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ABSTRACT

In this paper, we propose a technique to reduce the virtual
memory required to store program data. Specifically, we
present an optimal algorithm to ¢ombine loop shilting, loop
fusion and array contraction to reduce the temperary array
storage required to execute a collection of loops. Memory
reduction is formulated as a network Aow problem, which is
solved by the proposed algorithm in polynomial time. When
applied to 20 benchmark programs on two platforms, our
technique reduces the memory requirement, counting both
the data and the code, by 50% on average. The transformed
programs gain a speedup of 1.57 on average, due to the
reduced working set and, consequently, the improved data
locality. Im the best case, a maximum speedup of 41.3 is
achiceved for one of the benchmark programs.

1. INTRODUCTION :

Compiler techniques, such as tiling [29, 30], to exploit tem-
poral data locality within a single loop nest have been stud-
ied extensively. However, how to effectively exploit temporal
locality between different loop nests remains unclear. This
state of the art makes it important to seck locality enhance-
ment techniques beyond tiling.

In this paper, we approach the locality issue by reducing the
virtual memory required to store program data. In particu-
lar, we seek opportunities to contract the number of dimen-
sions of arrays. For examples, a two-dimensional array may
be contracted to a single dimension, or a whole array may
be contracted to a scalar. A significant potential benefit,
among others, of such a reduction in data size is the in-
creased reuse of the ached data due to the reduced working
set.

"Technical report CSD-TR-00-0016, Department of Com-
puter Sciences, Purdue University, November, 2000.

'This work is sponsered in part by National Science Foun-
dation through grants CCR-9975309 and MIP-3610379, by
Indiana 21st Century Fund, by Purdue Research Founda-
tion, and by a donation from Sun Microsystems, Inc.

This paper focuses on reducing the temporary array storage
required to execute a collection of loops. The apportuni-
ties for such reduction exist often because the most natural
way to specily a computation task may not be the most
memory-efficient, and because the programns written in ar-
ray languapges such as 90 and HPF are often memory inef-
ficient.

Consider an extremely simple example (Example 1 in Fig-
ure 1(a)), where array 4 is assumed dead after loop L2. Af
ter right-shifting loop L2 by one iteration (Figure 1(b)}, L1
and L2 can be fused {Figure 1(c)). Array A can then be con-
tracted to two scalars, al and a2, as Figure 1{d) shows. {As
a positive side-effect, temporal locality of array E is also im-
proved.) The aggressive fusion proposed here also improves
temporal data locality between different loop nests.

For a collection of loaps defined later in this paper, we for-
mulate the memory reduction problem as a network flow
problem, which is optimally solvable in polynomial time.
Additional loop transformations, such as loop interchange
and circular loop skewing [30], are used to create opportu-
nitics for aggressive fusion.

We have implemented our memory reduction technique in
our research compiler. We apply our technique to 20 bench-
mark programs on two platforms in the experiments. On
average, the memory requirement for those benchmarks is
reduced by 50%, counting both the code and the data, us-
ing the arithmetic mean. The transformed programs have
an average speedup of 1.57 (using the geometric mean). A
speedup of 41.3 is achieved [or one of the benchmarks,

In the rest of this paper, we will preseat some preliminarics
in Section 2. We formulate the network flow problem and
prove its complexity in Section 3. We present controlled
fusion and discuss enabling technigues in Section 4. Section
 provides the experimental results, followed by related work
and conclusion.

2. PRELIMINARIES
2.1 Program Model

We consider a collection of loop nests, Ly, Lz, ..., Lm,
m 2> 1, in their lexical order, as shown in Figure 2(a}. The
label L; denotes a perfect nest of loops with indices L; i,
Lisa, ..., Lin, n 2 1, starting from the outmost loop. (In
Examplie 1, i.e. Figure 1{a), we have m = 2 and n = 1))
Loop Li,; has the lower bound !;; and the upper bound



LL:DOI=1,i¥

DOf=1,N

DOF=1N+1
IF (I.E£Q.1) THEN
AN=EN+EJI-1)

a2 = E(1) + E(D)
OI=2N

LA SEW B -) AN =) + B~ 1) ELSE IF (I.EQ.(IV + 1)) THEN =2
D —1)= — ol =a

L2: DO I= 1N DOT=2N+1 Elgg n=ar-n a2 = E(I)+ B(I - 1)

B(I) = AU E(l -1} = Al - 1) AN = EU)+ E{{ —1) EifD(’D‘o‘) =al

ND DO END DO E(7 — 1) = A(I - 1) (¢

END IF E(N) = a2
END DO
(a) (b} {c} (d}

Figure 1: Example 1

AR e Ly =1,uy
DC Lya=11,2,u1.2

DO Ly = f1m, u1m

Lt DO Ly =1 1,ui1
DO Lig =1lia,tiz2
DO Lin =lin,uin
L'm DO L =1lma,tm L
DO Lmz=Imn1uma

B bo Lm,n =lmn, Um,n

{a) (b)
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Ly :DO Ly =Ima + 2 {Em)s 8ma + 2 {Lm)
DO Lmz=1Ima+ 5 (Lm)itima + P {Lm)
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DD Ly =!I,um
DC‘)“L.- =l,u;

DO Ly =ty Um

DO Luin =lin 27 (B2), uayn + 5" (1) (©

Li: DO Ly = oy + p LD sia + p{L0)
DO Loz = ha+p (L) wia + p7(L:)

DO L =min™, l;,mazl%, u;

"po Lin =li;n + p"(Li)ruin + p" (L3} (d)

DO J; = minl, (i + P (L)),
maz{l, (ui,1 + p (L)}
DO Jz2 = min, (li,z + p°(L:)),
mazlL,(uiz + P (L))

DO Ju = mindh, (fin 4+ p (LD,
maziny(uin +p" (L))

(e)

Figure 2: The original and the transformed loop nests

ui,; Tespectively, where I; ; and u; ; are loop invariants. For
simplicity of presentation, all the loop nests L;, 1 < i < m,
are assumed to bave the same nesting level n. If they do
not have the same nesting level, we can apply our technigque
to different loop levels incrementally. Figure 3{a) shows a
simple example, where the nesting level is 2 for loops Iy and
I> and is 1 for loop fa. We first apply our technique to fuse
loops 1, I2 and I3 at the outmost level only, resulting in the
loop nest shown in Figure 3(b). We then apply the technique
to loops Jy and Ja, resulting in the loop nest in Figure 3({c).
If there exist dangling statements between two loop nests,
we move them before or after the loop sequence if permitted
by the dependences. Otherwise, we perform techniques such
as code sinking [30] to move such statements into one of
its adjacent loop nest. Alternatively, we car patch these
statements to the first or the last iteration of their adjacent
loop nest. In the interest of keeping our fundamental idea
clear, we do not follow the aforementioned generalizations in
this paper. We stay within the model in Figure 2(a) instead.

The array regions referenced in the given collection of loops
arc divided into three classes:

s An inpul aerrey region is upwardly exposed to the be-
ginning of L.

s An output array regton is live after L,.

s A local array region does not intersect with any input
or putput array regions.

By utilizing the existing dependence analysis, region analy-
sis and live analysis techniques [4, 11, 12, 18], we can com-
pute input, output and local array regions efficicntly. Note
that input and output regions can overlap with each other.
In Example 1 (Figure 1(a)), E[0 : N] is both the input array
region and the output array region, and A[1 : N] is the local
array region. Figure 4(a) shows a more complex example
(Example 2), which resembles one of the well-known Liver-
more loops. In Example 2, where s = 4 and n = 2, each de-
clared array is of dimension [JN¥ +1, KN +1). ZP, ZR, ZQ,
ZZ, ZA[1,2:KN], ZB[2:JN,KN+1] are input array regions.
ZP, ZR, 2Q, 2Z arec output array regions. ZA[2:JN,2:KN/
and ZB{2:JN,2:KN] are local array regions.

Figure 2(b) shows the code form after loop shifting but be-
fore loop fusion, where p? (L;) represents the shifting factor
for loop Li;. In the rest of this paper, we assume that
loops L; are coalesced into single level loops [30, 26) ! af-
ter loop shifting but before loop fusion. Figure 2(c} shows
the code form after loop coalescing but helore loop fusion,
and Figure 2(d) shows the code form after loop fusion. The
loops are coalesced to ease code generation for general cases.
However, in most commeon cases, loop coalescing is unneces-
sary (26]. Figure 2(e) shows the code form after loop fusion
without loop coalescing applied. Array contraction will then
be applied to the code shown in either Figure 2{d) or in Fig-

1Unlike [30], we do not perform loop normalization after
coalescing a multi-level loop nest to a single-level one.




Do, =

DO J; =...

DOI=...

END DO DO 4y = ——
END DO Lo
DOhL=... END DO =.e-

DO..ff-=... DO Jy=... END DO

END DO END DO e
END DO END DO
DOfa=... END DO
END DO

(a) (b} (=)

Figure 3: Applying to loops not with the same nest-
ing level

ure 2{e).

2.2 Loop Dependence Graph

We extend the definitions of the traditional dependence dis-
tance vector and dependence graph [14] to a collection of
loops as {ollows.

Definitiorn I. Given a collection of loop nests, L, ...,
Ly, as in Figure 2(a), if 2 data dependence exists from iter-
ation (i1,12,... ,in) of loop L, to iteration {(j1, j2,..- ,n} of
loop L2, we say the distance vectoris (§1 —i1, fo—1a2,... ,jn—
in) for this dependence.

Definition 2. Given a collection of loop nests, Ly, La, ...,
Ly, a loop dependence graph {LDG) is a directed graph
= (V, E} such that each node in V represents a loop
nest L;; 1 €1 € m. (We denote V = {L|,L»,... ,Ln}.)
Each directed edge, e =< L;, L; >, in F represents a data
dependence (flow, anti- or output dependence) from L; to

L;. The edge e is annotated by a distence vector  dv(e).

For each dependence edge e, if its distance vector is not
constant, we replace it with a set of edges as lollows., Let
S be the set of dependence distances e represents. Let do
be the lexicographically minimum distance in S. Let &, =
{di[dy £ d, d1 € SA(Yd € SAd# dy)}. For any vector
dy in ) (also in S), there exists no other vector in S which
is no smaller than dy. We replace the original edge e with
(|S1] + 1) edges, annotated by dg and d; (d} € 5,1 <i <
|51]) respectively.

Figure 4{b) shows the loop dependence graph lor the ex-
ample in Figure 4(a), without showing the array regions.
As an example, the flow dependence from L), to La with
dv = (0,0) is due to array region ZA(2: JN,2 : KN). In
Figure 4(b), where multiple dependences of the same type
(How, anti- or output) exist from one node to another, we

2From (290, 30], 4 = {u1,uz,-.. ,ung v = (v|(uz, CaUa )y

u+v_(u1+v|,uz+v2, <ytnFth), U—V = () —, 22—

S u,.), 4 » ¥ (4 is lexicographically greater than
v) LfBU Sn—l( ..,uk)—(l:.u, JUE) A upgy >
Vg, G = Vifd - u>v1fu;,>'uk(l<k<

n).

L1: DO K =2, KN
nDoJ=2,Jn
ZA(J Ky=ZP{J -1, K+ 1)+ ZR{J—1,K -1)
END DO
END DO
L2: DO K =2,KN
DO J=2JN
ZB(J,K)=2ZQ(J -1, K)+ Z2(J K}
END DO
END DO
L3: DOK =2 KN
DO J=2JN
ZP(J.K}Y=ZP{J K}+ ZA(J, K)
—ZA(J -1, K)-ZB(JLK)+ ZB(J, K+ 1)
END DO
END DO
L DO K =2 KN
DO J=2JN
2Q(J, K} = ZQ{J, K) + ZA(J, K)
+ZA(J -1, K}+ ZB{J. K)+ ZB(J. K +1)
END DO
END DO

Figure 4: Example 2 and its original and simplified
loop dependence graphs

use one arc to represent them all in the figure. All associated
distance vectors are then marked on this single arc.

2.3 Assumptions
We make the following three assumptions in order to sim-
plify our formulation in Section 3.

Assumption 1. The loop trip counts lor perfect nests L;
and L; are cqual at the same corresponding loop level h,
1 £ A € n. This can be also stated as win —Lip+1 =
wip—ba+1,1<45<m1<h<n

To enforce Assumption 1, one could either partition the it-
eration spaces of certain loops into equal pieces, or apply
loop peeling.

Throughout this paper, we use A% to denote the loop trip
count of loop L; at level h, which is corstant or symbolicly
constant w.r.t. the program scgment under considerakion.
Denote § = (8,... ,8°)). Welet o™ =1 and o™ =
g+ 1 < h < n—1. Let & = (e, 06,... ,oc™).
In this paper, we also denote 7 as the number of static
write references due to local array regions ? in loop Li. We
arbitrarily assign each static write reference in L; a number
1 € k < 7 in order to distinguish them. Take loops in
Figure 4(b) as an example, we have § = (KN —1,JN — 1),
e=(IN-11),n=m=landm=m=0.

31n the rest of this paper, the term of “a static write ref-
erence” means “a static write reference due to local array
regions".




We make the following assumption about the dependence
distance vectors.

Assumption 2. The sum of the absolute values of all de-
pendence distances at loop level & in loop dependence graph
G = (V, E) should be less than ane-fourth of the trip count
of a loop at level k. This assumption can also be stated
as £ |dv(es)| < 18 for all ex € E annotated with the
dependence distance vector d‘f(ek).

Assumption 2 is reasonable because for most programs, the
constant dependence distances are generally very small. If
non-constant dependcence distances exist, the techniques dis-
cussed in Section 4.2, such as loop interchange and circular
loop skewing, may be utilized to reduce such dependence
distances,

Assumption 8. For each static write reference r, each in-
stance of r writes to a distinct memory location. No IF-
statement guards the statement which contains the refer-
ence r. Different static write references write to different
portions of main mcmory.

If a static write reference does not write to a distinct mem-
ary location in each loop iteration, we apply scalar or array
expansion to this reference [30]. Later on, our technique
should minimize the total size of the local array regions.
In case of IF statements, we assume both branches will be
taken. In [26], we discussed the case where the regions writ-
ten by two different static write references are the same or
overlap with cach other.

2.4 LDG Simplification

The loop dependence graph can be simplified by keeping
only dependence edges necessary for memory reduction. The
simplification process is based on the following three claims.

Claim 1. Any dependence from L; to itsell is automati-
cally preserved after loop shifting, loop coalescing and loop
fusion. This is because we are not reordering the computa-
tion within any loop L;.

Claim 2. Among all dependence edges from Li to Lj,
i # j, suppose that the edge e has the lexicographically
minimum dependence distance vector. After loop shifting
and coalescing, if the dependence distance associated with
e is nonnegative, it is legal to fuse loops L; and L;. This is
because after loop shifting and coalescing, the dependence
distances for all other dependence edges remain equal to or
greater than that for the edge e and thus remain nonnega-
tive. In other words, no fusion-preventing dependences ex-
ist. We will prove this claim in Section 3 through Lemma 3.

Claim 3. The amount of memory nceded to carry a com-
putation is determined by the lexicographically maximum
flow-dependence distance vectors which are due to local ar-
ray regions. We will discuss this claim further in Section 2.5.

During the simplification, we classify all edges into two classes:
L-edges and M-edges. The L-edges are used to determine
the legality of loop fusion. The M-edges will determine the
minimum memory requirement. All M-edges are fow de-
pendence edges. But an L-edge could be a flow, an anti- or
an output dependence edge. It is possible that one edge is
both an L-edge and an M-edge. The simplification process
is as follows.

¢ Based on the claims 1 and 3, for each combination of
the node L; and the static write reference # in L; where
7i > 0, among all dependence edges from L; to itself
duc to r, we keep only the one whose flow dependence
distance vector is lexicographically maximum. This
edge is an M-edge.

» Based on the claims 1 and 3, for each node L; such
that ; = 0, we remove all dependence edges from L;
to itself.

e Based aon the claims 2 and 3, for each node L; where
7i > 0, among all dependence edges from L; to L; (7 #
1}, we keep only one dependence edge for legality such
that its dependence distance vector is lexicographically
minimum. This edge is an L-edge. For any static write
reference r in L;, among all dependence edges from Ly
to L;j{j # i) due to r, we keep only one flow depen-
dence edge whose distance vector is lexicographically
maximum. This edge is an M-edge.

» Based on the claims 2 and 3, for cach node L; where
77 = 0, among all dependence edges from L; to L; {(j #
i), we keep only the dependence edge whose depen-
dence distance vector is lexicographically minimum.
This edge is an L-edge.

The above process simplifies the program formulation and
makes graph traversal faster. Figure 4(c) shows the loop
dependence graph after simplification of Figure 4{b). In
Figure 4(c), we do not mark the classes of the dependence
edges. As an example, the dependence edge from L to Ls
marked with (0,0) is an L-edge, and the one marked with
(0,1} is an M-edge. The latter edge is associated with the
static write reference ZA(J, K).

2.5 Reference Windows

Loop shifting is applied before loop fusion in order to honor
all the dependences. We associate one integer vector B(L;)
with each loop nest L; in the loop dependence graph. De-
note B(L;} = (p*(L;), ... , " (L)) where p*(L;) is the shifi-
ing factor of L; at loop level k (Figure 2(b)). For each de-
pendence edge < L;, L; > with the distance vector dv, the
new distance vector is B(L;) + dv — B(Li}. Our memory
minimization problem, therefore, reduces to the problem of
determining the skhifting factor, p’ (L), for cach Loop L j,
such that the total temporary array storage required is min-
imized after all loops are coalesced and legally fused.

In (9], Gannon et al. use a reference window to quantify the
minimum cache footprint required by a dependence with a
loop-invariant distance. We shall use the same concept to
quantify the minimum temporary storage to satisfy a How



dependence.

Definition 3. (from [9]) The reference window, W{mx)e
for a dependence 7x : 51 — S2 on a variable X at time ¢,
is defined as the set of all elements of X that are referenced
by 51 at or before ¢ and will also be referenced {according
to the dependence) by Sz after £.

In Figure 1(a}, the reference window due to the flow depen-
dence (from L) to Lz due to array A) at the beginning of
each loop L2 iteration is { A(J), A +1),... ,A(N} }. Its
reference window size ranges from 1 to N. In Figure 1(c),
the reference window due to the flow dependence (caused by
array A) at the beginning of each loop iteration is { A(J—1)
}. Its reference window size is 1-

Next, we extend Definition 3 for a set of flow dependences
as follows.

Definition 4. Given fow dependence edges e;, ez, ...,
&4, suppose their reference windows at time ¢ are Wy, Wa,
.«- W, respectively. We define the reference window of {
€1,82,-.- 184 } at time & as U2, W;.

Since the reference window characterizes the minimum mem-
ory required to carry a computation, the problem of mini-
mizing the memory required for the given collection of loop
mests is equivalent to the problem of choosing loop shifting
factors such that the loops can be legally coalesced and fused
and that, after fusion, the reference window size of all How
dependences due to local array regions is minimized. Given
a collection of loop nests which can be legally fused, we
need to predict the reference window after loop coalescing
and fusion.

Definition 5. For any loop node L; (in an LDG) which
writes to local array regions R, suppose iteration (§i,-.. ,7n)
becomes iteration j after loop coalescing and fusion. We de-

fine the predicted reference uindow of L; in iteration {71,-.. , 7a)

as the reference window of all flow dependences due to R
in the beginning of iteration j of the coalesced and fused
loop. Suppose the predicted reference window with itera-
tion {71,...,7n) has the largest size of those due to R. We
define it as the predicted reference window size of the entire
loop Li due to R. We define the predicted reference window
due to a static write reference r in L; as the predicted refer-
ence window of L; due to be the array regions written by r.
{For convenience, if L; writes to nonlocal regions only, we
define its predicted reference window to be empty.)

Based on Definition 5, we have the following lemma:

LEMMA 1. The predicled reference window size for the
Ktk staiic urite reference r in Li must be no smaller than
the predicled reference window size for any flow dependence
due to r.

ProoF. This is because lhe predicied reference window
size for any flow dependence should be no smaller than the
minimum required memory size lo carry the computation for
that dependence. The predicled reference window size for
the kth static wrile reference r in Li should be no smaller
than the memory size lo carry the compulation for all flow
dependences due tor. O

THEOREM 1. Minimizing memory requirerment is equiva-
lent to minimizing the predicled reference window size for
all flow dependences due o local array regions.

PRroOF. By Definition § and Lemma 1. [

In this paper, ¥ denotes the inner product of #i and +.
Given a dependence 7 with the distance vector dv = (d*, &%,
..., d") alter loop shifting, #dv is the dependence distance
for « after loop coalescing but before loop fusion, which we
also call the coalesced dependence distance. Due to Assump-
tion 3, Fdv also represents the predicted reference window
size of m both in the coalesced iteration space and in the
original iteration space.

LEMMA 2. Loop fusion is legal if and only if all coalesced
dependence distances are nonnegalive.

Proor. This is to preserve all the original dependences. O

‘We now use loop node L in Figure 4(c} to illustrate how
to compute the size of the predicted reference window for
one particular static write reference. In this example, the
predicted reference window size of L, due to the static write
reference ZB(J, K) is the same as the predicted reference
window size of La. There exist two dependence edges from
Lg to L3, one L-edge and one M-edge, with distance vectors
{~1,0) and (0,0). There also exist two dependence edges
from L2 to L4, one L-cdge and one M-edge. Let

dvy = 5(Ls) + (—=1,0) — (L2) = (1)
dvs = §(Ls) + (—=1,0) — $(L2) = 0 2
dvs = H(Ls) +(0,0) — B(L2) 2 O )
dvs = 5(La) +(0,0) — B(L2) = (1)

Note that loop shifting and coalescing is always legal. To
make loop fusion legal, the lollowing constraint is enforced:
Fdv, > 0,1<i<4 (5)

The constraint (5) guarantees that the coalesced dependence
distance is nonnepative for all dependences after loop shift-
ing and coalescing but before loop Fusion.

Fdvs represents the predicted reference window size for the
flow dependence from Lz to L, and &dva for the predicted




reference window size for the flow dependence from L2 to
L4. The size of the predicted reference window of Ls can
be computed by taking the greater one of the above two
reference window sizes, i.e., maz(&'dw-."s,&d;q): according to
Lemma 1.

Next, we formulate the objective function for memory re-
duction to minimize the size of local array regions.

3. OBJECTIVE FUNCTION

In this section, we first formulate a graph-based system to
minimize the predicted reference window size, thus mini-
mizing the total memory requirement. We then transform
our problem te a network flow problem, which is solvable in
polynomial time.

Given a loop dependence graph G, the objective funetion to
minimize the size of the predicted reference windows for all
loop nests can be formulated as follows. (e =< Li, L; > is
an edge in G.)

min(E:-’LIEZ‘:IEM-I..k) (6)
subject to

F(B(L;) + dv(e) — B(Li)) 2 0,¥ L-edge e (7

M x > F(B(L;) + dv{e) — p{L:)}, ¥ M-edge e, 1 <k <
(8

We call the above defined system as Problem 1. In (6},

EM';,k represents the predicted reference window size for
the local array regions due to the kth static write reference
in L;.

Constraint (7} says that the coalesced dependence distance
must be nonnegative for all L-edges after loop coalescing but
before loop Fusion. Constraint (8) says that the predicted
reference window size, &'M-Lk, must be no smaller than the
predicted reference window size for every M-edge originated
from L; and due to the kth static write reference in L.

Combining the constraint (7} and Assumption 2, the follow-
ing lemma says that the coalesced dependence distance is
also nonnegative for all M-edges.

LemMa 3. If the constraint (7) holds, F(p(L;) + dv(e) —
B(L;)) 2 0 holds for oll M-edges e =< Li, L; > in G.

PROOF. If i = j, we have &(F(L;) + dv(e) — B(L)) =
Gdv(e). If dv(e) = 0, then Fdv(e) = 0 holds. Otherwise,
assume that the first non-zere component of dv(e) is the

hth component. Based on Assumption 2, we have Gdv(c) >
F0,...,0,1,—48% ) 41, —LgMW 11y >0,

For an M-edge ez =< L;, Lj >,i # j, there must exist an
L-edge ey =< Li,L; >. The constraint {7) guarantees that
F(B(Ly) + dv(er) — B(L:)) 2 0 holds. We have F(B(L;) -+
dv(ez) - B(L:)) = F(B(Ls) + dv{er) — B(L:)) + 5(dv(ex) -
dv(e;)) > F{dv{ez) — dv(e1)).

By the definition of L-edges and M-edges, we have dv(es) —
dv(e1) = 0. Similar to the proof for the case of i = j in the
above, we can prove that 5{dv{es) — dv(e;)) > 0 holds. [

From the proof of Lemma 3, we can also see that for any
dependence # which is eliminated during our simplification
process in Section 2.4, its coalesced dependence distance is
also nonnegative, given that the constraint (7) holds. Hence,
the coalesced dependence distances for all the original de-
pendences (before simplification in Section 2.4) are nonnega-
tive, alter loop shifting and coalescing but before loop fusion.
Loop fusion is legal according to Lemma 2.

In Section 2.4, we know that for any flow dependence edge
ea from L; to L; duc to the static write reference r which
is eliminated during the simplification process, there must
exist an M-edpe e4 from L; to L; due to ». From the proof of
Lemma 3, #(B(L;) + dv(es) — B(Li)) > F(B(L;) + dv{es) —
B(Li)) holds. Hence, the constraint (8) computes the pre-
dicted reference window size, ﬂ‘f;,k, over all flow depen-
dences originated from L; due to the kth static write ref-
crence in the unsimplified loop dependence graph (see Sec-
tion 2.2}). According to Lemma 1, the constraint (8) cor-
rectly computes the predicted reference window size, &'M-;‘k.

3.1 Transforming the Original Problem

We define a new problem, Problem 2, by adding the fol-
lowing two constraints to Problem 1. (e =< L;, L; > isan
edge in G.)

B(L;) + dv(e) — 5(L:) = 0,V L-edge e (9)

Mk = B(L;) + dv(e) — B(Li),¥ M-edge e, 1 €k < 1y
(10)

In the following, we show that given an optimal solution
for Problem 1, we can construct an optimal solution for
Problem 2 with the same value for the objective function
(6), and vice versa.

LemMa 4. Given any oplimal solulion for Prablem 1,
we can construct an oplimal selulion for Problem 2, with
the same value for the objective function (6).

ProorF. The search space of Problem 2 is a subset of
that of Problem 1. Given an LDG G, the optimal objective
Junction value (6} for Problem 2 must be equal to or greater
than that for Problem 1. Given any oplimal solution for
Problem 1, we find the shifling factor (B) and M values
Sfor Problem 2 as follows.

1. Initially let p and M-;,k veiues from Problem 1 be the
solutions for Problem 2. In the followirg steps, we
will adjust these values so thal all the consirainis for
Problem 2 are satisfied and the value for the objeclive
funciion {6) is not changed.

2. If oll p values satisfy the constraint (9}, go to slep 4-
Otherwise, go to step 5.



3. This step finds P values which salisfy the consiraini
(9)-
Following the topological order of nodes in G, find the
first mode L; such that there ezisls an L-edge e =<
Li, L; > where the constraint (9} is not satisfied. (Here
we ignore self cycles since they must represent M-edges
in G') Suppose dv' = B(L;) + dv(e) — p(L:) = (0,
y 0,c1,...) where 61 < 0 is the gth and the first
nonzero component of dv'. Let & = {0, ..., 0,—ci,
apCt, 0,...) where the only two nonzero compo-
nents are the ath and the (s + l)th Change p(L;) by
B(L;) = B(L;) + 8. Because of 58 = 0, the new p val-
ues, tneluding B(L;), salisfy the constraints (7) and
(8). The value for the objective funclion (6) is also
not changed.

If B(L;) + dv(e) — B(L:) is still lezicographically neg-
alive, we can repeat the above process. Such & process
will terminate within at moal n limes stnce otherwise
the constraint (7) would nol held for the optimal solu-
tior of Problem 1.

Note that the nede L; is selecled based on the topo-
logical order and the shifting factor B{L;) is increased
compared to ils original value. For any L-edge with the
destination node L;, f the consiraint (9} holds before
updating p(L;), it siill helds after the update. Such a
properiy will guaraniee our process o terminate.

Go to step 2.
4. This step finds M-;‘k volues which satisfy the consiraini

(10).

Givenl <i<moandl <k < 7, find the M-;,k
value which satisfies the consiraint (10) such that the
constraint (18) becornes egual for at least one edge.

If the M\ x achieved above satisfies the constraint (8),
we are done. Otherwise, we increase the nth compo-
nent of the My velue until the constraint (8) holds
and becomnes equal for ai leest one edge.

Find oll M. values. The value for the objective func-
tion (6) is not changed.

With such p and M-;,k values, ihe value for the objeciive
Junction (6} for Problem 2 is the seme as thai for Prob-
lem 1. Hence, we gel an oplimal solulion for Problem 2
with the same value for the objective function (6). O

THEOREM 2. Any optimal selulion for Problem 2 is also
an optimal solution for Problem 1.

ProOOF. Given any optimal solution of Problem 2, we
take ils p and M values as the solution for Problem 1.
Such § and Mk values satisfy the consiraints (7)-(8), and
the value for the objective function (6) for Problem 1 is
the same as that for Problem 2. Such a soluliorn musi be
optimal for Problem 1. Otherwise, we can conslruct from
Problem 1 another solution of Problem 2 whick has lower
value for the ebjeclive function (6), according to Lemma 4.
This coniradicts to the optimality of the original selulion for
Problem 2. []

L1 L2

(o,om 1,0
L3

©,1 0,0
LD 3"

Figure 5: The transformed graph {G.) for Fig-
ure 4(c)

Based on Theorem 2, given an optimal solution for Prob-
lem 2, we immediately have an optimal solution for Prob-
lem 1. In the rest of this section, we try to solve Problem
2 instead.

By expanding the vectors in Problem 2, an integer pro-
gramming (IP) problem results. General solutions for IP
problems, however, do not take the LDG graphical charac-
teristics into account. Instead of solving the IP problem,
we transform it into a network Bow problem, as discussed in
the rest of this section.

3.2 Transforming Problem 2
Given a loop dependence graph (3, we generate another
graph G = (Wi, B1) as follows.

s For any node L; € G, create a corresponding node L
in G;.

¢ For any node L; € @, if L; has an outgomg M-edge,
let the weight of L; be w(L;) = —7;&. For each static
write reference rr (1 < & < =) in Li, create another

node I:.-(k] in G, which is called the sink of E; due to
ri. Let the weight of f;(k) Le w(I:.-(k)) =g

e For any node L; € G which does not have an outgoing
M-edge, let the weight of L; be 0.

+ For any M-edge < L;i,L; > in G due to the static
write reference T, suppose its distance vector dv. Add
an edge < L;, ﬁ;(k} > to 1 with the distance vector
—dv.

s For any L—edge < Li,L;j > in G, _suppose its distance

vector dv. Add an cdge < L, L; > to G| with the
distance vector dv.

For the original graph in Figure 4(c), Figure 5 shows the
transformed graph.

‘We associate a vector g to each node in G| as [ollows.

e For each node L; in Gy, i = P(L:).

(k) -_
I.

» For each node L; =M+ BlLi).

The new system, which we call Problem 3, is defined as
follows. {&e =< wi,v; > is an edge in G| annctated by dy.)




minE!-i‘llw(v.-)ci'l (11)

subject to
QG +di = 0,Ve (12)
F(di — i + di) 2 0,Ve (13)

THEOREM 3. Problem 3 is equivalent fo Problem 2.

Proor. We have
S ()G
= Brso(~ni&P(Li) + Ti (F(Mik + B(Li)))) + Eri=006
= DL 2L, (Mid). '
Hence the abjective function (6) is equivalent to (11).

For each edge e =< Li,L; > in G\, the inequality (12) is
equivalen! to

B(L;) — B(L:) + dv(er) = 6, (14)

where ¢y is an L-edge in G from L; to L;. Inequalily {14) is
equivalent to (9), kence ineguality (12} is egquivalent to (9).

For cach edge e =< L_J-,I:,-m > in Gy, the inequality (12} is
equivalent lo

M + B(L) — B(L;) — dv(er) > G, (15)

where ) is arn M.edge tn & from L; to L; due to the kih
static write reference in L;. Ineguality (15} (s equivelent to
{10), hence inequality (12) is equivalent to {10).

Similarly, it is easy to show thal the constraints {7} and (8)
are equivalent to constraint (13). O

Note that one edge in & could be both an L-edge and an M-
edge, which corresponds to two edges in Gi. Assumption 2
can derive the following inequality for the transformed graph
G

- 1=
B ldv(ex)| < 55, (16)

where e € E| is annotated with the dependence distance
vector dv{es).

If we consider the vector as the basic computation unit,
Problem 3 is a nonlincar system, due to the constraint
(13). The same as Problem 2, such a nonlinear system can
be solved by lincarizing the vector representation so that
the original problem becomes an integer programming prob-
lem, which in its general form, is NP-complete. In the next,
however, we show that we can achieve an optimal solution
in polynomial time for Problem 3 by utilizing the network
How property.

3.3 Optimality Conditions

‘We develop optimality conditions to solve Problem 3. We
utilize the network flow property. A network How consists
of a set of vectors such that each vector f(e;) corresponds
to each edge e; € E; and for cach node »; € V4, the sum
of flow values from all the in-edges should be equal to w{v;)
plus the sum of How values from all the out-edges. That is,

Ec,,:(..u.—‘}el-h f(ek) = T.IJ(‘Ui) + Ecj,,.:(l'i,-}EEl f(ek): (17)

where e =< .,v; > represents an in-cdge of v; and e =<
v;,. > represents an out-edge of v;.

LeMMA 5. Given G = (V1, E\}, there ezisis at least one
legal network fHow.

ProoF. Find a spanning tree T of Gh. Assign the flow
value lo be O for all the edges not in T'. Hence, tf we can
Jind a legal network flow for T, the same flow assignment is
also legal for G,.

We assign flow value to the edges in T’ in reverse lopolngical
erder. Since the lolal weight of the nodes in T is equal 10 0,
a legal network flow exists for T. O

Based on equation (17), given a legal network Aow, we have

SWlw(v)q = S fler) (G — @) (18)

where ex =< vj,v; >€ B

For any node v € Vi, we have w(v) = cF, where ¢ =
—7;,0 or 1. For our network flow algorithm, we abstract
out the factor & from w(v) such that w(v) is represented
by c only. Such an abstraction will give each flow value the
form f(ex) = cx&, where ¢, is an integer constant.

Suppose f(ex) > O for the edge ey € Ey, which is equivalent
to cx > 0. With the constraint (13), we have

fle)(d — G+ di) = exF(G — Gi+ i) 2 0. (19)

Hence, we have

Flex)(di — i) 2 = fex)di- (20)
Therefore, with the equation (18), if f(ex) = 0, we have
Ei w(v) G 2 ~Z42 fler)di. @y

Collectively, we have the optimality conditions stated as
the following theorem such that if they hold, the inequal-
ity (21) becomes the equality and the optimality is achieved
for Problem 3.

THEOREM 4. If the following three condilions hoeld,



1. Constraints (12) and (I13) are satisfied, and

2. A legal network flow f(er) = ex & exmists such that cp >
0 for1 <k <|E|, ond

3. E!-:‘llw(vg)ci'l = —El,i'llf(ek)d-;; holds, i.e., inequality
(21} becomes an equelity.

Problem 3 achieves an oplimal solulion —ELEIIf(ek)d-L.

PROOF. Obvious from the above discussion. O

3.4 Solving Problem 3

Here, let us consider each vector w{w;), qi and dy as a sin-
gle computation unit. Based on the duality theory (24, 2],
Problem 3, excluding the constraint (13), is equivalent to

maz 2 (— f(ex)dic) (22)

subject to

E=n=<--v|‘>EE| fer)= tﬂ[ﬂ.‘) + E¢L=<Ui-->EE].f(ek)l 1 S(‘ S) |Vl |
23

fle)=08,1<i< By (24)

The constraint {13) is mandatory for the equivalence be-
tween Problem 3 and its dual problem, following the de-
velopment of optimality conditions in Scction 3.3 [1]. The
constraint {23) in the dual system precisely defines a flow
property, where each edge e; 1s associated with a flow vector
Fle;). We define Problem 4 as the system by (11)-(12) and
(22)-(24). Similar to w(w;), the vector f(ex) is represented
by cx where f(ex) = erd. Although apparently the search
space of Problem 4 encloses that of Problem 3, Problem
4 has correct solutions only within the search space defined
by Problem 3.

Based on the property of duality, Problem 4 achieves an
optimal solution if and only if

s The constraints (12}, {23) and (24) holds, and

» The objective function values for (11) and (22} arc
equal, i.e., S w(v:)q = —ZVF f(er)di holds.

Il we can prove that the constraint (13) holds for the optimal
solution of Problem 4, such a solution must also be optimal
for Problem 3, according to Theorem 4.

There exist plenty of algorithms to selve Problem 4 [1,
2]. Although those algorithms are targeted to the scalar
system (the vector length equals to 1), some of them can
be directly adapted to our system by vector summation,
subtraction and comparison operations. In [2], the authors
present a nelwork simplez algorithm, which can be directly
utilized to solve our system. The algorithmic complexity,
however, is exponential in the worst case in terms of the
number of nodes and edges in &1- In [1], the authors present

several graph-based polynomial-time algorithms, for exam-
ple, successive shortesl path algorithm with the complex-
ity O(|Vi?), double scaling algorithm with the complexity
O(|V1|[E1]iog]V1]}, and so on. From [1], the current fastest
pelynomial-time algorithm for solving network flow problem
is emhanced capacily scaling algorithm with the complexity
O((|ELllog|V1|){| E1| + log|Vh|). For these algorithms, we
have the following lemma.

LemMMA 6. For any optimal solulton of 41 in Problem
4, there exisis a spanning free T in G'l_.such that each edge
e=<uv,v > mT salisfles @ —qi+dy = 0.

PROOQF. This s true due to the foundation of the simplez
method {2]. O

Let T be the spanning tree in Lemma 6. If we fix any g to
be 0, all qj,1 < i < |V1|, can be determined uniquely. With
such uniquely-determined ), we have

g — il < SW2)(du),1 < 4,5 < Wil (25)

For any e =< wvi,v; >€ F) with annotation dy, with the
inequality (25), we have

|G — & +di| <65 — & + |die| < 2882)|dh). (26)

For the inequality (26), based on the inequality (16), we
have

[ — G + di| < B, e =< vi,v; >€ E\ is annotated with di,.
(27)

LEMMaA 7. &(q) —ci'1+d1) >0, wheree =< v;,v; »>€ B,
is annolaied with dy, subjec! to the constraints (12} and

(27).

PROOF. If §; — Gi +dyi = 0, then #(q — ) + d) 2 0
holds,

Otherunise, assume the first non-zero component is the hth
for g — qi+dx. Then, q}') —qi(') +d£’> =0,1<9<h-1,
and q}") - qgh) + d},*" > 0.

With the constraint (27), we have

F(qi — i + di)
>5(0,...,0,¢" -4+, g+, g 4y)
= oW (M) — gl 4 4Py _ GIHDGOHD 4 )
— . =g g
= ar(”(qf-h) - q,m + df:') -1) 4 g™
>0 0O

Hence, Inequality (16) guarantees that the constraint (13)
always holds when the optimality of Problem 4 is achieved.
The optimal solution lor Problem 4 is also an optimal so-
lution for Problem 3.




Input: 61 = (14, )
Qutput: qi,1< i < (Wi
Procedure:
Flee)=0lor 1<k L |E |, qi=dlorl i<W
e(n;) = w'{vi} for 1 £ < |W.
Initinlize the scts £ = {v:|e(v;) < 0} and 2 = {ui|e(v:) > 0}.
while (E # ¢} do
Select a node vy, € Fand v € D.
Determine shortest paith disinnces <5 [rom node vy to all
ather n_l.:dca in (73 with respeel to the residue costa
ef; = dy — 4i + qj, where the edge < vi,v; >
is annotated with dyy in G).
Let P denote n shortest path [rom vy to vy.
Update i = g — &, 1 £ £ € [N,
§ = min(—e(ux), e{w), min{ri;| < vi,v; >€ P}), where ry; is
the flow value in the residue network flow graph.
Augment § unity of Aow along the paith P.
Update f'(es), E, D, ¢i; and the residuc graph.
end while

Figure 6: The successive shortest path algorithm

3.5 Successive Shortest Path Algorithm

We now briefly present one network flow algorithm, succes-
sive shortest path algorithm (1), which can be used to solve
Problem 4.

The algorithm is depicted in Figure 6. We let f(ex) =
f'(er)? and w(v;) = w'(v;)&, where f'(ex) and w'(1;) are
scalars. After the first while iteration, the algorithm always
maintains feasible shifting factors and nonnegativity of flow
values by satisfying the constraints (12) and (24). It adjusts
the flow values such that the constraint {23} holds for all
edges in 'y when the algorithm ends. For the complete de-
seription of the algorithm, including the concept of reduced
cost and residue nelwork flow graph, the semantics of sets B
and D, etc., please refer to [1] for details.

‘We have developed a code generation scheme as well as three
linear-time heuristics for [ast compilation. Figure 7 shows
the transformed code for Example 2 after memory reduction.
See [26] for details.

4. REFINEMENTS

4,1 Controlled Fusion

Although array contraction after loop fusion will decrease
the overall memory requirement, fusing too many loops can
potentially increase the working set size of the loop body,
hence it can potentially increase register spilling and cache
misses. This is particularly true if a large number of loops
are under considcration. To control the number of fused
loops, after computing the shilting factors to minimize the
memory requirement, we use a simple greedy heuristic,
Pick_and Reject {see Figure 8}, to incrementally select loop
nests to be actually fused. If a new addition will cause
the estimated cache misses and register spills to be worse
than before fusion, then the loop nest under constderation
will not be fused. The heuristic then continues to select
fusion candidates [rom the remaining loop nests. The loop
nests are examined in ar order such that the loops whose
fusion saves memory most are considered first. We estimate
register spilling by using the approach in [22] and estimate
cache misses by using the approach in [7).

It may also be important to avoid fusing at too many leop

REAL=8 ZA(2 : KN}, za0, zal, ZBO(2 : JN), ZB1(2 : JN}, zb

DO J=2,JN
S\ : ZBHJ) = ZQ(J — 1,2) + Z2{J, 2)
END DO
DO K =3 KN
DO J=2,JN
sal = ZP(J - 1,K) + ZR(J - 1,K ~2)
b= ZQ(J —1,K) + ZZ(J, K)
IF (J.EQ.2} THEN
ZP(LK — 1) = ZP(J, K — 1} + zal — ZA(K — 1)
—ZB1(J} + b '
ZQUI, K = 1) = ZQ(J, K — 1) + zal + ZA(K — 1)
+ZB1(J) + zb
ELSE
ZP(J,K ~1)= ZP(J, K — 1) + zal — zaD
~ZBI{J) + zb
ZQ(J, K —1)=ZQ{J,K — 1} + zal + za0
YZB1J) + b
END IF
S :ZB1(J) ==
55 : zal = zal
END DO
END DO
DO JF=2J0N
zal = (ZP(J — |, KN+ 1)+ ZR(J — 1, KN —1)
IF {J.EQ.2) THEN
ZP(J,KN)= ZP(J, KN)+ zal - ZA{KN)
—~ZB1(J) + ZB0(J)
ZQJ, KN) = ZQ(J, KN} + sal + ZA(KN)
ZB1(J) + ZBo(J)
ELSE
ZP(J,KN}=ZP(J,KN}+ zal — zaD
—ZB1(J) + ZB0(J)
ZQIJ, KN)Y= ZQ(J, KN) + zal + za0
ZBI1(J) + ZBo(J)
END IF
54 : 300 = zal
END DO

Figure T: The transformed code for Figure 4(a)} after
memory reduction

levels if loops are shifted. This is because, after loop shift-
ing, fusing too many loop levels can potentially increase the
number of operations due to the IF-statements added in the
loop body or due to the effect of loop peeling. Coalescing,
if applied, may also introduce more subscript computation
overhead. Although all such costs tend to be less significant
than the costs of cache misses and register spills, we carefully
control the fusion of innermost loops. If the rate of increased
operations after fusion exceeds a certain threshold, we only
Fuse the outer loops.

4.2 Enabling Loop Transformations

We use several well-known loop transformations to enable
effective fusion. Long backward data-dependence distances
make loop fusion ineffective for memory reduction. Such
long distances are sometimes due to incompatible loops [27]
which can be corrected by loop interchange. Long back-
ward distances may also be due to circular data dependences
which ean be corrected by circular loop skewing [27]. Fur-
thermore, our technique applies loop distribution to a node,
Ly, if the dependence distance vectors originated from Iy
are different from each other. In this case, distributing the
loop may allow different shifting factors for the distributed
loops, potentially yielding a more [avorable result.

4.3 Tiling vs. Reduction
Suppose the collection of loops in Figure 2(a} are embedded
in another loop, T, such that the memory reference foot-




Procedure Pick_and Heject
Input: {1} a collection of m loop nests, (2} FMu
(1 €£i< ml < &k £ 7)), (3) the estimated number of regis-

ter spills ap and the estimoted number of cache misses nm, both in
the original loop nests.

Output: A set of loop nests to be fused, F5.

Pracedura:

1. Initislize F5 to be empty. Let OF initially contain ell the m
loop neats.

2. I OS is emply, return FS. Otherwise, select B loop nest Iy
from Q5 such that the tocal array reglons A written in L; can
be reduced most, i.e., the diference between the size of R and
the size of the predicted reference window lor L; is no smaller
than that for any other loop nest in OS. Let TR be the set of
loop nests in OF which contain references to R. Estimate a,
the number of register spills, and &, the number of cache milsses,
alter fusing the loops in both FS and TR and after performing
array contraction for the fueed loop. If {a € npA b £ nmy), then
FS + FSUTR, OS5 + OS—TRHR. Otherwise, 0S5 + O5—{L;}
and go ta step 2.

Figure 8: Procedure Pick_and Reject

print is the same in every T iteration. It is possible then
to perform tiling on the whole T loop nest so as to exploit
temporal locality across different T iterations [27]. On the
other hand, after loop shifting plus fusion, the T" loop and
the fused loops form a {n + 1)-level perfectly-nested loop
nest. This resulting loop nest would appear to be a perfect
candidate for tiling, since many tiling algorithms apply to
perfectly-nested loops only. However, the kind of shifting re-
guired for memory reduction oflen introduces very long back-
ward dependences, which actually prevents profifable tiling.
(On ther other hand, partial memory reduction, which may
not minimize the memory requirement, may allow profitable
tiling. The interaction between partial memory reduction
and tiling seems an interesting topic for our future research.)
Where tiling and memory reduction can be performed sep-
arately, but not simultaneausly, we need to make a choice,
and we do so based on simple estimations of the cache miss

penalty.

Let Cpy be the Ll-cache line size and Cyz be the L2-cache
line size, both measured in the number of data elements.
Let py be the Ll-cache miss penalty and p; be the L2-cache
miss penalty. Further, let W represent the footprint of the
original loop body (in the number of data clements). We
estimate the average cache miss penalty for each T-iteration
in the original code by

nw + W
Ce1 Cez

(28)

Likewise, let W) represent the footprint of the fused loop
body after memory reduction. We estimate the average
cache miss penalty lor each T-iteration in the fused code
by .

mW)  paW)
+ . 29
Cmn Chz (29)

Obviously, W) is expected to be smaller than W. Under
extreme circumstances, W, may completely fit in a certain
cache, say the L2 cache, then the estimation is revised to
remove the miss penalty on that cache.

To tile the T loop nest, certain arrays may be duplicated
[27]- Let W2 represent the array [ootprint size of the loop
body after the array duplication phase (in the number of
data elements) but before tiling. (W; may then be greater
than W.} The average cache miss penalty for each T-iteration
after tiling will depend on the number of inner-loop levels
which are tiled. Based on a detailed calculation [26], we de-
rive the average miss penalty per T-iteration under two-level
tiling as

nSiWe | paSaWa
Cnb ChaBa

where 51 and S» represent the skew factors of tiling and
{B,, Ba) represent the tile size.

{30}

The average miss penalty per T-iteration under one-level
tiling is estimated as

Wz | p 51
Bz g P e 31
Ch1 Cr2B) @1

Which transformation to choose is then determined by a
comparison of the cstimated cache miss penalties. QOur ex-
perimental results will show that these simple cost models
work quite well.

5. EXPERIMENTAL RESULTS

We have implemented our memory reduction technique in a
research compiler, Panorama [12]. We implemented a net-
work flow algorithm, successive shortest path algorithm [1].
The loop dependence graphs in our experiments are rela-
tively simple. The successive shorlest path algorithm takes
less than 0.06 seconds for each of all the benchmarks. To
measure its effectiveness, we tested our memory reduction
technique on 20 benchmarks on a SUN Ultra I uniprocessor
workstation and on a MIPS R10K processor within an SGI
Origin 2000 multiprocessor. The Ultra IT processor has a
16KB dircctly-mapped L1 data cache with a 16-byte cache
line, and it has a 2MB directly-mapped unified L2 cache with
a 64-byte cache line. The cache miss penalty is 6 machine
cycles for the L1 data cache and 45 machine cycles for the L2
cache. The MIPS R10K has a 32KB 2-way set-assaciative
L1 data cache with a 32-byte cache line, and it has a 4MB
2-way set-associative unified L2 cache with a 128-byte cache
line. The cache miss penalty is 9 machine eycles for the L1
data cache and 68 machine cycles for the L2 cache.

5.1 Benchmarks and Memory Reduction

Table 1 lists the benchmarks used in our experiments, their
descriptions and their input parameters. In the table, “m/n”
represents the number of loops in the loop sequence {m) and
the maximmum loop nesting level {(n). Note that the array size
and the iteration counts are chosen arbitrarily for LL14, LL18
and Jacobi. To differentiate two versions of swim in SPECS5
and SPEC2000, we call the SPEC95 version as swiml and
the SPEC2000 version as swim2. swim2 is almost identical
to swiml except for its larger data size. For combustion, we
change the array size (N1 and N2) from 1 to 10, so the exe.
cution time will last for several seconds. Programs climate,
laplace—jb, laplace-gs and all the Purdue set problems
are from an HPF benchmark suite at Rice University [20,




Table 1: Test programs

Benclimark Mame | Description Input Parameters m/n
LL14 Livermore Loop No. 14 N = 1001, ITMAX = 50000 | 3/1
LL1§ Livermore Loop No. 18 N = 400, I'TMAX =100 372
Jacobi Jacobi Kernel w/a convergence test N = 1100, ITMAX = 1050 [ 2/2

LOmCALy A mesh generation program from SPECBS{p relerence input 541
swim1 ‘A“weather prediction program from SPECBGIp reference input 2/2
awim?2 A weather prediction pragram from SPEG2000p reference input 272

hydro2d An astrophysical program from SPECSEIR relerence input 10/2
lucas A promality test firom SFEC2000ip reference input 3/1

ng A multigrid solver [rom NPBZ.3-serial benchmark Class "W' 2/1
combusticn A thermochemicel program (rom UMD Chaos group | N1 = 10, N2 = 10 1/2
purdue-02 Furdue set problem02 reference input 2/1
purdue-03 Purdue set prablem03 reference input 3/2
purdue-04 Purdue set problem04 reference imput 3/2
purdue-D7 Furdue set problem07 reference input 1/2
purdue-D8 Purduc sct problem08 reference input 1/2
purduc-12 Purdue set prableml?2 reference input 4/2
purdue-13 FPurdue sot probleml3 reforence input 271
climate A two-Inyor shallow water climate made) from Rice reference input 274
laplace-jb Jacahi method of Laplace from Hice ICYCLE = 50D 472
laplace-gs (Gnauas-Scidel method of Laplace from Rice ICYCLE = 500 372

Mommaltzed Occupked Namory Shs
g B B

ﬂ

(Data Size for the Original Programs {unit: KB))

Le00 1002 IS

Wumhd-t.l-m-nﬂ:

Figure 10: Memory sizes before and after transfor-
mation on the R10K

21]. Except for lucas, all the other benchmarks are written
in F77. We manually apply our technique to lucas, which is
written in F90. Among 20 benchmark programs, our algo-
rithm finds that all purdue-set programs, lucas, LL14 and
combustion do not need to perform loop shifting. For each
of the benchmarks in Table 1, all m loops are fused together.
For swiml, swim2 and hydro2d, where n = 2, only the outer
loops are fused. For all other benchmarks, all n loop levels

| LL14 LL18 Jacobi tomenty swiml
|_ 96 11520 19340 14750 14794
swim?2 hydro2d lucas mg combustion
191000 11405 1420400 8300 89
purdue-02 | purdue-03 | purdue-04 | purdue-07 | purdue-08
4193 4198 4194 524 AT2D
- - are fused.
purdue-12 | purdue-13 climnte laplace-jb taplace-gs
4194 | 4194 169 8292 1864

Figure 9: Memory sizes before and after transfor-
mation on the Ultra II

For each of the benchmarks, we examine three versions of
the code, i.e. the original one, the one after loop fusion but
before array contraction, and the one after array contrac-
tion. For all versions of the benchmarks, we use the native
Fortran compilers to produce the machine codes. On the Ul-
tra II, we follow the recommendations from SUN’s optimiz-
ing compiler group and use the following optimization flags.
For the original tomeatv code, we use “-fast -xchip=ultra2
-xarch=v8plusa -xpad=local:23". For all versions of swiml
and swim2, we use “-fast -xchip=ultra2 -xarch=vBplusa -
xpad=common:15”. For all versions of combustion, we sim-
ply use “~fast” because it produces better-performing codes
than using other Hags. For all other codes, we use the Hag



HeaTrspilind Expecuitian Tirm
oasssﬁﬁéﬁﬁﬂ

oI Y

Figure 11: Performance before and after transfor-
metion on the Ultra IT

“-fast -xchip=ultra2 -xarch=v8plusa -fsimple=2". When we
compare the best results of different versions, we switch on
and off prefetching (i.e. the “-xprefetch” flag) and pick the
better result for each version. On the R10K, we simply use
the optimization flag “-03” except with the following adjust-
ments. We switch off prefetching for laplace-jb, software
pipelining for laplace-ga and loop unrolling for purdue-03.
For swiml and swim2, the native compiler fails to insert
prefetch instructions in the innermost loop body after mem-
ory reduction. We manually insert prefetch instructions into
the three key innermost loop bodies, following exactly the
same prefetching patterns used by the native compiler for
the original codes.

Figure 9 compares the code sizes and the data sizes of the
original and the transformed codes on the Uléra II. The data
size shown for each original program is normalized to 100.
The actual data size varies greatly for different benchmarks,
which are listed in the table associated with the figure. Sim-
ilarly, Figure 10 compares the data sizes and the code sizes
on the R10K. For mg and climate, the memory requirement
differs little before and after the program transformation.
This is due to the small size of the contractable local array.
For all other benchmarks, our technique reduces the memory
requirement noticeably on both machines. The arithmetic
mean of the reduction rate, counting both the data and the
code, is 50% for all benchmarks on both machines. Specifi-
cally, the arithmetic mean is 49% on the Ultra II alone, and
51% on the R10K. For several small purdue benchmarks,
the reduction rate is almost 100%.

5.2 Performance

Figure 11 compares the normalized execution time on the
Ultra II, where “Mid" represcnts the execution time of the
codes after loop fusion but before array contraction, and
“Final” represents the execution time of the codes after ar-
ray contraction. Similarly, Figure 12 compares the normal-
ized execution time on the R10K. The geometric mean of
speedup after memory reduction is 1.57 for all benchmarks
running on both machines. The geometric mean is 1.73 on
the Ultra IT alore, and it is 1.40 on the R10K alone.

The best speedup is achieved lor program purdue-03, which
is 5.67 on the R10K and is 41.3 on the Ultra II. This program
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Figure 12: Performance before and after transfor-
mation on the RI0OK

contains two local arrays, A(1024, 1024) and P(1024), which
carry values between three adjacent loop nests. QOur tech-
nique is able to reduce both arrays into scalars and to fuse
three loops into one. After comparing the assembly codes
on both machines, we found the reason for the less dramatic
speedup on the R10K. Prefetching instructions inserted by
the native compiler hide memeory latency quite well, better
than those inserted by the Ultra II's compiler in this case.
Excluding program purdue-03 on the Ultra II, the geomet-
ric mean of speedup after memory reduction is 1.41 for all
other combinations of benchmarks and machines.

We see three programs actually get slowed down slightly af-

ter memory reduction. The execution time of both purdue-13
and laplace-ge on the Ultra II is increased by 2%. The ex-

ecution time of purdue-08 on the R10K is increased by 1%.

Both purdue—-08 and purdue-13 make several math library

function calls which have dominated the execution time. For

laplace-ga, loop peeling is applied which may reduce the

effectiveness of scalar replacement, and increase the number

of total memory references.

Gao et al. proposes to perform array contraction enabled
by loop fusion only [10]. With their technique, the peomet-
ric mean of speedup after array contraction is 1.30 for all
benchmarks on both machines.

5.3 Memory Reference Statistics

To further understand the effect of memory reduction on
the performance, we examined the cache behavior of differ-
ent versions of the tested benchmarks. We measured the
reference count (dynamic load/store instructions), the miss
count of the L1 data cache, and the miss count of the L2
unified cache on both machines. We use the perfex pack-
age on the MIPS R10K and the perfmon package on the
Ultra IT to et the cache statisties. Figures 13 and 14 com-
pare such statistics on the Ultra II, where the total refercnce
counts in the original codes are normalized to 100. Similarly,
Figures 15 and 16 compare the statistics on the R10K.

When arrays are contracted to scalars, register reuse is of-
ten increased. Figures 13 to 16 show that the number of
total references get decreased in most of the cases. The to-
tal number of reference counts, counting all benchmarks on
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(Original, Mid and Final are from left to right for each
benchmark)

Figure 13: Cache statistics before and after trans-
formation on the Ultra II
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(Original, Mid and Final arc from left to right for each
benchmark)

Figure 14: Cache statistice before and after trans-
formation on the Ultra II {cont.}

(Original, Mid and Final are from left to right for each
benchmark}

Figure 15: Cache statistics before and after trans-
formation on the R10K

(Original, Mid and Final are from left to right for each
benchmark}

Figure 16: Cache statistics before and after trans-
formation on the R10K (cont.)

both machines, is reduced by 21.1% after memory reduc-
tion. Specifically, the reduction rate is 20.0% on the Ultra
II alone, and it is 22.3% on the R10K alone. However, in a
few cases, the total reference counts get increased instead.
We examined the assembly codes and found a number of
Teasons:

1. The iused loop bady contains more scalar references in
a single iteration than before fusion. This increases the
register pressure and sometimes causes more register
spilling.

2. The native compilers can perform scalar replacement [3]
for references to noncontracted arrays. The fused loop
body may prevent such scalar replacement for two rea-
500S:

o If register pressure is high in a certain loop, the
native compiler may choose not to perform scalar
replacement.

s After loop fusion, the array dataflow may become
more complex, which then may deleat the native
compiler in its attempt to perform scalar replace-
ment.

3. Loop peeling may decease the effectiveness of scalar
replacement since fewer loop iterations benefit from
it.

Despite the possibility of increased memory reference counts
in a few cases due to the above reasons, Figures 13 to 16 show
that cache misses are generally reduced by memory reduc-
tion. The total number of cache misses, counting all bench-
marks on both machines, is reduced by 58.0% after memory
reduction. Specifically, the reduction rate is 28.6% on the
Ultra II alone, and it is 63.8% on the R10K alone. The to-
tal number of L1 data cache misses, counting all benchmarks
on both machines, is reduced by 57.3% after memory reduc-
tion. Specifically, the reduction rate is 27.5% on the Ultra
II alone, and it is 63.0% on the R10K alone. The improved
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Figure 17: Performance of the original programs w/
and w/o prefetching on the Ultra II
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Figure 18: Performence of the transformed pro-
grams w/ and w/o prefetching on the Ultra IT

cache performance scems to often have a bigger impact on
execution time than the total reference counts.

5.4 Interaction with Other Compiler Optimiza-

tions
In this subsection, we examine how our memory reduction
technique affects prefetching, software pipelining, register al-
location and unroll-and-jam. The issue of concern is whether
the memory reduction makes other compiler optimizations
suffer. A performance comparison with loop tiling is also
presented.

Prefetching and Software Pipelining

On the R10K, we compared the performance impact of prefetch-
ing and software pipelining on both the original codes and
the transformed codes. On the Ultra II, we comparcd the
performance impact of prefetching only, since we cannot
specifically switch off software pipelining alone for the native
compiler,

Figures 17 and 18 show the normalized execution time with
and without prefetching, on the Ultra I, for the original pro-
grams and the translormed programs respectively. Prefetch-
ing affects the performance little for the transformed codes
except tomcatv. Figures 19 and 20 show the normalized

s “‘ffﬁffﬁ ;;f

Figure 19: Performance of the original programs w/
and w/o prefetching and software pipelining on the
RI10K
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Figure 20: Performance of the original programs w/
and w/o prefetching and software pipelining on the
R10K (cont.)
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Figure 21: Performance of the transformed pro-
grams w/ and w/o prefetching and software pipelin-
ing on the R10K
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Figure 22: Performance of the transformed pro-
grams w/ and w/o prefetching and software pipelin-
ing on the R10K (cont.)

Figure 23: Performance of the code with (unroll-
and-jam, scalar replcement) on the Ultra II

execution time for the original programs, with and with-
out prefetching and software pipelining, on the R10K. Fig-
ures 21 and 22 show the normalized execution time for the
transformed programs. Software pipelining and prefetch-
ing improves the performance for the transformed codes in
most cases. One exception is that laplace-jb with prefetch-
ing, where preletching makes performance worse by 49.4%.
A close look at cache statistics with perfex shows that
prefetching increases the L1 cache miss count by 50% com-
pared with the code without prefetching. Another exception
is that laplace-ga with software pipelining, where software
pipelining makes performance worse by 20.7%. Based on the
results from perfer software pipelining generates 59% more
floating point instructions than without software pipelining
(536M vs. 33TM).

Register Allocation

As stated earlier in this section, loop fusion may potentially
increase register pressure and thus may potentially reduce
register reuse. Figures 13 and 14 show that, in 5 of the
20 codes transformed for the Ultra II, slightly more mem-
ory referances are issued than the original codes. Figures 15
and 16 show that, in just two of the 20 codes transformed for
the R10K, slightly more memory references are issued than

Figure 24: Performance of the code with {unroll-
and-jam, scalar replacement) on the R10K

the original codes. Loop fusion secems to have degraded reg-
ister reusc somewhat in those codes. However, we should
point out that, except in three cases, (laplace-gs on the
Ultra IT and swiml and swim? on the R10K), all those trans-
formed codes in question actually run faster than their orig-
inal codes. Nonetheless, it is useful to examine the register
matter further.

One interesting question is whether the seemingly degraded
register utilization is truely due to the increased register
pressure. Alternatively, it might be due to the native com-
piler's inability te properly perform scalar replacement and
unroll-and-jam on the fused loop body. (These two tech-
niques are important to good register allocation.) To find
the answer, we manually applied unroll-and-jam and scalar
replacement to the codes of concern. We experimented with
unroll factors from 1 to 4 (a factor of 1 meaning no un-
rolling}, and we applied scalar replacement where possible.
We then picked the best results. Figures 23 and 24 show the
results on the Ultra I and on the R10K respectively, where
“Org” stands for the original code, *Qrg-Unroll” for the orig-
inal code with unroll-and-jam plus scalar replacement man-
ually applied. “Trans" stands for the transformed code and
“Trans-Unroll" for the transformed code with unroll-and-
jam plus scalar replacement applied. From these figures, we
conclude that loop fusion indeed increases register pressure
somewhat, as unroll-and-jam and scalar replacement applied
manually do not seem to make much difference, before or al-
ter memory reduckion.

Compare with Tiling

As stated in Section 4.3, for certain loop sequences, both
tiling and memory reduction may be applied profitably. In
our benchmarks, we have LL18, Jacobi, tomcaty, sviml and
avim2 which can be tiled profitably. Table 2 compares the
performance hetween memory reduction and tiling. In this
table, Jacobi is tiled at two loop levels. All other lour pro-
grams are tiled at one loop level only. Even though LL18
can be legally tiled at 2-levels, its performance is poorer
than 1-lavel tiling.

Using the cost estimation in Section 4.3, our research com-
piler chooses 2-level tiling for Jacobi on both machines. It
chooses 1-level tiling for LL18, swiml and swim? and chooses




Table 2: Performance of memory reduction vs. tiling (in seconds)

Henchmarks Ultra LI R10K
Mem-Red | Tiling ; ‘-D.E Mem-Red | Tiling M.%%‘{]Eﬂ
LLi8 8.3 7.5 1.11 4,79 5.07 0.84
Jacobi 88.2 32.9 2.20 98.58 30.64 1.73
tomcaty 0.1 80.0 0.83 70.26 72.73 0.B7
suiml 118.4 74.5 1.60 86 58.50 1.47
auip2 863 780 1.00 [£13 508 1.27

memory reduction for tomeatv, also on both machines. This
turns out to be correct in 9 out of the 10 cases. The ex-
ception is LL18 on the R10K. The tiled assembly code of
LL18 on the R10K shows that the loop index variables of
the tile-controlling loop and the time-step loop (i.e. the T
loop) are spilled heavily, thus introducing significantly more
load/store instructions than the code with memory reduc-
tion.

6. RELATED WORK

The work by Fraboulet et al. is the closest to our mem-
ory reduction technique [8]. Given a perfectly-nested loop,
they use loop alignment to adjust the iteration space for in-
dividual statements such that the total buffer size can be
minimized. Unlike ours, they only formulate the optimiza-
tion problem for the 1-D case as a network flow problem,
in a form different from ours. For multi-dimensional case,
they apply 1-I) formulation loop level by loop level. They
do not prescnt any experimental results, and they do mot
consider the effect of memory reduction on cache behavior
and execution speed.

Callahan el al. present unroll-and-jam and secaler replace-
ment techniques to replace array references with scalar vari-
ables to improve register allocation [3]. However, they only
consider the innermost loop ir a perfect loop nest. They do
not consider loop fusion, neither do they consider array par-
tial contraction. Gao and Sarkar present the ecollective loop
fusion [10]. They perform loop fusion to replace arrays with
scalars, but they do not consider partial array contraction.
They do not perform loop shifting, therefore they cannot
fuse loops with fusion-preventing dependences. Sarkar and
Gao perform loop permutation and loop reversal to enable
collective loop fusion [23]. These enabling techniques can
also be used in our Famework.

Lam et al. reduce memory usage for highly-specialized multi-
dimensional integral problems where array subscripts are
loop index variables [15]. Their program model does not
allow fusion-preventing dependences. Lewis et al. proposes
to apply loop fusion and array contraction directly in array
statement level for those array languages such as F90 [16).
The same result can be achieved if the array statements
are transformed into various loops and loop fusion and ar-
ray contraction are then applied in scalar level. They do
not consider loop shifting in their formulation. Strout et al.
consider the minimum working set which permits tiling for
loops with regular stencil of dependences [28]. Their method
applies to perfectly-nested loops only. In [6], Ding indicates
the potential of combining loop fusion and array contraction
through an example. However, he does not apply loop shift-

ing and does not provide formal algorithms and evaluations.
Gannon el al. introduce the concept of reference window,
using it to estimate the cache hit rate and to guide program
optimization for a software-controlled cache [9). They do
not address the memory reduction problem.

There exist a lot of work related with loop fusion. To name
a few, Kennedy and McKinley prove maximizing data lo-
cality by loop fusion is NP-hard [13]. They provide two
polynomial-time heuristics. Singhai and McKinley present
porameterized loop fusion to improve parallelismm and cache
locality [25]. They do not perform memory reduction or
loop shifting. Megiddo and Sarkar use mized inieger pro-
gremming to optimize weighted loop fusion [or parallel pro-
grams [19]. Recently, Darte analyzes the complexity of loop
fusions [5] and claims that the preblem of maximum fusion
of parallel loops with constant dependence distances is NP-
complete when combined with loop shifting. None of these
works address the issue of minimizing memory requirement
for a collection of loops and their techniques are very differ-
ent from curs. Manjikian and Abdelrahman present skifi-
and-peel [17). They shift the loops in order to cnable fusion.
However, they do not consider array contraction.

7. CONCLUSION

In this paper, we present a locality enhancement technique,
memory reduction, which is a combination of loop shilting,
loop fusion and array contraction. We reduce the mem-
ory reduction problem to a network How problem, which
is solved optimally. (The current fastest algorithm has the
complexity O((|E|log]V |} E| + leg|V])) where G = (V, E)
is the loop dependence graph.} We propose controlled fu-
sion to prevent excessive register spilling and cache misses
which may be caused by excessive loop Fusion. We develop
a simple memory cost model for memory reduction. For
a loop ncst where both tiling and memeory reduction can
apply, the scheme having the smaller cost is chosen. Exper-
imental results so far show that our technique can reduce
the memory requirement significantly. At the same time,
it speeds up program execution by a factor of 1.57 on av-
crage. Furthermore, the memory reduction does not seem
to create difficulties for a number of other back-end com-
piler optimizations. We also believe that memory reduc-
tion by itself is vitally important to computers which are
severely memory-constrained and to applications which are
extremely memory-demanding.
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