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Abstract

Tile-size selection is known to be a complex problem. This paper develops a new selection
algorithm. Unlike previous algorithms, this new algorithm considers the effect of loop skewing
on cache misses. It also estimates loop overhead and incorporates them into the execution
cost model, which turns out to be critical to the decision between tiling a single loop level vs.
tiling two loop levels. Our preliminary experimental results show a significant impact of these
previocusly ignored issues on the execution time of tiled loops. In our experiments, we measured
the cache miss rate and the execution time of five benchmark programs on a single processor
and we compared our algorithm with previous algorithms. Our algorithm achieves an average
speedup of 1.27 to 1.63 over all the other algorithms.

1 Introduction

Memory access latency has become the key performance bottleneck on modern microprocessors. In
order to reduce the average memory reference latency, it 1s important to exploit data locality such
that most memory references can be served by the fast memory, e.g. the cache, in the memory
hierarchy. Tiling is a well-known compiler technique to enbance data loeality such that more data
can be reused before they are replaced from the cache [23]. Tiling transforms a loop nest by
combining strip-mining and loop interchange. Loop skewing and loop reversal are often used to
enable tiling [20]. Figure 1 shows SOR relaxation as an example. Figure 1(a) shows the original
loop nest in SOR, and Figure 1{b) shows the tiled SOR in which loop J is skewed with respect to
loop T, and Figure 1(c) shows the tiled SOR in which loops J and I are skewed with respect to
loop T

Much of previous work on tiling applies to perfectly-nested loops only [8, 20, 21, 23]. Recently,
we proposed a new technique to tile a class of imperfectly-nested loops (17, 18]. Performance of
a tiled loop nest can vary dramatically with different tile sizes [9]. How to select proper tile sizes
is hence an important issue. In this paper, if loop skewing is applied before tiling, such a tiling
is called skewed tiling. Non-skewed tiling results if loop skewing is not necessary for tiling. All
previous work tacitly assumes non-skewed tiling [4, 6, 9, 12, 16, 22]. However, such an assumption
may not be true, especially for loops which perform iterative relaxation computations [17, 18].
Another important factor ignored in previous work is the loop overhead in terms of the increased
instruction counts due to the increased loop levels. Further, tiling a software-pipelined loop will also
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Figure 1: An example of tiling: SOR relaxation.

increase the dynamic count of load instructions. In this paper, we shall show that these previously
ignored factors can have a significant effect on tile-size selection.

In our recent work [17], we present a memory cost model to estimate cache misses, assuming
that only one loop level is tiled. In this paper, we present a more general scheme by considering
two loop levels which may both be tiled. We present an algorithm to compute tile sizes such that
during each tile traversal, capacity misses and self-interference misses are eliminated. Further,
cross-interference misses are eliminated through array padding [15]. Given a tile size, we model the
tiling cost based on both the number of cache misses and the loop overhead. To choose between
tiling one loop level vs. tiling two loop levels, our algorithm computes their lowest costs and the
respective tile sizes. We then choose the tiling level, and the corresponding best tile size, which
yields the lowest cost. One can easily extend our discussion to higher loop levels, but such an
extension does not seem useful for applications known to us.

In this paper, we consider data locality and performance enhancement on a single processor
whose memory hierarchy includes cache memories at one or more levels. We have applied our
 tile-size selection algorithm to five numerical kernels, SOR, Jacobi, Livermore Loop No. 18 (LL18),
tomcatv and swim, using a range of matrix sizes. We evaluate our algorithm on one processor of
an SGI multiprocessor and on a SUN uniprocessor workstation. We compare our algorithm with
TLI [3], TSS [4], LRW [9] and DAT [13]. Experiments show that our algorithm achieves a average
speedup of 1.27 to 1.63 over all these previous algorithms.

In the rest of the paper, we first present a background in Section 2. We then present our memory
cost model in Section 3. We model the execution time and present our tile-size selection algorithm
in Section 4. We discuss related work in Section 5. In Section 6, we report experimental results
and compare our algorithm with previous algorithms. Finally, we conclude in Section 7.

2 Background

In this section, we first define our program model and a few key parameters. We then discuss the
issues of the memory hierarchy.

2.1 Tiling

Most of previous research on tiling addresses perfectly-nested loops only [8, 20, 21, 23]. After
tiling, the loops remain perfectly-nested. In our recent work [17, 18], we perform tiling on a class
of imperfectly-nested loops. Figure 2(a) shows a representative loop nest before tiling, where the
T-loap body consists of m perfectly-nested loops. The depth of each perfectly-nested inner loop is
at least two. The loop bounds L;; and Uj;, 1 < 2 < m, 7 = 1,2, are T-invariant. We assume that the
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Figure 2: The program model before and after tiling

iteration space determined by J and I remains unchanged over different 7-loop index values. For
simplicity of presentation, we also assume that cache-line spatial locality is already fully exploited
in the innermost loops except on the loop boundaries. Figure 2(b) shows the code after tiling the
Ji loops only (I-D tifing), and Figure 2{c} shows the code after tiling both J; and I; loops (2-D
tiling). In Figures 2(b) and 2{c), the iteration subspace defined by all J; and I; loops is called a tile.
Loop T is called the tile-sweeping loop, and loops JJ and IT are called the tile-conirolling Ioops [20].
Each combination of JJ and II defines a tile traversal. Two tiles are said to be consecutive within
a tile traversal if the difference of the corresponding " values equals 1. In this paper, we assume
the data dependences permit both 1I-D and 2-D tiling. Choosing between 1-D vs. 2-D tiling will
depend on the estimate of cache misses and loop overhead. As far as estimating cache misses is
concerned, 1-D tiling can be viewed as a special case of 2-D tiling with the maximum tile height.
However, 2-D tiling incurs higher loop overhead, which we want to take into account.

Let v = min{Lal|l < i < m}, 2 = maz{Uy|l < ¢ < m}, ;i = min{Lp]l <7 < m} and
2 = maz{Up|l < i <m}. We call §1 and 57 the skewing fectors corresponding to J; and I; loops
respectively. (The skewing factors are also called the slope in our previous work [17, 18].} If §; =0,
then loop skewing is not applied before tiling at the J; level. In this paper, we are interested only
in skewed tiling at least at the J; level, thus §; > 0. Bj is called the file width and B is called the
tile height. By and B; are called the tile size collectively. These parameters are used to define the
bounds of the tile-controlling loops. For reference, Table 1 lists all the symbols used in this paper
and their brief descriptions.

For simplicity, we assume all arrays are of two dimensions with the same column sizes. (We
assume column-major storage.) Lower dimension variables can be ignored due to their lesser impact
on cache misses in relaxation programs which we are interested in. Let n, be the number of two
dimensional arrays for the given tiled loop nest. Within the innermost loop I;, 1 €% < m, of the
untiled program in Figure 2(a), we assume array subscript patterns of Ax(f;+e,J;+b), 1 <k < n,,
where ¢ and b are known integer constants.

2.2 Memory Hierarchy

The memory hierarchy includes registers, cache memories at one or more levels, the main memory
and the secondary storage, as well as the TLB [7].
The TLB translates a virtual address into a physical address. The TLB has two key parameters,




Table 1: Description of symbols

Sy mbol Description Symbal | Doscription
¥y ‘The minimum lower bound of all J; loopsa 12 The maximnum upper bound of all J; loops
n ‘The minimpm lower boung of atl J; loops N2 The moximum upper bound of all J; [oaps
E3Y The skewing lactor tar J; loops Sa Tho skowing lactor for J; loope
By The tile width B, The L1l height
n, The number of arrays in the given loop neat N ‘The array colump gizo
T 7 -+l n 2~ +1
Te The number of ‘I'LY ohtrics Ty The numbar of dntla elemmenls each TLD enlry can represent
[« The L1 cache xize 1n the number of dnla elemonta Cyy “The L) cache line size in the number of doin alements
Cay The L1 cache set associntivity Cpz The L2 cachn sizg in tho numbor of date cleinents
Ca2 ‘I'he L2 cache set asspcintivity Cra The L2 eache lino sizo in the number of data claments
T The TLP size in the number of deta elements r Defined in Section 3
F3) ‘I'hvo L1 cache mitd penally P3 ‘The L2 cache misa penalry
T Theo arrhy {ootprint widih conslraiocd by tho TLB {eee Scction 4.2,3)
n The zum ol the slotic number of instructions for the computnlion of vl the §; Isop bounds
N The sum of the static number of tnsiruclions in the Z; Joop bedics
n3 The sum_of the siarle number of inastruciions computlng the J; loop boonds
ng The sum ol the dynomic number of load instructiont in the prologues and tho apilogues of all software-pinolined J; loops
ng The sum of the number of load insiruclipng divided by Lhe unroll factor it the soliwere-pipelined loap badies
So the ileration apace defined by 73 < Ji € 72 and 11 < I: < ng in Figure 2{8)

ITMAX "} The maximum indow value for the tile-aweaping loop
W Thae working-net size of the loap nost {Figure 2{a}) in the numbor of dotn clempnts

namely the block count T, and the block size Ty. We call T; = T,.T} the TLB size. In this paper, T}
is the size of the virtual memory represented by each TLB entry in the number of data elements.
We assume a fully-associative TLB with an LRU replacement policy.

For simplicity of presentation, we consider two levels of caches in this paper, namely the L1
and L2 caches, which are common in current practice. The L1 cache has several paramecters,
namely the cache size Cs, the cache block size Cpy and the set assoctativity Co1. Cs1 and O,
are measured in the number of data elements. Similarly for L2 cache, the cache size, cache block
size and set associativity are Cio, Cpz and C,g respectively. The cache misses can be divided into
three classes [7]: compulsory misses, capacity misses and conflict misses. Conflict misses can be
attributed to self-interference misses of the same array and to cross-interference misses between
different arrays.

3 A Memory Cost Model

In this section, we want to estimate the number of cache misses incurred by executing the loop nest
in our program model after tiling.

Let S, represent the iteration space defined by v < J; < v and 71 € I; < 12 in Figure 2(a). (For
simplicity, we also regard S, as the original iteration space defined by J; and I; loops in Figure 2(a),
as if all .7; loops have the same loop bounds and all ¥; loops have the saine loop bounds.) S, is
illustrated in Figure 3(a} by the rectangle enclosed by the solid lines with the height % and the
width . Within each tile traversal, we define the base tile to be a tile with 7 = 1 and an advenced
tile to be a tile with T > 1. The dashed-lines in Figure 3(a) separate the base tiles of different
tile traversals. The two shaded areas illustrate two different tile traversals, {1 and £2, where each
shaded rectangle with solid-line boundaries represents an advanced tile. When the tile-sweeping
loop T increases the index by 1, the tiles can only overlap partially.

The cache misses incurred by one tile traversal can be partitioned into those within the base tile
and those within the advanced tiles. Note that only those base tiles and advanced tiles overlapping
with S, will be executed, thus only they can contribute to the cache misses. In Figure 3(a), the
base tile in the tile traversal ££1 resides outside S,, while the base tile in 22 resides within S;.

‘We make the following two assumption in our estimation of the number of cache misses:

» Assumption 1: There exist no cache reuse between different tile traversals.
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Figure 3: Illustration of tile traversal

e Assumption 2: B) ««yand B <« (ITMAX-1)* 5.

Assumption 1 is reasonable if ITMAX is large, since it will be very likely for a tile traversal to
overwrite cache lines whose old data could have been reused in the next tile traversal. Assumption 2
is reasonable because a large B; can easily cause an overflow in the TLB. As explained later in
Section 4, our algorithm poses a constraint on By such that TLB should not overflow. If the tile
size (B, Bz) is chosen properly, there should be exactly one cache miss for each cache line accessed
within a tile traversal. To be more specific, the following two properties should hold:

» Property 1: No capacity and self-interference misses are generated within a tile traversal.
s Property 2: No cross-interference misses are generated within a tile traversal.

In Section 4.2, we shall discuss how to preserve the above properties. For now, we assume they
hold.

We first show how to compute the number of 1.1 cache misses caused by an advanced tile. Let
W represent the size of the data sef accessed by the ariginal loop nest in terms of the number of
data elements. The average gize of the data accessed by one tile is estimaled to be D = ITV * By Ba.
Figure 3(b) shows two consecutive tiles, {3 and it4, within a tile traversal, assuming tlllat both
tiles reside within §,. The iteration subspace of it is produced by shifting the iteration subspace
of 13 upwards by 5, iterations and to the left by S5; iterations. The L1 cache misses in #£4
either occur in Region ABCD or in Region DEFG. The total estimated L1 cache misses equal to
(S1B2 + 5281 — 5189) * ;"%: (This estimate may not be exact because data accessed at the lower
border of Region DEFG may or may not be in the cache already.)

We then show how to accumulate the pumber of 1.1 cache misses for all the tile traversals with
the same JJ value. Figure 3(c) illustrates the idea. For a particular JJ value, let t;, #2, t3 and ¢4 be
the base tiles of four tile traversals, and let ¢}, 5, t3 and #} be the corresponding advanced tiles when
T increases by 1. In this particular iHustration, the number of L1 cache misses caused collectively
by #; (1 < 2 < 4) equals to the sum of the number of L1 cache misses caused by each individual
t;, that is, %' Note that only the tiles overlapping with S, can contribute to L1 cache misses.
Stmilarly, the number of L1 cache misses caused by the advanced tiles ¢ (1 <7 < 4) equal to the
sum of the number of L1 cache misses caused by individual ¢}, that is, ft.t—‘: +2(B) — 5;)82 * %W?IT
In general, the number of L1 cache misses cansed by the advanced tiles with the same J.J value
equal to glc% +7(B; — 851)52 % ,”;'TVM, where 7 is the number of base tiles in S, for a particular JJ
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Figure 4: Calculating cache misses under different scenarios

estimated as
;e [‘—5'};] if 1 < By <n+ 8 * (ITMAX-1)
10 if By =n+ 82 * (ITMAX-1)

The value 5 + Sy * (ITMAX-1} is the maximum height of the iteration space after tiling. Any B>

value greater than or equal to 77 + Sy * (ITMAX-1) results in no tiling at the I; loop level.

With Assumptions 1 and 2, we can then accumulate L1 cache misses corresponding to different

JJ values by considering three different cases:

s Case 1: v= (ITMAX-1)+5;.

This case is illustrated by Figure 4(a). In this case, the tile traversals defined by JJ <
7 + 7 — NSTEP will not execute to the I[TMAXth T-iteration. The tile traversal defined
by 11 + v — NSTEP < JJ < 7 + 7 is the first to reach the ITMAXth T-iteration. The tile
traversals defined by JJ > « +-y will start executing at 7" > 1. During the execution, the tile
traversals defined by JJ = 7 will incur L1 cache misses of WZ& The tile traversals defined

by JJ =, + By will incur 1.1 cache misses of 2+ WB * 2+ 7(By ~ 51)}52 * [ '|
we have the following:

'mC

. Hence,

— The L1 cache misses in all the tile traversals deﬁned by JJ <y — B; amount to ﬂ/—& *

(L4244 T2 + 7(By - 8082w B M s (L 2+ [352).

'VTJC 1

- The L1 cache misses in all the tile traversals defined by 5 — Bl < JJ € v amount to

225 [ + 7(B1 — 51)S2 + 81 % o+ [154].

— The L1 cache misses in all the tile traversals defined by 2 < JJ amount to %V(—;% * (14

24+ IR+ 7B~ S1)Ser Ba B s (1424 ..+ [2RY),

1mCey

Adding up the three numberxs of the above, the total L1 cache misses in the tiled loop nest

. w >
approximate tv%l * T;T + ok %
s Case 2: v < (ITMAX-1)*51.

This case is illustrated by Figure 4(b). Similar to the computation in Case 1, we have the

following;:

— The L1 cache misses in all the tile traversals defined by JJ < -y amount to 252+ ,ch * (1 4+

24 o [ + (B - S1)Se+ Box s (1424 + [2521)).

— The L1 cache misses in all the tile tra.versa.ls defined by 7, < JJ < (ITMAX—I) *+ By +

r(fTMAﬁ-I}tsl—‘T'l + ’T(Bl SL)SZ * =L 5 w

711 amount to -2t '705 [ ] v ¥ ey *

[ (ITMAX—I Jusy =

B

« g1~



— The L1 cache misses in all the tile traversals defined by (ITMAX-1)* By + 7 < JJ
amount to %*(1’*'2’*‘"""[%]) + 7(31—51)52*33;11*%1—*(1+2+...+ [%i])

Adding up the three numbers of the above, the total L1 cache misses in the tiled loop nest
w5 (ITMAX-1) 4 ws; (ITMAX-1)-

approximate Cor Br e

o Case 3: v > (ITMAX-1)5,.
Similar to Case 2, the total L1 cache misses in the tiled loop nest approximate w5 (’g?gthj)
4 WS (ITMAX-1)~

nChp

Combining the above three cases and plugging in the estimate of 7, the total number of L1 cache

misses is approximately
WS (ITMAX-1) N W S, (ITMAX-1)

1

Cr1 B Cpy B2 W

Similarly, with Properties 1 and 2 standing, the number of .2 cache misses for 2-D tiling is
approximately

WS (ITMAX-1) 4 WSZ(ITMAX-I)_ )
CizB1 Cra B
With 1-D tiling (in Figure 2(c)), the L1 cache temporal locality is not exploited across the T-loop
iterations. The number of L1 cache misses is approximately

mAxs X (3)
Cn

The total number of cache misses for the L2 cache is approximately

WS, (ITMAX-1)
Cpe B ’

(4)

4 Tile-Size Selection

In this section, we first present an execution cost model for tiling with a given tile size, based on
both the number of cache misses and the loop overhead. We then present cur tile-size selection
algorithm, followed by a running example to go through our algorithm.

4.1 An Execuntion Cost Model for Tiling

Loop tiling introduces loop overhead. To decide between 1-D tiling and 2-D tiling, the overhead of
the tiled I; loops in Figure 2(c) needs to be measured. Let n; be the sum of the static number of
instructions for the computation of all the I; loop bounds (1 < z < m). The I; loop overhead due
to 2-D tiling in terms of the dynamic count of instructions, is measured approximately by

' ITMAX+v+n

5 (5)

m

Let na be the sum of the static number of instructions in the f; {1 <7 < m} loop bodies. The
dynamic instruction count for the I; loop bodies is

ng ¥ ITMAX * v x 1. (6)



From (5) and (6), if »; and ny are approximately equal, then a small By will introduce large
loop overhead. Let ng be sum of the static number of instructions for the computation of all the
J; loap bounds (1 < ¢ < m). The loop overhead due to tiled J; loops can be measured by

ITMAX
ng+ AT )
B,

Enabled by scalar replacement [2], in a software-pipelined loop [1], loaded data can be reused
in different iterations. The dynamic count of load instructions can hence be reduced. Let n4 be
the sum of the dynamic count of load instructions in the prologues and the epilogues of all the
software-pipelined loops. Let ns be the sum of the number of load instructions divided by the
unroll factor in the software-pipelined loop bodies. The unroll factor is one if the loop is not
unrolied. The dynamic count of load imstruction with 1-D tiling is approximately

(ra + nsy)n = ITMAX. (8)
With 2-D tiling, the dynamic count of load instructions is approximately

(n4 +nsBa) + -‘3—2 w7 % ITMAX = (n4312 + ngy)n * ITMAX. (9)

Clearly, if n4 1s significantly greater than ns and Bs is small, then the dynamic count of load
instructions with 2-D tiling can be much greater than that with 1-D tiling,.

Let py be the penalty for an L1 cache miss and p» be the penalty for an L2 cache miss. By
adding the penalty due to L1 cache misses in Formula (3}, the penalty due to L2 cache misses in
Formula (4), the loop overhead due to tiled J; loops in Formula (7), and the dynamic count of load
instructions for software-pipelined innermost loops in Formula (8), we can model the execution cost
for 1-D tiling by .

W S1 (ITMAX-1)
Cpa B,

ITMAX x v
B,

p1 + (ITMAX + c% )+ P2 ( )+ 723 + (g + nsy) + ITMAX.  (10)

In the above formula, we assume the latency of one unit of time for each instruction, including a
load instruction. From (10}, with 1-D tiling, we want to maximize B) (subject to Properties 1 and
2 aforementioned) such that the number of L2 cache misses is minimized. By adding the penalty
due to L1 cache misses in Formula (1), the penalty due to L2 cache misses in Formula (2}, the
dynamic count of load instructions for software-pipelined innermost loops in Formula [9), the loop
overhead due to tiled J; loops in Formula (7), and the loop overhead due to the tiled innermost
loop in Formula (5), the execution cost for 2-D tiling can be modeled by

ws, (ITMAX-1 ws (ITMAX-1 ws (ITMAX-1 wS{ITMAX-1
1* ( !(CUB! ) + 2(C;,,B2 )) +p2* ( l(CbQBl ) + (CbQB'Z ))

ITMAX +y*7 ITMAX » v
* +n3
Bg Bl

+n)

+ (m—;—- + nsy)n+ ITMAX. (11)
2

4.2 Tile-Size Selection Algorithm

In this section, we first discuss how to preserve Properties 1 and 2. We then present our tile-size
selection algorithm.
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Figure 5: Procedure EnumFPSize and an illustration of utilizing portions of the cache by a single
tile

4.2.1 Preserving Property 1

First, we discuss how to eliminate self-interference misses within a single tile. For any array A4;, let
R be the minimum rectangular array region which contains all the A; elements referenced within
a tile ¢. We say that A;’s footprint size within tile ¢ is (F, F»), where F} and F are the numbers
of columns and rows in R respectively. We call Fy (Fy) the array footprint width (height) for A;
within tile t. Reversely, given a footprint size of A;, the tile size can also be computed. Given
the subscript patterns and the loop bounds, such a computation is straightforward and we omit
the details. For the example of SOR (Figure 1(c)), assuming the array footprint size for A to be
(1, 52), the doop tile size should be {x; —2, k2 — 2). For array A;, if the footprint height F, is greater
than the distance between the locations of two columns in the cache, then the columns accessed
within the tile will conflict in the cache, creating self-interference misses [3]. More precisely, we
have the following lemma:

Lemma 1 Given array footprint size (I, Fp) for any A; (1 €7 < n,), a cache of size C; and cache
line size Oy, if there exist no self-interference misses, then the distance between the starting cache
locations of any two columns of A; within F| consecutive columns is either no smaller than F, or
no greater than C; — F,. Conversely, there exist no self-interference misses if the distance between
the starting cache locations of any twe columns of A; within F] consecutive columns is either no
smaller than F; + C} — 1, or no greater than C; — Fp — Cp + 1.

Proof Obvious. ¢

Given a directly-mapped cache of size C; and cache line size Cp, and given an array column size
N, procedure EnumFPSize in Figure 5(a) enumerates all the footprint sizes (¥}, F3) which incur
no self-interference misses, according to Lemma 1. We say that a footprint size (Fy, Fy) of A; is
mazimal if increasing either F; or F, will introduce self-interference misses for A;. In general, the
maximal footprint size for array A; is not unique. According to EnumFPSize, the maximal footprint
sizes for all arrays are the same if they have the same array column sizes. Our tile-size selection
scheme will enumerate all array footprint sizes which are free of self-interference misses until the
sizes become maximal. The scheme estimates and compares the execution cost for different (5, F)
in order to get the optimal tile size.

Next, suppose the cache is not directly-mapped, and assume an LRU replacement policy.
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Figure 6: An illustration of padding to eliminate cross-interferences

We show that the parameter C; in procedure EnumFPSize should not be the whole cache size.
Otherwise, self-interference misses will occur when the execution proceeds from one tile to the
next. For clarity, instead of arguing formally for the general cases, we illustrate the cases of 2-way
and fully-associative caches. Figure 5{b) shows two consecutive tiles ¢ and 2. Suppose C, equals
the whole cache size in procedure EnumFPSize and suppose the footprint size of 21 is maximal.
Tile ¢1 accesses the cache from the least-recently referenced data segment to the most-recently
referenced data segment in the memory, in the order of D1, P2, D3 and D4 which are separated by
solid lines. If the cache associativity is C,p; = 2, then D2 and D4 will map to the same cache sets.
The data accessed in the blank rectangle A will replace segment D2. If the cache is fully associative,
D1 will be replaced. However, part of the old data in segment D2 {or DI) could have been reused
by tile £2. Omne solution to avoid the replacement of useful data is to reduce the footprint size
within 27 such that only a portion of the cache is used to compute the maximal footprint size in
BnumFPSize. Figure 5{c) shows the case for two-way set-associative cache. In this way, the data
accessed in Regions A and C will replace the cache segment D2 and part of segment DI, whose old
data are pot reused by £2. The reusable data in D3 will be kept in the cache. Using the above idea,
we let Oy = Qg{:—ICM in procedure EnumFPSize, for 2-way and fully-asscciative caches. The cases
of other associativities are more complex, and they will not be discussed in this paper.

To eliminate capacity misses, the footprint size of each array A4; can only be ([%J,Fg), a
fraction of (#1,Fy). Here, we choose to partition columns instead of rows, in order to preserve
spatial locality. Assume that (B?) ,B.g')), 1 <€ 7 < n,, is the tile size such that the footprint size
for array A; within a single tile is (I_-E:J,Fz). For 2-way and fully-associative caches, we choose

the tile size for the tiled loop as (B, Bp) = (mimBg‘), mimBé‘)), For directly-mapped caches, we
choose (B}, By) = (mimB§i) - Sy, mz'n;Bg} — 93). One can prove that for directly-mapped, 2-way
and fully-associative caches, Property 1 holds under the above treatment. For other set-associative
caches, procedure EnumFPSize needs to be revised.

4.2.2 Preserving Property 2

We apply inter-array padding to eliminate cross-interference misses within a tile traversal. For
simplicity of presentation, we assume that the array subscript patterns of one particular array A;
cover all the array subscript patterns for all the other arrays A;, ¢ # &. The discussion in this
section can be easily extended if such an assumption does not hold. Using inter-array padding, we
let the starting addresses for array A;{1 < 7 < n,) map to the same location in the cache as the
starting address of the ([ J (z—1))th column of array 4,. With such padding, cross-interference
misses are eliminated within a single tile between A; and A; (1 < 4,7 < na,1 # §).

When the execution goes from one tile to the next, if the cache is directly-mapped, the newly
accessed data for A; will map to cache locations previously uoused in the tile traversal. If the
cache is not directly-mapped, the newly accessed data for A; will map to cache locations which are
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Input: 83, 52, Cs1, Cal, Cp1, Cs2, Cs2, Chz, 11, N3, Ng, 225, Na, IV, o (sce Table 1).
Output: Tile size (B1, Ba) and the transformed array declaration.
Procedure:
if (Ca) = 1} then
ComputeTileSize-2D(Ca1 )
ComputeTileSize-1D(Cya)
else
ComputeTileSize-2D( Q&{f—l- Cs1)
Compu!eTi!cSizc-lD[géi:—‘C,g)
end if
Apply inter-array padding {see Section 4,2.2).
Return (B, Bz)-

Procedure ComputrTileSize-1D(C,)
/* (By,TB:2) is a temporary tile size. *f
Select the maximum tile width &« such that the foolprinil of one tile can fit in both the TLB and the L2 cache.
THB) ¢~ x— 8y, TBy « 5+ 52 « ITMAX-1)
Compute the execution cost, T'M, based on {10).
€ (TM < M) then By + THy, B2 + TB2, M «— TMeond if

Procedure CompuicTileSize-2D{(C,)
/* (TBy,TB2) is a temporary tile size. *f
M ¢ oo
for F3 +— Cbl to N do
Fl«1
t+— (FiL+ N)mod C,
while (F} <o or (Fa+Cp —1) £t L (Cy — F2 — Cpy + 1)) do
Convert array feotpriot size (Fy, F2) to loop tile size (T8, T'Ba) (scc Section 4.2.1).
if (Ca1 = 1) then TBy « TBy — 8,782 + TB2 — 52 end if
if (B) > D and T B2 > 0} then
Compute the execution cost, TM, based on (11).
if (TM < M) then By « TB),By + TB2,M +-TM end if
end if
e Ff+41
t e (FL*N)medC,
end while
end for

Figure 7: Tile-size selection algorithm - STS

either previously unused or will not be referenced again within the current traversal. Therefore,
cross-interference misses are also eliminated within a tile traversal. Figure 6 illustrates an example
for F} = 4 and n, = 2, where the cache is directly mapped. Here, assuming the starting address for
array Aj to be 0, the padded number of data items, =, between arrays A; and A, can be determined
from

(size(A1) + ) = (2% N), mod Cq. (12)

We are ready to present our tile-size selection algorithm in the next section.

4.2.3 Algorithm STS

Algorithm 575 in Figure 7 selects the tile size by interleaving the operations in procedure EnumFP-
Size with the applications of Formulas (10) and (11) which compute the execution cost. We require
Bs to be no smaller than the cache line size Cy;. However, we do not require By to be a multiple
of Cyy, since such a requirement does not have much benefit when execution proceeds from one tile
to the next. In addition to the conditions stated in procedure EFnumFPSize, the array footprint
widih 7 should be no greater than o, which is the total number of array columns representable
by the TLB minus the number of newly accessed array columns when the execution proceeds from
one tile to the next.
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STS makes the decision between 1-D and 2-D tiling based on their execution cost. For 1-D tiling,
ComputeTileSize-1D tries to find tile width B) such that Properties 1 and 2 are preserved on the
L2 cache and that Formula (10) is minimized. For 2-D tiling, Compute TileSize-2D enumerates all
tile sizes which are free of self-interference misses. The tile size with the lowest execution cost is
selected. Between 1-D and 2-D tiling, the scheme with the lower execution cost is chosen.

STS needs a conversion from array footprint size (F1, Fo) to loop tile size (B, By), as stated in
Section 4.2.1. If the resulting tile width or tile height is nonpositive, 1-D tiling is chosen.

The complexity of STS is O(N * min(Cs1,0)) = O(No). (In practice, o is much smaller than
the L1 cache size C,1.}

4.3 A Running Example

We now take SOR (Figure 1) as an example to show how STS works, assuming the following
parameters: ¥ = 1000, ITMAX = 1050, C5; = 4096, Cy) = 4, Cay =2, Cs» = 12841024, Gy = 16,
Ca_g = 2, Tb = 4096 and Tc = 48, ny = 15, ng = 15, nq = 20, ns = 3, P = 6, and P2 = 30. Based on
the array subscripts and the loop bounds, we have 5y = 5; = 1,v =71 =999, W = N+ N = 1000000
and ¢ = 195.

In the following, we show the steps of STS.

» Since C; = 2, ComputeTileSize—BD(%L) is called, and we have By = 38, By = 43. The
execution cost for 2-D tiling is M = 4171464893 units based on Formula (11).

» ComputeTileSize-JD(%‘z) computes TB) = 63, TBy = 2048. The execution cost for 1-D
tiling is TM = 4764840588 units based on Formula (10). In this case, STS favors 2-D tiling
over 1-D tiling with the tile size (38,43).

¢ No inter-array padding is applied since n, = 1.

5 Related Work

5.1 Competing Tile-Size Selection Schemes

Chame and Moon present a tile size selection algorithm, called TLI, to simultaneously eliminate self-
interference misses and minimize the summation of capacity misses and cross-interference misses [3].
Coleman and McKinley provide a tile size selection algorithm, TSS, based on the cache organization
and the data layout [4]. TSS utilizes a ged algorithm to exploit maximum cache utilization while
eliminating all self-interference misses. Rivera and Tseng present a variation of T'SS algorithm [16].
Lam e! al. provide a tile size selection scheme, LRW, which tries to select a square tile size to
climinate the capacity and self-interference misses for a dominant array [9]. Panda et al present
DAT, which always chooses square tile sizes and tries to minimize the interferences by padding [13].
Unlike the work in this paper, these tile-size selection algorithms do not consider the effect of loop
skewing, nor do they take loop overhead into account.

5.2 Other Related Work

Ghosh et al. estimate cache misses, given a tile size, for a perfect loop nest [6]. They also informally
discuss a tile-size selection scheme using matrix multiplication as the example. No formal algorithm
is presented, however. They do not discuss the estimation of cache misses for imperfectly-nested
loops. Therefore, we are not able to compare with their method in our experiments.
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Table 2: Machine parameters

Processors | Csy | Cpy | Cat | Coz | Coz [ Ca2 | Te | I | 11 | P2
Ultra 11 ZK 2 1 256K a 1 64 [ 1K [ 45
R10K 4K 4 2 312K 16 2 64 | 4K 9 €8

Ferrante ef al. present an algorithm to estimate the number of distinct cache lines over a perfect
loop nest [5]. Temam et al. derive an analytical method to estimate the number of self-interference
misses [19]. Mckinley ef al. present a simple cost model to estimate the number of cache misses [11].
These methods do not consider the effect of loop skewing,

Rivera and Tseng present several padding algorithms to eliminate cache conflict misses [15, 16).
Manjikian and Abdelrahman use cache partitioning to scatter arrays evenly in the cache, such that
cross-interference misses are minimized [10]. We use a different padding scheme which seems more
suitable for our algorithm.

6 Experimental Evaluation

We apply our tile-size selection algorithm STS to three numerical kernels, SOR, Jacobi and Liver-
more Loop No. 18 (LL18), and two SPEC benchmarks, tomcatv and swim. We use reference inputs
for tomcatv and swim. For SOR, Jacobi and LL18, we declare N X N double precision arrays, with
randomly chosen N based on a random number generator [14] with the following formula

Zny1 = {(16807z,) mod 2147483647. (13)

Assuming that the array sizes under consideration range from rg to 7;, we select 200 array sizes,
ay,, such that
an = 7o+ (Zn mod (r; — T{])),l <n <200 (14)

We use z; = 9 in all our experiments. Note that it would be too time-consnming to exhaustly test
all array sizes within the range in our experiments.

We run the test programs on a SUN Ultra II uniprocessor workstation and on one MIPS
RI10K processor of an SGI Origin 2000 multiprocessor, with the tile sizes selected by five dif-
ferent algorithms, namely, STS, TLI (3], TSS [4], LRW [9] and DAT [13]. In order to handle
several equally-important arrays, we make an obviously necessary modification on the original
TSS and LRW algorithms such that the value of the initial tile size will meet the working set
constraint. We also modify the TLI algorithm such that only the cache size divided by the number
of equally-important arrays is used to compute the tile sizes which are free of self-interference
misses. If any algorithm decides to choose the whole array column as the tile height, then we let
By =5+ Sy % (ITMAX-1) and tile the J; loops only (Figure 2(b)).

Table 2 lists the machine parameters for the Ultra II and the R10K, assuming the size of an
array element of 8 bytes. To accoramodate the competition between instructions and data in the
L2 cache both on the Ultra II and on the R10K, we only tries to utilize 95% of the total 1.2 cache
capacity. We use the machine counters on the R10K and the Ultra IT to measure the cache miss
rate. Currently, we obtain the values of n), n3, 74 and ns by examining the assembly code of the
original program. A backend compiler can easily obtain such numbers.

On the R10K, the untiled codes are compiled using the native compiler with the “-03” opti-
mization switch set. On the R10K, we found that compiling the tiled code with the “-02” switch
can sometimes run faster than that with the “-O3” switch, regardless of the tile-size selection
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Figure 9: L1 cache miss rate of SOR for various schemes on the Ultra I1

schemes. Therefore, we compile the tiled code with “-02” or “-03” depending on which produces
shorter execution time. For all the tile-size selection schemes, we switch off loop tiling for the native
compiler on the R10K when we compile the tiled source programs (with for both 1-D and 2-D tiling).
We switch off prefetching on the R10IKK when we compile 2-D tiled source codes since prefetching
may increase cross-interference misses for smaller tile height Bs. We also switch off common block
reorganization since the tile size selection algorithms already take care of memory layout. On the
Ultra I1, both the untiled and the tiled codes are cormpiled using the native compiler with the
“fast -xchip=ultra2 -xarch=v8plusa -fsimple=2" optimization switch, which is recommended by
the vendor.

The SOR kernel

We fix ITMAX to 1050 and randomly choose 200 array sizes ranging from 200 to 2000, i.e., (rp,71) =
(200, 2000) in Equation (14). The skewing factors are $} = Sp = 1. We have n; =n3 =11, nq =9
and ny = 3 on the R10K and n) = n3 = 22, ny = 34, ns = 4 on the Ultra I1. Table 3 summarizes the
average speedup by STS over other schemes, average L1 and L2 cache miss rates for SOR on both
the Ultra II and the R10K. The execution time is averaged by geometric mean, and the cache miss
rates are averaged by arithmetic mean of cache miss rates for individual array size. Specifically,
Figures 8 and 11 show the execution time for various schemes on the Ultra II and on the R10K
respectively. Figures 9 and 10 show the L1 cache and L2 cache miss rates respectively on the Ultra
I1. Figures 12 and 13 show the L1 cache and L2 cache miss rates respectively on the R10K.
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Table 3: Speedup by STS and average cache miss rates for different schemes for SOR

Ultra 11 ORG | LRW | TSS TLI1 STS | DAT
Average' Speedup by STS | 1.10 1.06 1.34 1.03 1.00 1.10
L1 Miss Rate 0.14 0.02 0.07 0.03 0.02 0.06
L2 Miss Rate 0.066 | 0.006 | 0.008 | 0.005 | 0.006 | 0.008
R10K ORG | LRW | TSS TLI STS | DAT
Average Speedup by STS | 1.26 0.95 1.06 0.98 1.00 0.97
L1 Miss Rate 0.113 § 0.066 | 0.024 | 0.012 | 0.00B | 0.031
L2 Mias Rate 0.116 | 0.057 | 0.030 | 0.031 | 0.085 | 0.007
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Figure 19: L2 cache miss rate of Jacobi for various schemes on the R10K

The Jacobi Kernel

We fix ITMAX to 500 and randomly choose 200 array sizes ranging from 200 to 2000. The skewing
factors are S; = Sy = 1. We bave ) = n3 = 17, nqy = 28 and ns = 10 on the R10K and
) = ng = 28, nq = 24, ng = 3 on the Ultra II. Table 4 shows the average speedup by STS, average
L1 and L2 cache miss rates for Jacobi on both the Ultra IT and the R10K. Specifically, Figures 14
and 17 show the execution time of Jacobi for various schemes on the Ulira IT and on the RI0K
respectively. Figures 16 and 16 show the L1 cache and L2 cache miss rates respectively on the
Ultra II. Figures 18 and 19 show the L1 cache and L2 cache miss rates respectively on the R10K.
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Figure 20: Execution time of LL18 for various schemes on the Ultra II
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Table 4: Speedup by STS and average cache miss rates for different schemes for Jacobi

Ultra 11 ORG | LRW | TSS TL1 5TS [ DAT
Speedup by STS | 5.40 1.39 217 1.28 1.00 1.10
L1 Miss Rate 0.60 0.12 0.24 0.24 0.06 0.19
L2 Miss Rate 0.15 0.02 0.02 0.01 0-02 0.01

R10K ORG | LRW | TSS TLI STS [ DAT
Speedup by STS | 5.46 0.98 1.21 1.15 1.00 0.9Y
L1 Miss Rate 0.234 | D.022 | 0.062 | D.144 | 0.038 | 0.082
L2 Miss Rate 0.169 | 0.066 | 0.043 | 0.006 | D.104 } 0.010
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Figure 24: L1 cache miss rate of LL18 for various schemes on the R10K

the LL18 Kernel

LL18 has 9 arrays, and the tiled version has 11 arrays after duplicating ZR and ZZ. Due to the
relatively large number of arrays, the array sizes we used in SOR will produce extremely small
tile sizes for all the tile-size selection schemes. Therefore, we reduce the array sizes and randomly
choose 200 array sizes ranging from 200 to 500. We fix ITMAX to 300. The skewing factors are
S; = S = 2. We have n) = ng = 75, ng = 100 and ns = 35 on the R10K and n»y = n3 = 87,
n4 = 14, ng = 8 on the Ultra II. Table 5 shows the average speedup by STS, average L1 and
L2 cache miss rates for LL18 on both the Ulira II and the R10K. Specifically, Figures 20 and 23
show the execution time of LL18 for various schemes on the Ultra II and on the R10K respectively.
Figures 21 and 22 show the L1 cache and L2 cache miss rates respectively on the Ultra II. Figures 24
and 25 show the L1 cache and 1.2 cache miss rates respectively on the R10K. Out of 200 cases,
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Figure 25: L2 cache miss rate of LLI8 for various schemes on the R10K
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Table 5: Speedup by STS and average cache miss rates for different schemes for LL18

Ultra iI' ORG | LRW | TS5 TLI STS | DAT
Speedup by STS | 1.89 2.92 2.54 1.86 1.00 2.11
L1 Miss Rale 0.435 | 0.217 | 0.284 | 0.326 j 0.469 | D.208
L2 Miss Rate D.112 | 9.037 [ 0.056 | 0.019 ) 0.018 | 0.021
R10K ORG | LRW | TSS TLI STS | DAT
Speedup by 5TS | 1.72 1.98 1.98 1.62 1.00 1.69
L1 Miss Rate 0.173 | 0072 | 0.096 | 0.122 | 0.217 | D.066
L2 Miss Rate D.128 | 0.04% [ 0.075 | 0.010 | 0.005 | 0.026
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Figure 26: Performance of tomcatv with different tile sizes on the Ultra 11

STS chooses 1-D tiling on 186 cases on the Ultra II and on all 200 cases on the R10K. All the
other tiling schemes either choose 2-D tiling or no tiling if they fail to generate the legal tile sizes.
Figures 20 and 23 indirectly show that STS can make correct selection between 1-D tiling and 2-D
tiling.

tomcatv

tomcatv can only be tiled with one dimension [18], hence only STS can be applied for tile-size
selection. We use two different reference inputs from SPECS2 and SPECS5 respectively. To verify
whether STS produces nearly the best results, we run through a range of tile sizes, from 2 to twice
of the size selected by STS, for each version of tomcatv. Figures 26(a) and {b) show the results
on the Ultra II, where the vertical bar indicates the tile size selected by the STS. The original
programs from SPEC92 and SPECS5 run 5 and 174 seconds respectively on the Ultra 11, and 4.0
and 115.0 seconds respectively on the R10K. Figures 28(a) and (b) show the results on the R10K.
STS chooses the near optimal tile sizes for both versions of the codes on both machines. To examine
how padding will affect the STS, we also run both versions of tomcatv on both machines without
padding applied. Figures 27(a) and (b) show the results on the Ulira II, and Figures 29(a) and
(b) show the results on the R10K. Except few cases, padded version runs significantly faster than
unpadded version, which demonstrates the effectiveness of padding for STS.

swim

Similar to tomcatv, swim is tiled only with one dimension. We use three different reference inputs
from SPEC92, SPECY95 and SPEC2000 respectively. Similar to tomcaty, we choose the tile sizes
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Table 6: Summary of speedup of STS over other schemes

ORG | LRW | TSS | TLI | DAT
Ultrall | 2.24 163 | 1.95 | 1.37 | 1.37
RIDK 2,28 124 | 136 | 1.22 | 117
Both 2.26 142 [ 163 | 1.29 | 1.27

from 2 to twice of the size selected by STS for each version of swim. The original programs from
SPECS2, SPEC95 and SPEC2000 run 36, 157 and 930 seconds respectively on the Ulira II, and
21.2, 91.9 and 619.5 seconds respectively on the R10K. Figures 30(a), (b) and (c) show the results
on the Ultra II, and Figures 32(a}, (b) and (c) show the results on the R10K. STS chooses the
near optimal tile sizes for all versions of the codes on both machines. Figures 31(a), (b) and (c)
show the results on the Ultra II for unpadded versions of swim, and Figures 33(a), (b) and (c) show
the results on the R10K. Similar to tomcatv, padded version runs faster than unpadded version in
most cases for SPECY2 and SPECY5. Note that on the Ultra II, the TLB size is smaller than the
L2 cache size, hence STS will result in an underutilization of L2 cache. For SPEC2000, however,
such an underutilization seems a negative effect on performance.

6.1 Discussion

In summary, Table 6 shows the speedup by STS over all the other schemes for all 600 cases for
SOR, Jacobi and LL18, where “Both” stands for both the Ultra IT and the R10K.

One interesting point is related with LRW. Considering the combination of each benchmark
(SOR, Jacobi and LL18) and cach machine (Ultra II and R10K), LRW produces equal or smaller
average L1l cache misses in 5 out of 6 combinations compared with STS. However, this does not
trauslate into large performance saving. (The worst average speed ratio of STS over LRW is 0.98.)
We found that in general LRW produces smaller tile sizes than STS, which potentially introduces
more loop overhead. For LL18, LRW has greater average L2 cache miss rates than STS since STS
exploits locality for L2 cache in most of cases due to large number of arrays.

7 Conclusion

In this paper, we present a memory cost mode] to predict the cache misses after skewed tiling. Fur-
ther, we model the execution cost by considering both the cache misses and the loop overhead, based
on which we make a decision between tiling one loop level vs. two loop levels. We present Algorithm
STS, which selects the tile size such that the capacity misses and self-interference misses within a
tile traversal are eliminated. STS uses inter-array padding to eliminate cross-interference misses.
We also compare STS with four previous algorithms, TLI, TSS, LRW and DAT. Experiments show
that STS achieves an average speedup of 1.27 to 1.63 over all the other four algorithms. We have
previously implemented a cost model along with a number of tiling algorithms [18]. However, we
are yet to implement the cost model presented in this paper. Ideally, our cost model should be
incorporated in a backend compiler, which will be our future work.
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