
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2002

Development of an Infrastructure for the Management of Smart Development of an Infrastructure for the Management of Smart

Homes Homes

Ramkumar Natarajan

Aditya P. Mathur
Purdue University, apm@cs.purdue.edu

Report Number:
02-022

Natarajan, Ramkumar and Mathur, Aditya P., "Development of an Infrastructure for the Management of
Smart Homes" (2002). Department of Computer Science Technical Reports. Paper 1540.
https://docs.lib.purdue.edu/cstech/1540

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DEVELOPMENT OF AN INFRASTRUCTURE FOR
THE MANAGEMENT OF SMARTHOMES

Ram kumar Natarajan
Aditya P. Mathur
Baskar Sridharan

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #02-022
October 2002

DEVELOPMENT OF AN INFRASTRUCTURE FOR
THE MANAGEMENT OF SMARTHOMES

Ramkumar Natarajan
Aditya P. Mathur
Baskar Sridharan

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #02-022
October 2002

Development of an Infrastructure for the

Management of SmartHomes

Status Report and Research Plan

April 5, 2001

Ramkumar Natarajan, Graduate Student

Aditya P. Mathur, Professor

Baskar Sridharan, Graduate Student

Software Engineering Research Center

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907, USA

Financial Support from:

British Telecom

Telcordia

Development of an Infrastructure for the

Management of SmartHomes

Status Report and Research Plan

April 5, 2001

Ramkumar Natarajan, Graduate Student

Aditya P. Mathur, Professor

Baskar Sridharan, Graduate Student

Software Engineering Research Center

Department of Computer Sciences

Purdue University

West Lafayette, IN 41907, USA

Financial Support from:

British Telecom

Telcordia

Contents

1 Introduction 4

2 SmartHomes 4
. 2.1 W-hat is a SmartHome ? 5

. 2.2 Why SmartHomas? 6
. 2.3 W h ~ f manage SraartHomes ? 7

. 2.1 Requirements for the management 01 SmartHomes 8
. 2.5 Event notification and correlation 8

. 2.6 Embedded [EA) versus djstribuled applications (DA) 10

3 Research Issues 11

. 3.1 Solutions to thc SmartHome management proble~n 11
. 3.2 Questions of interest 12
. 3.2.1 Intrusiveness 12

. 3.2.2 Scalability 12
. 3.2.3 Support for helerogenei ty 13

. 3.2.4 Support for secure management 13
. 3.2.5 Support for remote maintenance 13

. 3.2.6 Support for the generation of management appljcations 13

4 Summary of past research 13

. 4.1 Archj tect ure of the infrastructure for the management of DA 13
. 4.1.1 Components of the architecture 14

. 4.1.2 Zonebased partitioning 15
. 4.1.3 Using Wabash to manage a DA 15

. 4.1.4 Implementation of Wabash 16
. 4.2 FeaturesofWabash 16

4.2.1 SpeciIying project information for testing and management 17
. 4.2.2 Performance measures 17
. 4.2.3 Coveragemeasurements 18

. 4.2.4 Interrace mutation and fault injection 18
. 4.2.5 Event-based monitoring and control 18

. 4.2.6 State information of a component 18
. 4.3 Evaluation 01 the jnfrastructwe for the management of DA 19

. 4.3.1 Intrusiveness with respect to the source code 19
. 4.3.2 Lntrusiveness with respect to service latency 19

. 4.3.3 Heterogeneity 20

. 4.3.4 Related work 20
. 4.4 Architecture of the jnfras tructure for the management of EA 21

Contents

1 Introduction

2 SmaxtHomes

2.1 What is a SmaxtHome?

2.2 Why SmartHomBs'! ..

2.3 Why manage SmartHomes?

2.'1 Requirements for the management of SmartHomes .

2.5 Event notiiication and correlation .

2.6 Embedded (EA) versus distributed applications (DA)

3 Research Issues

3.1 Solutions to the SmartHoma management problem.

3.2 Questions of jnterest

3.2.1 Intrusiveness

3.2.2 Scalability.........

3.2.3 Support for heterogeneity

3.2.4 Support for secure management.

3.2.5 Support for remote maintenance .

3.2.6 Support for the generation of management applications

4 Summary of past research

4.1 Architecture of the infrastructure for the management of DA

4.1.1 Components of the architecture.

4.1.2 Zone-based partitioning

4.1.3 Using Habash to manage a. DA •

4.1.4 Implementa.tion of Wabash. . .

1.2 Features of Wabash•...

4.2.1 Specifying project information for testing and management

4.2.2 Performance measures .

4.2.3 Coverage measurements•..

4.2.4 Interface mutation and fault injection

4.2.5 Event-based monitoring and control .

4.2.6 -Sta.teinformation of a component

4.3 Evaluation of tIle infrastructure for the management of DA .

4.3.1 Intrusiveness with respect to the source code

4.3.2 Intrusiveness with respect to service latency.

4.3.3 Heterogeneity .

4.3.4 Rela.ted work

4.4 Architecture of the infrastructure for the management of EA

2

4

4

5

6

7

8

8

10

11

11

12
12
12
13

13

13
13

13

13
14
15

15

16
16
17

17

18

18

18
18

19
19

19
20
20
21

. 4.4.1 Components of the architecture 21

. 4.4.2 ~mplementationoiHomeWabash 22
. 4.5 Features of Homenabash 23

. 4.6 Evaluation oi the inirastructure for the management of EA 23

. 4.d.l Intrusiveness with respect to the source code 23
. 4 5.2 Heterogeneity 24
. 4.6.3 Related work 24

. 4.7 A XML based Policy-Driven Management Information Service 25
. 4.8 Architecture of a Management Information Server 26

5 Research Plan 2 8
. 5.1 Evaluation of Uabash 28

. 5.11 Scalabjli ty 28
. 5.1.2 Support for automatic generation of management applications 28

. 5.2 Eduatjon of HomeWabash 29
. 5.2.1 Heterogeneity 29

. 5.2.2 Scalability 29
. 5.2.3 Support for remote maintenance 29

. 5.2.4 Support for automatic generation of management applications 30
. . . 5.3 Automatic generation of customized, "pluggable" management applications 30

. . 5.4 Architecture of the ERNC system 31
. 5.5 Testing EA a.nd DA 33

References 33

Appendix A: Document Type Definition for Event Notifications 35

4.4.1 Components of the architecture.

4.4.2 Implementation of HomeWabash .

4.5 Features of HomeHabash • . .

4.6 Evaluation of the infrastruc.ture for the management of EA

4.6.1 Intrusiveness with respect to the source code

4.6.2 lIeterogeneity.....................

4.6.3 Related work .

4.7 A XML based Policy-Driven Management Information Service.

4.8 Architecture of a. Management Information Server .

21

22

23
23

23

24

24

25

26

5 Research Plan 28

5.1 Evalua.tion of Wabash. • • • 28

5.1.1 Scalability.............................. 28

5.1.2 Support for automatic generation of management applications 28

5.2 Evaluation of HOnleWabash 29

5.2.1 Heterogeneity........... 29

5.2.2 Scalability............. 29

5.2.3 Support for remote maintenance 29

5.2.4 Support for automatic generation of management applications 30

5.3 Automa.tic generation of customized,"pluggable" management applications. 30

5.4 Architecture of the ERNe system. 31

5.5 Testing EA and DA ••.•••••. 33

Acknowledgments 33

References 33

Appendix A: Document Type Definition for Event Notifications 35

3

1 Introduction

This papcr is a summary of our research in the area of management o i clistributed and em-

bedded applications. This section, in particular, highlights the research contovt and explai~is
the problem oi interest to us. A summary of our accomplishments so far and a research pIan

appcars jn Sections 4 and 5, respectively.
The SmartHome project grew out of our vision of a society that is getting increasingly

"connected" amongsl jLs living bcings and the devices they use. The long term goal of this
project is to develop and experiment with technologies with the potential to improve the

lifestyle of humans across various sectors of the society by malrjng use 01 cu~rent and futuristic
computing and networking technologies. The powerful and low cost intcgratcd circuits available
now, the ultra thin and flexible circuits anticipated in a few gears, and the more futuristic
molecular devices, are aU likely to assist humans in improving their lifestyle. We want to
understand how these ted~nologjes could help humans in managing, and improving from its
current state, their day-to-day life. We also want to develop an infrastructure that wilt allow
efficient management d collections of devices that can be monitored and controlled via the
Internet. Following are the key objectives of the SmartHome project:

1. TJnderstand how the current and Iufme technologies could assist in the "smartization"

of devices and homes.

2. Develop an infrastructure for the management of smart devices and homes. Such an

infrastructure must be useful to individual home owners as well as to the service-provider
industry likely to mushroom around SmartDevices and SmarbHomes.

3. Set up experimental SmartHomes for the evaluation of the inhastructure and obtain feed-
back horn the potential users of this technology.

2 SmartHomes

We answer the foilowing questions to expose the context of our research.

1. What are SmartHomes ?

2. Why are SmartHomes needed ?

3. What are the management needs for SmartHomes ?

We then enumerate a set of requirements that we believe are crucial ior the management
of SmartHomes. Events and actions

1 Introduction

This paper is a summary of our research in the area of Juanagement of cUstributed and em­

bedded applications. Tills section, in particular, highlights the research conte.xt and explains

the problem of interest to us. A summary of our accomplishments 50 far and a research plan

appears in Sections 4 and 5, respectively.

The SmartHome project grew out of our vision of a society that is getting increasingly

"connected" amongst its living beings and the devices the)· use. The long term goal of this

project is to develop and experiment with technologies with the potential to improve the

lifestyle of humans across various sectors of the society by making use of current and futuristic

computing and networking technologies. The powerful and low cost integra.ted circuits a.vailable

now, the ultra thin and :O.exible circuits anticipated in a few years, and the more futu.ristic

molecular devices, are alllikel)' to assist humans in improving their lifestyle. We want to

understand how these technologies could help humans in managing, and improving from its

current state, their day-to-day life. We also want to develop an infrastructu.re that will allow

efficient management of collections of devices that can be monitored and controlled via the

Internet. FollowIng are the key objectives of the SmartHome project:

1. Understand how the current and future technologies could assist in the "smartization17

of devices and homes.

2. Develop an Infrastructure for the management of smart devices and homes. Such an

infrastructure must be useful to Individual home owners as well as to the service-provider

industry likely to mushroom around SmartDavic;es and SmartHames.

3. Set up experimental SmartHomes for the evaluation of the infrastructure and obtain feed­

back from the potential users of this technology.

2 SmartHornes

We answer the following questions to expose the context of our research.

1. What are SmaxtHomes?

2. Why are SmartHOlllElS needed?

3. Wha.t are the management needs for SmartHomes ?

We then enumerate a set of requirements that We believe are crucial for the management

of SmartHomes. Events and actions

4

2.1 What is a ~martHome?

R SmartHome is a pl~ysical domain comprised of devices (hardware and soflware) owned by

one or more i~ldividuds that can be monitored and controlled via the Internet. Smartspace

is perhaps a more generic name ior a SmartHome. A traditional homc (space) becomes a

SmartHome (Smartspace) when it contains one or more SmartDevices. Howcver, a ship ashore
or a sailing boat also becomes a SmartHome when either contains one or more SmartDevices.
Thus, our definition of a SmartHome is general enough to encompass a variety of "phj~sically
enclosed" md "privately owned" networks that c o ~ c c t a 11osloT devices to the Internet or an
III tranet.

We are liberal about the kinds of devices allowed inside a. SmartHome. Of course well known
computing deviccs and pcdpl~erals are considered as SmartDevicas and can be made smarter
with the addition of hardware and software. Also, traditional devices such as a refrigerator,
VCR, TV, video camera, video game console, lights, garage door, microwave oven, dog food
dispenser, etc. found in many homes, can be upgraded with hardware and software and
connected to a networl;. Such an upgrade and connection translorms an otherwise non-smart
device into a SmartDevice.

Devices such as parts ofa boat, parts oian automobile, personal clothes, furniture, art ware,
etc. are not prevented from being parts of a SmartHome. Existing and luture IC! technology

will jn all likelihood make it possible for such devices to be made smarter. For example, a
Smartshirt could communicate with the washer and inform the person who put it inside the

washer that the washer could not be set to the right cycle because this shirt has been mixed

with the wrong set of clothes. A smart chair might adjust its contour to that of the person

sitting on it simply by recognizing the person about to sit. A Smartseat inside a car might
adjust its position by recognizing the driver or the passenger. Obviously, there is no limit to
creative thinking and smartization of devices.

Figure 1 shows several SmartDevices connected to a Local Network a d , through a Gate-
way, to the Internet or an Intranet. All devices in this figure, shown inside a boundary, are
assumed to beIong to one or more owners. Devices such as a VCR, refrigerator, automobile,
and the oven, that are found in most homes, might be connected via a gateway to the Internet.
Devices such as a heart rate monitor, blood analyzer, and CATSCAN equipment, might be

connected via a special gateway to an Intranet owned by a Hospital. We do not constrain the
Local Network and the Gateway in any way. Thus, for example, devices in a mobile hospital
might be c o ~ e c t e d amongst themselves via a wireless network and in turn via some sort of a

Gateway to an lntranet that connects other mobile hospitals.

Figure 2 shows the relationship between SmartHomes and the three types of management
entities enumerated earlier. Note that a Manufacturer and a Service Provider could enter a
SmartHome via the Internet or the Intranet. The owner could enter the SmartHome owned
either via the Internet/Intranet or directly from within. For exarnplc, while at home the owner
migbt access the TV and program it using on-screen menu whereas from outside of the home

2.1 What is a SmartHome?

A SmartHolne is a physical domain comprised of devices (hardware and sofLware) owned by

one or more individuals that can be monitored and controlled via the Internet. SmaxtSpaca

is perhaps a more generic name for a SmartHome. A traditional home (space) becomes a

SmaxtHome (SmartSpace) when it contains one or more SmartDevices. However, a ship ashore

or a. sailing boat also becomes a SllIartHome when either contains one or mOre SmartDevices.

Thus, our definition of a SmartHome is general enough to encompass a variety of "ph)/sically

enclosed" and {<privately owned" networks that connect a host of devices to the Internet or an

Intranet.
We are liberal about the kinds of devices allowed inside a SmntHcme. Of course well known

computing devIces and peripherals are considered as SmartDevices and can be made smarter

with the addition of hardware and software. Also, traditional devices such as a refrigerator,

VCR, TV, video camera., video game console, lights, garage door, microwave oven, dog food

dispenser, etc. found in many homes, can be upgraded with hardware and software and

connected to a network. Such an upgrade and connection transfonns an otherwise non-smart

device into a SmartDevice.

Devices such as parts ofa boat, parts ofan automobile, personal clothes, furniture. art ware,

etc. are not prevented from being parts of a SmartHome. Existing and future Ie technology

will in all likelihood make it possible for such. devices to be made smarter. For example, a

SmartShirt could communicate with the washer and inform the person who put it inside the

washer that the washer could not be set to the right cycle because this shirt has been mixed

with the wrong set of clothes. A smart chair might adjust its contour to that of the person

sitting on it simply by recognizing the person about to sit. A SmartSeat inside a ca.r might

adjust its position by recognizing the driver or the passenger. Obviously, there is no limit to

creative thinking and smartization of devices.

Figure 1 shows several SmartDevices connected to a Local Network and, through a Gate­

way, to the Internet or an Intranet. All devices in this figure, shown inside a. boundary, are

assumed to belong to one or more owners. Devices such as a VCR, refrigerator, automobile,

and the oven, that are found in most homes, might be connected via a gateway to the Internet.

Devices such as a heart rate monitor. blood analyzer, and CATSCAN equipment, might be

connected via a special gateway to an Intranet owned by a Hospital. We do not constrain the

Local Network and the Gateway in any way. Thus, for example, devices in a. mobile hospital.

might be connected amongst themselves via a wireless network and jn turn via. some sort of a.

Gateway to an Intranet that connects other mobile hospitals.

Figure 2 shows the rela.tionship between SmartHomes and the three types of management

entities enumerated earlier. Note that a Manufacturer and a Service Provider could enter a

SmartHome via the Internet or the Intranet. The owner could enter the SmartHome owned

either via the Internet/Intranet or directly from within. For example, while a.t home the owner

might access the TV and program. it using on-screen menU whereas from outside of the home

5

---------------------------~~:~~~~~:_-------
I SmanDevice ~···· .. "·,, .. ,· .. ······ .. ··········I Sm:ll'lDl!.vicc I

Locill Conununko.tions Network

Gateway

---------------------- ---------------------------

I
I
I
I
I
I,
I,,,

- -'

IntemetJIntronet

Figure 1: Connection of devices within a. SmartHome to the outside world. The Gatewa.y could

be a special purpose device, 6uch as a. Residential Gateway from Telcordia. Technologies, or a

commodity Personal Computer.

she might program the same TV via the Interne~.

2.2 Why SmartHomes?

The expansion of the Internet and the reduction in the cost and size of integrated circuits

has given birth to a new breed of devkes. These are devices that contain programmable logic

which allows reconfigura.tion to suit individual tastes and requirements. The Internet allows

such devices to be ma.naged from almost anywhere in and outsjde the world. Programmability

and connectivHy of the devices entices people to use them in ways that could only be dreamed

of in the past.

As an example, "fault tolerance" is introduced in the purchasing process when a. soft drink

can be purchased through a. cell phone. Thus, if someone forgets to carry cash, or does not

have the corred change, the cell phone provides an alternative way to meet one's need, tha.t is

to have a drink. Personal security, scheduling of entertainment, calling for medical assistance,

providing medical assistance, are only a. few of a. variety of tasks that could be vastly improved

with the widespread use of SmartHomes. In summary, it appears tha.t SmartHomes will likely

improve the overall quality of the individual. lifestyle and hence their need.

6

Owner I Owner

t t

Sln:\rlHomc •• , ·.'·,111 .. '.1"'"1. Smart Home

Olliewny }.. G:llew;IY

t t
In[emerllmmne[

I MllnufnClufCT
I

Service Provider II

I Mnnuf:lclurer
I

Sel'Viee Provider II I

Figure 2: Accessibility of SmartHome to owners, Service Providers and Manufacturers.

2.3 Why manage SmartHomes?

Management of SmartHomes is necessary to ensure that the needs of its users axe met in a

timely and efficient manner. In the conte.."<.t of SmartHomes the term "management" refers to

the monitormg and control of individual, or a collection of heterogeneous, devices. Monitoring

is the checking of one or more status indicators. Control is exercising of a.ctions tha.t could

alter the state of the device. Remote checking of whether or not an ATM is out of cash

or checking whether or not a water softener is low on salt are two examples of monitoring.

Remotely commanding a. blood analyzer is an example of control. Though the remoteness of

the operations is not essential to their being management tasks, it does seem to make them

more useful.
To understand management needs of SmartHomes, we identify three categories of people or

organizations who will likely need to manage SmartHomes. These are (a) individuals who OWn

the devices, (b) organizations that are required to service the devices, and (c) manufacturers

of the SmaxtDevices. A home owner belongs to category (a), a department store, sl1ch as

Sears, to ca.tegory (b), and a. manufacturer, such as Sony, to category (c). Whereas people

in category (a) and organizations in category (b) are expected to be directly involved in the

day-to-day management tasks, manufacturers in category (c) are likely to be concerned with

the provision of suitable features in the embedded software for effective management. For

example, the manufacturer of a SmartCar ought to be concerned with what features to provide

7

for the owner to remote monitoring and control and for the auto-dealer to check, and perhaps

service It, remotely.

2.4 Requirements for the management of SmartHomes

Table 1 lists what we perceive to be the management needs, or requirements, of people and

organizations mentioned earlier. It is reasonable to c.'<:pcct that individuals and organiza.tions

in the managerial roles wlll need to monitor and control the devices. However, their specific

requirements might differ. For example, a Service Provider might not be interested, or autho­

rized, to monitor the channel being currently viewed by the Owner. Also, the Owner mjght

not be interested, or authorized, to check the status of the fuel injection system inside an

automobile.

The Service Provider and the Manufacturer are likely to have similar requirements. How­

ever, one might or might not authorize the other to perform certain monitoring and control

tasks. For example, the Manufacturer might provide a special feature in the embedded software

that controls the automobile engine. Using this feature the Manufacturer would be able to

dOlvnload performance data. This data might be important enough to the business of the Man­
ufacturer to not allow access to others including the Service Provider. The Service Provider

might also restrict the Manufacturer from obtaining information about the service agreement

that it has signed with the Owner.

2.5 Event notification and correlation

Eveot notification and co-relation mechanisms are common in distributed systems. Event based systems allow

for loose coupling of components and enable building complex interactions among componenlS of a distributed

system.

The following are a few reasons wby an Event Recognition. Notification and Co-Relation (ERNC) system

would be beneficial as a component in the infraslructure for the management ofSmartHomes.

• Asynchronous interaction: Using the ERNC, one have asynchronous interactions wilh componenlS

of a SmartHoma. Thus, for cll:arnple. instead of a user checking every 10 minutes whether a washing

cycle is done. a sman washing machine combined with me ERNe can be programmed to notify the user

(via e-mail or other means) upon completion of the washing cycle.

• Automalion of repetitive tasks: A key benefit of managing SmartHomes is that it promises to

improve the perceived quality of life of its use~. This benefit can be further augmented by automating

mundane and Tepetilive tasks. Thus, for example, with a SmartLock and the ERNe, Ihe borne security

system can be enabled automatically each time the SmartHome is locked.

• Allow complex interactions between device.s: The ERNe can be viewed as a mechanism for

embedding intelligence into the HomeWabash system. For example. the ERNC can be used to dim the

SmartLights soon after the SmartProjector is turned on. While the SmartProjElctor by itself

8

Table 1: Requirements for the management of SmartHomas.

User Category

Owner

Requirement
Monitoring

Control

Access specification

Event. specification

Explanation

Check t]le state of any de\'ice owned.

Send a control command to an)" device owned.

Specify access controls.

Attach time and state dependent. actions La de­

vices owned.

Service Provider Monitoring

Control

Access specification

Event specification

Service assignments

Service schedule

Accounting

Check the state of any device under contract. The

sLate space to be monitored will likely be different

than the one t.hat can be monitored by an owner.

Send a control command to any device under ser­

vice conLract. The cont.rol command set willlikel)'

be different. than that for t.he owner.

Specify access controls to servicemen and owners.

At.tach time and stat.e dependent actions to
devices.

Assign devices to specific service personnel.

Schedule on-site and remote maintenance services.

All finance related services.

Manufact.urer Monitoring and Control Perhaps all Monitoring and Control needs of the

Service Providers will also be the needs of the man­

ufacturers. However, the manufadurer may need

special acceso to tne devices for the purpose of

servicing and obtaining performance data. This

could be provided by the Service Provider.

Upgrade Device manufacturer might want to upgrade em­

bedded software on all devices of a kind. This

could also be done by the Service Provider.

9

mny be capable only of producing a notification ofan "on" event, when coupled with the ERNC itcan give

the user the illusion of being a co-ordinated smart-device aware of other devices and their interactions.

• Allolll inlernclions belween heterogeneous devices: A key requirement of the HomeWabash

system is the need to handle hetcrogeneity. We do not expect a single stOllldard for smart-devices or for

their management. Nor do we expect a single standard for communication mechanisms between and to

SmartDevices. However. from a user's perspective. it is of great advOllltage if Ibis heterogeneity is

hidden OlllU instead a consistent interface is presented for monitoring and control. TIle ERNC can facilitate

the interaction between heterogeneous devices through lhe loose coupling presented by the event-response

mechanism. The power of using the ERNC as a building block to a complex management system is

that no component needs to be designed to work specifically with any other component. For example. a

Bluetooth enabled PDA can send a song title to an IF enabled MP3 player which then downloads this song

to be played laler. While the PDA and the MP3 player m.ay nOl have been designed 10 interact, or indeed

even be aware ofeach other's existence. lhe ERNC system provides a flexible coupling mechanism that

facilitates inleractions between Ihese devices.

• Facilitate greater reach for SmartDevices: We expect SmartDevicEls to have a limited scope

in terms of their communicalion capabilities. Thus a device cannot be expected 10 make use of the

diverse array of communiclltion mechanisms to interact with the user. However, mis restrictioll can be

overcome when lhe device is coupled with an ERNe system mat does not have me same limitations as

the device. The complexity of managing the diversity in communication mechanisms to the user is now

handled by the ERNC similar to how a Residential Gateway handles lhe complexity of communicating

with an individual device. For example, a w:lShing machine may only be capable of producing a simple

notification to the local Residential Gateway. Using the ERNC, this notification can be forwarded based

on the user's current localion llDd environment. to her e-mail, mobile phone, pager, car dashboard. etc.

2.6 Embedded (EA) versus distributed applications (DA)

We are concerned with lhe management of embedded applications (EA) and distributed applications (DA). In me

context of SmartHomes, embedded applications nre those mat reside inside a SmartDevice. The software

thaI resides inside a VCR, a Microwave oven. an llutomobile, CATSCAN equipment. etc" constitutes embedded

applications. A collection of components. perbaps distributed over many computers across the globe. to manage

a group of SmartHomes, is an example of a distributed application. An embedded application could be

distributed. For eltample, most automobiles contain several microprocessors controlled by software components

that ccmmWlicate amongst each olher to realize nn automobile function. Modem airplanes also have similar

applications that are embedded as well as distributed. In addition to the embedded applications being distributed,

the services for these devices may likely be realized using dislributed applications. For example, a Home

Management Service for managing SmartHomes may be a disLributed I component-based application.

Considering that embedding and distribution are the likely characteristics of applications in the context of

SmartHomes, we use the following terminology for the purpose of this work;

Embedded applications (EA) are intended to control a single SmartDevice and are hosted physically in

10

some form of memory (e.g. flllSh ROM, atomic disk, etc.) that resides within the device to be mllI1aged. An

embedded application mayor may not be distributed.

Distributed appUcations (DA) are collections of at least two or more components hosted on one or mOre

computers and provide services using some variam of me client-server model. A component may be replicated

[Q improve its llccessibility.

It is likely thalEAs are significamly more conSlCained than DAs in terms of the computing resources available

to them. This will likely affect their architecture. For e~ample, it is unlikely that an EA. even though distributed.

uses a CORBA 3.0 or a. DCOM implementation whereas a DA could. Certainly, progress in hardware technology

could change this belief. However, when compared in relative terms, an EA is likely to be more constrained than

aDA.

3 Research Issues

A careful examination of the requirements for the management of SmaxtHomes leads to the formulation of key

research issues. One can imagine a mullitude of approaches to fulfill the requirements listed in Table I for the

managemem of SmartHomes. For our discussion we identify and examine two approaches. These approaches

are.: (1) individualizedsolulions and (2) standardized solutions.

3.1 Solutions to the SmartHome management problem

To understand the slrenglhs and weaknesses of the two approaches mentioned above, consider a Service Provider

who wants to enler inlo the business ofservicing a kindofIntemetappliance. The software infrostruclurerequired

to run such a business would necessarily include components to monitor and control the devices the appliances

to be serviced. To maximize its profit potential, a Service Provider might want to manage a diverse portfolio

of appliances rather than one-of-a-kind. Diversity in portfolio would imply different types of appliances from

manuracturers. Under the individualized solution approach, ea.ch manufacturer develops its own monitoring

and control interface thereby increasing the likelihood of inrompatible monitoring and control interfaces for the

applinnces underservice. Such incompatibility adds 10 the complexity ofthe software components for moniloring

and control and hence to the cost of lheir development and DlDimenance. Expansion of business by acquiring

one from another Service Provider will likely lead to the increase in software complexity. Other components

of the software infraslrUcture. such as those thaI deal with accounting for pay-per-use appliances, or provide

individualized services to the Owner, or assist in organizing a large domain of use into smaller subdomains for

the ease of management. are also likely to face the problem of' 'added complexity".

Under the standardized solution, we foresee a software infrastructure consisting of components that

provide fealures 10 meet lhe basic needs of the three categories of users and mnnagers or appliances. These

components are used by a number of manufacturers and Service Providers. The components :lfC extendible to

meet special needs. Note thal standardized solution does not imply a unique infrastructure, but it does imply

the existence of perbaps several infrastructures for management one of which is selected for use by a Service

Provider depending upon its characteristics.

11

3.2 Questions of interest

Discussion in the previous subsection leads to the important question that is driving our research: "What

should be the software infrastructure for the management of SmartHomes "I" We split this generic

question imo the fonowing researcn questions:

1. What should be the architecture of the infraslructure?

2. How should lIl1 infrastructure be evaluated? We expect to identify and, where possible. quantify the key

describing characteristics of infrastructures so that competing solutions could be compared.

We do not expect a unique answer to the first question above. Perhaps there are different architectures

suitable under different management scenarios. By the term "architecture of the infrnslJUcturc" we mean a

listing of the key components of the infrastructure, the relationships amongstlhese components. features offered

by each component, and any special characteristic of each component [9J.

Evaluation of the infrnslJUeture is essential 10 our research. We have identified the following characteristics

against which we plll1l to evaluate management infraslrUcture developed in our research.

1. Intrusiveness

2. Scalability

3. Supportfor heterogeneity

4. Supportfor secure management

5. Support for remote maintenance

6. Support for the generation of management applications

In lhe following subsections we explain each of the above characteristics.

3.2.1 Intrusiveness

Inlnlsiveness is a measure of the extent to which the inf'rasttucture (a) re<)uires a chlll1ge to the application

code, (b) degrades the penOlmance of the entity being monitored, and (c) alters the state of the entity under

observation. In a SlIlartHoma, for example, it may be desirable that the current operation ofa blood analyzer be

not affected in any way when its state is monitored. Also. when the monitoring and control needs change, one

should not have to modify the application code in order to accommodate the new needs.

3.2.2 Scalability

Scalability is a measure of how the infrastructure performs when the number ofdevices being monitored lIl1d

controlled increases. Perfonnnnce oflhe infrastructure could be measured as, for example. (i) the time to monitor,

(ii) the time to send control signals to a device upon the occurrence of an event. (iii) the ease of distribution and

reallocation ofmanagement personnel. and (iv) the time to upgrade embedded applications.

12

3.2.3 Support for heterogeneity

Support for hetcrogeneity refers to that aspect of the design of the infrastructure which allows its users to

easily adapt new SmartDevices into a management domain. It is difficult 10 quantitatively measure this

aspect of me infrastructure:ls it is perhaps always possible to accommodate any SmartDevica by appropriatc

modification of the management application. Hence, it is the elISe with which new devices could be inducted

into a :m:magemenl domain that becomes the distinguishing characteristic of a "'good" infrastructure. In DAs

heterogeneity arises due to the use of different technologies. For example, a management npplication might

employ a mix ofcomponents that usc CORBA [12], Java RMI [1], andJINI [2]. Monitoring and control of such

applications mises interesting questions.

3.2.4 Support for secure management

Secure management and support for it refers to the use of techniques for managing SmartHomes in a secure

way. A fully secure infrastructure implies that, when used correctly, lhe mmlagement application built around

this infrastructure will make it impossible for inb1lsion and misuse of monitoring and conrrot operations by

unauthorized individuals.

3.2.5 Support for remote maintenance

Support for remote mainlenance refers to those features in the infrastructure that allow Service Providers and

Manufacturers to remotely enter a SmartDevice, identify the cause ofany problem already reported or likely

lo occur, and. if possible. make repairs. In a sense this is akin to debugging remotely but within the environment

of its use.

3.2.6 Support for the generation of management applications

Support for the generation of management applications refers to those components in the infrastructure that are

intended for assistance with the generation ofmanagement applications given a specification of the l11lI1lagement

tasks. We believe that all categories of users would need to develop new management appHcations to induct

new SlllartDevices into meir management domain and to satisfy previously unsatisfied needs. Our goal is to

provide components in the infrastructure that will assist with the development ofsuch applications.

4 Summary of past research

We describe the architecture of two infrastruclUres for the management ofBA and DA, swnmarize the important

characteristics of their implementalion, and present results obtained from experiments designed to evaluate them.

4.1 Architecture of the infrastructure for the management of DA

The infrastructure for the management of DAs was designed and implemented to manage applications that

use CORBA. These applications consist of several components that are often replicated and distributed across

multiple computers. The components, both clients and servers, are usually unaware of lhe locations of those

13

from which lhey need to obtain services alld communicate via a Object Request Broker popularly known as

ORB. An owner of CORBA components is often interested in their monitoring and cOnlrol. The architecture

described in tbis section was designed and implemented to allow scalable and non-intrusive management of

CORBA components.

In this archilecture, named Wabash, scalability is achieved primarily through the use of zone-based

parlilioning and non-intrusiveness through a clever positioning of componenls called "Local Listeners".

Severn! key features of Wabash also distinguish it from other similar systems. These features include the abi!il}'

to perfonn dynamic load testing of servers, testing of servers via inlerfaces, lIJ1d the ability to allow local and

distributed management. The novel elements of the architecture and its implementation are summarized in tha

remainder of this section.

4.1.1 Components of the architecture

Figure 3 shows the components and their interactions as found in Wabash. For our discussion, let CM denote a

componeot to be managed in a DA. Various components of Wabash are described below. The advantage offered

by each component is explained in Section 4.3.4.

Local Listener (LL): Ench CM is encapsulated by an LL. All requests sent to or from CM must go through

the LI.. The LL is lhe supplier of information regarding a CM. For example, the LL is the source for all events

that occur at CM. The request emanating from and tbe responses received at a eM are viewed as events. The

LL maintains and supplies componenl specific information such as the component's name, number of exported

intenaces and certain performance statistics. In addition. the LL stores manager specified event-action correlation

pairs and recognizes events that occur at CM. The LL also executes lhe corresponding actions associated with an

event. LL uses infonnation from CM's interface (0 provide the functionality.

MonitOl: (MR): The MR provides services for monitoring one or more CM(s) and for parsing and delegating

event-action correlations. For example. for an event that involves more than one CM. the MR component parses

the event descriplion and delegates the recognition of the local events to the appropriate LL.

Con1;roller (CR.): The CR provides services for controlling one Or more CM through the LL. For example.

CR provides a stop() that can be used to dynamically stop the eM from servicing requests. The stop() service

also provides for a fine-grained conlrOl over the requests. For example, it is possible to specify that CM stop

servicing certain requests only if they arrive from clients that reside in a certain network. The MR and CR

provide features for managing the CMs in one zone and hence constitute the zonal manager.

Database Manager (DB): The infonnation and state or each eM is incrementally updated and stored in a

database. DB exp1)ns services for storing in and retrievjng data from the database.

Zon.al Services Gate'll'ay (ZSG): The ZSG serves as the gataway to access the services of the various

components within a zone. For example. the LL uses the ZSG to access lhe services of the MR and CR. Similarly,

the services of the U. can be accessed through the ZSG.

In addition to lhe above mentioned components, the architecture also includes a User Interface (UI) component

for managing the DA.

14

4,1.2 Zone-based partitioning

In is likely that componenLS of the DA are distributed over a wide geographical area wim differing ownerships

and communication speeds among the components. It was merefore decided to allow a manager to establish

a one-level bierarchy of components by partitioning the space of components into logical zones. Each wne

consists of a collection ofcomponenls managed independently of components in other zones. In the descriplion

below we DSsume that the management of components is under me control of II buman being who is referred to

as "manager".

The partitioning of the componeOiS into zones may be based on several criteria such as ownership and

conununication bandwidth. We consider the case wnere components are owned by one or more managers each

of whom may have different leveJs of access. Even though owned by different individuals. the components

may collaborate La present a single service to their clients. Each set of components owned by an individual

may receive management requests from the other. Partitioning the del>loyment space into dislinct, though

communiCliling. zones facilit:nes the application of access restrictions for managing the components and also

simplifies lhe managemenl of these components. For example. for an application deployed in two different

zones, it is possible to assign one administrator for managing each zone. The administrator for a. given zone may

be granted access-pennissions only for components deployed in the zone of responsibility. It is also possible to

assign to a single administrator the responsibility for the management of two or more woes.

Type of the communication links, that connect me various components, could be another criteria for

partilioning. For example, components that communicate using a single LAN can be grouped under a single

zone. Typically, though not necessarily, components deployed over a single LAN are owned and managed by

the same organization. Hence, the managemeDt neeLIs of the administrator for lhese components are more for the

locaHy deployed components than for those that may be deployed across a WAN. Hence, it would be beneficial

to assign a zonal manager for managing eaclliocal group.

4.1.3 Using Wabash to manage a DA

The DA can be managed manually, automatically, or using II combination of the two. For manunI

management, a manager selects tile appropriate componenl using the m and a suitable conunand is sent to the

selected component. The ill sends the command to the component's ZSG. The ZSG then forwards the request

10 the component's LL. The DA can be automaticnIly managed using event-action correlations. For example, a

sequence of management commands, referred to as actions, can be executed upon the occunence of an event

at a component. The event-action pair is sent to the ZSG through the UI. The ZSG sends the information to the

MR for pming and delegation. MR sends the local events to UJe CR and nIso to the appropriate LL. Upon the

occurrence of the event at a component, the corresponding LL direcLS this event [0 the MR mrough ZSG and also

executes the action(s) corresponding to this event.

Managing a DA manulllly or automatically requires mal the requests and responses go to the component

through lL. Upon the arrival of a request :It a li, the following actions are taken before the request is forwarded

to the component:

• The request is time-stamped with its local time of arrival.

15

DB

User
Interface

Zonal Managerr-------------------------·
, I

I
I
I
I

I
I
I1 -

ZOna I
Zonen

DB

Figure 3: Components of the infrastructure for the management of DA.

• The perfonnance statistics for CM Me updated.

• Attributes of !.he request are sem to MR..

• An event-aclion list is consulted and appropriate action is taken if specified in the action part of the

event-nction pair.

4.1.4 Implementation of lfabaBh

The proposed architecture has been implemented using IDKl.2 and Visibroker 3.4 [11]. All components of

Wabash 2.3 are implemented as CORBA componenlS nnd hence the communication between them is via the

ORB. The u.. is implemented lIS a CORBA inrerceptor. Though Visibroker 3.4 does not suppon ponable

interceptors, the subsequent versions of Visibroker do and hence the IJ.. module cmt be extended to work with

various implementations ofCORBA. A nat-file representation ofa database has been implemented.

4.2 Features of Wabash

Wabash provides the following features:

1. Performance of the individual objeclS:md the application.

2. Measurement of method and interface coverage

16

Table 2: measures at p:.,-) If''Vel

Property Appliction Object Level Interface Method

Level Level Level Level

Name .j .j ..; .;
Host Machine Name ..; .j

of unnamed objects ..;
of named objects ..;
Started at ..; V ..; .j
Up Time .j ..; ..; V
of hits ..; .j ..; ..;
#- of interfaces .j
of methods .j

Mrocimum Latenq' .;
Mirumum La.tency ..;
Average Latency V
Memory usage .j

3. Mechanism for fault injection.

4. State of the components at each level of hierarchy.

5. Mechanism for event-based monitoring and control.

EJ.ch application is viewed at different levels of granularity, namely, application level, object level, interface

level, and method level. The above features DIe implemented at each level of lhe biemrchy of an application as

described below.

4.2.1 Specifying project information for testing and management

Before Wabash can be used to test or manage an application. some static infonnation regarding the application

is obtained. The association between machines and zones is specified. The infonnation regarding the servers and

the machines on which they are hosted is also specified. This static infoo:nalion is stored in a databllSe and is

refeTTed to as a project.

4.2.2 Performance measures

Wabash collects performance statistics at each level of the hierarchy. The perl"onnance statistics can be viewed

at run-time. They are also logged on to a stable storage for post-processing and olber analyses. Table 2 shows

the statistics collected al each level.

17

4.2.3 Coverage measurements

Traditional testing of sequential programs involves maximizing the code coverage of tJle various components of

the application. Current research in the area of testing ofcomponent-based applications focuses on interface-based

coverage criteria. Wabash aids in testing component-based applications by providing coverage information for

tile various interfaces exported by the application. It provides a graphical view of the ratio of hils/total-hits,

and the percentage of the interfaces covered at each object, 3.0; a pie-chan. The coverage infonnation helps the

tesler visualize an increase in interface and method covcrage while running vnrious tests.

4.2.4 Interface mutation and fault injection

The current architecture supports mutation of the elements ofan object's interface. The tester can use this Feature

to create, activate anti deactivate mutants of the methods in an interface and thereby evaluate the adequacy of a

test suite. The mechanism tbat creates mut.anlS is also used for the injection of faults at component interfaces.

These faults include server crash, delayed response, and invalid response. The following mutants are generated:

• Swap any two parameters.

• IncrementIDecrement an integer by one.

• Substitute a value of a parameter by null.

4.2.5 Event-based monitoring and control

This feature allows a user to specify an event of interest and to attach an action. The action is ex:ecuted upon the

occurrence of the associated event.

4.2.6 State information of a component

The tool also collects and displays Slate information at each level. A state of a component at a level is defined to

be one of the following:

• INACTIVE - when II component has been statically defined to be a pan of lhe application but has not

been started.

• DENY - when a component has been started bUI all requests to the component have been denied service.

• ALLOW - when a component has been started and all requests are allowed service.

ALLOW is the default slate of a component. The slate of a component lll:Iy be affected when a

controLaction is applied to it. In addition to the controtaclions specified earlier, two special control actions

are assumed to be pre-defined for any application. These are the slart and slop actions applicable to any

component. start is assumed to sIan il stopped component and stop stops a running component. Upon llJe start

of a component, all components contained inside it are also started. For example, when a server is started. all

the objects in the server are also started. Similarly, when an object is started, all the interfaces exported by the

object are slaned.

18

For components al ellch level, Wabash displays the current state of all the compOneJ1LS contained inside. TIle

Slale of a component can be changed unconditionally by choosing allY component and applying 11 controlaClion

on an Any evenl.

4.3 Evaluation of the infrastructure for the management of DA

Section 3,2 lists the crileria we propose for the evaluation of a management infraslruclure. The criteria are

described wilh a focus on the embedded nature of the applications. Though the basic critcria remain unchanged

in the context ofdistributed applications. the semanlics and relevance of lhe criteria do change. For exampJe, in

lhe comext of EA, heterogeneity refcrs to the abiJity to support different types of device technologies whereas

in the context of CA, il refers to the ability of the same management architecfure 10 support different types of

distributed systems technology. Similarly, in Ihe contexl ofEA, intrusiveness with respect 10 Ihe service latency

is nOI as relevant lIS in thecontexl ofDA. In Ihe remainder of this section. we describe the semantics of the crileria

enumerated in Section 3.2 and describe the evaluation of our architecture based on these criteria.

4.3.1 Intrusiveness with respect to the source code

As mentioned in Seclion3.2.1, minimal intrusion is adesirnblecharncleristicofany infrastructure for management.

The components of Ihe architecture iDlernct with the eM through the services exponed by its LL which is the

only component that interacts directly with the CM. Hence, it is important that the LL be minimally intrusive. In

our implementllLion.LL has been implemented as a CORBA interceptor. A CORBA inlerceplor can be loaded at

run-lirrll~ into the same address space ns the component itsel f with no change or only a minor change to the source

code ofCM. The change 10 the source code depends on the language in which eM has been implemented. H the

CM is implemenred in Java, then some CORBA implemenlations can load LL at run-lime into Ihe component's

address space. Also, this can be done without any modification to the source code. A eM implemented in

CtC++- may require a small mod jficalion 10 instruct the CORBA implementation to load LL into the component's

address space.

4.3.2 Intrusiveness with respect to service latency

It is imponant that the management archilecture have very little, if any, effect on the larency of the services

exported by Lhe eM. We evaluated a prototype implementation of the archilecture to determine the overhead

of the architecrnre on Ihe latencies of the exported services. We conducted experiments on a large, four-tiered,

CORBA-based telecommunication application written in Java. The application was under development at

Telcordia Technologies. At the time ofexperimentntioll, this application consisted ofover 100,000 lines ofcode.

Hence, non-intrusiveness with respecl (0 the source code was an important criteria. For our experiments, we

selected the services of a high-volume component of the application. The objective of the ex.periml:nt was (0

determine the effect of the management architecture on the latencies of the services. We found the overhead to

be between 4.65%-6.2%. Mote details of the experiment are found in [16J.

19

4.3.3 Heterogeneity

In the context of DA, heterogeneity is Lhe .ability of the architecture La manage DAs built using different

disuibuted-systems lechnology such as CORBA, DCOM, Java RMI etc. The architeCluro we have builL is used

to manage CM using LL. The various components of its arcbitectW'e communicate with LL. Though the current

implementation of Lhe architecLure uses CORBA 10 renlize the components, it does not restrict lhe Mchitecture's

Ileterogeneity. We can manage aDA. if we can implement aLL, and also provide access to the CORBA services

eX(J(Irted by MR, CR, and DB. This implies that ZSG may have to act as a gateway. i.e, communicate with the

zonal manager using one tcchnology and with the LL using another. For example, to manage Java RMI based

DA, the services of II needs to be exported using Java RMI. Also, the ZSG needs Lo communicate with LL

using Java RMI and use COREA to communicate with the MR, CR, and DB. Though we Clln manage DA by

implementing LL. appropriately, it may not be possible to load LL into CM's address space with only a minimal

modification to the CM's source code.

We are yet to evaluate the architecture for scalability, security and support for automatic generation of

management applications. This task is proposed to be completed in the future.

4.3.4 Related work

In this section, we describe briefly the work related to the management of distributed systems and compare this

with ou~.

MOTEL: MOTEL [13] provides for nm-time monitoring and testing of pre.defmed properties of object·oriented

distributed applications. MOTEL defines a set of twenty events for modeling and expressing the behavior of

such ~pplications using linear temporal logic. MOTEL monitors the behavior of the system by monitoring the

occurrence of the corresponding events. It uses a single observer to monltor the occurrence of the events. These

events are then used to test whelher or not the system violates the specified behavioral constraints. It achieves

the twin tasks of run-lime monitoring for occurrence of the events and testing for violation of the behavioral

constrnints by instrumenting the source code of the application. The process of instromenting the source code is

automated. MOTEL has been implemented for CORBA-based distributed applications.

HiFi: HiFi [7] uses an evenl-bllSed abSlrnetion for modeling and monitoring the behavior of distributed

applications. It pravides for the specification of the events to beobserved at ron-lime. Eacb event can be attached

to lln action which can be used for steering the appliclltion. HiFi uses a hierarchical system of observers to

monitor the occurrence of events. This minimizes the intrusion of the monitoring system On the performance of

the application. HiFi I like MOTEL. instruments the source code of the application to achieve its task.

MOSS: MOSS [8] is a system for monitoring and steering of parallel and distributed applications. It provides

features for monitoring and steering of distributed applications by creating objects that mirror the stale and

methods of the application. In addition to mirroring the Slate and methods oflhe original applicalion, the objects

also include additional state and methods for the purpose of monitoring llIJd steering. These "mirror" objects

are analogues of the original application as they share the state via moniloring and implement the methods via

remote method invocation. The act of steering is performed through the nppliclltion object's original methods

via remote object invocation. MOSS has been implemented for CORBA-based distributed applications. For the

20

purpose of monitoring and steering, MOSS requires a modified IDL compiler for producing an instrumenled

stub/skeleton. The IDL compiler instrumenlS the get and set methods for the allribmes to perfonn monitoring.

The object methods are also instrumemed for the purpose of steering.

In rhe above, we see three approaches for incorporating lhe moniloring and control code into the distributed

application. All three use some fonn of instrumentltion either at the level of [he source code or the interface

code. MOTEL and HiFi instrument the source code while MOSS instruments the interface by modifying the

stub and skeleton. The main strenglh of Wabash, in comparison to lhe above approaches. is lhe lack of

inslfumenlation at any level. Wabash uses LL for monitoring and control. Since LL has been implcmenred lIS a

CORBA interceptor, for CORBA-based applications wrinen in Java, LL can be incorporated into the disuibuted

application at run-time by simply specifying lhe IOcalion of the code base forll. as a command line argument to

lhe ObjecL Rcquest Broker. This criteria is important for heterogeneity - Ule lesser the amount of instrumentation

required. the more is the support for heterogeneity and more easier to support distributed applications written in

languages other than Lhe one for which the management system is designed.

Unlike MOTEL and MOSS, Wabash uses a zone-based partitioning approach for improved scalability with

each zonal manager handling lhose monitoring and control functionality lhat pertain only to the components in

the assigned zone. This approach is similar lo the hierarchical system used by HiFi. Whereas RiFi uses a

multi-level hiernrchy. Wabash only employs a single level. For .applications where the frequency of lhe events

is.low and the number of components in the system is small, the single level monitoring architecture perfonns

bener thoo a multi-level hieran:hy [7J.

: Both Wabash and HiFi provide the ability for dynamic specificalion. notification. and action correlation

of events. Wabash also provides for dynamic, fine.grained conlrOl of the components. This feature is missing

from the lhree approaches presented earlier even though MOSS provides for some limited form ofcontrollbrough

program steering.

As mentioned earlier, the LL component ofWabash is a CORBA interceptor that uses only the information

obtained from the interface of the components. This provides for lhe ability to dynamically generate clients for

the components. This feature. not present in the lhree syslems reviewed above, has been used to provide dynamic

load lesting functionality in Wabash.

4.4 Architecture of the infrastructure for the management of EA

4.4.1 Components of the architecture

Figure 4 shows the architecture of the infrastructure for managing an embedded application (EA). Components

of Ihis infrastructure are described below.

Gate'lay: The Gateway provides unifonn access to the services exported by the EAs (labeled Dl, D2, D3,

and D4 in Figure 4). It helps connecllhe EAs to an InlrilJ1et or an Internet. The Gateway component is made

up of (1) Event Recognition, Notification and Correlation Component (ERNe) and (2) Device Communicalion

Component (DC). ERNC, in the Galeway, is responsible for recognition and nOlificalion of events thal occur al

the EA thal are atta.ched to the Gatewa.y. ERNe maintains the list of interested events and the corresponding

actions. On occurrence of an evenl, it consults the list and takes the appropriate aClion. It also notifies !he Proxy

21

User

Inlcrf~cc

PrtllIiY
M~Dagcr

Figure 4: Components of the infrastructure for the management of EA.

Manager. DC acts a bridge between the devices and lhe outside world. The complexity of communicaling wilh

heterogeneous devices is the responsibility ofDC.

Proxy and Proxy Manager: The Prolty provides the interfaces for remote access and management of an EA.

Each proxy is mapped to an EA. The Proxy Manager (PM) provides a unifonn interface for the creation and

management of the proxies through the Proxy Communication (PC) component. PC exports the interface of the

proxies for access using different communication protocols such as CORBA, Java RMI and HI'TP. The Proxy

Manager also contains an ERNC component that del.ecls events that occur at the proxies. For example, when a

user wishes to access to the functionality of a device from a remote location, the request is sent to the device

through the corresponding proxy. Such events, related to the invocation of certain device functionality, are

detected and notified by ERNe.

In addition to the components mentioned above, the infmsll1lcture also contains a user interface component

through which the services of PM can be accessed. ill can be used by (1) II home owner to manage the EA or

(2) a service provider to manage the gateway, proxies and lhe proxy manager.

4.4.2 Implementation of HomeWabash

Figure 5 shows !.he components and their interconnections of HomeWabash, an implementation of the

infrastructure for managing EA. The proxy and the management components have been implemented using

JMX [3] and Java Beans, respectively. The proxies are implemented as JMX MBeons and are dynamically

confJgurable. The interfaces exported by the proxies are exposed lhrough CORBA. Jav.:! RMI, and HTI'P. The

proxy manager bas been implemented as a JMX MBean Server. HomaWabash has been implemented using

JDMK which is Sun Microsyslcms' implementation of the JMX specification. The functionality of each device

is mapped by Lhe corresponding proxy. The functionality of the proxy is dynamically queried and exported

as a WML interface to the home owner by a Java servlet. The Java servlel is hosted inside.:! firewall. The

implementation lets a user to remotely monitor and control the devices using a WAP-enabled device.

22

HTTP

User CORDA
Inlcrfacc 14--==---'"

RMI

W.bSo",.. 1

UDP

RMI

JDBC DB

Firewall

GiltelYily

.-..-.- .

XIO IGI
IEEE I82 1--1394 ~

lUCICOf e
G

i ...•.••.~

WAP ~L1HTML]
Clienl

Figure 5: An implementation of HomeWabash for the management of EA.

4.5 Features of HO.ID.eWabash

HomeWabash is expected 10 be used by three categories of users: Home Owner. Service Provider. and

M3J1ufacturer. The features of HomeWabash provide for the management tasks listed in Table 1. Each of these

tasks can be pelfonned using any WAP-enabled device such as a cell-phone. a Handheld device. and a Web

browser. For example. the Home Owner can control devices owned using a cell-phone while a Service Provider

can instantiale, register and deploy proxies for devices incorporated in lhe SmartHome. A Manufacturer can

use a Web browser 10 detect lhe malfunctioning of a device and can up-load new code inlo a SmartDevice.

HomeRabash also provides for the persistant storage and retrieval of user profile, usage and accounting

information. and proxy stale. Persistant storageof~e proxy slale helps in providing beller fault-Iolerance against

failures ofHomeWabash.

4.6 Evaluation of the infrastructure for the management of EA

4.6.1 Intrusiveness with respect to the source code

The EAs are managed through acorresponding proxycomponent by mirroring meservices ofEA in the proxy. This

appronch does not require any change to EA's source code and hence the proposed architecture is non-intrusive

with respect to the source code orEA. However, Ihis implies that the proxies are coupled,though loosely,Lo Ihe

EA. Hence different types of proxies are required to manage different types of EA and a change in the services

exported by EA may require a change in the proxy as well.

23

4.6.2 Heterogeneity

Heterogeneity. in the comext of EA, is lhe ability to numage a mix of device communication technologies using a

single architecture. Heterogeneity is handled by the Gateway component which provides an unifonn mechanism

to access the services of EA. For example. to manage a mix of devices lItat are based on the technologies such

as Bluetooth, IEEE 1394, X10, etc., the Gateway must be capable of conununicating with the device using

the corresponding technology. This would ensure the support for m31laging heterogeneity though at the cost of

considerable complexity in the Gateway component.

111e architecture of HomeWabash has not yet been evaluated for its scalability, security. support for remote

mainlenance and support for automatic generation of management applications.

4.6.3 Related work

In this section, we briefly describe related research in lite area of management of SmartHomes and compare it

with ours.

AutoHan: The AutoHan [14] system is a reference implementation of a SmartHome. AutoHan provides for

remote management ofSmartHomes. The devices in the AutoHan implementation export Iheir services using

XML [4]. The services are published as events and registered with a device regislry named DHan. The devices

use the Universal Plug and Play (upnP) [5] Generic Event Notification Archiu:cture (GENA) 10 send and receive

events. The devices are monitored by subscribing to the events and controlled by modifying the device auributes

in the DHm registry. The events themselves are trnJls(>Orted to and from the device using HITP. The !HAN

residential gateway connects the devices to the In temet and provides for remote access.

aSGi: The Open Services Gateway Initiative (OSGi) [10] focuses on the residential gateway Ibat connects the

devices to the Internet. OSGi defines aJava-centric set of APIs to allow devices to bind 10 the residential gateway

and thereby export their services for remote access. It also defines APls that allow certain services such as a

Digital Music Library Service or Security Service to bind to the gateway and hence push these services 10 the

devices.

VESA: The VESA Home Networking Conuniuee [6] proposes a home network architeclure based on XML. In

this model. each device holds 311 XML page that describes lite attributes and services exported by the device.

The device can be monitored by reading and parsing the XML page and it can be controlled by modifying lite

XML page. This requires the devices to par.;e XML dala.

Homeiabash, like the other approaches described above, requires the use of a residential gateway for

remOle access to the services offered by the devices. All the three approaches described above require changes to

the device, and hence to the EA, for management. For example. AutoHan requires an IP Slack running on these

devices, VESA requires the devices to be capable of handling XML data, and OSGi requires the devices lo run a

Java Virtual Mnehine(NM). It may be possible for each of these reqlliremenLS 10 be incorporaled in the future

devices but we believe lbaI there will be no single specification/standard that all devices will meet Hence it is

important to handle this heterogeneily witbout any assumplion about the kind ofsupport in the device. OSGi, to

some extent, is based on tbis assumption, i.e. as long as the device supports a NM.lbe OSGi architecture can

be used for its remote management.

24

Unlike AutoHan and VESA, Wabash does not require the devices to adhere to anyone management

standard/specification. Instead it is based on the assumption that there will be multiple standards used by

rhe devices. Hence. HomeWabash. like OSGi, moves the complexity from the device to the residential

gateway. In the HomeWabash Mchitecture. the Gateway component is assumed to be able to communicate with

heterogeneous device types. The moving of complexity to the residential gateway has an advantage that it can

even support devices thal do nOl run a EA. The current implementation of HomeWabash supports the control of

X10 and IEEE 1394 devices which do not host an EA. Such devices are controlled through additional hardware

in the residential gateway. 1l1is hardware can, for example. auach itself to the IEEE 1394 bus and sense the

activity on the bus. This additional complexity in the residential gateway has the following ndvantages over the

other approaches: (i) it does not require Ihe device to run any special ized applicalion and (H) it does not require

the device to implement any specialized protocol.

None of the other approaches, discussed above. use lhe proxy-based management as employed in

HomeWabash. The proxy-based approach de-links the manngcment architectme from the device network

and hence lends to increased flexibility. For clII:ample, HomeWaba5b implementation uses the Java-based JMX

management architeclure. However. it is also possible 10 implemenlHome'Qabash using CORBA-based Wabash

architecture where the proxies are the CORBA-components to be managed. The proxy-based approach has its

limitations. For example, it is possible that the stale of Ihe proxy and lhe actual device may not be synchronized

at all times. This could happen when the device's state has been chllllged from within the Smar"tHome physically

and rJ1e proxy's stale has not yet been updated.

4.7 A XML based Policy-Driven Management Information Service

Due to the rapid growth in the number and flexibility of services in current networks and integration across

organizational boWldaries, present day and evolving distributed systems tend to be highly heterogeneous and

dynamic. A management solution to such systems must possess the following attributes:

• Ability to delegale authority to the lowest possible level to handle the sheer scale of Internet based

distributed systems.

• A vendor and implementation and operating system neutral information model for resource management

to facilitate lhe interchange of management information. Such an information model should be capable

adequately representing :my entity of the system and is important given the heterogeneity and d}'JIamic

nalure of emerging distributed systems.

• Ability to be configured at run-time to meet emerging requiremenls, either by providing additional

functionality or by adapting to environmental chll11ges. This ability is required to handle the dynamic

nature ofevolving network systems.

• AbiUty to interact:md cooperate with olher management solutions, in order to deal with inter-orgll11iZlltional

integration :md interaction.

Next we describe a prototype implementation of a management infonnation server that can be used as ll.

building block in creating a m.o.nagement system lhat exhibits the above properties.

25

,.,.md
~ns .. :t.tan-rcnmd lor..rTJlllllidd$tt\a
NE _~~s.:,....

A5 .~tiua.Sa1O..,

FiguTe 6: Architecture of a Management System built around a. Management InIormation

ServeT.

4.8 Architecture of a Management Information Server

In the context of the management ofSmartHomes, manngement infonnation consists ofevents and managemenl

policies. Events are generated by application components such as software objects, servers, smart appliances,

and network elements. They typically provide operational data about the application. Policies are generated by

management syslems and are an expression ofdirectives from the management that drive the application towards

meeting goals specified by the management. At the infonnation server level, policies would constitute a set of

event-action pails that express the management goal. These lower-level policies would be derived hiemn:hically

from a set of higher-level policies that describe Ute management goal in increasingly abstract terms.

Our Management Infonnation Server (MIS) is n management syslemcomponent thnt receives events from an

application components nnd acts on them based on specified policies. Thus. me management infonnation server

cnn be viewed as a generic ex.tension of the basic unit of a publish and subscribe service. The type of actions

that a MlS can perform on the infonnation it receives cnn range from simple subscription based forwarding to

sophisticnted aggregntion, filtering nnd logging of infonnation. In addition, custom extensions can be provided

to initiate specific actions based on recognized information. Figure 6 shows me architecture ofour mnnagement

system and where the proposed MIS fits in this architecture.

One sample usage scenario of the MIS is in managing a diver:se set of web servers capable ofexternalizing

events in some fonn. In this case, we can conven the externalized evenls into XML mgments which will fonn

management infonnation input to our MIS. The manager can now specify policies that take different aClions,

26

eilher on lhe application system's components or otherwise, based on events. As an example, a policy 10 divert

traffic or alert administralors in the presence of high loads c:m be enforced on il web server that is capable of

providing uaffie events per unit time.

The policies and management infonnalion in our system are specified in XML. We use a generic templme

for all incoming communications to thc_server. This consists of a standard tempI.ate for a message that is divided

iDlO a header and body. The header serves as a wrapper that contains essential information such as message type,

origin, destination, authorization infonnation (ifneeded), timeslall1p etc.

Using the header, the server identifies the message and passes it on 10 appropriate subsystems for further

processing. The body of a message also has a generic template thai is determined by the contents of the message

header. For inslmll:e, an event message would have a body iliat contains event type, event priority, timestamp,

event text and other such event related elements.

Similarly a policy message would have a body that contains policy lISer (the intended subsystem that should

use this policy), policy data (the actual policy contents), activation timestamp, active interval and other policy

related elements. Each of the.~e elements themselves can be XML fragments that can be funher inlerpreled. For

instance, the policy dara can be a XML fragment that specifies the event template and the actions to be taken

when events matching the lemplates are delected. Due to the self-descriptive namre of XML documents, we

believe that this model will lead to easy extension of the generic remplates to match any particular representation

of events and policies chosen by the user.

. ,':' ,,-;'
~ .. . -. .. .

'. - 0.-:;:. 7;:-

;" 'i" I ~l<. ~_f.::-

~,::? :~":'"! ,- ;; =. :. ":
~.:L ~ > -.-': .:.-.

M_tlIIl lnfoonaliDn S"",er I
j
I,

I
J

!

Figure 7: Architecture of the Management Information Server.

Figure 7 shows the internal architecture of a management infonnation server. The operation of each

functional block (sub-system) in lhe archilecture can be independently controlled through managemenl policies.

The server prototype h:lS been built in Java, and components of a single information se...er are capable of being

27

distributed over a nelwork or can be run on one machine.

The router component provides the flexibilil}' and extensibilil}' of the system by identifying the generic

templates and classifying messages based <In this, passing them on to the relevant subsystem. The policy

handler and policy registr.lr handle and store policies. respectively. The event handler uses policy registrar

services to determine actions to be taken on receiving events from the application system components. The

evenllogger is used to log evenls into a database for later analysis and audits. The event filter is the means by

which intelligence and authority is delegated to the MIS. It aids the management decision-making process by

performing sophisric3tedprioritization, filtering, aggregation, averaging, thresholddeteClion and otheroperations

on incoming events. The forwarder and registry service combine to fonn an efficient addressing unit to perform

conventional subscription based forwarding of events.

5 Research Plan

Our goal is to design, build, and evaluate an infrastructure for the management of SmartHomes. Towards !his

end we have identified EA and DA to be the key types of applications in SmartHomes and have identified

intrusiveness, heterogeneily, scalability, support for security, support for remote maintenance, lind support for

automatic generation ofmanagement applicationsas criteria for evaluating and comparing different arch itectures

of the infrastructure. We have developed m-chirectures. Habash and HomeWabash, for the management of

DA and EA respectively. Wabash and HomeWabash have been evallUlted with respect to the intrusiveness and

heterogeneity criteria and compared against similar architectures reported in the literature. In this seclion, we

outline our plan for research .in the near future.

5.1 Evaluation of Wabash

Section 4.3 describes theevaluation of!heWabash architecturewith respect to the intrusiveness and heterogeneity

criteria. In the following we outline how we propose to conduct further evaluation.

5.1.1 Scalability

We intend to evaluate the scalability of the architecture by obtaining quantitative measurements. The number of

components to be managed and lbe bandwidth of communication links between the zones are most likely to be

the key factors in detennining the scalabil ity of the architecture. We intend to obtain quantitative measurements

of scalability by varying the two factors and then measwing the overhead of !he architecture on (i) the service

latency and (ii) the response time of management conunands.

5.1.2 Support for automatic generation of management applications

Our future work in the area of building management infraslrUCtute will focus on the generation of management

applications. For this purpose, we intend to perform qualilalive evaluation of the architecture for its support

in generating management applications. The likely characteristic of a "good" support for such a cause would

be the ability to "plug" in a new component into the mt:hilecture without requiring any modification. For

example. the architecture currently supports the monitoring and control functionality. Suppose that it is required

28

to generate a management applicalion to dynamically display lbe interactions between the components. Ideally,

it must be possible to simply "plug" in the new component, that incorporales lIte new feaLure. into Lbeexisting

arch ilecture.

5.2 Evaluation of HomeWabash

Section 4.6 describes lhe evaluaLion of the HomeWabash archilecture with respect 10 intrusiveness and

heterogeneily. We are yet to evaluate the architecture with respect to the remaining crileria. Though supporl

for secure management is important in the management of SmartHomes, it is not focus item in our research.

In the following subsections, we describe our plan to complele Ibe evaluation of the HomeWabash architecture

with respect to heterogeneily, scalabiliLy, support for remote maintenance and support for automatic generation

ofmanagement applications.

5.2.1 Heterogeneity

We believe that the support for heterogeneily is a key criteria forevaluating any archilecture for the management

of EA. There are at least two reasons in support of lhis belief. First, many device communication technologies

such as 110. IEEE 1394. Bluetooth, etc. are expected to share the market of SmartHomes. Hence it is

imporiant for the lll'Chiteclure nOI be biased towards one or the other technology. Second, tbere are several

cOmpeting communication standards for devices. each with their own advantages and disadvantages. These

standards. at least those that survive, will likely have a share in the market of SmartHomes and hence the

architecture must not be biased in favor or against one standard. We inrend to perform qualitalive evaluation for

the support for heterogeneity by experimenting with various devices and device communication protocols and

studying their impacl on the components of the architecture.

5.2.2 Scalability

The HomeWabash architecture can be used by a Service Provider to l11llJlage one or more SrnartHomes or a

Home Owner to manage hislher SmartHome. Scalability of the architecture is important for both. In both cnses.

(a) the number of devices and (b) the bandwidth of communication links that connect the residential gateway to

the Imernet or an Intranet, are most likely to be the key faclors in determining the scalability of the architecture.

We imend lO evaluate the architecture by varying (a) aJld (b) and studying the impact on factors (i)-(iv) described

in Section 3.2.2.

5.2.3 Support for remote maintenance

Remote maintenance of the device is akin to remole debugging. During debugging of software, the state of the

application is often required. h may also be required lo invoke cenain methods eK.ported by Ihe applicaLion. The

HomeWabash architecLure supports remote access to the device through theProxy and the Gateway components.

The state of the device can be obmined by extnlcting the stale of the proxy. However, the state of the proxy

and the device may not be synchronized. Invoking methods on the proxy does DOt have the same problem as

the corresponding method. exported by the device, is invoked synchronously. The HomeWabash architecture

does not fully support the task of remote maintenance. We intend to idenlify techniques. suitable in the context

29

System (0 be
Managed (SM)

Infrastructure (1)

Management
Requirements (R)

Process(P)
Managemenl
Application

Figure 8: Process of genera.ting management a.pplications.

of SmartHomes, for tightly coupling the proxy's state with that of the device. We then intend to evaluate the

suppon for lhis task qualitatively and also quantitatively.

5.2.4 Support for automatic generation of management applications

As our future work will focus on the automatic generation of applications for managing SmartHomes, it is

important to evaluate the HomeHabash :Jrcbilecture with respect to this criteria. A key characteristic of the

architecture would be its ability to let new components be plugged into the HomeWabash arcbitecture scamlessly

and without requiring 3Jly modifications to the architecture. For example. using the current implementationoflhe

architecture, it is possible to capture the occurrence ofevents such lIS a play or fastfQrward request to the VCR.

For example, if one would like to automatically generate a new management application that is also capable of

metering Ihe usage of requests. then it must be possible to dynatnically plug in the new component into the

HomeWabash architecture. We intend to qualitativelyevaluale the architecture with respect to this criteria.

5.3 Automatic generation of customized, "pluggable" management applica­
tions

We have described two architectures for the infrastruct1lre needed for the management of SmartHomes. Our

future work in this area will focus on creating a process that will use Ihe infuJstruclure for the automatic

generntion ofmanagement applications for SmartHomes. The generated application must be "pluggable" Le. it

must allow anew component to be dynamically loaded into lhe management architecture at run-lime and without

requiring any modification to the architecture. The management application must also be capable of handling

customized specifications of the topology and interconnectionof the devices in lhe SmartHome. Figure 8 shows

Ihe process (P) for generating ll1:lIIagement applications. To generate the managemenl application. Ihe process

would use the following inputs:

• System (8M) to be managed

• Infrastructure (I) for the management

• Requirements (R) for the management

We plan 10 focus on identifying the needs and issues in creating such a process and building and evaluating

a tool that automatically generates customized management applications.

30

5.4 Architecture of the ERNe system

An Evem is an asynchronous occurrence containing parameterized details of an nctivity that has occurred within

a distributed component. [15] For the purpose of the ERNC, we identify the following components that can

generate events:

• Devices

• Residential Gateway

• Device Proxies

• Proxy Manager

As listed in Table 1. Home Owners, Service Providers nnd Device Mlll1ufacturers might all require the services

of the ERNC system. However, their requirements from the ERNC system could be different. In addition., the

level of access rhnt they have to tbe ERNe system would also be different. While lheir requirements might

be different. the essential task that each of them expects the ERNC to perfonn would remain the same. The

following would be the essentiallask that would be accomplished by lheERNC system:

On the occurrence of specified evem(s) take the following action(s).

The difference is thus modeled not through the functioning of the ERNC but through the specification of evenls

and actions by the vMious categories ofusers.

The fonowing model of the SmartHome system is used in constructing the ERNC system:

The physical devices are assumed to be capable ofgenemting notifications corresponding to events that can occur

within. Further, we assume that these notifications can be received by the Residential Galeway. Note that under

some circumstances. the notification may not be directly generated by the device, but the Residential Gateway

can itselfdetecl the occurrence of the event and generate an appropriate notification. However, from the ERNC's

viewpoin t, such nOlifications nre considered as directly originating from the corresponding device. Devices may

or may not support a query and extraction of all possible nOlifications that it can generate. While we do not

Irulke this a requirement. the suppon of such query mechanisms enable easier interfaces. Given this model. our

primary focus is not on how devices generate notifications, or how these notifications can be received. Instead.

we focus on how the ERNC can interpret, match and lake appropriate actions b:lSed on these notifications and

on providing a flexible and powerful specification mechanism for evenl notifications and event-acrion pai~.

With the above model of SmartHomes. we can examine all communications going into the ERNC system as

messages. Thus, both notifications of events and the specification ofevent-action pairs enter the ERNC system

as messages. We have chosen to represent these messages as well formed XML documents. XML has the

following benefits that we believe make it suitnble for this purpose:

• Expressiveness

• Simplicity

31

• Human readable

• Easily parsed using commercial tools

• Easily transported across various communication mechanisms

• Vendor, Operating System ond implementation neutrality

Appendix A lists the initial Document Type Definition (DID) we have defined for specifying notifications and

event-action pairs. As shown, every message consists ora fix.ed header and a variable body. The header identifie...

the [}Ipe of the message used in the interpretation of the body. This allows the definition of an extensible set of

messages where new message types are identified using lite header :md handled accordingly.

While the ERNC system is based on event notifications modeled as wen-formed XML documents, we do not

ex.pect devices to be capable of generating notifications consistent with the fonnnt we have specified. Instead,

we envision the use of translation mechanisms at the Residential Gateway that will translate the native device

notifications into the corresponding template that the ERNC can recognize and act upon. This is in keeping with

our architecture where tlle heterogeneity at the device level is handled by the Residential Gateway.

The device proxies can be designed to produce notifications in the desired formal However, if this is nOl

possible (for instance, the device proxy was written by a different vendor and there is no access to the SOUrce

code), a similar approach like the one used for devices can be adopted, where tilters are used to trnnslate device

proxy notifications into the desired fannat.

In the current implementation. we have modeled the ERNC system as a service in the HomeHabash system.

This service is provided by on Event Engine MBean tbOlt is registered with the JMX MBean server. With this

representation. the ERNe system from a Home Owner's perspective. acts like any other device proxy. The

ERNC system depends on the underlying communication technology used in the implementation of device

proxies. for the distribution and delivery ofnotificalions. The system leverages Ihe JMX nolification mechanism

for the dislribution and delivery of notifications. IdentifiC:ltion of:l CODUnon means for distribution and delivery

of notifications in lite presence of different communication mechanisms would be a focus area for future work.

An important part of our work will be identifying the requiremenlS for a ERNC system in this setting and

developing the ERNC message specification to enable the handling of a diverse set of event-action pairs and

notifications. The requirements for the ERNC system needs to be thought out not only from the pointofview of

the Home Owner, but also from lIIat of the Service Provider and Device Manufacturer.

The impact of the ERNe system on the evaluation criteria specified for HomeWabash needs further analysis.

A well-designed ERNe system can facilitate the goal of automatic generation of customized "pluggable"

management applications. However, the impact of such a flexible ERNe system on the scalability, latency and

intrusiveness of the solution needs to be analyzed.

By implementing management policy at all levels, our proposed MIS-based architecture differs from

convenlionlll publish-subscribe semnnlics based systems. With the MIS we have developed a building block

for an extensible, flexible management solution capable of handling heterogeneity. Future work involves

ex.perimental evaluation of the system in handling heterogeneity apart from efficiency, overhead and scalability

of the system. The benefits and limitations of XML in expressing policies and events in such a scenario also

need to be further analyzed.

32

5.5 Testing EA and DA

Testing of various components of an embe4ded and distributed applications often poses tougl, challenges.

Tradilionals techniques for testing software can be npplied if the components are tested in-house. For example,

when the owner of 11 camcorder repans a malfunction, the manufacturer could reproduce this malfunction

in-house. test the application embedde4 within the camcorder, debug it. remove the error. and download the

upgroded application via the internet. However, it might not be always easy or desirable to attempt to reproduce

behavior in a laboratory setting. Instead, one might Wllnl to do so in-situ, i.e. while the presumabl y malfunctioning

device or an software component is in its nonnal domain ofoperation.

We wish to study how monitorjng and control might aid in remore testing and debugging of both EA and

DA. This study is expected to lead to monitoring and control features specially suited for testing and debugging.

Note that typical software debuggers can be abstracted as mol\itoring and control applications. We are interested

in studying how the managemenl irafrnslnlclure can itselfsupport remote tesling and debugging tasks.

Acknowledgements

Our sincere thlUlks lQ Balakrishnan Dasartny, James L. Dixon. Frederick D. Poner, David Waring of Telcordia

and David Griffirhs, Richard Dennis, and Paul McKee of British Telecom for their support and the time they

SpMed. 10 discuss with us various critical issues in the SmartHome project.

References

II] hnp:/ljava.sun.com.

[2] bttp:lljava.sun.comljini.

[3] http://java.sun.comlproducl.s/JavaManagementl.

[4) hup:llwww.w3c.orgIXML.

[5] http://www.upnp.org.

[6] http://www.vesa.org.

[7] E. Al-Shaer. IiHierrm:hical Filtering-based Monitoring Architeclure /01' Large-scale Dis­

tributed Systemsn . PhD thesis, Old Dominion Univeniity, July 1998.

[8J G. Eisenhauer and K. Schwan. HAn ObjeCl.based Infrastructure for Program Moniloring and Sleering",

In Proce.edings of the BIOMETRICS Symposium on Parnllel and Distributed Tools, pages

10--20. Welches, OR, USA, Augustl998.

[9] David GarJan and Mary Shaw. "An Introduction to Software Architecture - Advances in

Boftware Engineering, volume 1. World Scientific Publishing Compl1llY, River Edge. NJ. 1993.

33

lJO] L. Gnng. UA Software Architecture for Open Service Galeways". IEEE Internet Computing,

5(1):64--70. February 2001.

[11] Visibroker for Java Programmers Guide. Version 3.2. lnprise Corporation, San Maleo, CA, USA.

(12) Object Management Group Inc. The Common Object Request Broker: Architecture and Speci­

fication (CORDA). Revision 2. John Wiley, 1995.

[13] X. Logean. "Moniloring and Testing Tool for Distribmed Applications". Technical repon, Swiss Federal

Institute of Technology, 1998.

[14] U. Saif, D. Gordon, and D. J. Greaves. "Internet Access 10 a Home Area Network". IEEE inter-net

Computing, 5(1):54-63, FebrullJ)' 2001.

[15] Spileri. M.D. and Bates, J. }In architecture to support storage and retrieval oj events, Proceedings

of MIDDLEWARE 1998, lFIP International Conference all Distribuled Systems Platfonns and Open

Distributed Processing. Lancaster, UK. Sept. 1998.

[16] B. Sridhar-m, B. Dasnralhy, and A. P. Malbur. "On Building Non-Intrusive Performance Instrumenlation

Blocks for CORBA-based Distributed Systems". In Proceedings of the 4th iEEE International

Compuler Performance and Dependability Symposium. pages 139--143, Schaumburg. n... USA,

March 2000.

34

Appendix A: Document Type Definition for Event Notifications

(!DOCTYPE message (

<!ELEMENT message (head. body»
<!ELEMENT head (sender. dest. authinfo. messtype. time»

<!ELEMENT sender (type. deBe. opt?»
<!ELEMENT des~ (type, dese, opt?»

<! ELEMENT authinfo EMPTY>
. <!ELEMENT messtype (#PCDATA»
<!ELEMENT time (#peDATA»
<!ELEMENT "type (#peDATA»
<!ELEMENT dese (simpledescrldevicedescr»
<!ELEMENT simpledascr (#peDATA»
<!ELEMENT devic.adescr (hostname. mgrname. domainnaJlle. devieename»
<!ELEMENT hostname (#peDATA»
<!ELEMENT mgrnama ("peDATA»
<!ELEMENT domainname (#peDATA»
<!ELEMENT devicename (#peDATA»
<!ELEMENT opt (#PCDATA)>
<!ELEMENT body (info. text)+>

<!ELEMENT info (name. oldvalue. nevvalue'?»

<!ELEHBNT name (IPCDATA»
<!ELEMENT oldvalue (#PCDATA»
<!ELEMENT ne'llvaluEl (#PCDATA»
<!ELEMENT text (#peDATA»
]>

Document Type Defmition for Event-Action Pairs

<!DDCTYPE message [

<!ELEMENT message (head; body»

<!ELEMENT head (Bender, deBt, au~hinfo. messtype. time»

<!ELEMENT sender (type, dese, op~?»

<!ELEMENT dest (type. dese. opt?»

<!ELEMENT authinfo EMPTY>

<!ELEHENT messtype (#PCDATA»
<!ELEMENT time (#PCDATA»

<!ELEMENT type (#peDATA»
<!ELEMENT deBe (simpledescr!devicedescr»

<!ELEMENT simpledescr (#PCDATA»
<!ELEMENT dQvieedescr (hostname,mgrname,domainname.devicename»

35

<!ELEMENT opt (#PCDATA)>

<!ELEMENT body (evantactionpair)+>

<!ELEMENT Avantactionpair (eventtemplate. actionlist, activateat?, validinterval?»
<!ELEMENT eventtemplate (headQrtQmplate, bodytamplate'?»

<!ELEMENT actionlist (action)+>

<!ELEMENT activateat (#PCDATA»

<!ELEMENT vaIidintervaI (#PCOATA»

(!ELEMENT headertemplate (sendertempIa"te? desttelllplate? authinfotemplate?
messtypetempIate?, timet amplate'?) >

<!ELEMENT bodytemplate (nametempIa:te. oldvaIuetempIate? newvaluetemplate?, texttemplate?»
(!ELEMENT sandertemplate (typetemplate? desctempIate? opttemplate?»
<!ELEMENT desttemplate (typetemplate? desc"template? • opttemplate?»

<!ELEMENT "typetemplate (#PCDATA»
<!ELEMENT desctemplate (simpIedescrtempIate IdEivicedescrtempIate)>

<!ELEMENT simpIedescrtempIate (#PCDATA»
<. !ELEMENT davicedescrtemplate (hos"tname?, mgrname? domainname? devicename?»

<!ELEMENT opttemplate (#PCDATA»

<!ELEMENT authinfotemplate EMPTY>

<!ELEMENT mess"typetemplate (#peDATA»
<!ELEMENT "timetemplate (#PCDATA»

<! AITLIST 'timetempIa"te

cycleperiod GDATA #REQUIRED

fromtime CDATA #REQUIRED

>
<!ELEMENT namgtemplate (fPCDATA»

<!ELEMENT oldvaIuetempIate (#PCDATA»

<!ELEMENT ne'llVaIuetemplate (#PGDATA»
<!ELEMENT texttemplah (#PCDATA»

<!ELEMENT action (iorvard I log! invokeop I generateno"tification»

<!ELEMENT forward (url)+>

<!ELEMENT urI (mailurl I dburI I rmiurl I rawurl»

<!ELEMENT mailurl (#PCDATA»

<!ELEMENT dburl (hQstnama. portnum. instance, username. pass'Ilord»

<!ELEMENT rmiurl (hostname. portnum? objectname»

<!ELEMENT rawrl (hostname, portnum. cOIUltype»
<!ELEMENT hostname (#PCDAT.A.»

<!ELEMENT portnum (#PCDATA»

<!ELEMENT instance (#PCDATA»

<!ELEMENT username (#PCDATA»
<tELEMENT password (#PCDATA»

36

<!ELEMENT objectname (#PCDATA»
<!ELEMENT conntype (#PCDATA»
<!ELEMENT log (database I file»
<!ELEMENT database (urI, querystring, queryparamlist»
<!ELEMENT querystring (#peDATA»
<! ELEMENT queryparamlist (queryparam) +>
<!ELEMENT que~yparam (#PCDATA»
<!A"ITLIST queryparam queryparaJIltype (attribute Ioperation Ioldvalue Inewvalue I

textlnone) #REQUlRED>
<!ELEMENT file (#PCDATA»
<!ELEMENT invokeop (optarget, opname, param*»
<!ELEMENT optarget (hostname, domainname, managername, devicename»
<!ELEMENT domainname (#PCDATA»
<!ELEMENT managername (#PCDATA»
<!ELEKENT devicename (#PCDATA»
<!ELEMENT opname (#PCDATA»

<!ELEMENT param (paramtype. paramvalue»
<!ELEMENT paramtype (#PCDATA»
<!ELEMENT paramvalue (#PCDATA»
<!ELEMENT ganeratenotification EMPTY>

37

	Development of an Infrastructure for the Management of Smart Homes
	Report Number:
	

	tmp.1307986960.pdf.rUw9q

