View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2008

A Framework for Efficient Class-based Sampling

Mohit Saxena

Ramana Rao Kompella
Purdue University, kompella@cs.purdue.edu

Report Number:
08-022

Saxena, Mohit and Kompella, Ramana Rao, "A Framework for Efficient Class-based Sampling" (2008).
Department of Computer Science Technical Reports. Paper 1709.
https://docs.lib.purdue.edu/cstech/1709

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4971869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A Framework for Efficient Class-based
Sampling

Mohit Saxena
Ramana Rao Kompella

CSD TR #08-022
September 2008

A Framework for Efficient Class-based Sampling

Mohit Saxena and Ramana Rao Kompella
Department of Computer Science
Purdue University
West Lafayette, IN, 47907
Email: {msaxena,kompella@cs.purdue.edu

I. ABSTRACT record each and every packet on a given interface. In order to

With an increasing requirement for network monitorin@vercome this hurdle, routers re_cord only a random subset of
tools to classify traffic and track security threats, newed a Packets that they observe bgmplingthe packets that traverse
efficient ways are needed for collecting traffic statisticsl a the interface. _
monitoring of network flows. However, traditional soluteon The rate at which packets are sampled typically depends on
based on random packet sampling based treat all flows the resources available on the router. The three major route
equal and therefore, do not provide the flexibility requiretfSources that the task of flow collection task needs to gegapp
for these applications. For example, network operators ah includes CPU, memory, and flow export bandwidth.
often interested in observing as many unique flows as p@ssikﬁseveral sampling schemes exist to control the utlllzgtlbn o
however, random packet sampling is inherently biased wsvathese resources. For example, Cisco's flow collection tool
large flows thus making it unsuitable for such applicatioff@lled NetFlow [4] implemented on routers includes a simple
Operators may also be interested in increasing the fidefity $age of random packet sampling. These schemes export flow
flow measurements for a certain class of flows, which canri§cords computed on an unbiased sample of packets collected
be achieved in such frameworks. In this paper, we propo38 each mtgrface. These unbiased flow records could then be
a novel architecture called CLAMP that provides an efficieSed to estimate flow aggregate volumes. For example, these
framework to implement class-based sampling. At the hedlaw records could be used to estimate the volumes of popular
of CLAMP is a novel data structure called Composite Bloor@Pplications such as Web and Email, or volume of traffic going
filter (CBF) that consists of a set of Bloom filters that worfrom one prefix to another prefix for traffic matrix estimation
together to encapsulate various class definitions. We shew t One major deficiency of uniform packet sampling in col-
flexibility and efficacy of CLAMP by implementing two-class!eCt'”g flow records is its bias towards heavy-h|tte_r flows,
size-based sampling. We also consider different objextiviee- flows that have a large number of packets. Given that
such as maximizing flow coverage and improving the accuralf}ﬁemet flow size distribution is heavy-tailed, a large andy
of certain class of flows. In comparison to previous appreachf sampled packets typically belong to a few large flows. \whil
that implement simple size-based sampling, our architect$uch a bias does not affect volume estimation applications,
requires substantially lower memory (upto 80x) and resulovides no flexibility to network operators to specify haw t

in higher flow coverage (upto 8x more flows) under specif@locate their overall sampling budget among differenssts
configurations. of traffic. For example, an operator might want to specify

that he is interested in collecting as many small-sized flows
Il. INTRODUCTION as possible to satisfy security applications such as tnacki
Flow monitoring is an essential ingredient of networkotnets, detecting portscans and so on. For such applisatio
management. Typical flow monitoring involves collection opacket sampling is exactly the wrong choice as it inherently
flow records at various intermediate network boxes such filfs up the sampling budget with a large number of packets
routers. These flow records can assist a network operatorfiom “elephant” flows.
various tasks such as billing and accounting, network agpac In general, we observe that while sampling budget is diyectl
planning, traffic matrix estimation, and detecting the pree dictated by router constraints, the network operator shbel
of adversarial trafficé.g, worms, DoS attacks). able to specify how to use this sampling budget efficiently
While the basic task of flow monitoring appears simple, cote satisfy monitoring objectives. The monitoring objeetv
lecting flow records at high speeds under extremely reseurtieemselves are context and location dependent, and asauch,
constrained environments is quite challenging. Partityla flexible architecture is desired which can accomodate aéver
memory and CPU resources in routers are often distributedys of allocating the sampling budget among different $ype
among several critical functions such as route computatiaf flows. It is, however, not feasible to control the sampling
forwarding, scheduling, protocol processing and so onhwibn a per-flow basis due to two reasons. First, the number
the result that flow monitoring tasks receive only a smatif flows is too large which means a lot of state needs to
fraction in the overall pie. With such constrained resosrcée maintained. Second, it causes tremendous administrativ
and ever increasing link speeds, it is extremely difficult toverhead to configure and manage the sampling rate.

Instead of fixing a per-flow sampling rate, it is beneficiahe information from the packet is incorporated into the flow
to aggregate flows into classes and allocate specific sagnpliecord. The basic form of NetFlow maintains simple flow
rates to these individual classes. Note that this is simidar statistics such as packet and byte counters and information
how we achieve QoS in modern routers through aggregatiabout TCP flags, timestamps of the first and last packet among
into DiffServ classes. Indeed, newer versions of Cisco’s- Neother information. Thus, on each packet, the flow record
Flow [3] allows setting input filters which allow specifyingcorresponding to the packet is found and the packet counter
different filters for different classes of traffic. Howevéne and byte counters are incremented while also noting if there
definition of a class is based on an access control list arsl trare any special flags in the packet.
is based primarily on the fields of the header. We cannot, forBasic NetFlow does not scale beyond a few flows and at
example, specify that small flows and large flows get diffehigh link speeds and thus is not suitable for several core
ent sampling rates to implement size-based sampling [9]-backbone links. Routers, therefore, support sampled BietFI
serious limitation of thisstatic class-based sampling. a variant of NetFlow that works on packets that are sampled

In this paper, we propose an architecture, called CLAMRBgcording to a configurable sampling rate (dajn 64). By
that provides network operators to define dynamic flow clessandomly sampling packets, sampled NetFlow allows unbliase
(i.e, those that are not dependent only on static header fieldsfimators to compute volume estimates for different types
and perform efficient class-based sampling on these fla# traffic. Several flow monitoring solution that exist in the
classes. While the architecture of CLAMP is generic, and céiterature are fundamentally based on this simple idea. For
potentially support several newer and more flexible vargetiexample, adaptive NetFlow [5] adapts the sampling rateén th
of sampling, we focus on implementing simple two-class-sizpresence of adversarial traffic mixes to control resoureges
based sampling in this architecture as a canonical examplewsSlices [8] advocates the use of different tuning knaiys f
to illustrate the efficacy of our approach. While allocatingifferent resources (memory, CPU and reporting bandwidth)
different sampling rates to different types of flows basedrogME [12] provides a way to specify which flows a network
on their flow sizes has been proposed before in [9], tlwperator is interested in based on constructing binarysaeci
simplicity of our architecture facilitates an implememdat diagrams that can in turn be programmed into the router.
with significantly less memory and high accuracy. While random sampling is easy to implement, it is not

Thus, the contributions of our paper are as follows: necessary the most effective form of sampling depending on

« We describe the architecture of CLAMP that achieveghat is desired. For example, the inherent bias of random

dynamic class-based sampling with the help of a noveficket sampling towards large flows might be harmful if
classification data structure called Composite Bloom Fi¢ollecting as many flows as possible is the objective. More
ter to help network operators flexibly allocate differengenerally, they either do not distinguish between différen
sampling budgets among different competing classes. classes of trafficd.g, adaptive NetFlow and FlowSlices) or

« We show how to perform simple two class size-basghiey explicitly pick the flows (using packet headers) they

sampling (with extension to multiple classes) using owvant to monitor and do not sample sub-populations within
architecture. We also consider how to specify differer category .9, ProgME).

objectives such as increasing flow coverage and maxi-A seminal paper by Kumaet. al [9], addresses this limita-
mizing accuracy of a specific group of flows and so orfion and provides a way to perform size-dependent sampling

« We present both theoretical as well as empirical analygising a sketch to estimate the flow size. By configuring the

for the same. Our results using real traces indicaté@mpling rate to be inverse of the flow size, the relativererro
that our architecture consumes up to 80x less memady flows irrespective of the flow sizes remains similar. Note
and results in larger flow coverage (upto 8x more flowdat this is unlike random packet sampling in which flow

under specific configurations), as compared to existir%@ze estimates for large flows exhibit much better accuracy a
solutions. compared to smaller flows. Their main observation is that we

The rest of the paper is organized as follows. First, wen reduce the sampling rate for large flows and allocate more
provide background and related work in Section IIl. We thefmpling budget towards smaller flows so that the accuracy
describe our the CLAMP architecture in Section IV and in@f large flows only decreases by a little while small flows
plementation details of size-based sampling in Section ¥. \@enefit significantly. Given they need flow size estimatesy th

outline evaluation details in Section VI. advocate the use of an online sketch to obtain flow size
estimates.
I1l. BACKGROUND AND RELATED WORK FlexSample [11] builds upon this basic idea and attempts

The increasing importance of flow measurement as an essenexplicitly improve the flow coverage, as opposed to just
tial ingredient in several network management tasks prethptaccuracy of volume estimates. Both these solutions, haweve
router vendors such as Cisco and Juniper to support a simpée sketches or counting Bloom filters which are quite heavy-
flow measurement solution called NetFlow [4] in routers. Th&eight. In addition, they are too atuned towards size-dépeh
basic version of NetFlow observes each and every packetsampling and do not provide explicit ways to specify how
a given router interface and checks to see if a flow recordts maximize the flow coverage or accuracy of a particular
already created for that given packet. If it is already @éat group of flows. Our architecture, on the other hand, is much

Packet Steam @ OO0O0) e packet counter is incremented, byte counter is incremenyed
¥ the packet size, and special flags in the packet are noted). If
Composite Bloom Filter

Rl not, a new flow record is created for this packet. We envision
i E i (t101) sampling Process that the flow memory resides in the larger and less expensive

Sampling Rate = f([1101])

e R memory (DRAMY. Flow memory is periodically reset when

Packet Classifer P the flow records are reported to the collection center.

The most important step is to decide which flows are in-
serted into a given BF. If classes are just based on pure packe

headers, it is relatively straightforward to insert indival

Flow Records flows into the BFs. However, classes can be dependent on

specific flow characteristics such as packet or byte counts.

Such flow characteristics are not knovenpriori and must

be determined on-the-fly. Even further, a flow may initially

more generic and also uses light-weight data structures fflong to a class X and then may transition into class Y at

classification thus reducing the overall memory consumpti@ later time. In order to account for such dynamics, we use

as well as improving the flow coverage or accuracy dependiﬂ'g? flow records in the flow memory to determine which class

Feedback: Insert Action

Fig. 1. Architecture of CLAMP.

on the specific objective, as we discuss next. a given flow belongs, and when a flow transitions from one
class to another. This is depicted as the feedback action in
IV. DESIGN OFCLAMP Figure 1. Note that BFs do not allow deletion of flow records;

Our goal is to design an architecture that provides flexybili thus, once a flow is entered in a given BF, it cannot be deleted
in configuring different sampling rates for different types from that BF. This may constrain the flow definitions to some
flows. Thus, the design of CLAMP comprises of two basigxtent.
components—a classification data structure called Cort@0si Because records in the flow memory are based on sampled
Bloom Filter (CBF) and flow memory as shown in Figure lpackets, they are subject to renormalization errors. When
Each packet upon its arrival is passed through the CBF flews are inserted or transitioned between different cksse
first identify the class to which the packet belongs to. CBFased on these sampled statistics, these renormalizatians e
is composed of a few Bloom filters (BFs) working in tandengan effect the accuracy of the mapping between a flow and
to provide hints about the class to which an incoming packgtclass and thus may result in misclassification of certain
belongs to. Since the CBF uses simple BFs, it is small enougws. In addition, there could be misclassification due to
to fit well in fast memory (SRAM) and can easily operate ahe inherent false positives associated with BFs. To some
link speeds such as OC-192 and OC-768. extent, this is unavoidable due to the approximate natutieeof

Generally speaking, a specific combination of BFs repreata structure; the key is to ensure that such misclassificat
sents a class. Thus, upon each packet arrival, the packet's flesults do not significantly affect the overall flow monitugi
id (e.g, the 5-tuple) is queried parallelly within each BF an@bjectives. While the framework itself is quite general, we
the matching BF indices are obtained. The tuple of matchifgcus on one specific example, namely size-based sampling,
BFs is used to identify the class to which the packet belongs to illustrate the efficacy of CLAMP.

In the simplest case, each BF represents a unique class; thus
the number of classes equals number of BFs and the packet
that matches a given BF is said to belong to the corresponding
class. In more complex scenarios, class definitions includelt is well known that sampling random packets for collecting
arbitrary combinations of BFs. flow statistics is prone to biases towards larger flows [9]. To

As shown in Figure 1, the sampling rate corresponding tleviate this problem, an operator may like to, for example
each packet is determined by first identifying the class et different sampling rates for ‘mouse’ and ‘elephant’ Bow
which the packet belongs to. The network operators can ého@sere a flow is termed a mouse or an elephant depending
the sampling rate for a class based on several criterion. kg1 whether the number of packets in that flow is below or
example, network operators may want to sample a given targ@bve a particular pre-defined threshdid By setting a higher
fraction of packets for different classes subject to pre&s sampling rate to mouse flows, we will be able to capture a
constraints. They may also want to increase the accuracylgfger number of unique flows, or in other words, increase
volume estimates for certain types of flows. In additionyth&low coverage. This however, may result in a reduction of
can also choose to allocate flow and packet coverage owgs accuracy of flow volume estimates for the elephant flows.
different flow classes in a ‘fair’ manner. We discuss a feBoth of these might be perfectly valid objectives for a netwo
such objectives in more detail in Section V-B. operator; the choice of one over the other depends on the

Once the sampling rate is determined, the packet is thgarticular scenario. We consider both of these choices.
probabilistically sampled based on this rate. If the padket
sampled and a flow record exists in the flow memory, then theIn some cases, a limited amount of flow memory may reside in BRA
flow record is updated with the contents of the pacleet)(which is then flushed to the DRAM

V. SIZE-BASED SAMPLING USINGCLAMP

K hash J2 > T vinual If we used exact flow counterd/r would be zero, since
fns - a mouse packet would never be misconstrued as an elephant
packet. However, due to the inherent false positives aatamti

D Flow Label o - with BFs, there might be an occasional match of a mouse

| |

| |

| |

| M} flow within the elephant BF causiny/z to be non-zero. The

Packet o probability of such collisions ig3 = (1 — e*"/™)*, wherek

L is the number of hash functions,is the number of elements

e e supported by the filter, andh is the size of the filter [7].
L Search order) On the other handE,; exists because of the inherent online

Composite Bloom Filter nature of our framework; a flow is deemed mouse until enough

packets arrive to qualify for an elephant, thus initial petsk
Fig. 2. CBF: Finding the flow class to which a packet belongs. are always misconstrued as mouse.
For any sampling framework, the most fundamental con-
o straint is applied by the processing limits. We definas the
A. Configuring the CBF capacity or the maximum number of packets which can be
In this section, we discuss how we can configure the CBfampled at a given rate constrained by the processing power.
to implement different sampling rates for both the mouse amdiore formally this basic resource constraint inequality b&
elephant classes. In this case, the CBF comprises of twaBloavritten as follows:
filters naively, one for the mouse and the other for the elepha
flows. However, since every flow starts off as a mouse flow

as we do not know the ﬂow siz?e priori, there is no explicit \ynere N is the total number of packets sampled anfg and

need for a mouse Bloom filter in the CBF. . Eg are the actual number of packets sampled which belong
The two basic operations on CBF diad andinsert For {5 mouse and elephant flows respectively assuming an oracle

each packet, the five tuple corresponding to the source apfich can perform perfect classification. From our defimisip

destination IP addresses and ports along with the protaadl fi Mg = My + Mg andEg = Ep + Euy.

is used to uniquely identify a flow. As shown in Figure 2, this pe to misclassification of mouse packets as elephant, some

flow five-tuple is hashed using hash functions in parallel, 5 the mouse packets are sampled at elephant rate. Hence, we

and the hashes are queried in each ofkf&goom Filters in neeq to reduce this fraction fronf,; and add it tad/z. Thus,
parallel. The matched class with the highest priority ikpat o get the following:

In our case, if a flow belongs to the elephant class, then both

the elephant and mouse BFs (if existed) will respond with a My = sy - M- (1)

match, and since the priority of the elephant class is higher Mg=sg-M-§ 1)

the flow belongs to that class. More generally, all the BFs are

arranged in priority of increasing flow sizes Figure 2 show&here, sy and sg are the sampling rates of the mouse and

the case with three BFs for three classds,—F; and M. E, €lephant classes and is the total number of mouse packets.

and E; classes are distinguished with the thresh@idand Generally, at larger sizes for the filtefswill be small enough

E, and M by T;. SinceT; is greater tharf}, E, has higher t0 approximatel,, to be simply equal ta,-M.

priority than E;, which in turn has higher priority thaf/. Similarly, every elephant flow in the beginning of its evo-
Initially, all flows are entered in the mouse filter uporution is treated as a mouse flow, until an estima¥ets,,

the arrival of the first packet. A new entry is created for Backets have been encountered for it, wtgre the threshold

flow in the elephant filter, if the flow crosses the threshold taumber of sampled packets at which a flow changes from

become an elephant. This particular operation can be seerig@ise to elephant.

the feedback from the flow memory to the CBF in Figure 1.

; < Fg -
Flow memory, however, is updated for every packet sampled Ev < Fp-T
for a flow. Ep=sp-(E—Eu/sm) 2)

N=Ms+FEs<c

where Fg is the total number of elephant flows ard is
B. Analysis the total number of elephant packets. Note that is atmost

Fr times the threshold”, since a flow will be immediately

For_ our example of a two-class CBF, packets can B&beled as an elephant on@é packets are sampled for that
classified into either mouse or elephant packets, with SOM&y. Hence, we need to reduce these many packets sampled
mouse packets misclassified as elephant packets and viget, o se sampling rate, to get the expressionfaf We
versa. We usé/,; and M to denote sampled mouse packetg,, plug in the values fory;, My and Ep to derive a

that are classified as mouse and elephant packets respectiye, . general inequality (assuming negligible valuesdpras
(and hence sampled at mouse and elephant sampling ratggs:

Similarly, we denoteE,; and Er as the elephant packets
classified as mouse and elephant packets respectively. N<sy - M+Fg-T+sg-(E—Ep/sm)<c 3)

Using this general inequality, we will now show how awVhile G,.,. is actually packet coverage gain, it is directly
network operator can compute appropriate valuessfprand related to the flow coverage gain for mouse flows, because all
sg to configure ageneraltwo-class size-based sampling, tadhe mouse flows have less than or equdl'tpackets. We note
satisfy the resource constraints and at the same time nexinthatG,,... is dependent on two terms:+ F /M and1—FE),/c.
his metric of interest—flow coverage or accuracy or both. The first term is solely dependent on the traffic mix or the
trace characteristics. However, the second term is depénde
Maximizing flow coverage:One of the main objectives we on the amount of misclassification occuring for elephantslow
consider is increasing the number of unique flows captured bipte that the gains in mouse covera@g,.. are due to the
CLAMP, either for a particular group or for all the flows.reduction in number of elephant packets sampled and inereas
Due to the heavy-tailed nature of Internet traffic, there aie the sampled mouse packets; the sum of both these sampled
many mouse flows with a few elephants. To increase the flgackets is the same as that of random packet sampling.
coverage of mouse flows, we need to increase the samplingAlong with increasing the packet and flow coverages, sam-
rates);. However, for a given sampling budget and processimde and block can also increase the accuracy of the flow size
constraints, we cannot increase it indefinitely. The Equa8 estimates for the mouse flows, as we discuss next.
is a quadratic irs), that can be solved to obtain the followingMaximizing accuracy: CLAMP when configured to sample

solution forsjy. and block, achieves the maximum packet and flow coverage
for mouse flows. Because mouse flows consist of only a
sm = (t+ V2 +4sp - By - M)/(2- M) few packets, an increase in their coverage directly results
where,t =c—sg-E — Ey (4) increased accuracy for their volume estimates.

However while maximizing for flow coverage, we trade-
All positive values ofsy; less than the one defined abovgf with the accuracy of medium and large flows. In order
will satisfy the processing capacity We can get estimatests improve their accuracy or reduce their relative estiorati
for E, M and E historically, based on the past measuremegtror, we need to shift the equilibrium of our sampling budge
cycle(s). Due to the heavy-tailed nature of Internet traffiax- - towards them. Earlier work has shown that random packet
imizing the value ofs,; will automatically lead to increasing sampling is biased towards sampling these heavy-hitteds an
the overall flow coverage. Thus, we maximize the value;of achieves sufficiently good accuracy for their flow size esti-
with respect tosg to obtain the values fosy, and sg that mates. In order to achieve accuracy atleast as good as random
will lead to maximizing the flow coverage. packet sampling, we must sample atleast those many elephant
sa = min{(c — Exg)/M, 1} gﬁgk;tsé(;ruh; t((:)z;r;.be simply achieved by configuring bath
sp=max0,(c— M — Ey)/(E - Eun)}) As we reduce; from its value for maximum coverage, and
, i ,) increasesg to compensate for the reduction ¥, accuracy
In most cases, the first conﬂgurgnon withy set tq in flow size estimates for medium and large flows increase.
(c — Ear)/M andsg to 0 would work fine because samplingry, s the network operator has the flexibility to configure
capac!tyc IS typl_cally very small. Only when we have hlgherCLAMP for achieving maximal flow coverage for mouse
sampling capacity, we will need to configusg; to 1 andsg flows, along with sufficiently accurate flow size estimates fo
to a value less than or equal to— M — Ey)/(E — Ewm), SO madium and large flows. This can be attained by tuning to
as notto qnderutlhze the spare sampling capacity. We tqfera point between the configurations for maximum coverage
this sampling scheme a’ﬂmple a_nd blocki_s It IS the opposite and maximum accuracy. Further, this analysis can be easily
of sample and hold6] that is designed to identify large ﬂows'extended to multiple classes by computing the samplings rate

Sample and block samples packets belonging to mouse ﬂo&‘ﬁresponding to each class one at a time, based on the
at the maximum possible sampling ratg;, and as soon as requirements of the network operator

a mouse flow becomes an elephant, it stops sampling further
packets for that flow. Thus, it tries to allocate most of the
sampling budget for identifying the mouse flows.

It is useful to compare the coverage gains of such anwhile we envision CLAMP to be implemented in hardware
approach with that of random packet sampling with probshbilifor high speeds, we built a prototype software implemeanati
sr. To perform fair comparisons, the invariant we maintaiof CLAMP for evaluation. This prototype required nearly
is the sampling budget in both schemes. We compute the1200 lines of C++ code. The most important component of
maximum packet coverage gain forouseflows obtained at CLAMP is the packet classification data structure, which is
this configuration, as follows: implemented as a vector of binary Bloom filters (hash tables)

Our prototype allows selecting the number of hash functions
(e~ En)/M (k), number of entriesr) in each filter and even the epoch
¢/(M +E) size €). We use Bob Hash function as suggested by [10]
=(1+E/M)-(1—-En/c) for packet sampling at line speeds. Each hash function is
for Eyy <c < (M + Eu) (6) initialized with a different 32 bit value.

VI. EVALUATION

Gmam = (81\4 ~]Vf)/(SR . M) =

([Name || Date/Time [Duration][Online Source] Link [Mbps (Kpkt/s)| Packets | 5-tuple flows]|

ABIL 2002-08-14/09:20| 600s www.nlanr.net | OC-48 294.2 (57.6) | 34,573,317 2,195,366
CHIC || 2008-04-30/13:10 60s www.caida.org| OC-192 | 971.4 (217.4) | 13,046,322 1,174,965

TABLE |
TRACES USED FOR OUR MEASUREMENTS

Mouse flow coverage vs. memory usage False positive rate 3 vs. memory usage
1 T 1 T T
X
0.8 o 0.8}
5 06 2 06 "
g CBF —— 2 CBF ——
I 04} X Counting BF - g 04 | >< Counting BF —->-—
Ey s
02| L o2t
T~
.
0 Il Il Il Il Il Il Il Il 0 4 Il
1 2 3 4 5 6 7 8 9 10 1 8 9 10
m/n ratio: Memory usage m/n ratio: Memory usage
(a) Flow coverage (b) False positive rate

Fig. 3. Effect of varying memory usage for CBF and counting BE1,s;=1,epoch=600s).

Using this prototype implementation, we evaluate the effi- Why is higher false positive rate in the classification data
cacy of CLAMP over real-world traces. We also implementestructure bad for various sampling objectives ? As an exampl
other size-based sampling frameworks [9], [11] and useethesnsider the case when we are interested in increasing flow
in our comparisons. We show how to configure CLAMP taoverage. According to Equation 1, the mouse flow coverage
obtain better flow coverage using our theoretical analysis is directly related to the number of mouse packets classi-
Section V-B. We also discuss how CLAMP can be configurdied and sampled at mouse raté,;. Mouse flow coverage,
for maximizing the mouse flow coverage and accuracy thowever, decreases as filter false positive fatecreases as
employing thesample and blockscheme. Finally, we show these packets will be mis-classified as elephant packets and
the results on accuracy of flow size estimates by CLAMP, fohereby sampled at elephant rate (less than the mouse rate
large flows and compare them with random packet samplirfgr high flow coverage). Thus, low false positive rate for the

We used two real-world anonymized traces to analyze tbkssification data structure is important for such obyesti
performance of CLAMP. The first is a 10 minute OC-48 trace In Figure 3(a), we compare the mouse flow coverage (which

published by NLANR [2] with 34 million packets and abougS equal to My, for T set to 1) for the full ABIL trace

ﬁ'z krEiIIion flows,]:/vhile_ the Sel?gd isbla hl (;n:;IUtgA?gAlg r CLAMP and counting BF. In addition to the mouse flow
ackbone trace of a tier-one published by [overage, we also plot the empirical values for filter falss-p

W'th. .12 million _packets and 1.'1 .m|II|.on flows. Both tr.ace%ve rate 3 (calculated using Equation 1) in Figure 3(b). The
exhibit hequ-talled flow size dlstr|but|ons thgt we assume configuration allowed mouse flow coverage to be maximum,
our analysis. These traces are summarized in Table I. i.e, sy set to 1, thus ensuring a worst case analysis for the
A. Memory Usage filter with the maximum number of flows inserted in the Bloom
rf_iIter over the trace. To ensure fair comparison, we use three

In this section, we compare CLAMP with other counte X ,
based schemes for size-based sampling such as FIexE%ﬁ?—h functions for both CBF as well as the counting Bloom
ilter.

ple [11] and sketch-guided sampling [9]. While the focus a
usage of these solutions is different, they both share aimil Figures 3(a) and 3(b) show that CLAMP as well as counting
data structures (sketch and counting Bloom filters) to ke®&¥ implementations exhibit a reduction in the false posgiv
track of the flow sizes. In contrast, we rely on CBF thaind increase in the flow coverage as we increase the amount of
represents a much simpler data structure. In many casds, sower-provisioning €:/n). However, clearly, CLAMP exhibits
simplicity comes at the cost of worsening some other metniguch faster increase in mouse coverage and decrease in false
such as, say, increasing the false positive rate of the.filtpositives (or misclassifications). CBF achieves a filtesdal
The results indicate, somewhat surprisingly, that CBFgreré positive rate of 6% at an/n ratio of 4 (using 174.5KBytes
better in both memory consumption as well as false positiveé memory), giving nearly 94.3% mouse flow coverage (at
compared to counting BF alternatives, thus indicating@Bf s,,=1 andsg=0.069). Note that we do not have 100% mouse
achieves clear benefit and is not a tradeoff. flow coverage due to the fact thdtlr is not zero. At the

[Epochsize] sp [Ewm | Enle

in Ey;. Thus, while resetting both CBF and flow memory is

5s 0.208 || 2,141,542] 0.789 . itical ion is wheth hb

105 0.179 [1757734 0.754 important, a critical question is whether to reset one ohbot

20s 0.157 || 1,477,898 0.720 or none of these every epoch.

40s 0.147 || 1,344,678| 0.701 In Table lll, we consider three strategies—all reset every

60s 0.134 || 1,179,340] 0.676 epoch, flow memory reset every epoch (of 10s) but no CBF
TABLE Il reset for this trace (of duration 60s), and no reset. In each

EFFECT OF VARYING EPOCH SIZECHIC TRACE, T=1). of these strategies, our aim is to achieve the best possible

flow coverage; thus, we configure CLAMP with, equal to
1 and the epoch size is 10s (OC-192 trace). We observe that

same sampling rate, the counting Bloom filter implementatid®™!Y ﬂo‘?’ memc:jry reset Casi is almost as ggod qshnci_r(:]set, In
required am /n ratio of 10 (using 13,960 KBytes of memory){€"Ms 0fEas and mouse packet coveragéy, but with slight

to achieve the same filter false positive rate of 6%. This sholficrease in total number of sampled packets (can be seen from

that CBF requires nearly 80x less high-speed SRAM thanﬂ%\e calculatedsr to achieve the same level of coverage). But

counting Bloom filter to achieve similar filter false positiv '¢S€tting the CBF too frequently (as in the all reset casejde

rates and flow coverages. to a much larger number df,; packets unnecessarily, thereby
On the other hand, even considering only same numB’glducmg the sampled mouse packets.

of entrigs (bits and _counte_rs) across both CBF and c_oun_tiDg Flow coverage

Bloom filter, CBF still obtains at least up to 6x reduction in

the number of false positives (at/n = 5, CLAMP has about . .
" positives (at/n " cLoverage for mouse flows can be achieved by setting CLAMP

4% false positives while counting Bloom filter experienc . -
about 25% false positives). What makes these gains e\}@nsample and blockmode with T=1. Table IV shows the

more significant is the fact that we do not consider the extl sults 3023'282% &rgce W";h epoch S\’/'\fe of 6?105 ra]\ndhCBF
overhead associated with counters (in the counting Bloo] ocate) ytes of memory. We note that the theoret-

filters). If we factor in this disparity, the benefit assoetht ical gains for mouse coverage follow Equation 6. Those gains

with CBF will increase even further. are formulated for the mouse flows which are all such flows
with size less than or equal to T packefs=(). However, in

B. Effect of varying epoch size Table IV we show the gains for flows of size 0-1000 packets,

We show the breakup OE]u and SR Corresponding to which will be Sl|ght|y less than those obtained for mouse
achieving maximum mouse sampling ratee(s); = 1) flows according to Equation 6. The flow coverage gains for
and for different epoch sizes in Table Il. Note that we ha/&e overall traffic volume are also mainly decided by the
overprovisioned the memory for CBF to 436.25 KByte§louse flow coverage , because large flows are almost always
(m/n = 10) for all epoch sizes to completely eliminate thé&aptured.
affects of filter false positives. We reset both the flow megmor We can observe from Table IV that, as we increase the
and CBF after every epoch. We note that for each of th@ndom sampling probabilityz, the coverage gain of CLAMP
configurations in Table Il, packet and flow coverage for moudacreases from 3.74x (atz = 0.001) to almost 8.32x (at
flows is very close to 100% (not shown in the Table). sg = 0.073). Further increasingr will reduce the gain since

From the table, we can observe clearly that as we incre@esr = 0.073, the mouse sampling rate, can already be
the epoch size, the effective contribution Bf, to the total Set to 1 and cannot further increase the flow coverage. As
sampling budget reduces. Still, the contribution6f; to ¢ Mentioned earlier, even witty, = 1, we can see that CLAMP
at an epoch of size 60s is still significantly high,;/c ~ almost captures 99.4% of traffic (with the remaining 0.6%
0.676) which results in a higher equivalent (to obtain a attributed to the false positive probability associatethwie
mouse coverage of 1). We note that this problem is inhergdigphant Bloom filter). Thus, we can clearly conclude that
in any size-based sampling framework which is used for &aLAMP provides an order of magnitude better coverage for
online traffic analysis without the prior knowledge of elaph this traffic mix as compared to random packet sampling.
flows. However, a simple optimization to our CBF, namely not For the CHIC trace, we show the results in Table V. A
resetting the CBF in every epoch, can solve it to some exteRtaximum gain of 84% is achieved for this trace at a random
as we see next. packet sampling rate of 0.307, while at lower sampling rates

) (sg=0.016), the gains are just 11%. There are two important
C. Effect of resetting the CBF observations: First, at very low sampling rates0(001),

Resetting the flow memory after every epoch is requirddLAMP is almost as bad as random packet sampling since
to meet the constraints imposed by the memory (DRAMMere is not enough sampling budget mouse flows can ‘steal’
of the sampling device. On the other hand, resetting CBFfiem elephants to improve their coverage. Second, at high
useful especially if the amount of memory allocated to CBFampling rates such as 0.307, we get a gain of 84% which
is small. Otherwise, the Bloom filters will be filled up toois not as good as we obtained for the ABIL trace (8.32x at
fast rendering it almost useless for classification. Reggthe szr=0.073). This is in part because of the flow size distribution
CBF frequently may result, however, in a considerable iasee of CHIC trace (see Equation 6 for the- £//M term). But the

According to Equation 5 and Equation 6, the best possible

(I Case [sr [Packet Samplingl CLAMP | Gain || N | My | Eum [

All reset 0.307 53.8% 99.2% | 1.84x || 4,017,451 | 1,738,217 | 2,279,234

FM reset only 0.249 47.4% 99.9% | 2.11x || 3,255,337 1,755,813 1,499,524

No reset (1 epoch)|| 0.239 46.4% 99.9% | 2.15x || 3,115,285| 1,755,048 1,360,237
TABLE Il

EFFECT OF RESETTINGCBF AND FM ON COVERAGE FOR FLOWS OF SI1ZB-100PACKETS(sp;=1,T=5EPOCH=10sS).

([Packet Sampling | CLAMP [[

SR SM # Flows | Percentage|| # Flows | Percentage|| Coverage gain
0.001 | 0.0043 6,524 0.3% 24,454 1.1% 3.74x
0.004 | 0.0267 || 22,472 1.0% 114,188 5.2% 5.08x
0.016 | 0.146 73,968 3.4% 456,357 20.8% 6.17x
0.064 | 0.845 || 233,825 10.7% 1,894,616 86.4% 8.10x
0.073 1.0 261,872 11.9% 2,179,399 99.4% 8.32x

TABLE IV

COVERAGE FOR FLOWS OF SI1ZB-1K PACKETS(ABIL TRACE,T=1EPOCH=6005,MEMORY=436.25KBYTES).

([Packet Sampling || CLAMP [[
SR SM # Flows | Percentage|| # Flows | Percentage|| Coverage gain
0.001 | 0.0010 5,003 0.4% 4,984 0.4% 0.99x
0.004 | 0.0041 || 19,079 1.6% 19,697 1.7% 1.03x
0.016 | 0.0179 || 69,623 6.0% 76,960 6.7% 1.11x
0.064 | 0.0965 || 216,170 18.7% 293,108 25.3% 1.36x
0.307 1.0 622,214 53.8% 1,147,231 99.2% 1.84x
TABLE V

COVERAGE FOR FLOWS OF SI1ZB-100PACKETS(CHIC TRACE, T=5,EPOCH=10S,MEMORY=50KBYTES).

major reason is attributed to the hidty,/c ratios for all of sg) and allocating all this budget the mouse flowsg;(is the
these configurations in Table V, because of smaller epoeh scomputed sampling rate) and ignoring completely the elepha
(10s) and higher threshold€5), effectively decreasing theflows. As we can see, atz = 0.073, we could sample all the
coverage gain (see Equation 6 for the E);/c term). How- mouse flows and thus,, = 1.0.
ever, operating isample and blocknode for the CHIC trace We observe at all sampling rates;, CLAMP achieves
(with T=1, epoch=60s), a lower sampling ratez£0.138) much better accuracy than random packet sampling. Of course
results in a much better coverage gain of 3.05x (with ontjis result is expected because instead of sampling all the
flow memory reset after every 10s), by reducing the share f - E elephant packets, our approach results in shifting
E\p/c. For brevity, we omit those results for CHIC trace. some of this budget to sampling mouse packets. However, the
_ o comparisons at very low sampling rates;£0.001) are not
E. Flow size estimation very meaningful, because both CLAMP and random packet
The second objective we consider is to provide flexibilitgampling are affected by huge quantization errors. However
to improve flow accuracy for certain types of flows. Wdor typical sampling ratess=0.016) and high sampling rates
characterize the accuracy of flow size estimates obtaindd w{sz=0.073), errors are highly reduced for CLAMP. Ak
CLAMP using the mean relative estimation error metric. Wequal to 0.073, for example, CLAMP gives an error of 7%
calculate the relative estimation error for each flow, arehth with a standard deviation of 22%. This is almost 105.43xdvett
average it for small groups of flows on the basis of their sizethan random packet sampling. We also note that till a samplin
For our analysis, we classify flows into three groups—smatite of sz = 0.064, all mean relative estimation errors are due
(0-1K packets), medium (1K-10K packets) and large flows overestimation of flow size estimates. Fgy = 0.073, the
(greater than 10K packets). mean error for CLAMP of 7% is due to underestimation. This
Getting good estimates for flow sizes of the small flowis expected because of a high value of sampling rate used for
is really difficult for random sampling because of high quariormalization.
tization errors involved. Increasing the packet coverage f We show the results for medium (1K-10K) and large (10K-
small flows will require allocating a disproportionatelygher more) size flows in Table VII. In the table, we start with the
budget to the small flows as compared to the larger ones. Thssmple and bloclconfiguration,i.e,, sg = 0 andsy; = 1.0
we configured CLAMP in thesample and blockmode with and increasesy and reduces,; correspondingly such that
T=1, single epoch and memory 436.25KBytes. Results atee total number of packets sampled remains the same. By
shown in Table VI for flows of size 0-1K packets. For each dhcreasingsg, we sample more packets corresponding to
the points, we started with a base sampling budget (by fiximjephants and thus increase the accuracy of the flow size

([Packet Sampling [CLAMP [Comparison [
SR SM # Flows | Error Dev. # Flows Error Dev. Error reduction | Coverage gain
0.001 | 0.0043 6,524 | 342.64| 431.50 24,454 91.30 | 102.34 3.75x 3.74x
0.004 | 0.0267 || 22,472 | 96.87 | 109.91 114,188 18.39 16.48 5.27x 5.08x
0.016 | 0.146 73,968 | 28.82 | 27.64 456,357 3.69 2.69 7.81x 6.17x
0.064 | 0.845 || 233,825| 8.37 6.55 1,894,616 0.07 0.28 119.57x 8.10x
0.073 1.0 261,872 7.38 5.65 2,179,399 0.07(u) | 0.22 105.43x 8.32x
TABLE VI

ACCURACY FOR SMALL FLOWS OF SI1ZE0-1K PACKETS(ABIL TRACE,SAMPLE& BLOCK,T=1 MEMORY=436.25KBYTES).

(CLAMP [1K-10K [10K-more I Coverage [
SE SM # Flows | Error Dev. # Flows | Error Dev. 1K-10K | 10K-more
0 1.0 3,152 0.999 | 0.0005 594 0.999 | 5.515 99.9% 99.5%
0.001 | 0.982 3,156 0.102 | 0.729 597 0.091 | 0.245 100% 100%
0.004 | 0.935 3,156 0.019 | 0.349 597 0.0024 | 0.121 100% 100%
0.016 0.75 3,156 | 0.0074| 0.179 597 0.0055 | 0.059 100% 100%
0.064 | 0.148 3,156 0.003 | 0.084 597 0.0007 | 0.029 100% 100%
0.128 | 0.0004 2,307 0.372 | 0.694 592 0.0008 | 0.148 73.1% 99.2%
[[Packet Sampling]] 3,156 [0.0017] 0.0756]] 597 [0.0006] 0.0262]] 100% | 100%]
TABLE VII

ACCURACY FOR MEDIUM AND LARGE FLOWS(ABIL TRACE,sp=0.073,T=1MEMORY=436.25KBYTES).

estimates. For example, az = 0.064, the mean relative for same rate of packet misclassifications. In addition, aseh
error of medium flows reduces to 0.3% from about 10.2%Iso shown how we can configure the CLAMP architecture for
at sg = 0.001. At this value ofsg, CLAMP performs similar specific network monitoring objectives such as increasing fl
to that of random packet sampling. In almost all the casexverage and improving the volume estimates of a specific
the flow coverage remains at almost 100%. Interestinglyllsmelass of flows (based on size). While we have primarily fo-

values ofsg does not reduce the overall flow coverage as weltused on size-based class definitions, our architectie# iss
as can be seen under the coverage column in Table VII, excgpite generic and lends itself to a wide variety of applimasi,
when we increaser beyondsr. This is because large valuessome of which we intend to pursue in the future.

of sg lead to reducing the value ofy; significantly. Given
all flows initially start off being mouse, with smadl,; several
medium flows fail to get even sampled to take advantage ¢
higher sg allocated to such flows. 2]

VIlI. CONCLUSIONS [3]

Flow monitoring solutions in routers have evolved signif-[4]
icantly over the years from their modest origins in simple[5]
NetFlow-like solutions. While most solutions revolve andu
better handling router resource constraints such as CP-mel6]
ory and flow reporting, there is little research on providarg 7]
efficient and flexible class-based sampling architectuiigh w
dynamic class definitions that include specific flow progearti
such as the size. In this paper, we have discussed the arcﬁa-
tecture of CLAMP to address this challenge that involves the)
use of a set of simple Bloom filters for class membershij
and a feedback from the actual flow memory to record clads¥
membership information about flows. Using this architegtur
we have shown how to implement a simple two-class siz€l
based packet sampling framework.

We have analyzed the architecture for this particular ap=]
plication both theoretically as well as empirically using a
prototype software implementation over real ISP traces. Ou
results clearly indicate the simplicity of our approach rowe
previous solutions. For example, for some configuratiores, w
achieve over 80x reduction in the amount of memory required

REFERENCES

CAIDA Anonymized 2008 Internet Trace (equinix-chicagollection).
http://www.caida.org/data/passive/passi®#808 dataset.xml.

NLANR Abilene-l Internet dataset. http://pma.nlaretfiraces/long/
ipls1.html.

Cisco Systems. NetFlow Input filters. http://www.cisoom/en/US/docs/
ios/12 3t/12 3t4/feature/guide/gtnfinpf.html.

B. Claise. Cisco Systems NetFlow Services Export Versto RFC
3954.

C. Estan, K. Keys, D. Moore, and G. Varghese.
NetFlow. InProc. of ACM SIGCOMM2004.

C. Estan and G. Varghese. New Directions in Traffic Meament and
Accounting. InSIGCOMM 2002.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary caalscalable
wide-area Web cache sharing protocolEEE/ACM Transactions on
Networking 8(3):281-293, 2000.

R. Kompella and C. Estan. The Power of Slicing in Interféow
Measurement. IfProc. of IMC 2005.

A. Kumar and J. J. Xu. Sketch guided sampling - using ae-kstimates
of flow size for adaptive data collection. IEEE INFOCOM 2006.

M. Molina, S. Niccolini, and N. Duffield. A comparitivexperimental
study of hash functions applied to packet samplingTeohnical Report,
AT&T.

A. Ramachandran, S. Seetharaman, N. Feamster, and ifrakh
Building a Better Mousetrap. IGeorgia Tech CSS Technical Report
GIT-CSS-07-012007.

L. Yuan, C.-N. Chuah, and P. Mohapatra. Progme: towgrds
grammable network measuremeSiGCOMM Comput. Commun. Rev.
37(4):97-108, 2007.

Building at&e

	A Framework for Efficient Class-based Sampling
	Report Number:
	

	tmp.1307986960.pdf.ITWJu

