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Abstract 

Tile-size selection is known to be a complex problem. Thjs paper develops a new selecbion 
algorithm. Unlike previous algorithms, this new algorithm considers the effect of loop skewing 
on cache miss-. It also estimates loop overhead and incorporates them into the execution 
cost model, which turns out to be critical to the decision between tiling a single loop level vs. 
tiling two loop levels. Our preliminary experimental results sliow a significant impact of these 
pre\lously ignored issues on the execution time of tiled loops. In our experiments, we measured 
the cache miss rate and the execution time of five benchmark programs on a single processor 
and we compared ow algorithm with previous algorithms. Our algorithm achieves an average 
speedup of 1.27 to 1.63 over all the other algorithms. 

1 Introduction 

Memory access latency has become the key pedormance bottleneck on modern ~nicroprocessors. In 
order to reduce the average memory reference latency, it is important to exploit data locality such 
that most memory references can be served by the fast memory, e.g. the cache, in the memory 
hierarchy. Tiling is a well-known compiler technique to enhance data locality such tbat more data 
can be  reused before they are repIaced from the cache (231. Tiling transforms a loop nest by 
combining strip-mining and loop interchange. Loop skewing and ioop ~eversa i  are often used to 
enable tiling 1201. Figure 1 shows SOR relaxation as an example. Figure l(a)  shows the original 
loop nest in SOR, and Figure l(b) shows the tiled SOR in which loop J is skewed with respect to 
loop T ,  and Figure l(c)  shows the tiled SOR in which loops J and I are skewed with respect to 
loop T. 

Much of previous work on tiling applies to perfectly-nested loops only (8, 20, 21, 231. Recently, 
we proposed a new technique to tile a class of imperfectly-nested loops [17, 181. Performance of 
a tiled loop nest can vary dramatically with different tile sizes [9]. Wow to select proper tile sizes 
is hence an important issue. In this paper, if loop skewing is applied before tiling, such a tiling 
is called skewed tiling. Non-skewed tiling results if loop skewing is not iiecessary for tiling. All 
previous work tacitIy assumes non-skewed tiling [4, 6, 9, 12, 16, 221. However, such an assumption 
may not be true, especially for loops which perform iterative relaxation computations [17, 181. 
Another importallt factor ignored in previous work is the loop overhead in terms of the increased 
illstruction counts due to the increased loop levels. Further, tiling a software-pipelined loop will also 

'This work is sponsored in part by National Science Foundation through grants CCR-9975309 and MIP-9610379, 
by Indiana 2lst Century Fund, by Purdue Rcscarch Foundation, and by a donation from Sun Microsystems, Inc. 
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Abstract

Tile-size selection is known to be a complex problem. This paper develops a new selection
algorithm. Unlike previous algorithms, this new algorithm considers the effect of loop skewing
on cache misses. It also estimates loop overhead and incorporates them into the execution
cost model, which turns out to be critical to the decision between tiling a single loop level vs.
tiling two loop levels. Our preliminary experimental results show a significant impact of these
previously ignored issues on the execution time of tiled loops. In our experiments, we measured
the cache miss rate and the execution time of five benchmark programs on a single processor
and we compared our algorithm with previous algorithms. Our algorithm achieves an average
speedup of 1.27 to 1.63 over all the other algorithms.

1 Introduction

Memory access latency has become the key pedormance bottleneck on modern microprocessors. In
order to reduce the average IDemory reference latency, it is important to exploit data locality such
that most memory references can be served by the fast memory, e.g. the cache, in the memory
hierarchy. Tiling is a well-known compiler technique to enhance data locality such that more data
can be reused before they are replaced from the cache [23]. Tiling transforms a loop nest by
combining strip-mining and loop interchange. Loop skewing and loop reversal are often used to
enable tiling [20]. Figure 1 shows SOR relaxation as an example. Figure 1(a) shows the original
loop nest in SOR, and Figure l(b) shows the tiled SOR in which loop J is skewed with respect to
loop T, and Figure l(c) shows the tiled SOR in which loops J and I are skewed with respect to
loop T.

Much of previous work on tiling applies to perfectly-nested loops only [8, 20, 21, 23J. Recently,
we proposed a new technique to tile a class of imperfectly-nested loops [17, 18J. Performance of
a tiled loop nest can vary dramatically with different tile sizes [9]. How to select proper tile sizes
is hence an important issue. In this paper, if loop skewing is applied before tiling, such a tiling
is called skewed tilin9. Non-skewed tiling results if loop skewing is not necessary for tiling. All
previous work tacitly assumes non-skewed tiling [4, 6, 9, 12, 16, 22J. However, such an assumption
may not be true, especially for loops which perform iterative relaxation computations [17, 18J.
Another important factor ignored in previous work is the loop overhead in terms of the increased
instruction counts due to the increased loop levels. Further, tiling a software-pipelined loop will also
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DO T = 1 ,  ITATAX 
DO J =  2 , N  - I 

DO I  = 2,  rY - I  
A ( 1 ,  J )  = 

(A(;, J )  + A(I  + 1. J )  + A(I  - 1, J )  
+ A ( ] ,  J + 1)  
+ A ( I , J - l J I / 5  

EXD DO 
END DO 

END DO 

-. 
r l ( l , J )  = A ( I , J )  + A ( !  + 1 . J )  + A(S - 1. J )  

+ A ( I . J  + 1)  + A ( I . J  - 1 ) ) / 5  
END DO 

EN]> DO 
E D N  DO 

END DO 

DO 11 = 2, n - 1 + I T S T A , ~ ,  Ej, 
DO T = 1,ITAfA.Y 

DO J = ma=(JJ-  T , 2 ) ,  
m;n(JJ - T + B r  - 1 , N  - 1)  

DO I  = m a ~ ( l l -  T, ?), 
min( l1 -  T + B1 - I ,  N - I )  

A ( I ,  3 )  = A ( 1 .  J ) +  A ( ] +  I .  J ) + A ( I  - 
+ A ( I , J + l ) +  A ( 1 . J  - 1))/5 

END DO 
END DO 
EDN DO 
END DO 

E N D  DO 

(a) Dcforc rranslorn~alioa (b) A l ~ c r  ~ h c w i n g  and ' I -D" riling ( c )  Allcr  .kcwing and '2-D" liling 

Figure 1: An example of tiling: SOR relaxation. 

increase the dynamic count of load instructions. In this paper, we shall show that these previously 
ignored factors can have a significant effect on tile-size selection. 

In our recent work [17], we present a memory cost model to estimate cache misses, assuming 
that only one loop level is tiled. In this paper, we present a more general scheme by considering 
two loop levels which may both be tiled. We present an algorithm to compute tile sizes such that 
during each tile traversal, capacity misses and self-interference misses are eliminated. Further, 
cross-interference misses are eliminated through array padding [15]. Given a tile size, we model the 
tiling cost based on both the number of cache misses and the loop overhead. To choose between 
tiling one loop level vs. tiling two loop levels, our algorithm cornputes their lowest costs and thc 
respective tile sizes. We then choose the tiling level, and the corresponding best tile size, which 
yields the lowest cost. One can easily extend our discussion to  higher loop levels, but such an 
extension does not seem useful for applications known to us. 

In this paper, we consider data locality and performance enhancement on a single processor 
whose memory hierarchy includes cache memories a t  one or more levels. We have applied our 
tile-size selection algorithm to fivehumerical kernels, SOR, Jacobi, Livermore Loop No. 15 (LL18), 
tomcatv and svim, using a range OF matrix sizes. We evaluate our algorithm on one processor of 
an  SGI multiprocessor and on a SUN uniprocessor workstation. We compare our algorithm with 
TLI [3], TSS [4], LRW [9] and DAT [13]. Experiments show that our algorithm achieves a average 
speedup of 1.27 to 1.63 over all these previous algorithms. 

In the rest of the paper, we first present a background in Section 2. We then present our memory 
cost model in Section 3. We model the execution time and present our tile-size selection algorithm 
in Section 4. We discuss related work in Section 5. In Section 6, we report experimental results 
and compare our algorithm with previous algorithms. Finally, we conclude in Section 7. 

2 Background 

In this section, we first define our program model and a few key parameters. We then discuss the 
issues of the memory hierarchy. 

2.1 Tiling 

Most of previous research on tiling addresses perfectly-nested loops only [8, 20, 21, 231. After 
tiling, the loops remain perfectly-nested. In our recent work [17, 181, we perform tiling on a class 
of imperfectly-nested loops. Figure 2(a) shows a representative loop nest before tiling, where the 
T-loop body consists of m perfectly-nested loops. The depth of each perfectly-nested inner loop is 
at least two. The loop bounds Lij and Ujj, 1 < i < m, j = 1,2, are T-invariant. We assume that the 

DO T = 1, ITMAX
DO J = 2,11' - I

DO I'" 2.l'l ~ I
AU,J)=

(A(I,J)
+ A(I + l,J)
+ A(I - 1, J)
+A(l,J+l)
+A(l,J-l))/~

END DO
END 00

~ND DO

(D.) DcfoJC tr:msro.rm:t.lioll

DO 11 = 2, N - I + lrUAX, B,
DO T = I.ITMA.V.

DO J = mD~(IJ - T, l},
min{JI- T+ BI -I,N-1)

DO l = 2. N - I
,1(1,1) = A(1,I) + AlE + 1,/) + A(I - 1,/)

+A(J, J + I) + A{1. J - 1))/5
END DO

EN!) DO
EON DO

END DO

DO JJ", 2, l'l - 1 + ITAlAX, BI
DO II = 2, N - 1 + ITMAX, 112

DO T '" 1, ITMAX
DO J = mD~(ll- T,2),

",;"(11- T+BJ - I,ll' -I}
DO I = mD~(II- T, 2),

m;n(//-T+B~ - 1,11' -I)
AU,J) '" A{1, I}+ A(J + I, J}+A(J -I, J)

+A(/,I + 1) + A(I.1 - 1»/5
END DO

END DO
£DN DO

ENDDO
END DO

(I:) AIl~r ~k['.wjng l:l.nd 1&2_D" Ljling
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Figure 1; An example of tiling: SOR relaxation.

increase the dynamic count of load instructions. In this paper, we shall show that these previously
ignored factors can have a significant effect on tile-size selection.

In our recent work [17], we present a memory cost model to estimate cache misses, assuming
that only one loop level is tiled. In this paper, we present a more general scheme by considering
two loop levels which may both be tiled. We present an algorithm to compute tile sizes such that
during each tile traversal, capacity misses and self-interference misses are eliminated. FUrther,
cross-interference misses are eliminated through array padding [15]. Given a tile size, we model the
tiling cost based on both the number of cache misses and the loop overhead. To choose between
tiling one loop level vs. tiling two loop levels, our algorithm computes their lowest costs and the
respective tile sizes. We then choose the tiling level, and the corresponding best tile size, which
yields the lowest cost. One can easily extend OUI discussion to higher loop levels, but such an
extension does not seem useful for applications known to us.

In this paper, we consider data locality and performance enhancement on a single processor
whose memory hierarchy includes cache memories at one or more levels. We have applied oUI
tile-size selection algorithm to five "numerical kernels, SOR, Jacobi, Livermore Loop No. 18 (LL18),
tomcatv and s'Jim, using a range of matrix sizes. We evaluate our algorithm on one processor of
an SGI multiprocessor and on a SUN uniprocessor workstation. We compare our algorithm with
TLI [31, TSS [4], LRW [9] and DAT [13]. Experiments show that our algorithm achieves a average
speedup of 1.27 to 1.63 over all these previous algorithms.

In the rest of the paper, we first present a background in Section 2. We then present our memory
cost model in Section 3. We model the execution time and present our tile-size selection algorithm
in Section 4. We discuss related work in Section 5. In Section 6, we report experimental results·
and compare our algorithm with previous algorithms. Finally, we conclude in Section 7.

2 Background

In this section, we first define our program model and a few key parameters. We then discuss the
issues of the memory hierarchy.

2.1 Tiling

Most of previous research on tiling addresses perfectly-nested loops only [8, 20, 21, 23J. After
tiling, the loops remain perfectly-nested. In our recent work [17, 18], we perform tiling on a class
of imperfectly-nested loops. Figure 2{a) shows a representative loop nest before tiling, where the
T-Ioop body consists of m perfectly-nested loops. The depth of each perfectly-nested inner loop is
at least two. The loop bounds Lij and Uij, 1 ::; i ::; m, j = 1,2, are T-invariant. We assume that the
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END DO 
END DO 
... 
DO Jm = Lm1,~ml 

DO Im = Lm2, Urn2 
. .. 

END 110 
END DO 

END DO 

DO J J  = 7 1 , ~ ~  + SI - ( I T M A X - I ) ,  8, 
D o  T = h (JJ).gl ( J 4  

DO J1 = L',,, U:, 
DO I1 = L11rU12 

. . .  
END DO 

END DO 
. . .  

. - .  
END DO 

EM) DO 
END DO 

END D O  

DO JJ = 7 1 , ~ ~  + SI - ( I T M A X - I ) ,  91 
DO Ir= ~ 1 ,  r ]2+52*(ITMAX- l ) ,  B 2  

D o  T = I?(JJ, I I ) , g z (JJ ,  IT) 
DO J1 = L:', , u;', 
DO 1,  = L;',,U;l 

. . .  
END DO 

END DO 
... 
DO Jm = Lk,,Uc, 

DO I* = LZ*, UE2 
~~~ 

END DO 
END DO 

END DO 
END DO 

END DO 

Figure 2: The program model before and after tiling 

iteration space determined by J and I remains unchanged over different T-loop index values. For 
simplicity of presentation, we also assume that cache-line spatial locality is already fully exploited 
in the innermost loops except on the loop boundaries- Figure 2(b) shows the code after tiling the 
J; loops only (I-D tiling), and Figure 2(c) shows the code after tiling both Ji and Ii loops (2-0 
tiling). In Figures 2(b) and 2(c), the iteration subspace defined by all Ji and Ii loops is called a tile. 
Loop T is called the tile-sweeping loop, and loops JJ and 11 are called the tile-conlrolling Ioops [20]. 
Each combination of JJ and II defines a tale traversal. Two tiles are said to be consecutiue within 
a tile traversal if the daerence of the corresponding T values equals 1. In this paper, we assume 
the data dependences permit both I-D and 2-D tiling. Choosing between 1-D vs. 2-D tiling will 
depend on the estimate of cache misses and loop overhead. As far as estimating cache misses is 
concerned,, 1-I) tiling can be viewed as a special case of 2-D tiling with the maximum tile height. 
However, 2-D tiling incurs higher loop overhead, which we want to take into account. 

Let 71 = min{Lil)l L i 5 m), 72 = mn{Uilll < i I m),  71 = min{Li211 I i _< m) and 
72 = mmaz{Uiz 11 5 i 5 m). We call Sl and S2 the skewing factors corresponding to Ji and li loops 
respectively. (The skewing factors are also called the slope in our previous work [17, 181.) If Sl = 0, 
then loop skewing is not applied before tiling at the Ji level. In this paper, we are interested only 
in skewed tiling at least at the Ji level, thus Sl > 0. B1 is called the file width and Bp is calIed the 
tile height. B1 and B2 are called the tile size collectively. These parameters are used to define the 
bounds of the tile-controlling loops. For reference, Table 1 lists all the symbols used in this paper 
and their brief descriptions. 

For simplicity, rve assume all arrays are of bvo dimensions with the same column sizes. (We 
assume column-major storage.) Lower dimension variables can be ignored due to their lesser impact 
on cache misses in relaxation programs which we are interested in. Let n, be the number of two 
dimensional arrays for the given tiled loop nest. Within the innermost Ioop Ii ,  1 5 i _< m, of the 
untiled program in Figure 2(a), we assume array subscript patterns of Ak(li +a ,  Ji + b ) ,  I 5 k < n,, 
where a and b are known integer constants. 

2.2 Memory Hierarchy 

The memory hierarchy includes registers, cache memories at one or more levels, the main memory 
and the secondary storage, as well as the TLB [7]. 

The TLB translates a virtual address into a physical address. Tl~e TLB has two key parameters, 

DO T= l,lTMAX
DO JI = LII,UII

DO It =L12, Un

END DO
END DO

DO 1m = LmJ,UmJ
DO 1m = L m., U"'2

END DO
END DO

END DO

(a)

DO JJ = 1'1,72 + 51· (lTMAX-l},HI
DO T = h (JJ),gl (JJ)

DOJI =L11,U{1
DO II = L11,U12

END DO
END DO

DO 1m =L:" .. U:" I
DO 1m = Lm2.Um2

END DO
END DO

ENDDO
END DO

(b)

DO JJ ="11,1'2 + SI • (ITMAX-l), HI
DO TJ =1}1, F"J2 +S. *(lTMAX-l), H.

DO T = h(JJ I 1l).9.(J], If)
DO Jl = L~l' U;'I

DO /1 = L'i2,U!'2

END DO
END DO

END DO
END DO

END DO
END DO

END DO

(c:)
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Figure 2: The program model before and after tiling

iteration space determined by J and [ remains unchanged over different T-Ioop index values. For
simplicity of presentation, we also assume that cache-line spatiallocalit.y is already fully exploited
in the innermost loops except on the loop boundaries_ Figure 2(b) shows the code after tiling the
J i loops only (1-D tiling), and Figure 2(c) shows the code after tiling both Ji and Ii loops (2-D
tiling). In Figures 2(b) and 2{c), the iteration subspace defined by all Ji and Ii loops is called a tile.
Loop T is called the tile-sweeping loop, and loops JJ and II are called the tile-controlling loops [20].
Each combination of JJ and II defines a tile traversal. Two tiles are said to be consecutive within
a tile traversal if the difference of t.he corresponding T values equals L In this paper, we assume
the data dependences permit both I-D and 2-D tiling. Choosing between l·D vs. 2-D tiling will
depend on the estimate of cache misses and loop overhead. As far as estimating cache misses is
conc~rned.. I-D tiling can be viewed as a special case of 2-D tiling with t.he maximum tile height.
However, 2-D tiling incurs higher loop overhead, which we want to take into account.

Let 'Yl = min{Lilll ~ i ~ m}, "/2 = max{Uill1 ~ i ~ m}, "11 = min{Li2 11 ~ i .$ m} and
"12 = ma.z{Ui211 :5 i ~ m}. We call 81 and 82 the skewing factors corresponding to Ji and I j loops
respectively. (The skewing factors are also called the slope in our previous work [17, 18].) If 51 = 0,
then loop skewing is not applied before tiling at the Ji level. In this paper) we are interested only
in skewed tiling at least at the Ji level, thus 81 > O. B1 is called the tile width and B2 is called the
tile height. B l and B2 are called the tile size collectively. These parameters are used to define the
bounds of the tile-controlling loops. For reference, Table 1 lists all the symbols used in this paper
and their brief descriptions.

For simplicity, "Ie assume all arrays are of t\vo dimensions with the same column sizes. (We
assume column-major storage.) Lower dimension variables can be ignored due to their lesser impact
on cache misses in relaxation programs which we are interested in. Let no be the number of two
dimensional arrays for the given tiled loop nest. Within the innermost loop h 1 ::S i :5 m, of the
untiled program in Figme 2(a), we assume array subscript patterns of Ak(Ii+aJi +b), 1 :5 k :::; na,
where a and b are known integer constants.

2.2 Memory Hierarchy

The memory hierarchy includes registers, cache memories at one or more levels, the main memory
and t.he secondary storage, as well as the TLB [7].

The TLB translates a virtual address into a physical address. The TLB has two key parameters,



Table 1: Description of symbols 

namely the block count T, and the block size Tb. We call T' EE TcTb the TLB size. In this paper, Tb 
is the size of the virtual memory represented by each TLB entry in the number of data elements. 
Wc assume a fully-associative TLB with an LRU replacement policy. 

For simplicity of presentation, we consider two levels of caches in this paper, namely the L1 
and L2 caches, which are common in current practice. The L1 cache has several parameters, 
namely the cache size Csl, the cache block size Cbl and the set associativity Cal. Csl and C,,I 
are measured in the number of data eIements. Similarly for L2 cache, the cache size, cache block 
size and set associativity are Cs2, Cbz and CnP respectively. The cache misses can be divided into 
three classes [7]: compulsory misses, capacity misses and conflict misses. Conflict misses can be 
attributed to self-interference misses of the same array and to cross-interference misses between 
different arrays. 

3 A Memory Cost Model 

In this section, we want to estimate the number of cache misses incurred by executing the loop nest 
in our program model after tiling. 

Let So represent the iteration space defined by yl I Ji 5 yz and 91 I 1; 5 72  in Figure 2(a). (For 
simplicity, we also regard So as the original iteration space defined by Ji and I; loops in Figure 2(a), 
as if all J; loops have the same loop bounds and all li loops have the same loop bounds.) So is 
illustrated in Figure 3(a) by the rectangle enclosed by the solid lines with the height Q and the 
width 7. Within each tile traversal, we define the base tile to be a tile with T = 1 and an advatzced 
tile to be a tile with T > 1. The dashed-lines in Figure 3(a) separate the base tiles of different 
tile traversals. The bvo shaded areas illustrate two different tiIe traversals, ttl and tt2, where each 
shaded rectangle with solid-line boundaries represents an advanced tile. When the tile-sweeping 
loop T increases the index by 1, the tiles can only overlap partially. 

The cache misses incurred by one tile traversal can be partitioned into those within the base tile 
and those within the advanced tiles. Note that only those base tiles and advanced tiles overlapping 
with So will be executed, thus only they can contribute to the cache misses. In Figure 3(a), the 
base tile in the tile traversal tt1 resides outside So, while the base tile in it2 resides within So. 

We make the following two assumption in our estimation of the number of cache misses: 

Assumption 1: There exist no cache reuse between different tile traversals. 
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Table 1: Description of symbols

S)'mbo] De"e-riptlon Symbol Dl)lcript.icm
"1, ~rho minimum lowu bound 0 aU J. JooDa .." The maxjmum uppal' bound of nH .1. loops
711 The- minimum lo.....~]' bound or taU J, loops "2 The mll.ll:;imum upDcr bound 0 all J; OOp9
S, The ltk-ewJOK Geter or J; oop, s. Tna skowJng o.ctor Or I, loop.
B, l'J)e t. ~ \MU.n ~ Jj~ The L, 0 hCIRM... 'l' lC n10Jmber () .....rray~ in the KLvcn loop nCBt. N Th~ 3r-TI1Y Il;olumn a'i2.o.., 7~ - 7, -I- 1 'I 'I. - 'II + 1
Tc The numb~r of 'l'Ltj .."l\r C5 Tb The number 0 dBta elemenl!l ~Ilch 'TLD enL.ry l::an repre.!r:nt

.1 l·.I)~ Ll eM La .1'%0 In the number o' dD.la elemcnL. C.: 7he 1.1 c3'l:he line 8n:e In the numbllr 0 . dau!., 0 emenls

C.' ' 'he Ll cache !let. a,,~Dc:jn.livir.y :.. The L2 co.cll.l:l .. i:l.o in t.ho Jlumbor 0 ' dElta ol!!lncnls
.2 Tho L2 cache BEt n.".soclo.th·Hy .~ The L2 C'21cho liDD lli2.o in Lho number of dl'h, elements

T. Thr: TL8 ~io:~ in the: numbn 0 dlloh" ~l~mc.nu r De lncd in S(!ction 3
1', 'I'he Ll cacha rniu p~nl\LLy p~ Tho J.,2 cl\che min p~nah.y

a U;l n.rTlly oolpnnt Width l:onsLrQlOcd by tho L< 1500 ~ectl()n 4.2.3
"I Thot Bum 0 the: sLDtic number 0' ms\rue:L1onl5 Dr the com?uto.Lion or DJI Uu, Ii oop bounds". Tht: .:!u.rn D tht:: :lLntlc nUlllb(!T" 0 mSlrueLJOn~ III the J. loop bodiCl
n., Thot IIUIn 0 t.h~ sLlule numb~r of in:ltrucLtoD5 com utlnlt the J; loop bound.8n. Thtillum g the dynamic numbQr of Joad in/iltruC'L\on1! in the proloKUe, Dond \h-D apiloltuos 0 ELJI lIoh",-a.,Q-pipolil1ed I.; loopsn. The ",urn 0 the numbu 0 Joad 1D~LrucLJDn:ll divided b}' ~hc unroll fe.ctor in the '0 lWB.l'e-piDeJined loop bodi~,:,

s. the iLC'Tl'~ion apace tlehtloCd by '1] < J. < '7-::1 and r:J1 < I~ < r:I:l 1n F',gurc 7 a}
!'MAX Th.o mdXllllunl Indo. "'t1 'OQ Or the 'h e-aw<cepmg oop

W ThQ wOTkinK-lu.t l:J)i:C. or tho JoCIp nQ.lt. lo'iguro 2 a)) in the numbl:lr 0 dllolD. ch:ml:lnL.

namely the alock count Tc and the block size Tb. We call Ts == Ten the TLB size. In this paper, n
is the size of the virtual memory represented by each TLB entry in the number of data elements.
We assume a fully-associative TLB with an LRU replacement policy_

For simplicity of presentation, we consider two levels of caches in this paper, namely the L1
and L2 caches, which are common in current practice. The L1 cache has several parameters,
namely the cache size Csl> the cache block size ObI and the set associativity Gal - CsI and Gill
are measured in the number of data elements. Similarly for L2 cache, the cache size, cache block
size and set associativity are 0 3 2, Cb2 and Ca2 respectively. The cache misses can be divided into
three classes [7]; compulsoTlJ misses, capacity misses and conflict misses. Conflict misses can be
attributed to self-interference misses of the same array and to cross-interference misses between
different arrays.

3 A Memory Cost Model

In this section, we want to estimate the number of cache misses incurred by executing the loop nest
in OUT program model after tiling.

Let So represent the iteration space defined by il ~ Ji ~ [2 and 111 ~ Ii ~ 112 in Figure 2(a). (For
simplicity, we also regard So as the original iteration space defined by Ji and Ii loops in Figure 2(aL
as if all Ji loops have the same loop bounds and all Ii loops have the same loop bounds.) So is
illustrated in Figure 3(a) by the rectangle enclosed by the solid lines with the height rJ and the
width 'Y. Within each tile traversal, we define the base tile to be a tile with T = 1 and an advanced
tile to be a tile with T > 1. The dashed-lines in Figure 3(a.) separate the base tiles of different
tile traversals. The two shaded areas illustrate two different tile traversals, ttl and tt2, where each
shaded rectangle with solid-line boundaries represents an advanced tile. When the tile-sweeping
loop T increases the index by 1, the tiles can only overlap partially.

The cache misses incurred by one tile traversal can be partitioned into those within the base tile
and those within the advanced tiles. Note that only those base tiles and advanced tiles overlapping
with So will be executed, thus only they can contribute to the cache misses. In Figure 3(80), the
base tile in the tile traversal ttl resides outside So, while the base tile in tt2 resides within So-

We make the following two assumption in our estimation of the number of cache misses:

• Assumption 1: There exist nO cache reuse between different tile traversals.



Figure 3: Illustration of tile traversal 

Assumption 2: 31 << 7 and B1 << (ITMAX-1)  * SI. 

Assumption I is reasonable if ITMAX is large, since it will be very likely for a tile traversal to 
overwrite cache lines whose old data could have been reused in the next tile traversal. Assumption 2 
is reasonable because a large B1 can easily cause an overflow in the TLB. As explained later in 
Section 4, our algorithm poses a constraint on 3 1  such that TLB should not overflow. If the tile 
size (131, Bz) is chosen properly, there should be exactly one cacbe miss for each cache line accessed 
within a tile traversa.. To be more specific, the following two properties should hold; 

Property 1: No capacity and self-interference misses are generated within a tile traversal. 

Property 2: No cross-interference misses are generated within a tile traversal. 

In Section 4.2, we shall discuss how to preserve the above properties. For now, we assume they 
hold. 

We first show how to compute the number of L1 cache misses caused by an advanced tile. Let 
W represent the size of the data set accessed by the original loop nest in terms of the number of 
data elements. The average size of the data accessed by one tile is estimated to be D = a + &Bz. 
Figure 3(b) shows hvo consecutive tiles, it3 and tt4, within a tile traversal, assuming t l a t  both 
tiles reside within So. The iteration subspace of ttd is produced by shifting the iteration subspace 
of tt3 upwards by S2 iterations and to the left by S1 iterations. The L1 cache misses in ttQ 
either occur in Region ABCD or in Region DEFG. The totaI estimated L1 cache misses equal to 
(&Bz + S2Bl - SlS2) * 7&. (This estimate may not be exact because data accessed at the lower 
border of Region DEFG may or may not be in the cache already.) 

We then show how to accumulate the number of L1 cacbe misses for all the tile traversals with 
the same JJvalue. Figure 3(c) illustrates the idea. For a particular JJvalue, let tl, t a ,  ts and t4 be 
the base tiles of four tile traversals, and let t:, th, tb and ti be the corresponding advanced tiles when 
T increases by 1. In this particular illustration, the number of L1 cache misses caused collectively 
by t; (1 <_ i < 4) equals to the sum of the number of L1 cache misses caused by each individual 
ti, that is, 3. Note that only the tiles overlapping with So can contribute to L1 cache misses. 
Similarly, the number of L1 cache misses caused by the advanced tiles t: (1 L: i < 4) equal to the 
sum of the number of L i  cache misses caused by individual 6, that is, bg + Z(B1- S1)S2 i +. 

70 b l  
In general, the number of L1 cache misses caused by the advanced t~les with the same JJ value 
equal to + r(BI  - Sl)S2 * &, where r is the number of base tiles in So for a particular JJ 
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• Assumption 2: B I « 'Y and B l « (ITMAX-l) *8 1.

Assumption 1 is rea.sonable if ITMAX is large, since it will be very likely for a tile traversal to
overwrite cache lines whose old data could have been reused in the next tile traversal. Assumption 2
is reasonable because a large B 1 can easily cause an overflow in the TLB. As explained later in
Section 4, our algorithm poses a constraint on B l such that TLB should not overflow. If the tile
size (Bl, B 2 ) is chosen properly, there should be exactly one cache miss for each cache line accessed
within a tile traversal. To be more specific, the following two properties should hold:

• Property 1: No capacity and self-interference misses are generated within a tile traversal .

• Property 2: No cross-interference misses are generated within a tile traversal.

In Section 4.2, we shall discuss how to preserve the above properties. For now l we assume they
hold.

We first show how to compute the number of L1 cache misses caused by an advanced tile. Let
W represent the size of the data set accessed by the original loop nest in terms of the number of
data elements. The average size of the data accessed by one tile is estimated to be D = w * B I B 2 •

Figure 3(b) shows two consecutive tiles, itS and tt4, within a tile traversal. assuming "I'that both
tiles reside within So' The iteration subspace of tt4 is produced by shifting the iteration subspace
of ttS upwards by 82 iterations and to the left by Sl iterations. The L1 cache misses in tt4
either occur in Region ABeD or in Region DEFG. The total estimated L1 cache misses equal to
(SIB2 +8zBl - 8 1S2) * 1J]~~l' (This estimate may not be exact because data. accessed at the lower
border of Region DEFG mayor may not be in the cache already.)

We then show how to accumulate the number of L1 cacbe misses for all the tile traversals with
the same JJ value. Figure 3(c) illustrates the idea. For a particular JJ value, let tl, t2) t3 and t4. be
the base tiles of four tile traversals, and let t~) t~, t3and t~1 be the corresponding advanced tiles when
T increases by 1. In this particular illustration, the number of L1 cache misses caused collectively
by ti (I $ i ~ 4) equals to the sum of the number of L1 cache misses caused by each individual
ti, that is, WeBl. Note that only the tiles overlapping with So can contribute to L1 cache misses.

'Y bl

Similarly, the number of L1 cache misses caused by the advanced tiles ti (1 $ i $ 4) equal to the
sum of the number of L1 cache misses caused by individual tL that is, ~t:t + 2(Bl - SdS2 * 1'l~bl .

In general, the number of L1 cache misses caused by the advanced tjles with the same JJ value
equal to SCIW + r(Bl - SdS2 *4--, where 'T is the number of base tiles in So for a particular JJ

'7 bl 'Yl}vbI



Figure 4: Calculating cache misses under different scenarios 

estimated as 

1 if 1 5 BP < 7 + S2 * (ITMAX-1) 
0 i f  I?, = 7 + S2 * (ITMAX-1) 

The value 71 + S2 + ( W A X - I )  is the maximum height of the iteration space after tiling. Any B2 
value greater than or equal to 77 + S2 * {ITMAX-1) results in no tiling at the Ii loop level. 

With Assumptions 1 and 2, we can then accumulate L l  cache misses corresponding to different 
JJ values by considering three different cases: 

Case 1: 7 = ( ITMAX-I)*  Sl. 
This case is illustrated by Figure 4(a). In this case, the tile traversals defined by JJ < 
71 + y - NSTEP will not execute to the ITMAXth T-iteration. The tile traversal defined 
by 71 + y - NSTEP < JJ 5 71 + 7 is the first to reach the ITMAXth T-iteration. The tile 
traversals defined by JJ > 71 +-y will start executing at T > 1. During the execution, the tile 
traversals defined by JJ = yl will incur L1 cache misses of $$-. The tile traversals defined 

by JJ = 71 + B1 will incur L1 cache misses of * 2 + +(BI - S1)Sz * * k. Hence, 
we have the following: 

- The L1 cache misses in all the tile traversals defined by JJ 5 7 2  - B1 amouot to r 

* (  1 + 2 +  . . . + [ V l ) .  (1 + 2 + . . . + 1-1) + ~ ( 8 1  - SI)SZ * 9 * 
- The L1 cache misses in all the tile traversals defined by 72 - B1 < JJ 5 7 2  amount to 

* I51 + dB1 - s l ) s2  * 2 * * * IYl. 
- The L1 cache misses in all the tile traversals defined by 7 2  < JJ amount to 3 r (1 + 

2 + . . . + [*I)+ r(Bl - S1)S2 * 2 * & * (1 + 2 + . . . + r7-gB'l). 

Adding up the three numbers of the above, the total L1 cache misses in the tiled loop nest 
approximate 2 r + 2 ;:r E. 
Case 2: 7 < (ITMAX-I) * SI. 
This case is illustrated by Figure 4(b). Similar to the computation in Case 1, we have the 
following: 

- The L1 cache misses in all the tile traversals defined by JJ 5 7 2  amount to * (1 + 
2 + ... + [&I) + r(B1 - Sl)S2 * 2 * & * (1 + 2 + . . . + [ W l ) .  

- The L1 cache misses in all the tile traversals defined by 7 2  < JJ 5 (ITMAX-I) * B1 4- 

71 amount to % * * [(rTMAX-ll B1 *s1-7] + ~ ( 8 ~  - &)sZ * 9 I ~ r l c b l  * * , P T M A  X-l)*s1 -7 
Bl 1. 
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T = { r11;1 if 1 ~ Bz < 11 + 82 * (ITMAX-l)
o if B 2 = 'Jl + 82 • (ITMAX-l)

The value 1] + 82 * (ITMAX-l) is the maximum height of the iteration space after tiling. Any B z
value greater than or equal to 'Jl +82 * (ITMAX-l) results in no tiling at the Ii loop leveL

With Assumptions 1 and 2, we can then accumulate Ll cache misses corresponding to different
JJ values by considering three different cases:

• Case 1: '1 = (ITMAX-l) *81·
This case is illustrated by Figure 4(a). In this case, the tile traversals defined by JJ :S
'11 + / - NSTEP will not execute to the ITMAXth T-iteration. The tile traversal defined
by /1 + /- NSTEP < JJ ~ 1'1 + '1 is the first to reach the ITMAXth T-iteration. The tile
traversals defined by JJ> 'Yl +1' will start executing at T > L During the execution, the tile
traversals defined by JJ = /1 will incur Ll cache misses of ~J:;. The We traversals defined

by JJ = 1'1 + B l will incur Ll cache misses of WeB! *2 + 7(B i - 81)82 * r!b.s 1* ~ . Hence,
, 61 1 ,1/"'b1

we have the following:

- The Ll cache misses in all the tile traversals defined by JJ:S 1'2 - B l amount to ~cf1L *
(1 + 2+ ... + r'Y~~) 1) + T(B I - 81)82 *~ * '1/~Ol :fo (1 + 2+ ... + r1-;:

B1 1).
- The Ll cache misses in all the tile traversals defined by '12 - B l < JJ ~ 'Y2 amount to

WB, * r.l1 + T(BI - 81)82 * fu *~ * r1- 81 1.
,e61 81 SI '11/'-'61 BI

- The Ll cache misses in all the tile traversals defined by 1'2 < JJ amount to WeBJ * (1 +
, 01

2+ ... + r1B~11)+ T(El - 81 )82 *~ * -Y1/~61 * (1 + 2+ ... + r7-~:Bll).

Adding up the three numbers of the above, the total Ll cache misses in the tiled loop nest
approximate ~ * B

l + ~ *~.
Cbl 1 Gbl SIr)

• Case 2: 'Y < (ITMAX-l) * 81.
This case is illustrated by Figure 4(b). Similar to the computation in Case 1, we have the
following:

- The Ll cache misses in all the tile traversals defined by JJ ~ '12 amount to ~d:: * (1 +
2 + .. ,+ rix1) + T(BI - SdSz * lk * 71/'hbl * (1 + 2 + ... + rJB~ll).

- The Ll cache misses in all the tile traversals defined by '12 < JJ ~ (ITMAX-t) * B l +
'11 amount to WC~l * r.lB 1* r(ITMA;-1;*SI-11 + T(B I - 8t} S2 *!lJ..s * 'V }c" * r..:LB 1*

"( Mil I r r) bl 1

r(ITMA;;1}*SI-'11.



- The L1 cache misses in all the tile traversals defined by (ITMAX-I) * B1 + yl < JJ 
amount to %*(1-1-2 -I-...+la]) + T ( B ~ - s I ) s ~ * ~ * ~ * ( ~ + ~ - I -  ...+ [PI). 

Adding up the three numbers of the above, the total L1 cache misses in the tiled loop nest 

approximate ws, (ITMAX-1) + rvs2 (ITMA X-I) ,  
c b l  Bl ~ c b l  . Case 3: 7 > (ITMAX-1) * SI. . . 

WS, ITMAX-I)  Silnilar to Case 2, the total L1 cache misses jn the tiled loop nest approximate (qlal 

-t 
WS, ( ITMAX-1)~  

~ C b l  

Combining the above three cases and plugging in the estimate of 7, the total number of L1 cache 
misses is approximately 

W Sl (ITMA X - I )  + W S2 (ITMAX-1) 
Cbl B1 CblB2 

Similarly, with Properties 1 and 2 standing, the number of L2 cache misses for 2-D tiling is 
approximately 

W S1 (ITMAX-1) W S2 (ITMAX-I) + 
Cb2B1 (762 BZ 

With l-D tiling (in Figure 2(c)), the L1 cache temporal locality is not exploited across the T-loop 
iterations. The number of L1 cache misses is approximately 

W 
ITMAX* -. 

Cbl 

The total number of cache misses for the L2 cache is approximately 

4 Tile-Size Selection 

In this section, we first present an execution cost model for tiling with a given tile size, based on 
both the number of cache misses and the loop overhead. We then present our tile-size selection 
algorithm, followed by a running example to go through our algorithm. 

4.1 An Execution Cost Model, for Tiling 

Loop tiling introduces loop overhead. To decide between 1-D tiling and 2-D tiling, the overhead of 
the tiled Ii loops in Figure 2(c) needs to be measured. Let nl be the sum of the static number of 
instructiom for the computation of all the li loop bounds (1 5 i <_ m). The li loop overhead due 
to 2-D tiling jn terms of the dynamic count of instructions, is measured approximately by 

ITMAX* 7 * 77 
n1* 

B2 

Let n2 be the sum of the static number of instructions in the Ii (1 5 i 5 m) loop bodies. The 
dynamic instructiorl count for the Ii loop bodies is 

n2 * ITMAX * y + 7) .  ( 6 )  

7

- The L1 cache misses in all the tile traversals defined by (ITMAX-l) * B I + /1 < JJ
amount to ';C£; * (1 + 2+ ... + ri 1) + T(B1 - 81)82 *~ * 'Y,;bbl * (1 +2+ ... + r1B~11).

Adding up the three numbers of the above, the total L1 cache misses in the tiled loop nest
. t wSl{lTMAX-l} + wS2(ITMAX.l)T

apprOXlma e C
bl

BI 'lGbl'

• Case 3: "I> (ITMAX-l) *8 1,

Similar to Case 2, the total L1 cache misses in the tiled loop nest approximate WS 1 (l[~AX-l)
bl 1

+ wsdITMAX-l}T
'1Gbl .

Combining the above three cases and plugging in the estimate of 7, the total number of L1 cache
misses is approximately

W SdITMAX-l} + W S·dITMAX-l). (1)
Cbl E I C/J\B2

Similarly, with Properties 1 and 2 standing, the number of L2 cache misses for 2-D tiling is
approximately

WSdITMAX.l) + W82 (ITMAX-l). (2)
Gb2Bl Cb2 B2

With 1-D tiling (in Figure 2(c», the L1 cache temporal locality is not exploited across the T-Joop
iterations. The number of L1 cache misses is approximately

W
ITMAX*-C .

bl

The total number of cache misses for the L2 cache is approximately

W 81 (ITMAX-l)
Cb2B 1

4 Tile-Size Selection

(3)

(4)

(5)

In this section, we first present an execution cost model for tiling with a given tile size, based on
both the number of cache misses and the loop overhead. We then present our tile-size selection
algorithm, followed by a running example to go through our algorithm.

4.1 An Execution Cost Model for Tiling

Loop tiling introduces loop overhead. To decide between 1-D tiling and 2-D tiling, the overhead of
the tiled Ii loops in Figure 2(c) needs to be measured. Let nl be the sum of the static number of
instructions for the computation of all the Ii loop bounds (1 ::; i ::; m). The h loop overhead due
to 2-D tiling in terms of the dynamic count of instrudions, is measured approximately by

ITMAX * 'Y *7J
n) * ----'----'-

B2

Let n2 be the sum of the static number of instructions in the Ii (1 ::; i :::; m) loop bodies. The
dynamic instruction count for the Ii loop bodies is

n2 '* ITMAX * "f * 7]. (6)



A-om (5) and (6), if nl and nz are approximately equal, then a small B2 will introduce large 
loop overhead. Let ng be sum of the static number of instructions for the computation of all the 
.Ti loop bounds (1 5 i < m). The loop overhead due to tiled Ji loops can be measured by 

ITMAX + y 
n3 * 

B1 

Enabled by scaIar replacement [2], in a software-pipelined loop [I], loaded data can be reused 
in different iterations. The dynamic count of load instructions can hence be reduced. Let nd be 
the sum of the dynamic count of load instructions in the prologues and the epiIogues of all the 
softwar+pipelined loops. Let ns be the sum of the number of load instructions divided by the 
unroll factor in the software-pipelined loop bodies. The unroll factor is one if the loop is not 
unrolled. The dynamic count of load instruction with 1-D tiling is approximately 

With 2-D tiling, the dynamic count of load instructions is approximately 

Y Y (n4 + n5B2) * - * q * ITMAX = (n4 - + n5y )q  + ITMAX. 
B2 Bz 

(9) 

Clearly, if nd is significantly greater than ng and B2 is small, then the dynamic count of load 
instructions with 2-D tiling can be much greater than that with 1-D tiling. 

Let pl be the penalty for an L1 cache miss and p2 be the penalty for an L2 cache miss. By 
adding the penalty due to L1 cache misses in Formula (3), the penalty due to L2 cache misses in 
Formula (41, the loop overhead due to tiled Ji loops in Formula (7), and the dynamic count of load 
irlstructions for sohare-pipelined innermost loops in Formula (a), we can model the execution cost 
for 1-D tiling by . 

W W S1 [ITMAX- 1) ITMAX * 7 
pl * ( ITMAX* -) + p z  * ( ) + n 3  + ( n 4 + n s 7 ) v * I T M A X .  (10) 

c b l  Cb2B1 B1 

In the above formula, we aSsume the latency of one unit of time for each instruction, including a 
load instruction. From (lo), with 1-D tiling, we want to maximize B1 (subject to Properties X and 
2 aforementioned) such that the number of L2 cache misses is minimized. By adding the penalty 
due to L1 cache n~isses in Formula ( I ) ,  the penalty due to L2 cache misses in Forlnula (2), the 
dynamic count of load instructions for software-pipelined innermost loops in Formula [9), the loop 
overhead due to tiled Ji loops in Formula (7), and the Ioop overhead due to the tiled innermost 
loop in Formula (5), the execution cost for 2-D tiling can be modeled by 

M / S ~  [IXMAX-I) + W$ (ITMAX-1) WS, (ITMAX-I) + WS, (ITMAX-1) 
P 1  * ( c b ~ 8 1  C b l  B2 ) + p2 * ( cbT& c b 2 B 2  1 

4.2 Tile-Size Selection Algorithm 

In this section, we first discuss how t o  preserve Properties X and 2. We then present our tile-size 
selection algorithm. 

(7)
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From (5) and (6), jf ni and n2 arc approximately equal, then a small B2 will introduce large
loop overhead. Let n3 be sum of the static number of instructions for the computation of all the
Ji loop bounds (1 ::; i ::; m). The loop overhead due to tiled J; loops can be measured by

ITMAX*7nJ * ---C-

B 1

Enabled by scalar replacement [2], in a software-pipetined loop [1], loaded data can be reused
in different iterations. The dynamic count of load instructions can hence be reduced. Let n4 be
the sum of the dynamic count of load instructions in the prologues and the epilogues of all the
software-pipelined loops. Let n5 be the sum of the number of load instructions divided by the
unroll factor in the software-pipelined loop bodies. The unroll factor is one if the loop is not
unrolled. The dynamic count of load instruction with I-D tiling is approximately

(n... + n5/)'f/ * ITMAX.

With 2-D tiling, the dynamic count of load instructions is approximately

(8)

(9)

Clearly, if n.j is significantly greater than ns and B2 is small, then the dynamic count of load
instructiDns with 2-D tiling can be much greater than that with I-D tiling.

Let Pl be the penalty for an Ll cache miss and pz be the penalty for an L2 cache miss. By
adding the penalty due to Ll cache misses in Formula (3), the penalty due to L2 cache misses in
Formula (4), the loop overhead due to tiled Ji loops in Formula (7), and the dynamic count of load
instructions for software-pipelined innermost loops in Formula (8), we can model the execution cost
for I-D tiling by .

W W SdiTMAX-J) ITMAX * I
Pi * (ITMAX *" -c)+ P2 * ( C B ) + n3 B + (n4 + n5f)7J * ITMAX (10)

bl b2 1 1

In the above formula, we assume the latency of one unit of time for each instruction, including a
load instruction. From (10), with I-D tiling, we want to maximize B i (subject to Properties 1 and
2 aforementioned) such that the number of L2 cache misses is minimized. By adding the penalty
due to L1 cache misses in Formula (I), the penalty due to L2 cache misses in Formula (2), the
dynamic count of load instructions for software-pipelined innermost loops in Formula (9), the loop
overhead due to tiled Ji loops in Formula (7), and the loop overhead due to the tiled innermost
loop in Formula (5), the execution cost for 2-D tiling can be modeled by

* (wsdITMAX-l) + wsdITMAX.l}) + * (wsdITMAX-l) + WS2(ITMAX-l)
PI C6J B! q,! B2 P2 Cb2Jh Cb2B2

ITMAX * 'Y * "I ITMAX* 'Y f
+nI * B

2
+ n3 HI + (n4 B2 + n5'Y)11 * ITMAX. (11)

4.2 Tile-Size Selection Algorithm

In this section, we first discuss how to preserve Properties 1 and 2. We then present our tile-size
selection algorithm.



Procedure EnumFPSize(C,, Cb, N) 

Cor F2 t 1 to N do 

Fl + 1 

t t (Fl * A') mod C3 

while ((F2 + Cb - 1) < t 5 (C, - F2 - Cb + 1)) 

Rccord ( P I ,  Fz) 

F1 t- fi -I- 1 

t c- (F ,  r N) mod C, 

end while 

end for 

Figure 5: Procedure EnurnFPSize and an illustration of utilizing portions of the cache by a single 
tile 

4.2.1 Preserving Proper ty  1 

First, we discuss how to eliminate self-interEerence misses within a single tile. For any array Ail let 
R be the minimum rectangular array region which contains all the A; elements referenced within 
a tile t .  We say that Ai's footprint size withn tile t is (Fl,F2), where Fl and F2 are the numbers 
of columns and rows in R respectively. We call Fl ( F - )  the away foolprint width (height) for Ai 
within tile t. Reversely, given a footprint size of Ai, the tile size can also be computed. Given 
the subscript patterns and the loop bounds, such a computation is straightforward and we omit 
tbe details. For the example oE SOR (Figure l(c)), assuming the array footprint size for A to be 
( K ~ ,  ti2), t he  loop tile size sbould be (tcl -2, r;z -2). For array A,, if the footprint height F2 is greater 
than the distance between the locations of two columns in the cache, then the columns accessed 
within the tile will conflict in the cache, creating self-interference misses [3]. More precisely, we 
have the following lemma: 

Lemma 1 Given array footprint size (Fl, F2) for any Ai (1 5 i 5 n,), a cache of size C, and cache 
line size Cb, if there exist no self-interference misses, then the distance between the starting cache 
locations of any two columns of Ai within Fl consecutive columns is either no smaller than Fz, or 
no greater than C, - F2. Conversely, there exist no self-interference misses if the distance between 
the starting cache locations of any two columns of Ai ~ i t h i n  Fl consecutive columns is either no 
smaller than Fz + Cb - 1, or no greater than C, - Fz - Cb + 1. 
Proof Obvious. o 

Given a directly-mapped cache of size C, and cache line size Cb, and given an array column size 
N ,  pxocedure EnumFPSize in Figure 5(a) enumerates all the footprint sizes (PI, F2) which incur 
no self-interference misses, according to Lemma 1. We say that a footprint size (Fl,F2) of Ai is 
mazimal if increasing either PI or Fz will introduce self-interference misses for A;. In general, the 
maximal footprint size for array Ai is not unique. According to EnumFPSize, the maximal footprint 
sizes for all arrays are the same if they have the same array column sizes. Our tile-size selection 
scheme will enumerate all array footprint sizes which are free of self-interference misses until the 
sizes become maximal. The scheme estimates and compares the execution cost for different (Fl, F2) 
in order to get the optimal tile size. 

Next, suppose the cache is not directly-mapped, and assume an LRU replacement policy. 
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Procedure EnumFPSize(C3 , Cb , N)

ror F2 +-] to N do

Fl ~ 1

t +- (Fl. N) mod C.

while ((F2 + Cb - 1) ~ t ~ (C3 - F2 - Cb + I})

Record (F1,Fz)

FI l- FI + 1

t +- (Fl. N) rrlOd C3

end while

end for

(a) (c)

Figure 5: Procedure En'LImFPSize and an illustration of utilizing portions of the cache by a single
tile

4.2.1 Preserving Property 1

First, we discuss how to eliminate self-interference misses within a single tile. For any array Ai, let
R be the minimum rectangular array region which contains all the Ai elements referenced wi thin
a tile t. We say that Ai'S footprint size within tile tis (FI,F2), where FI and F2 are the numbers
of columns and rows in R respectively. We call F1 (F2) the array footprint width (height) for A
within tile t. Reversely, given a footprint size of Ai, the tile size can also be computed. Given
the subscript patterns and the loop bounds, such a computation is straightforward and we omit
the details. For the example of SOR (Figure l(c)), assuming the array footprint size for A to be
(1\:1,1\:2), the loop tile size should be (It] - 21 1\:2 - 2). For array Ai, if the footprint height F2 is greater
than the distance between the locations of two columns in the cache, then the columns accessed
within the tile will conflict in the cache, creating self-interference misses [3]. More precisely, we
have the following lemma:

Lemma 1 Given array footprint size (FI, F2) for any Ai (1 ~ i ~ nil), a cache of size Cs and cache
line size Gb, if there exist no self-interference misses, then the distance between the starting cache
locations of any two columns of Ai witWn FI consecutive columns is either no smaller than F2 , or
no greater than Cs - F2· ConverselYI there exist no self-interference misses if the distance between
the starting cache locations of any two columns of Ai within FI consecutive columns is either no
smaller than F2 + Cb - 1, or no greater than Cs - F2 - Gb + l.
Proof Obvious. 0

Given a directly-mapped cache of size Cs and cache line size Cb, and given an array column size
N, procedure EnumFPSize in Figure 5(a) enumerates all the footprint sizes (FI , F2 ) which incur
no self-interference misses, according to Lemma 1. We say that a footprint size (Fl, F2) of Ai is
maximal if increasing either FI or F2 will introduce self-interference misses for Ai. In general, the
maximal footprint size for array Ai is not unique. According to EnumFPSize, the maximal footprint
sizes for all arrays are the same if they have the same array column sizes_ Our tile-size selection
scheme will enumerate all array footprint sizes which are free of self-interference misses until the
sizes become maximal. The scheme estimates and compares the execution cost for different (FI , F2)
in order to get the optimal tile size.

Next, suppose the cache is not directly-mapped, and assume an LRU replacement policy.



may footprint 

cache 

Figure 6: An illustration of padding to eliminate cross-interferences 

We show that the parameter C, in procedure EnumFPSize should not be the whole cache size. 
Otherwise, self-interference misses will occur when the execution proceeds horn one tile to the 
next. For clarity, instead of arguing formally for the general cases, we illustrate the cases of Pway 
and fully-associative caches. Figure 5(b) shows two cousecutive tiles t l  and t2. Suppose C, equals 
thc whole cache size in procedure EnumFPSize and suppose the footprint size of 21 is maximal. 
Tile t i  accesses the cache from the least-recently referenced data segment to the most-recently 
referenced data segment in the memory, in the order of D l ,  D$ 0 3  and 04 which are separated by 
solid lines. If the cache associativity is Cal = 2, then 0 2  and Dd will map to the same cache sets. 
The data accased in the blank rectangle A will replace segment DZ. If the cache is fully associative, 
D l  will be replaced. Ko~vever, part of the old data in segment 0 2  (or D l )  could have been reused 
by tile t2 One solution to avoid the replacement of useful data is to reduce the footprint size 
within t l  such that only a portion of the cache is used to compute the maxima1 footprint size in 
EnurnFPSize. Figure 5(c) shows the case for twe~vay set-associative cache. In this way, the data 
accessed in Regions A and C will replace the cache segment 0 2  and part of segment Dl, whose old 
data are not reused by t2- The reusable data in 0 3  will be kept in the cache. Using the above idea, 
we let C, = c2$ c , ~  in  procedure EnumFPSize, for 2-way and fully-associative caclles. The cases 
of other associativities are more complex, and they will not be discussed in this paper. 

To eliminate capacity misses, the footprint size of each array A, can only be ([2j, Fz), a 
fraction of (PI, F2). Here, we choose to partition columns instead of rows, iu order to preserve 
spatial locality. Assume that (I3l(i1,l3$)), 1 $ i < n,, is the tile size such that the footprint size 
for array Ai within a single tile is ([el, F ~ ) .  For 2-way and fully-associative caches, we choose 

the tile size for the tiled loop as (Bl ,  Bz) =: (rnin.j~,('), rnini~?)) .  For directly-mapped caches, we 
choose (BI, Bz) = (rnini~;') - Sly rni%B$) - &). One can prove that for directly-mapped, 2-way 
and fully-associative caches, Property 1 holds under the above treatment. For other set-associative 
caches, procedure EnumFPSize needs to be revised. 

4.2.2 Preserving Property 2 

We apply inter-array padding to eliminate cross-interference misses within a tile traversal. For 
simplicity of presentation, we assume that the array subscript patterns of one particular array Ak 
cover all the array subscript patterns for all the other arrays Ai, i # k .  The discussion in this 
section can be easily extended if such an assulnption does not hold. Using inter-array padding, we 
let the starting addresses for array Ai(l 5 i 5 n,) map to the same location in the cache as the 
starting address of the ( [ E l  r (i - 1))th column of array Al.  With such padding, cross-interference 
misses are eliminated within a single tile between Ai and Aj (1 5 i, j 5 n,,i # j ) .  

When the execution goes hom one tile to the next, if the cache is directly-mapped, the newly 
accessed data for A, will map to cache locations previously unused in the tile traversal. If the 
cache is not directly-mapped, the newly accessed data for Ai will map to cache locations which are 
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Figure 6: An illustra~ionof padding to eliminate cross-interferences

We show that the parameter Cs in procedure EnumFPSize should no~ be the whole cache size.
Otherwise, self-interference misses will occur when the execution proceeds from one ~ile to the
next. For clarity, instead of arguing formally for the general cases, we illustrate the cases of 2-way
and fully-associative caches. Figure 5(b) shows two consecutive tiles t1 and t2. Suppose Gs equals
the whole cache size in procedure EnumFPSize and suppose the footprint size of t1 is ma.ximal.
Tile tl accesses the cache from the least-recently referenced data segment to the most-recently
referenced data segment in the memory, in the order of Dl, D2, DS and D4 which are separated by
solid lines. If the cache associativity is Cal == 2, then D2 and D4 will map to the same cache sets­
The data accessed in the blank rectangle A will replace segment D2. If the cache is fully associative,
Dl wiIJ be replaced. However, part of the old data in segment D2 (or Dl) could have been reused
by tile t2. One solution to avoid the replacement of useful data is to reduce the footprint size
within tl such that only a portion of the cache is used to compute the maximal footprint size In
EnumFPSize. Figure 5(c) shows the case for tw()-way set-associative cache. In this way, the data
accessed in Regions A and C will replace the cache segment D2 and part of segment Dl, whose old
data are not reused by t2. The reusable data in D3 wlll be kept in the cache_ Using the above idea,
we let Cs = c~ -1 Gsl in procedure EnumFPSize, for 2-way and fully-associative caclles. The cases

01

of other associativities are more complex, and they will not be discussed in this paper.
To eliminate capacity misses, the footprint size of each array Ai can only be (l.EJ.. j, F2 ), ano

fraction of (FI, F2 ). Here, we choose to partition colUIIlIlS instead of rows, in order to preserve

spatial locality. Assume that (Bii ), B~i»), 1 ~ i ~ n a , is the tile size such that the footprint size
for array Ai within a single tile is (L.5..J,F2 )- For 2-way and fully-associative caches, we chooseno

the tile size for the tiled loop as (Bb B2) = (mi7l.iBii) , mi7l.iB~i». For directly.mapped caches, we

choose (BI, B2) = (mi7l.iBii) - 8 t , mi1li.B~i} - 82). One can prove that for directly-mapped, 2·way
and fully-associative caches, Property 1 holds under the above treatment. For other set-associative
caches, procedure EnumFPSize needs to be revised.

4.2.2 Preserving Property 2

We apply inter-array padding to eliminate cross-interference misses within a tile traversal. For
simplicity of presentation, we assume that the array subscript patterns of one particular array Ak
cover all the array subscript patterns for ail the other arrays Ail i #: k. The discussion in this
sectIon can be easily extended jf such an assumption does not hold. Using inter~array padding, we
let the starting addresses for array Ai(1 SiS na ) map to the same location in the cache as the
starting address of the (l~J* (i -l»th column of array AI. With such padding, cross-interference
misses are eliminated within a single tile between Ai and Aj (1 ~ i,j ~ na , i I- j).

When the execution goes from one tile to the next, if the cache is directly-mapped, the newly
accessed data for Ai will map to cache locations previously unused in the tile traversaL If the
cache is not directly-mapped, the newly accessed data for Ai will map to cache locations which are



Input: SI, S2, C31, G I ,  CM, C32, Coz. C b 2 .  n l r  n3. n4, RS, n o r  N ,  0 ( ~ C C  Table 1)- 
Outpu t :  Tile size (BI, Bz) and the transformed array declaraiion. 
Procedure: 

if (Cnl = 1) then 
ComputcTileSize-2D(C,, ) 
ComputeTileSize-1D(C,2) 

else 
Cornpu teT i l eS ize -2D(w C,I) -... 
CornputeTilcSize- I R ( ~ c , * )  

e n d  if 
Apply inter-array padding (see Section 1.2.2). 
Rcturn (B1,Bz). 

Procedure C~rn~ulcTileSizc-ID(C,) 
/* (TB1,  TS*) is a temporary tile size. */ 
Select the maximum tile width K such that thc fooLprinL of one tile can fit in both the TLB and the L2 cache. 
T B I  t- K - Sj, TB2 t r )  + S 2  * (ITMAX-1) 
Cornputc the cxecu~ion cost, TM, based on (10). 
if (TM < hb) then Bj i- TB,, B2 t TBz, M t Thf a n d  if 

Procedure CompulcTi!cSite-2D(C,) 
/* (TBI , TBs) is a temporary tile size. ./ 
A4 4- w 
for Fz t CbI t o  N d o  

f i t - 1  
L t (FL t N )  m o d  C. 
while ( f i  5 u or (Fa f - 1) _< L _< (C, - I 3  - Cbl + I ) )  d o  

Convcrt array footprint size (FIB F2) to loop tile size ( T B I , T B 2 )  (scc Srtc~ion 4.2.1). 
if (Cnl = 1) then T B I  t T B I  - SI ,TBa t TB2 - S? e n d  if  
if (TB1 > 0 and T B 2  > 0) t h e n  

Compute the execution cost, TM, bascd on (11). 
if ( T M  < M) then B1 t TBI, B2 t- TB2, M + T M  end if 

end if 
f i t . F l i - 1  
t t (PI * iV) mod C.. 

end while 
end for 

Figure 7; Tile-size selection algorithm - STS 

either previously unused or will not be referenced again within the current traversal. Therefore, 
cross-interference misses are also eliminated within a tile traversal. Figure 6 illustrates an example 
for Fl = 4 and n, = 2, where the cache is directly mapped. Here, assuming the starting address for 
array Al to be 0, the padded number of data items, x ,  between arrays A1 and Az can be determined 
from 

(size(A1) + z) = (2 * N), mod CS1. (12) 

We are ready to present our tile-size selection algorithm in the next section. 

4.2.3 Algorithm STS 

Algorithm STS in Figure 7 selects the tile size by interleaving the operations in procedure EnumFP- 
Size with the applications of Formulas (10) and (11) which compute the execution cost. We require 
Bz to be no smaller than the cache line size Cbl. However, we do not require B2 to be a multiple 
of Cbl, since such a requirement does not have much benefit when execution praceeds horn one tile 
to the next. In addition to the conditions stated in procedure EnumFPSize, the array footprint 
width F2 should be no greater than u, which is the total number of array columns representable 
by the TLB minus the number of newly accessed array columns when the execution proceeds &om 
one tile to the next. 
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Input: Sl, 52, C.I, Cal, Cbb C,2, Ca 2, Cb2, nt. D3, n4, ns, DD, N, u (see Table I).
Output: Tile size (El, E2) and the transfonned array decJaralLon.
Procedure:

if (Cal == I} then
CornpulcTileSizc-2D(C, I )

Compute TileSize-l D(C.2)
else

ComputeTileSize-2D( ey -1 C.l)
0)

CornputeTileSizc-/ D( Ce·, -I C.2)
0>

end if
Apply inter-array padding (see Section '1.2.2).
Rctllrn (B], B2).

Procedure CompuleTile$ize.lD(C,)
/* (TBII TB2) is a temporary tile si7.e. >Of
Select the maximum tile width" such that the footprint of onc tile can fit in both the TLB and the L2 cache.
TEl -\- l'< - 81. TB2 +-1/ + S2 ,. (ITMAX-l)
Compute the execution cost, TMt based on (10).
if (TM < M) then EI +- TBI, B2 +- TB,. M +- TM ond if

Procedure CompulcTilcSize.2D(C.)
/* (TBI ,TB,) is a temporary tile size. -/
M+-oo
for F, +- Cbl to N do

FI +- 1
t +- (Fi ,. N) mod C.
while (FI ~ (J Or (F, + Cbl - 1) ~ L~ (C, - P, - Cbl + 1» do

Convert array footprint size (FI, F,) to loop tile si7.e (TBI' TB2) (sec Section 4.2.1).
if(Cal = 1) then TEl +- TBI - S},TB'.l +- TB2 - 5, end if
if(TBI > 0 and TB2 > O} th.en

Compute the eJCei:ution cost, TM, based on (ll).
if(TM < M) then B I +- TBI, B2 +- TB2.M {-- TM end if

end if
FI +- FI + 1
t +- (FI ,. N) mod C.•

end while
end for

Figure 7: Tile-size selection algorithm - STS

either previously unused or will not be referenced again within the current traversal. Therefore,
cross-interference misses are also eliminated within a tile traversal. Figure 6 illustrates an example
for PI = 4 and na, = 2, where the cache is directly mapped. Here, assuming the starting address for
array Al to be 0, the padded number of data items, X, between arrays A l and A2 can be determined
from

(size(A I ) + x) = (2 * N), mod Csl -

We are ready to present OUI tile-size selection algorithm in the next section.

(12)

4.2.3 Algorithm STS

Algorithm STS in Figure 7 selects the tile size by interleaving the operations in procedure EnumFP­
Size with the applications of Formulas (10) and (11) which compute the execution cost. We require
B 2 to be no smaller than the cache line size ChI· However, we do not require B 2 to be a multiple
of Cbl, since such a requirement does not have much benefit when execution proceeds from one tile
to the next. In addition to the conditions stated in procedure EnumFPSize, the array footprint
width F2 should be no greater than a, which is the total number of array columns representable
by the TLB minus the number of newly accessed array columns when the execution proceeds from
one tile to the next.



STS makes the decision between 1-D and 2-D tiling based on their execution cost. For 1-D tiling, 
ComputeTileSize-ID tries to find tile width B1 such that Properties 1 and 2 are preserved on the 
L2 cache and that Formula (10) is minimized. For 2-D tiling, ComputcTileSize-2D enumerates all 
tile sizes which are free of self-interference misses. The tiIe size with the lowest execution cost is 
selected. Between 1-D and 2-D tiling, the scheme with the lower execution cost is chosen. 

STS needs a conversion fiom array footprint size (PI, F2) to loop tile size (El, B2), a s  stated in 
Section 4.2.1. If the resulting tile width or tile height is nonpositive, 1-D tiling is chosen. 

The complexity of STS is O(N t min(C,,, u) )  = O(Nu).  (In practice, o is much smaller than 
the L1 cache size C,I .) 

4.3 A Running Example 

We now take SOR (Figure 1) as an example to show how STS works, assuming the following 
parameters: N = 1000, ITMAX= 1050, Csl = 4096, Cbl = 4, Cnl = 2, Csz = 128* 1024, Cb2 = 16, 
Ca2 = 2, Tb = 4096 and Tc = 48, nl = 15, ng = 15, nq = 20, ng = 3, pl = 6, and pz = 30. Based on 
the array subscripts and the loop bounds, we have S1 = S2 = 1, y = 7 = 999, W = N*N = 1000000 
and o = 195. 

In the following, we show the steps of STS. 

Since C, = 2, ~ o m ~ u t e ~ i l e ~ i z e - 2 ~ ( ~ )  is called, and we have Br = 38, Bz = 43. The 
execution cost for 2-D tiling is M = 4171464893 units based on Formula (11). 

~ o r n ~ u t e ~ i l e ~ i z e - l ~ ( ~ )  computes TB1 = 63, TB2 = 2048. The execution cost for 1-D 
tiling is TM = 4764840588 units based on k r m u l a  (10). In this case, STS favors 2-D tiling 
over 1-D tiling with the tile size (38,43). 

No inter-array padding is applied since n, = 1. 

5 Related Work 

5.1 Competing Tile-Size Selection Schemes 

Chame and Moon present a tile size selection algorithm, called TLI, to simultaneously eliminate self- 
interference misses and minimize the summation of capacity misses and cross-interference misses [3]. 
Colcmsn and McKinley provide a tile size selection algorithm, TSS, based on the cache organization 
and the data Iayout [4]. TSS utilizes a gcd algorithm to exploit maximum cache utilization while 
eliminating all self-interference misses. 'Rivera and Tseng present a variation of TSS algorithm [lG]. 
Lam e1! al. provide a tiIe size selection scheme, LRW, which tries to select a square tile size to 
eliminate the capacity and self-interference misses for a dominant array [9]. Panda et a1 present 
DAT, which always chooses square tile sizes and tries to minimize the interferences by padding [13]. 
UnLike the work in this paper, these tile-size selection algorithms do not consider the  effect of loop 
skewing, nor do they take loop overhead into account. 

5.2 Other Related Work 

Ghosh et al. estimate cache misses, given a tile size, for a perfect loop nest [6]. They also informally 
discuss a tile-size selection scheme using matrix multiplication as the example. No formal algorithm 
is presented, l~owever. They do not discuss the estimation of cache misses for imperfectly-nested 
loops. Therefore, we are not able to compare with their method in our experiments. 
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STS makes the decision between I-D and 2-D tiling based on their execution cost. For 1-D tiling,
GomputeTileSize·1D tries to find tile width B l such that Properties 1 and 2 are preserved on the
L2 cache and that Formula (10) is minimized. For 2-D tiling, Compute TileSize-2D enumerates all
tile sizes which are free of self-interference misses. The tile size with the lowest execution cost is
selected. Between I-D and 2-D tiling, the scheme with the lower execution cost is chosen.

STS needs a conversion from array footprint size (FI , F2) to loop tile size (Bl' B2), as stated in
Section 4.2.1. If the resulting tile width or tile height is nonpositive, 1-D tiling is chosen.

The complexity of STS is O(N * min(Csl , a» = O(Na). (In practice, a is much smaller than
the L1 cache size CsI .)

4.3 A Running Example

We now take SOR (Figure 1) as an example to show how STS works, assuming the following
parameters: N = 1000, ITMAX = 1050, Csl = 4096, Cbl = 4, Gal = 2, Cs2 = 128 *1024, Gb2 = 16,
Co.2 = 2, T" = 4096 and Tc = 48, nl = 15, n3 = 15, n<j = 20, ns = 3, PI = 6, and P2 = 30. Based on
the array subscripts and the loop bounds, we have 8 1 = S2 = 1, "( = 11 = 999, W = N *N = 1000000
and a = 195.

In the following, we show the steps of STS.

• Since Go. = 2, ComputeTileSize-2D(~) is called, and we have BI = 38, B2 = 43. The
execution cost for 2-D tiling is M = 4171464893 units based on Formula (11).

• ComputeTileSize-1D(~) computes TB I = 63, TB2 = 2048. The execution cost for 1-D
tiling is T M = 4764840588 units based on Formula (10). In this case, STS favors 2-D tiling
over 1-D tiling with the tile size (38,43).

• No inter-array padding is applied since n a = 1.

5 Related Work

5.1 Competing Tile-Size Selection Schemes

Chame and Moon present a tile size selection algorithm, called TLI, to simultaneously eliminate self­
interference misses and minimize the summation of capacity misses and cross-interference misses [3].
Coleman and McKinley provide a tile size selection algorithm, TSS, based on the cache organization
and the data layout [4]. TSS utilizes a gcd algorithm to exploit maximum cache utilization while
eliminating all self-interference misses. Rivera and Tseng present a variation of TSS algorithm [16].
Lam et al. provide a tile size selection scheme, LRW, which tries to select a square tile size to
eliminate the capacity and self-interference misses for a dominant array [9]. Panda et al present
DAT, which always chooses square tile sizes and tries to minimize the interferences by padding [13].
Unlike the work in this paper, these tile-size selection algorithms do not consider the effect of loop
skewing, nor do they take loop overhead into account.

5.2 Other Related Work

Ghosh et al. estimate cache misses, given a tile size, for a perfect loop nest [6]. They also informally
discuss a tile-size selection scheme using matrix multiplication as the example. No formal algorithm
is presented, however. They do not discuss the estimation of cache misses for imperfectly-nested
loops. Therefore, we are not able to compare with their method in our experiments.



TabIe 2: Machine parameters 

Ferrante e t  al. present an algorithm to estimate the number of distinct cache lines over a perfect 
loop nest [5]. Temam et a!. derive an analytical method to estimate the number of self-interference 
misses [19]. Mckinley et  ol. present a simple cost model to estimate the number of cache misses [XI]. 
These methods do not consider the effect of loop skewing. 

Rivera and Tseng present several padding algorithms to eliminate cache conflict misses [15, 16). 
Manjikian and Abdelralunan use cache partitioning to scatter arrays evenly in the cache, such that 
cross-interference misses are minimized [lo]. We use a diflerent padding scheme which seems more 
suitable for our algorithm. 

6 Experiment a1 Evaluation 

We apply our tile-size selection algorithm STS to three numerical kernels, SOR, Jacohi and Liver- 
more Loop No. 18 (LLla), and two SPEC benchmarks, tomcatv and swim. We use reference inputs 
for torncatv and s w i m .  For SOR, Jacobi and LL18, we declare N x N double precision arrays, with 
randomly chosen N based on a random number generator [14] with the following formula 

Processors 
Ultra I1 
RlOK 

z,+l = (16807~~)  mod 2147483647. (13) 

G z  I Cbz 
256K 8 
S12K 1 16 

Tc 
64 
64 

Assuming that the array sizes under consideration range from TO to T I ,  we select 200 array sizes, 
a,, such that 

a, = ro + (2, mod (rl - q)), 1 5 n < 200. (14) 

Csl 
2K 
4K 

C a 2  

1 
2 

PI 
6 
9 

' y b  
1K 
4K 

We use zl = 9 in all our experiments. Note that it would be too time-consuming to exhaustly test 
all array sizes within the range in our experiments. 

We run the test programs on a SUN Ultra 11 uniprocessor workstation and on one MIPS 
RlOK processor of an SGI Origin 2000 multiprocessor, with the tile sizes selected by five dif- 
ferent algorithms, namely, STS, TLI [3], TSS [4], LRW [9] and DAT [13]. In order to handle 
several equally-important arrays, we make an obviously necessary mod5cation on the original 
TSS aod LRW algorithms such that the value of the initial tile size will meet the working set 
constraint. We also modify the TLI algorithm such that only the cache size divided by the number 
of equally-important arrays is used to compute the tile sizes which are free of self-interference 
misses. If any algorithm d'ecides to choose the whole array column as the tile height, then we let 
B2 = q + S2 * (ITMAX-1) and tile the Ji loops only (Figure 2(b)). 

Table 2 lists the machine parameters for the Ultra I1 and the RlOK, assuming the size of an 
array element of 8 bytes. To accommodate the competition between instructions and data in the 
L2 cache both on the Ultra I1 and on the RlOK, we only tries to utilize 95% of the total L2 cache 
capacity. We use the machine counters on the RlOK and the Ultra I1 to measure the cache miss 
rate. Currently, we obtain the values of nl, ns, 724 and ns by examining the assembly code of the 
original program. A backend compiler can easily obtain such numbers. 

On the RlOK, the untiled codes are compiled using the native compiler with the "-03" opti- 
mization switch set. On the RlOK, we found that compiling the tiled code with the "-02" switch 
can sometimes run faster than that with the "-03" switch, regardless of the tile-size selection 

PZ 
45 
68 

Cbl 
2 
4 

Cat 
1 
2 

13

Table 2: Machine parameters

Ferrante et al. present an algorithm to estimate the number of distinct cache lines over a perfect
loop nest [5]. Temam et al. derive an analytical method to estimate the number of self-interference
m.isses [19]. Mckinley et af. present a simple cost model to estimate the number of cache misses [11].
These methods do not consider the effect of loop skewing.

Rivera and Tseng present several padding algorithms to eliminate cache conflict m.isses [15, 16].
Manjikian and AbdelraJunan use cache partitioning to scatter arrays evenly in the cache, such ~hat

cross-interference misses are minimized [10]. We use a different padding scheme which seems more
suitable for our algorithm.

6 Experimental Evaluation

We apply our t.ile-size selection algorithm STS to three numerical kernels, SOR, Jacobi and Liver­
more Loop No. 18 (LLI8), and two SPEC benchmarks, tomcatv and swim. We use reference inputs
for tomcatv and swim. For SOR, Jacobi and LL18, we declare N x N double precision arrays, with
randomly chosen N based on a random number generator [14] with the following formula

Zn+l = (16807zn ) mod 2147483647. (13)

Assuming that the array sizes under consideration range from TO to Tl, we select 200 array sizes,
an, such that

an = TO + (zn mod (Tl - ro», 1 ~ n ::; 20D. (14)

We use zl = 9 in all our experiments. Note that it would be too time-consuming to exhaustly test
all array sizes within the range in our experiments.

We run the test programs on a SUN Ultra II uniprocessor workstation and on one MIPS
RlOK processor of an SGI Origin 2000 multiprocessor, with the tile sizes selected by five dif­
ferent algorithms, namely, STS, TLI [3], TSS [4], LRW [9] and DAT [13]. In order to handle
several equally-important arrays, we make an obviously necessary modification on the original
TSS and LRW algorithms such that the value of the initial tile size will meet the working set
constraint. We also modify the TLI algorithm such that only the cache size divided by the number
of equally-important arrays is used to compute the tile sizes which are free of self-interference
misses. If any algorithm decides to choose the whole array column as the tile height, then we let
B2 = "f1 + 82 * (ITMAX-l) and tile the Ji loops only (Figure 2(b).

Table 2 lists the machine parameters for the Ultra II and the R10K, assuming the size of an
array element of 8 bytes. To accommodate the competition between instructions and data in the
L2 cache both on the Ultra II and on the RI0K, we only tries to utilize 95% of the total L2 cache
capacity. We use the machine counters on the RlOK and the Ultra II to measure the cache miss
rat.e. Currently, we obtain the values of nb n3, n4 and ns by examining the assembly code of the
original program. A backend compiler can easily obtain such numbers.

On the RIOK, the untiled codes are compiled using the native compiler with the "_03" opti­
mization switch set. On the RIOK, we found that compiling the tiled code with the "-02" switch
can sometimes run faster than that with the "-03" switch, regardless of the tile-size selection
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scllemes. Thereforc, we compile the tiled code with 'L-02" or "-03" depending on which produces 
shorter execution time. For all the tile-size selection schemes, we switch off loop tiling for the native 
compiler on the RlOK when we compile the tiled source programs (with for both 1-D and 2-D tiling). 
We switch off prcfetching on the RlOI< when we compile 2-D tiled source codes since prefetching 
may increase cross-interference misses for smalIer tile height 3 2 .  We also switch off common block 
reorganization since the tile size selection algorithms already take care of memory layout. On the 
Ultra 11, both the untiled and the tiTed codes are compiled using the native compiler with the 
"-fast -xchip=ultra2 -xarch=v8plusa -fsimple=2" optimization switch, which is recommended by 
the vendor. 
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We fix ITMAX to 1050 and randomly choose 200 array sizes ranging from 200 to 2000, i.e., (ro,rl) = 
(200,2000) in Equation (14). The skewing factors are S1 = S2 = 1. We have nl = na = 11, n4 = 9 
and 7 ~ 5  = 3 on the RlOK aud nl = ng = 22, n4 = 34, ns = 4 on the Ultra 11. Table 3 summarizes the 
average speedup by STS over other schemes, average L1 and L2 cache miss  rates for SOR on both 
the Ultra I1 and the RlOK. The execution time is averaged by geometric mean, and the cache miss 
rates are averaged by arithmetic mean of cache miss rates for individual array size, Specifically, 
Figures 8 and 11 show the execution time for various schemes on the Ultra 11 and on the RlOK 
respectively. Figures 9 and 10 show the Ll cache and L2 cache miss rates respectively on the Ultra 
11. Figures 12 and 13 show the L1 cache and L2 cache miss rates respectively on the R101<. 
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schemes. Therefore, we compile the tiled code with "·02" or "-03" depending on which produces
shorter execution time. For all the tile-size selection schemes, we switch off loop tiling for the native
compiler on the RlOK when we compile the tiled source programs (with for both I-D and 2-D tiling).
We switch off prefetching on the RlOK when we compile 2-D tiled source codes since prefetching
may increase cross-interference misses for smaller tile height B 2 • We also switch off common block
reorganization since the tile size selection algorithms already take care of memory layout. On the
Ultra II, both the untiled and the tiled codes are compiled using the native compiler with the
"-fast -xchip=ultra2 -xarch=v8plusa -fsimple=2" optimization switch, which is recommended by
the vendor.

The SOR kernel

We fix ITMAX to 1050 and randomly choose 200 array sizes ranging from 200 to 2000, i.e_, (TO, Tl) =
(200,2000) in Equation (14). The skewing factors are 8 1 = 82 = 1. We have nl = nJ = 11, n4 = 9
and n5 = 3 on the RI0K and nl = n3 = 22, n4 = 34, ns = 4 on the Ultra II. Table 3 summarizes the
average speedup by STS over other schemes, average Ll and L2 cache miss rates for SOR on both
the Ultra II and the RI0K. The execution time is averaged by geometric mean, and the cache miss
rates are averaged by arithmetic mean of cache miss rates for individual array size. Specifically,
Figures 8 and 11 show the execution time for various schemes on the Ultra II and on the RI0K
respectively. Figures 9 and 10 show the Ll cache and L2 cache miss rates respectively on the Ultra
II. Figures 12 and 13 show the L1 cache and L2 cache miss rates respectively on the RlOK.
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Figure 17: Execution time of Jacobi for various schemes on the RlOK 
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Table 3: Speedup by STS and average cache miss rates for different schemes for SOR 

Figure 19: L2 cache miss rate of Jacobi for various schemes on the RlOK 
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We fix ITMAX to 500 and randomly choose 200 array sizes ranging fiom 200 to 2000. The skewing 
factors are S1 = S;! = 1. W e  have nl = ng = 17, nr = 28 and ns = 10 on the RlOK and 
nl = n~ = 28, n.1 = 24, ns = 3 on the Ultra 11. Table 4 shows the average speedup by STS, average 
L1 and L2 cache miss rates for Jacobi on both the Ultra I1 and the RIOK. Specifically, Figures 14 
and 17 show the execution time of Jacobi for various schemes on the Ultra I1 and on the RlOK 
respectively. Figures 15 and 16 show the L1 cache and L2 cache miss rates respectively on the 
Ultra 11. Figures 18 and 19 show the L1 cache and L2 cache miss rates respectively on the R101C. 
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Table 3: Speedup by STS and average cache miss rates for different schemes for SOR

Ultra II ORG LRW TSS TLI STS DAT
Average' Speedup by STS LID 1.06 1.34 1.03 1.00 1.10

Ll Miss Rate 0.14 0.02 0.07 0.03 0.02 0.06
L2 Miss Rate 0.066 0.006 0.009 0.005 0.006 0.008

RIOK ORG LRW TSS TLI STS DAT
Average Speedup by STS 1.26 0.99 1.06 0.98 1.00 0.97

Ll Miss Rnle 0.113 0.006 0.024 0.012 O.OOB 0.031
L2 Miss Rate 0.116 0.057 0.030 0.031 0.085 0.007
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Figure 19: L2 cache miss rate of Jacobi for various schemes on the RI0K

The Jacobi Kernel

We fix ITMAX to 500 and randomly choose 200 array sizes ranging from 200 to 2000. The skewing
factors are Sl = S2 = 1. We ha.ve nl = n3 = 17, n4 = 28 and n5 = 10 on the RlOK and
nl = n3 = 28, n.1 = 24, ns = 3 on the Ultra II. Table 4 shows the average speedup by STS, average
Ll and L2 cache miss rates for Jacobi on both the Ultra II and the RIOK. Specifically, Figures 14
and 17 show the execution time of Jacobi for various schemes on the Ultra II and on the RlOK
respectively. Figures 15 and 16 show the Ll eache and L2 cache miss rates respectively on the
Ultra II. Figures 18 and 19 show the Ll cache and L2 cache miss rates respectively on the RI0K.
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Figure 22: L2 cache m i s s  rate of LL18 for various schemes on the Ultra I1 
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Table 4: Speedup by STS and average cache miss rates for different schemes for Jacobi 
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the LL18 Kexnel 

ORG 
5.40 
0.60 
0.15 

ORG 
5.46 
0.234 
0.169 

LL18 has 9 arrays, and the tiled version has 11 arrays after duplicating ZR and ZZ. Due to the 
relatively large number of arrays, the array sizes we used in SOR will produce extremely small 
tile sizes for all the tiie-size selection schemes. Therefore, we reduce the array sizes and randomly 
choose 200 array sizes ranging from 200 to 500. We fix ITMAX to 300. The skewing factors are 
S1 = S2 = 2. We have nl = n 3  = 75, n4 = 100 and ns = 35 on the RlOK and nl = n3 = 87, 
n4 = 14, n5 = 8 on the Ultra 11. Table 5 shows the average speedup by STS, average L1 and 
L2 cache miss rates for LL18 on both the Ultra I1 and the RlOK. Specifically, Figures 20 and 23 
show the execution time of LL16 for various schemes on the Ultra I1 and on the RlOK respectively. 
Figures 21 and 22 show the L1 cache and L2 cache miss rates respectively on the Ultra 11. Figures 24 
and 25 show the L1 cache and L2 cache miss rates respectively on the RlOIC. O u t  of 200 cases, 
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Table 4: Speedup by STS and average cache miss rates for different schemes for Jacobi

Ultra 11 ORG LRW 'I'SS 'I'Ll 51'S DAT
Speedup by S1'S 5AO 1.39 '2.17 1.28 l.00 1.10

L1 MiS..'! Rate 0.60 0.12 0.24 0.2"- 0.05 0.19
L2 Miss Rate 0.15 0.02 0.02 0.01 0.02 0.01

RIOK ORG LRW 'I'SS 'I'Ll S1'S DAT
Speedup by S1'S 5046 0.98 1.21 1.15 1.00 0.9'(

LI Miss Rate 0.23"- 0.022 0.062 0.144 0.038 0.082
L2 Miss Rat~ 0.169 0.066 0.043 0.006 0.104 0.010
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Figure 24: Ll cache miss rate of LLI8 for various schemes on the RlOK

the LL1B Kernel

LLI8 has 9 arrays, and the tiled version has 11 arrays after duplicating ZR and ZZ. Due to the
I"elatively large number of arrays, the array sizes we used in SOR will produce extremely small
tile sizes for all the tile-size selection schemes. Therefore, we reduce the array sizes and randomly
choose 200 array sizes ranging from 200 to 500. We fix ITMAX to 300. The skewing factors are
8 1 = 52 = 2. We have nl = n3 = 75, n4 = 100 and ns = 35 on the RIOK and n1 = n3 = 87,
n4 = 14, ns = 8 on the Ultra II. Table 5 shows the average speedup by STS, average LI and
L2 cache miss rates for LLl8 on both the Ultra II and the RIOK. Specifically, Figures 20 and 23
show the execution time of LL18 for various schemes on the Ultra II and on the RlOK respectively.
Figures 21 and 22 show the L1 cache and L2 cache miss rates respectively ~:m the Ultra II. Figures 24
and 25 show the Ll cache and L2 cache miss rates respectively on the RlOI<. Out of 200 cases,
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Table 5: Speedup by STS and average cache miss rates for diEerent schemes for LL18 
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Figure 26: Performance of tomcatv with different tile sizes on the Ultra I1 

STS chooses 1-D tiling on 186 cases on the Ultra I1 and on all 200 cases on the RlOK. All the 
other tiling schemes either choose 2-D tiling or no tiling if they fail to generate the legal tile sizes. 
Figures 20 and 23 indirectly show that STS call make correct selection between 1-D tiling and 2-D 
tiling. 
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1.89 
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D.112 

ORG 
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0.128 

tomcatv 

tomcatv can only be tiled with one dimension [18], hence only STS can be applied for tile-size 
selection. We use two different reference inputs from SPEC92 and SPEC95 respectively. To verify 
whether STS produces nearly the best results, we run through a range of tile sizes, from 2 to twice 
of the size selected by STS, for each version of tomcatv. Figures 26(a) and (b) show the results 
on the Ultra 11, where the vertical bar indicates the tile size selected by the STS. The original 
programs kom SPEC92 and SPEC95 run 5 and 174 seconds respectively on the Ultra 11, and 4.0 
and 115.0 seconds respectively on the RlOK. Figures 28(a) and (b) show the results on the RlOK. 
STS chooses the near optimal tile sizes for both versions of the codes on both machines. To examine 
how padding will affect the STS, we also run both versions of tomcatv on both machines without 
padding applied- Figures 27(a) and (b) show the results on the Ultra 11, and Figures 29(a) and 
(b) show the results on the RlOK. Except few cases, padded version runs signficantly faster than 
unpadded version, which demonstrates the effectiveness of padding for STS. 

LRJV ----- 
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LRW 
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Similar to tomcatv, svim is tiled only with one dimension. We use three different reference inputs 
horn SPEC92, SPEC95 and SPEC2000 respectively. Similar to tomcatv, we choose the tile sizes 
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Table 5: Speedup by STS and average cache miss rates for different schemes for LL18

Ultra II ORG LRW TSS TLr STS DAT
Speedup by STS LB9 2.92 2.54 1.96 LOO 2.11

Ll Miss Rale 0.435 0.217 0.284 0.326 0.469 0.208
L2 Miss Rale 0.112 0.037 0.056 0.019 0.018 0.021

RlOK ORG LRW TSS TLI STS DAT
Speedup by STS 1.12 1.98 1.98 1.62 1.00 1.69

Ll Miss Rate 0.173 0.072 0.096 0.122 0.217 0.066
L2 Miss Rate 0.128 0.049 0.075 0.010 0.005 0.026
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Figure 26: Performance of tomcatv with different tile sizes on the Ultra II

STS chooses I-D tiling on 186 cases on the Ultra II and On all 200 cases on the RlOK. All the
other tiling schemes either choose 2-D tiling or no tiling if they fail to generate the legal tile sizes.
Figures 20 and 23 indirectly show that STS can make correct selection between l-D tiling and 2-D
tiling.

tomcatv

tomcatv can only be tiled with one dimension [18], hence only STS can be applied for tile-size
selection. We use two different reference inputs from SPEC92 and SPEC9S respectively. To verify
whether STS produces nearly the best results, we run through a range of tile sizes, from 2 to twice
of the size selected by STS, for each version of tomcatv. Figures 26(a) and (b) show the results
on the Ultra II, where the vertical bar indicates the tile size selected by the STS. The original
programs from SPEC92 and SPEC95 run 5 and 174 seconds respectively on the Ultra II, and 4.0
and 115.0 seconds respectively on the RlOK. Figures 28(a) and (b) show the results on the RIOK.
STS chooses the near optimal tile sizes for both versions of the codes on both machines. To examine
how padding will affect the STS, we also run both versions of tomcatv on both machines without
padding applied- Figures 27(a) and (b) show the results on the Ultra II, and Figures 29(a) and
(b) show the results on the RlOK. Except few cases, padded version runs significantly faster than
unpadded version, which demonstrates the effectiveness of padding for STS.

syim

Similar to tomcatv, slJim is tiled only with one dimension. We use three different reference inputs
from SPEC92, SPEC95 and SPEC2000 respectively. Similar to tomcatv, we choose the tile sizes



Figure 27: Performance of tomcatv with different tile sizes and without padding on the Ultra I1 
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Table 6: Summary of speedup of STS over other schemes 

horn 2 to twice of the size selected by STS for each version of s w i m .  The original program horn 
SPEC92, SPEC95 and SPEC2000 run 36, 157 and 930 seconds respectively on the Ultra 11, and 
21 -2, 91.9 and 619.5 seconds respectively on the RlOK. Figures 30(a), (b) and (c) show the results 
on the Ultra 11, and Figures 32(a), (b) and (c) show the results on the RlOK. STS chooses the 
near optimal tile sixes for all versions of the codes on both machines. Figures 31(a), (b) and (c) 
show the results on the Ultra I1 for unpadded versions of s w i m ,  and Figures 33(3,), (b) and (c) show 
the results on the RlOK. Similar to tomcatv, padded version runs faster than unpadded version in 
most cases for SPEC92 and SPEC95. Note that on the Ultra 11, the TLB size is smaller than the 
L2 cache size, hence STS will result in an underutilization of L2 cache. For SPEC2000, however, 
such an underutilization seems a negative eEect on performance. 

6.1 Discussion 

In summary, Table 6 shows the speedup by STS over all the other schemes for all 600 cases for 
SOR, Jacobi and LL18, where "Both" stands for both the Ultra I1 and the RZOK. 

One interesting point is related with LRW. Considering the combination of each benchmark 
(SOR, Jacobi and LL18) and cach machine (Ultra I1 and RlOK), LRW produces equal or smaller 
average L1 cache misses in 5 out of 6 combinations compared with STS. However, this does not 
translate into large performance saving. (The worst average speed ratio of STS over LRW is 0.98.) 
We found that in general LRW produces smaller tile sizes than STS, which potentially introduces 
more loop overhead. For LLlS, LRW has greater average L2 cache miss rates than STS since STS 
cxploits locality for L2 cache in most of cases due to large number of arrays. 

7 Conclusion 

In this paper, we present a memory cost model to predict the cache misses after skewed tiling. Fur- 
ther, me model the execution cost by considering both the cache misses and the loop overhead, based 
on which we make a decision between tiling one loop level vs. two Ioop levels. We present Algorithm 
STS, which selects the tile size such that the capacity misses and self-interference misses within a 
tile traversal are eliminated. STS uses inter-array padding to eliminate cross-interference misses. 
We also compare STS with four previous algorithms, TLI, TSS, LRW and DAT. Experimerlts show 
that STS achieves an average speedup of 1.27 to 1.63 over all the other four algoritlims. We have 
previously implemented a cost model along with a number of tiling algorithms [18]. However, we 
are yet to implement the cost model presented in this paper. Ideally, our cost model should be 
incorporated in a backend compiler, which will Be our future work. 
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Table 6: Summary of speedup of STS over other schemes

ORG LRW TSS TLI DAT
Ultra II 2.24 1.63 1.95 1.37 1.37
R10K 2.28 1.24 1.36 1.22 1.17
Both 2.26 1.42 1.63 1.29 1.27

from 2 to twice of the size selected by STS for each version of swim. The original programs from
SPEC92, SPEC95 and SPEC2000 run 36, 157 and 930 seconds respectively on the Ultra II, and
21.2, 91.9 and 619.5 seconds respectively on the RI0K. Figures 30(a), (b) and (c) show the results
on the Ultra II, and Figures 32(a}, (b) and (c) show the results on the RIOK. STS chooses the
near optimal tile si7.es for all versions of the codes on both machines. Figures 31(a}, (b) and (c)
show the results on the Ultra II for unpadded versions of swim, and Figures 33(a), (b) and (c) show
the results on the RI0K. Similar to tomcatv, padded version runs faster than unpadded version in
most cases for SPEC92 and SPEC95. Note that on the Ultra II, the TLB size is smaller than the
L2 cache size, hence STS will result in an underutilization of L2 cache. For SPEC2000, however,
such an underutilization seems a negative effect on performance.

6.1 Discussion

In summary, Table 6 shows the speedup by STS over all the other schemes for all 600 cases for
SOR, Jacobi and LL18, where "Both" stands for both the Ultra II and the RIOK.

One interesting point is related with LRW. Considering the combination of each benchmark
(SOR, Jacobi and LLI8) and each machine (Ultra II and RIOK), LRW produces equal or smaller
average Ll cache misses in 5 out of 6 combinations compared with STS. However, this does not
translate into large performance saving. (The worst average speed ratio of STS over LRW is 0.98.)
We found that in general LRW produces smaller tile sizes than STS, which potentially introduces
more loop overhead. For LLI8, LRW has greater average L2 cache miss rates than STS since STS
exploits locality for L2 cache in most of cases due to large number of arrays.

7 Conclusion

In this paper, we present a memory cost model to predict the cache misses after skewed tiling. F\n­
ther, we model the execution cost by considering both the cache misses and the loop overhead, based
on which we make a decision between tiling one loop level vs. two loop levels. We present Algorithm
STS, which selects the tile size such that the capacity misses and self-interference misses within a.
tile traversal are eliminated. STS uses inter-array padding to eliminate cross-interference misses.
We also compare STS with four previous algorithms, TLI, TSS, LRW and DAT. Experiments show
that STS achieves an average speedup of 1.27 to 1.63 over all the other four algorithms. We have
previously implemented a cost model along with a number of tiling algorithms [18]. However, we
are yet to implement the cost model presented in this paper. Ideally, our cost model should be
incorporated in a backend compiler, which will be our future work.
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