELEMENT actionlist (action)+>

<ELEMENT activateat (#PCDATA)>
<IELEMENT validinterval (#PCDATA)>

<1ELEMENT headertemplate {sendertemplate?, desttemplate?, authinfotemplate?,

messtypetemplate?, timetemplate?)>

<!ELEMENT bodytemplate (nametemplate, cldvaluetemplate?, newvaluetemplate?, texttemplate?)>
<'ELEMENT assndertemplate (typetemplate?, desctemplate?, opttemplate?)>
<1ELEMENT desttemplate (typetemplate?, desctenmplate?, opttemplate?)>
<'ELEMENT typetemplate (#PCDATA)>
<!ELEMENT desctemplate (simpledescrtemplate]|dsvicedsscrtemplate)>

<)ELEMENT simpledescrtemplate (#PCDATA)>

<!ELEMENT devicedescrtemplate (hostname?, mgrname?, domainname?, devicename?)>
<!ELEMENT opttemplate (#PCDATA)>

<!ELEMENT authinfotemplate EMPTY>
<!ELEMENT messtypetemplate (#PCDATA)>

<IELEMENT timetemplate (#PCDATA)>

<IATTLIST timetemplate

cycleperiod GDATA #REQUIRED

fromtime CDATA #REQUIRED
>
<!ELEMENT namotemplate (#PCDATA)>

<!ELEMENT oldvaluetemplate (#PCDATA)>

<IELEMENT newvalustemplate (#PCDATA)>

<1ELEMENT texttemplate (#PCDATA)>
<!ELEMENT action (forward | log | invokeop | gemeratemotification)>
<IELEMENT forward (url)+>
<IELEMENT url (mailurl | dburl | rmiurl | rawerl)>

<!ELEMENT mailurl (#PCDATA)>

<!ELEMENT dburl (hostname, portnum, instance, username, password)>
<IELEMENT rmiuxl (hostname, portnum?, cbjectname)>

<'ELEMENT rawurl (hostname, portnum, conntype)>

<1ELEMENT hostname (#PCDATA)>

<JELEMENT portnum (#PCDATA)>

<IELEMENT instance (#PCDATA)>

<!ELEMENT username (#PCDATA)>

<IELEMENT password (#PCDATA)>

36

<!ELEMENT objectname (#PCDATA)>

<!ELEMENT conntype (#PCDATA)>

<!ELEMENT log (database | file)>

<!ELEMENT database (url, querystring, queryparamlist}>

<1ELEMENT querystring (#PCDATA)>

<IELEMENT queryparamlist {queryparam)+>

<!ELEMENT queryparam (#PCDATA)>

<!ATTLIST queryparam queryparambtype {attribute|operationjoldvaluelnewvalue]|
toxt |nons) #REQUIRED>

<'ELEMENT file (#PCDATA)>

<'ELEMENT invokeop (optarget, opname, param*)>

<!ELEMENT optarget (hostname, domainname, managername, devicename)>

<!ELEMENT domainname (#PCDATA)>

<!ELEMENT managexrname (#PCDATA)>

<!ELEMENT devicename (#PCDATA)>

< IELEMENT opname (#PCDATA)>

<I1ELEMENT param {paramtype, paramvalue)>

<!ELEMENT paramtype (#PCDATA)>

<!ELEMENT paramvalue (#PCDATA)>

<!ELEMENT generatenotification EMPTY>

37

	Development of an Infrastructure for the Management of Smart Homes
	Report Number:
	

	tmp.1307986960.pdf.rUw9q

