
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2008

A Framework for Efficient Class-based Sampling A Framework for Efficient Class-based Sampling

Mohit Saxena

Ramana Rao Kompella
Purdue University, kompella@cs.purdue.edu

Report Number:
08-022

Saxena, Mohit and Kompella, Ramana Rao, "A Framework for Efficient Class-based Sampling" (2008).
Department of Computer Science Technical Reports. Paper 1709.
https://docs.lib.purdue.edu/cstech/1709

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A Framework for Efficient Class-based
Sampling

Mohit Saxena

Ramana Rao Kompella

CSD TR #08-022
September 2008

A Framework for Efficient Class-based Sampling
Mohit Saxena and Ramana Rao Kompella

Department of Computer Science
Purdue University

West Lafayette, IN, 47907
Email: {msaxena,kompella}@cs.purdue.edu

I. A BSTRACT

With an increasing requirement for network monitoring
tools to classify traffic and track security threats, newer and
efficient ways are needed for collecting traffic statistics and
monitoring of network flows. However, traditional solutions
based on random packet sampling based treat all flows as
equal and therefore, do not provide the flexibility required
for these applications. For example, network operators are
often interested in observing as many unique flows as possible;
however, random packet sampling is inherently biased towards
large flows thus making it unsuitable for such application.
Operators may also be interested in increasing the fidelity of
flow measurements for a certain class of flows, which cannot
be achieved in such frameworks. In this paper, we propose
a novel architecture called CLAMP that provides an efficient
framework to implement class-based sampling. At the heart
of CLAMP is a novel data structure called Composite Bloom
filter (CBF) that consists of a set of Bloom filters that work
together to encapsulate various class definitions. We show the
flexibility and efficacy of CLAMP by implementing two-class
size-based sampling. We also consider different objectives
such as maximizing flow coverage and improving the accuracy
of certain class of flows. In comparison to previous approaches
that implement simple size-based sampling, our architecture
requires substantially lower memory (upto 80x) and results
in higher flow coverage (upto 8x more flows) under specific
configurations.

II. I NTRODUCTION

Flow monitoring is an essential ingredient of network
management. Typical flow monitoring involves collection of
flow records at various intermediate network boxes such as
routers. These flow records can assist a network operator in
various tasks such as billing and accounting, network capacity
planning, traffic matrix estimation, and detecting the presence
of adversarial traffic (e.g., worms, DoS attacks).

While the basic task of flow monitoring appears simple, col-
lecting flow records at high speeds under extremely resource-
constrained environments is quite challenging. Particularly,
memory and CPU resources in routers are often distributed
among several critical functions such as route computation,
forwarding, scheduling, protocol processing and so on, with
the result that flow monitoring tasks receive only a small
fraction in the overall pie. With such constrained resources
and ever increasing link speeds, it is extremely difficult to

record each and every packet on a given interface. In order to
overcome this hurdle, routers record only a random subset of
packets that they observe bysamplingthe packets that traverse
the interface.

The rate at which packets are sampled typically depends on
the resources available on the router. The three major router
resources that the task of flow collection task needs to grapple
with includes CPU, memory, and flow export bandwidth.
Several sampling schemes exist to control the utilization of
these resources. For example, Cisco’s flow collection tool
called NetFlow [4] implemented on routers includes a simple
stage of random packet sampling. These schemes export flow
records computed on an unbiased sample of packets collected
on each interface. These unbiased flow records could then be
used to estimate flow aggregate volumes. For example, these
flow records could be used to estimate the volumes of popular
applications such as Web and Email, or volume of traffic going
from one prefix to another prefix for traffic matrix estimation.

One major deficiency of uniform packet sampling in col-
lecting flow records is its bias towards heavy-hitter flows,
i.e., flows that have a large number of packets. Given that
Internet flow size distribution is heavy-tailed, a large majority
of sampled packets typically belong to a few large flows. While
such a bias does not affect volume estimation applications,it
provides no flexibility to network operators to specify how to
allocate their overall sampling budget among different classes
of traffic. For example, an operator might want to specify
that he is interested in collecting as many small-sized flows
as possible to satisfy security applications such as tracking
botnets, detecting portscans and so on. For such applications,
packet sampling is exactly the wrong choice as it inherently
fills up the sampling budget with a large number of packets
from “elephant” flows.

In general, we observe that while sampling budget is directly
dictated by router constraints, the network operator should be
able to specify how to use this sampling budget efficiently
to satisfy monitoring objectives. The monitoring objectives
themselves are context and location dependent, and as such,a
flexible architecture is desired which can accomodate several
ways of allocating the sampling budget among different types
of flows. It is, however, not feasible to control the sampling
on a per-flow basis due to two reasons. First, the number
of flows is too large which means a lot of state needs to
be maintained. Second, it causes tremendous administrative
overhead to configure and manage the sampling rate.

2

Instead of fixing a per-flow sampling rate, it is beneficial
to aggregate flows into classes and allocate specific sampling
rates to these individual classes. Note that this is similarto
how we achieve QoS in modern routers through aggregation
into DiffServ classes. Indeed, newer versions of Cisco’s Net-
Flow [3] allows setting input filters which allow specifying
different filters for different classes of traffic. However,the
definition of a class is based on an access control list and thus
is based primarily on the fields of the header. We cannot, for
example, specify that small flows and large flows get differ-
ent sampling rates to implement size-based sampling [9]—a
serious limitation of thisstatic class-based sampling.

In this paper, we propose an architecture, called CLAMP,
that provides network operators to define dynamic flow classes
(i.e., those that are not dependent only on static header fields)
and perform efficient class-based sampling on these flow
classes. While the architecture of CLAMP is generic, and can
potentially support several newer and more flexible varieties
of sampling, we focus on implementing simple two-class size-
based sampling in this architecture as a canonical example
to illustrate the efficacy of our approach. While allocating
different sampling rates to different types of flows based
on their flow sizes has been proposed before in [9], the
simplicity of our architecture facilitates an implementation
with significantly less memory and high accuracy.

Thus, the contributions of our paper are as follows:
• We describe the architecture of CLAMP that achieves

dynamic class-based sampling with the help of a novel
classification data structure called Composite Bloom Fil-
ter to help network operators flexibly allocate different
sampling budgets among different competing classes.

• We show how to perform simple two class size-based
sampling (with extension to multiple classes) using our
architecture. We also consider how to specify different
objectives such as increasing flow coverage and maxi-
mizing accuracy of a specific group of flows and so on.

• We present both theoretical as well as empirical analysis
for the same. Our results using real traces indicates
that our architecture consumes up to 80x less memory
and results in larger flow coverage (upto 8x more flows
under specific configurations), as compared to existing
solutions.

The rest of the paper is organized as follows. First, we
provide background and related work in Section III. We then
describe our the CLAMP architecture in Section IV and im-
plementation details of size-based sampling in Section V. We
outline evaluation details in Section VI.

III. B ACKGROUND AND RELATED WORK

The increasing importance of flow measurement as an essen-
tial ingredient in several network management tasks prompted
router vendors such as Cisco and Juniper to support a simple
flow measurement solution called NetFlow [4] in routers. The
basic version of NetFlow observes each and every packet on
a given router interface and checks to see if a flow record is
already created for that given packet. If it is already created,

the information from the packet is incorporated into the flow
record. The basic form of NetFlow maintains simple flow
statistics such as packet and byte counters and information
about TCP flags, timestamps of the first and last packet among
other information. Thus, on each packet, the flow record
corresponding to the packet is found and the packet counter
and byte counters are incremented while also noting if there
are any special flags in the packet.

Basic NetFlow does not scale beyond a few flows and at
high link speeds and thus is not suitable for several core
backbone links. Routers, therefore, support sampled NetFlow,
a variant of NetFlow that works on packets that are sampled
according to a configurable sampling rate (say1 in 64). By
randomly sampling packets, sampled NetFlow allows unbiased
estimators to compute volume estimates for different types
of traffic. Several flow monitoring solution that exist in the
literature are fundamentally based on this simple idea. For
example, adaptive NetFlow [5] adapts the sampling rate in the
presence of adversarial traffic mixes to control resource usage.
FlowSlices [8] advocates the use of different tuning knobs for
different resources (memory, CPU and reporting bandwidth).
ProgME [12] provides a way to specify which flows a network
operator is interested in based on constructing binary decision
diagrams that can in turn be programmed into the router.

While random sampling is easy to implement, it is not
necessary the most effective form of sampling depending on
what is desired. For example, the inherent bias of random
packet sampling towards large flows might be harmful if
collecting as many flows as possible is the objective. More
generally, they either do not distinguish between different
classes of traffic (e.g., adaptive NetFlow and FlowSlices) or
they explicitly pick the flows (using packet headers) they
want to monitor and do not sample sub-populations within
a category (e.g., ProgME).

A seminal paper by Kumaret. al [9], addresses this limita-
tion and provides a way to perform size-dependent sampling
using a sketch to estimate the flow size. By configuring the
sampling rate to be inverse of the flow size, the relative error
of flows irrespective of the flow sizes remains similar. Note
that this is unlike random packet sampling in which flow
size estimates for large flows exhibit much better accuracy as
compared to smaller flows. Their main observation is that we
can reduce the sampling rate for large flows and allocate more
sampling budget towards smaller flows so that the accuracy
of large flows only decreases by a little while small flows
benefit significantly. Given they need flow size estimates, they
advocate the use of an online sketch to obtain flow size
estimates.

FlexSample [11] builds upon this basic idea and attempts
to explicitly improve the flow coverage, as opposed to just
accuracy of volume estimates. Both these solutions, however,
use sketches or counting Bloom filters which are quite heavy-
weight. In addition, they are too atuned towards size-dependent
sampling and do not provide explicit ways to specify how
to maximize the flow coverage or accuracy of a particular
group of flows. Our architecture, on the other hand, is much

3

Flow Memory

�
�
�
�

Packets
Sampled

[1] [1] [0] [1]

Packet Classifier

Sampling Process

Sampling Rate = f([1101])

Flow Records

Feedback: Insert Action

Composite Bloom Filter

Bit Map
[1101]

Class Membership

Packet Stream

Fig. 1. Architecture of CLAMP.

more generic and also uses light-weight data structures for
classification thus reducing the overall memory consumption
as well as improving the flow coverage or accuracy depending
on the specific objective, as we discuss next.

IV. D ESIGN OFCLAMP

Our goal is to design an architecture that provides flexibility
in configuring different sampling rates for different typesof
flows. Thus, the design of CLAMP comprises of two basic
components—a classification data structure called Composite
Bloom Filter (CBF) and flow memory as shown in Figure 1.
Each packet upon its arrival is passed through the CBF to
first identify the class to which the packet belongs to. CBF
is composed of a few Bloom filters (BFs) working in tandem
to provide hints about the class to which an incoming packet
belongs to. Since the CBF uses simple BFs, it is small enough
to fit well in fast memory (SRAM) and can easily operate at
link speeds such as OC-192 and OC-768.

Generally speaking, a specific combination of BFs repre-
sents a class. Thus, upon each packet arrival, the packet’s flow
id (e.g., the 5-tuple) is queried parallelly within each BF and
the matching BF indices are obtained. The tuple of matching
BFs is used to identify the class to which the packet belongs to.
In the simplest case, each BF represents a unique class; thus,
the number of classes equals number of BFs and the packet
that matches a given BF is said to belong to the corresponding
class. In more complex scenarios, class definitions include
arbitrary combinations of BFs.

As shown in Figure 1, the sampling rate corresponding to
each packet is determined by first identifying the class to
which the packet belongs to. The network operators can choose
the sampling rate for a class based on several criterion. For
example, network operators may want to sample a given target
fraction of packets for different classes subject to processing
constraints. They may also want to increase the accuracy of
volume estimates for certain types of flows. In addition, they
can also choose to allocate flow and packet coverage over
different flow classes in a ‘fair’ manner. We discuss a few
such objectives in more detail in Section V-B.

Once the sampling rate is determined, the packet is then
probabilistically sampled based on this rate. If the packetis
sampled and a flow record exists in the flow memory, then the
flow record is updated with the contents of the packet (e.g.,

packet counter is incremented, byte counter is incrementedby
the packet size, and special flags in the packet are noted). If
not, a new flow record is created for this packet. We envision
that the flow memory resides in the larger and less expensive
memory (DRAM)1. Flow memory is periodically reset when
the flow records are reported to the collection center.

The most important step is to decide which flows are in-
serted into a given BF. If classes are just based on pure packet
headers, it is relatively straightforward to insert individual
flows into the BFs. However, classes can be dependent on
specific flow characteristics such as packet or byte counts.
Such flow characteristics are not knowna priori and must
be determined on-the-fly. Even further, a flow may initially
belong to a class X and then may transition into class Y at
a later time. In order to account for such dynamics, we use
the flow records in the flow memory to determine which class
a given flow belongs, and when a flow transitions from one
class to another. This is depicted as the feedback action in
Figure 1. Note that BFs do not allow deletion of flow records;
thus, once a flow is entered in a given BF, it cannot be deleted
from that BF. This may constrain the flow definitions to some
extent.

Because records in the flow memory are based on sampled
packets, they are subject to renormalization errors. When
flows are inserted or transitioned between different classes
based on these sampled statistics, these renormalization errors
can effect the accuracy of the mapping between a flow and
a class and thus may result in misclassification of certain
flows. In addition, there could be misclassification due to
the inherent false positives associated with BFs. To some
extent, this is unavoidable due to the approximate nature ofthe
data structure; the key is to ensure that such misclassification
results do not significantly affect the overall flow monitoring
objectives. While the framework itself is quite general, we
focus on one specific example, namely size-based sampling,
to illustrate the efficacy of CLAMP.

V. SIZE-BASED SAMPLING USINGCLAMP

It is well known that sampling random packets for collecting
flow statistics is prone to biases towards larger flows [9]. To
alleviate this problem, an operator may like to, for example,
set different sampling rates for ‘mouse’ and ‘elephant’ flows,
where a flow is termed a mouse or an elephant depending
on whether the number of packets in that flow is below or
above a particular pre-defined threshold,T . By setting a higher
sampling rate to mouse flows, we will be able to capture a
larger number of unique flows, or in other words, increase
flow coverage. This however, may result in a reduction of
the accuracy of flow volume estimates for the elephant flows.
Both of these might be perfectly valid objectives for a network
operator; the choice of one over the other depends on the
particular scenario. We consider both of these choices.

1In some cases, a limited amount of flow memory may reside in SRAM
which is then flushed to the DRAM

4

Flow Label

k hash
fns

T2 T1>

E2 E1 M

Packet

Search order

Composite Bloom Filter

Virtual
filter

Fig. 2. CBF: Finding the flow class to which a packet belongs.

A. Configuring the CBF

In this section, we discuss how we can configure the CBF
to implement different sampling rates for both the mouse and
elephant classes. In this case, the CBF comprises of two Bloom
filters naively, one for the mouse and the other for the elephant
flows. However, since every flow starts off as a mouse flow
as we do not know the flow sizea priori, there is no explicit
need for a mouse Bloom filter in the CBF.

The two basic operations on CBF arefind and insert. For
each packet, the five tuple corresponding to the source and
destination IP addresses and ports along with the protocol field
is used to uniquely identify a flow. As shown in Figure 2, this
flow five-tuple is hashed usingk hash functions in parallel,
and the hashes are queried in each of thek Bloom Filters in
parallel. The matched class with the highest priority is picked.
In our case, if a flow belongs to the elephant class, then both
the elephant and mouse BFs (if existed) will respond with a
match, and since the priority of the elephant class is higher,
the flow belongs to that class. More generally, all the BFs are
arranged in priority of increasing flow sizes Figure 2 shows
the case with three BFs for three classes—E2, E1 andM . E2

and E1 classes are distinguished with the thresholdT2 and
E1 andM by T1. SinceT2 is greater thanT1, E2 has higher
priority thanE1, which in turn has higher priority thanM .

Initially, all flows are entered in the mouse filter upon
the arrival of the first packet. A new entry is created for a
flow in the elephant filter, if the flow crosses the threshold to
become an elephant. This particular operation can be seen as
the feedback from the flow memory to the CBF in Figure 1.
Flow memory, however, is updated for every packet sampled
for a flow.

B. Analysis

For our example of a two-class CBF, packets can be
classified into either mouse or elephant packets, with some
mouse packets misclassified as elephant packets and vice-
versa. We useMM andME to denote sampled mouse packets
that are classified as mouse and elephant packets respectively
(and hence sampled at mouse and elephant sampling rates).
Similarly, we denoteEM and EE as the elephant packets
classified as mouse and elephant packets respectively.

If we used exact flow counters,ME would be zero, since
a mouse packet would never be misconstrued as an elephant
packet. However, due to the inherent false positives associated
with BFs, there might be an occasional match of a mouse
flow within the elephant BF causingME to be non-zero. The
probability of such collisions isβ = (1 − ekn/m)k, wherek
is the number of hash functions,n is the number of elements
supported by the filter, andm is the size of the filter [7].
On the other hand,EM exists because of the inherent online
nature of our framework; a flow is deemed mouse until enough
packets arrive to qualify for an elephant, thus initial packets
are always misconstrued as mouse.

For any sampling framework, the most fundamental con-
straint is applied by the processing limits. We definec as the
capacity or the maximum number of packets which can be
sampled at a given rate constrained by the processing power.
More formally this basic resource constraint inequality can be
written as follows:

N = MS + ES ≤ c

whereN is the total number of packets sampled andMS and
ES are the actual number of packets sampled which belong
to mouse and elephant flows respectively assuming an oracle
which can perform perfect classification. From our definitions,
MS = MM + ME andES = EE + EM .

Due to misclassification of mouse packets as elephant, some
of the mouse packets are sampled at elephant rate. Hence, we
need to reduce this fraction fromMM and add it toME . Thus,
we get the following:

MM = sM · M · (1 − β)

ME = sE · M · β (1)

where,sM and sE are the sampling rates of the mouse and
elephant classes andM is the total number of mouse packets.
Generally, at larger sizes for the filters,β will be small enough
to approximateMM to be simply equal tosM ·M .

Similarly, every elephant flow in the beginning of its evo-
lution is treated as a mouse flow, until an estimatedT/sM

packets have been encountered for it, whereT is the threshold
number of sampled packets at which a flow changes from
mouse to elephant.

EM ≤ FE · T

EE = sE · (E − EM/sM) (2)

where FE is the total number of elephant flows andE is
the total number of elephant packets. Note thatEM is atmost
FE times the thresholdT , since a flow will be immediately
labeled as an elephant onceT packets are sampled for that
flow. Hence, we need to reduce these many packets sampled
at mouse sampling rate, to get the expression ofEE . We
now plug in the values forMM , ME and EE to derive a
more general inequality (assuming negligible values forβ), as
follows:

N ≤ sM · M + FE · T + sE · (E − EM/sM) ≤ c (3)

5

Using this general inequality, we will now show how a
network operator can compute appropriate values forsM and
sE to configure ageneral two-class size-based sampling, to
satisfy the resource constraints and at the same time maximize
his metric of interest—flow coverage or accuracy or both.

Maximizing flow coverage:One of the main objectives we
consider is increasing the number of unique flows captured by
CLAMP, either for a particular group or for all the flows.
Due to the heavy-tailed nature of Internet traffic, there are
many mouse flows with a few elephants. To increase the flow
coverage of mouse flows, we need to increase the sampling
ratesM . However, for a given sampling budget and processing
constraints, we cannot increase it indefinitely. The Equation 3
is a quadratic insM that can be solved to obtain the following
solution forsM .

sM = (t +
√

t2 + 4sE · EM · M)/(2 · M)

where,t = c − sE · E − EM (4)

All positive values ofsM less than the one defined above
will satisfy the processing capacityc. We can get estimates
for E, M andEM historically, based on the past measurement
cycle(s). Due to the heavy-tailed nature of Internet traffic, max-
imizing the value ofsM will automatically lead to increasing
the overall flow coverage. Thus, we maximize the value ofsM

with respect tosE to obtain the values forsM and sE that
will lead to maximizing the flow coverage.

sM = min{(c − EM)/M, 1}

sE = max{0, (c − M − EM)/(E − EM)} (5)

In most cases, the first configuration withsM set to
(c−EM)/M andsE to 0 would work fine because sampling
capacityc is typically very small. Only when we have higher
sampling capacity, we will need to configuresM to 1 andsE

to a value less than or equal to(c−M −EM)/(E −EM), so
as not to underutilize the spare sampling capacity. We referto
this sampling scheme assample and blockas it is the opposite
of sample and hold[6] that is designed to identify large flows.
Sample and block samples packets belonging to mouse flows
at the maximum possible sampling ratesM , and as soon as
a mouse flow becomes an elephant, it stops sampling further
packets for that flow. Thus, it tries to allocate most of the
sampling budget for identifying the mouse flows.

It is useful to compare the coverage gains of such an
approach with that of random packet sampling with probability
sR. To perform fair comparisons, the invariant we maintain
is the sampling budgetc in both schemes. We compute the
maximum packet coverage gain formouseflows obtained at
this configuration, as follows:

Gmax = (sM · M)/(sR · M) =
(c − EM)/M

c/(M + E)

= (1 + E/M) · (1 − EM/c)

for EM < c ≤ (M + EM) (6)

While Gmax is actually packet coverage gain, it is directly
related to the flow coverage gain for mouse flows, because all
the mouse flows have less than or equal toT packets. We note
thatGmax is dependent on two terms:1+E/M and1−EM/c.
The first term is solely dependent on the traffic mix or the
trace characteristics. However, the second term is dependent
on the amount of misclassification occuring for elephant flows.
Note that the gains in mouse coverageGmax are due to the
reduction in number of elephant packets sampled and increase
in the sampled mouse packets; the sum of both these sampled
packets is the same as that of random packet sampling.

Along with increasing the packet and flow coverages, sam-
ple and block can also increase the accuracy of the flow size
estimates for the mouse flows, as we discuss next.
Maximizing accuracy: CLAMP when configured to sample
and block, achieves the maximum packet and flow coverage
for mouse flows. Because mouse flows consist of only a
few packets, an increase in their coverage directly resultsin
increased accuracy for their volume estimates.

However while maximizing for flow coverage, we trade-
off with the accuracy of medium and large flows. In order
to improve their accuracy or reduce their relative estimation
error, we need to shift the equilibrium of our sampling budget
towards them. Earlier work has shown that random packet
sampling is biased towards sampling these heavy-hitters and
achieves sufficiently good accuracy for their flow size esti-
mates. In order to achieve accuracy atleast as good as random
packet sampling, we must sample atleast those many elephant
packets. This can be simply achieved by configuring bothsM

andsE equal tosR.
As we reducesM from its value for maximum coverage, and

increasesE to compensate for the reduction inN , accuracy
in flow size estimates for medium and large flows increase.
Thus, the network operator has the flexibility to configure
CLAMP for achieving maximal flow coverage for mouse
flows, along with sufficiently accurate flow size estimates for
medium and large flows. This can be attained by tuning to
a point between the configurations for maximum coverage
and maximum accuracy. Further, this analysis can be easily
extended to multiple classes by computing the sampling rates
corresponding to each class one at a time, based on the
requirements of the network operator.

VI. EVALUATION

While we envision CLAMP to be implemented in hardware
for high speeds, we built a prototype software implementation
of CLAMP for evaluation. This prototype required nearly
1200 lines of C++ code. The most important component of
CLAMP is the packet classification data structure, which is
implemented as a vector of binary Bloom filters (hash tables).
Our prototype allows selecting the number of hash functions
(k), number of entries (m) in each filter and even the epoch
size (e). We use Bob Hash function as suggested by [10]
for packet sampling at line speeds. Each hash function is
initialized with a different 32 bit value.

6

Name Date/Time Duration Online Source Link Mbps (Kpkt/s) Packets 5-tuple flows

ABIL 2002-08-14/09:20 600s www.nlanr.net OC-48 294.2 (57.6) 34,573,317 2,195,366
CHIC 2008-04-30/13:10 60s www.caida.org OC-192 971.4 (217.4) 13,046,322 1,174,965

TABLE I
TRACES USED FOR OUR MEASUREMENTS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n

m/n ratio: Memory usage

Mouse flow coverage vs. memory usage

CBF
Counting BF

(a) Flow coverage

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

F
al

se
 p

os
iti

ve
 r

at
e

m/n ratio: Memory usage

False positive rate β vs. memory usage

CBF
Counting BF

(b) False positive rate

Fig. 3. Effect of varying memory usage for CBF and counting BF(T=1,sM =1,epoch=600s).

Using this prototype implementation, we evaluate the effi-
cacy of CLAMP over real-world traces. We also implemented
other size-based sampling frameworks [9], [11] and use these
in our comparisons. We show how to configure CLAMP to
obtain better flow coverage using our theoretical analysis in
Section V-B. We also discuss how CLAMP can be configured
for maximizing the mouse flow coverage and accuracy by
employing thesample and blockscheme. Finally, we show
the results on accuracy of flow size estimates by CLAMP, for
large flows and compare them with random packet sampling.

We used two real-world anonymized traces to analyze the
performance of CLAMP. The first is a 10 minute OC-48 trace
published by NLANR [2] with 34 million packets and about
2.2 million flows, while the second is a 1 minute OC-192
backbone trace of a tier-one ISP published by CAIDA [1]
with 12 million packets and 1.1 million flows. Both traces
exhibit heavy-tailed flow size distributions that we assumein
our analysis. These traces are summarized in Table I.

A. Memory Usage

In this section, we compare CLAMP with other counter-
based schemes for size-based sampling such as FlexSam-
ple [11] and sketch-guided sampling [9]. While the focus and
usage of these solutions is different, they both share similar
data structures (sketch and counting Bloom filters) to keep
track of the flow sizes. In contrast, we rely on CBF that
represents a much simpler data structure. In many cases, such
simplicity comes at the cost of worsening some other metric
such as, say, increasing the false positive rate of the filter.
The results indicate, somewhat surprisingly, that CBF performs
better in both memory consumption as well as false positives
compared to counting BF alternatives, thus indicating thatCBF
achieves clear benefit and is not a tradeoff.

Why is higher false positive rate in the classification data
structure bad for various sampling objectives ? As an example,
consider the case when we are interested in increasing flow
coverage. According to Equation 1, the mouse flow coverage
is directly related to the number of mouse packets classi-
fied and sampled at mouse rateMM . Mouse flow coverage,
however, decreases as filter false positive rateβ increases as
these packets will be mis-classified as elephant packets and
thereby sampled at elephant rate (i.e., less than the mouse rate
for high flow coverage). Thus, low false positive rate for the
classification data structure is important for such objectives.

In Figure 3(a), we compare the mouse flow coverage (which
is equal to MM for T set to 1) for the full ABIL trace
for CLAMP and counting BF. In addition to the mouse flow
coverage, we also plot the empirical values for filter false pos-
itive rateβ (calculated using Equation 1) in Figure 3(b). The
configuration allowed mouse flow coverage to be maximum,
i.e., sM set to 1, thus ensuring a worst case analysis for the
filter with the maximum number of flows inserted in the Bloom
filter over the trace. To ensure fair comparison, we use three
hash functions for both CBF as well as the counting Bloom
filter.

Figures 3(a) and 3(b) show that CLAMP as well as counting
BF implementations exhibit a reduction in the false positives
and increase in the flow coverage as we increase the amount of
over-provisioning (m/n). However, clearly, CLAMP exhibits
much faster increase in mouse coverage and decrease in false
positives (or misclassifications). CBF achieves a filter false
positive rate of 6% at am/n ratio of 4 (using 174.5KBytes
of memory), giving nearly 94.3% mouse flow coverage (at
sM=1 andsR=0.069). Note that we do not have 100% mouse
flow coverage due to the fact thatME is not zero. At the

7

Epoch size sR EM EM /c

5s 0.208 2,141,542 0.789
10s 0.179 1,757,734 0.754
20s 0.157 1,477,898 0.720
40s 0.147 1,344,678 0.701
60s 0.134 1,179,340 0.676

TABLE II
EFFECT OF VARYING EPOCH SIZE(CHIC TRACE, T=1).

same sampling rate, the counting Bloom filter implementation
required am/n ratio of 10 (using 13,960 KBytes of memory)
to achieve the same filter false positive rate of 6%. This shows
that CBF requires nearly 80x less high-speed SRAM than a
counting Bloom filter to achieve similar filter false positive
rates and flow coverages.

On the other hand, even considering only same number
of entries (bits and counters) across both CBF and counting
Bloom filter, CBF still obtains at least up to 6x reduction in
the number of false positives (atm/n = 5, CLAMP has about
4% false positives while counting Bloom filter experiences
about 25% false positives). What makes these gains even
more significant is the fact that we do not consider the extra
overhead associated with counters (in the counting Bloom
filters). If we factor in this disparity, the benefit associated
with CBF will increase even further.

B. Effect of varying epoch size

We show the breakup ofEM and sR corresponding to
achieving maximum mouse sampling rate (i.e., sM = 1)
and for different epoch sizes in Table II. Note that we have
overprovisioned the memory for CBF to 436.25 KBytes
(m/n = 10) for all epoch sizes to completely eliminate the
affects of filter false positives. We reset both the flow memory
and CBF after every epoch. We note that for each of the
configurations in Table II, packet and flow coverage for mouse
flows is very close to 100% (not shown in the Table).

From the table, we can observe clearly that as we increase
the epoch size, the effective contribution ofEM to the total
sampling budget reduces. Still, the contribution ofEM to c
at an epoch of size 60s is still significantly high (EM/c ∼
0.676) which results in a higher equivalentsR (to obtain a
mouse coverage of 1). We note that this problem is inherent
in any size-based sampling framework which is used for an
online traffic analysis without the prior knowledge of elephant
flows. However, a simple optimization to our CBF, namely not
resetting the CBF in every epoch, can solve it to some extent,
as we see next.

C. Effect of resetting the CBF

Resetting the flow memory after every epoch is required
to meet the constraints imposed by the memory (DRAM)
of the sampling device. On the other hand, resetting CBF is
useful especially if the amount of memory allocated to CBF
is small. Otherwise, the Bloom filters will be filled up too
fast rendering it almost useless for classification. Resetting the
CBF frequently may result, however, in a considerable increase

in EM . Thus, while resetting both CBF and flow memory is
important, a critical question is whether to reset one or both
or none of these every epoch.

In Table III, we consider three strategies—all reset every
epoch, flow memory reset every epoch (of 10s) but no CBF
reset for this trace (of duration 60s), and no reset. In each
of these strategies, our aim is to achieve the best possible
flow coverage; thus, we configure CLAMP withsM equal to
1 and the epoch size is 10s (OC-192 trace). We observe that
only flow memory reset case is almost as good as no reset, in
terms ofEM and mouse packet coverageMM , but with slight
increase in total number of sampled packets (can be seen from
the calculatedsR to achieve the same level of coverage). But
resetting the CBF too frequently (as in the all reset case) leads
to a much larger number ofEM packets unnecessarily, thereby
reducing the sampled mouse packets.

D. Flow coverage

According to Equation 5 and Equation 6, the best possible
coverage for mouse flows can be achieved by setting CLAMP
in sample and blockmode with T=1. Table IV shows the
results for ABIL trace with epoch size of 600s and CBF
allocated 436.25 KBytes of memory. We note that the theoret-
ical gains for mouse coverage follow Equation 6. Those gains
are formulated for the mouse flows which are all such flows
with size less than or equal to T packets (T=1). However, in
Table IV we show the gains for flows of size 0-1000 packets,
which will be slightly less than those obtained for mouse
flows according to Equation 6. The flow coverage gains for
the overall traffic volume are also mainly decided by the
mouse flow coverage , because large flows are almost always
captured.

We can observe from Table IV that, as we increase the
random sampling probabilitysR, the coverage gain of CLAMP
increases from 3.74x (atsR = 0.001) to almost 8.32x (at
sR = 0.073). Further increasingsR will reduce the gain since
at sR = 0.073, the mouse sampling ratesM can already be
set to 1 and cannot further increase the flow coverage. As
mentioned earlier, even withsM = 1, we can see that CLAMP
almost captures 99.4% of traffic (with the remaining 0.6%
attributed to the false positive probability associated with the
elephant Bloom filter). Thus, we can clearly conclude that
CLAMP provides an order of magnitude better coverage for
this traffic mix as compared to random packet sampling.

For the CHIC trace, we show the results in Table V. A
maximum gain of 84% is achieved for this trace at a random
packet sampling rate of 0.307, while at lower sampling rates
(sR=0.016), the gains are just 11%. There are two important
observations: First, at very low sampling rates (∼0.001),
CLAMP is almost as bad as random packet sampling since
there is not enough sampling budget mouse flows can ‘steal’
from elephants to improve their coverage. Second, at high
sampling rates such as 0.307, we get a gain of 84% which
is not as good as we obtained for the ABIL trace (8.32x at
sR=0.073). This is in part because of the flow size distribution
of CHIC trace (see Equation 6 for the1+E/M term). But the

8

Case sR Packet Sampling CLAMP Gain N MM EM

All reset 0.307 53.8% 99.2% 1.84x 4,017,451 1,738,217 2,279,234
FM reset only 0.249 47.4% 99.9% 2.11x 3,255,337 1,755,813 1,499,524

No reset (1 epoch) 0.239 46.4% 99.9% 2.15x 3,115,285 1,755,048 1,360,237

TABLE III
EFFECT OF RESETTINGCBF AND FM ON COVERAGE FOR FLOWS OF SIZE0-100PACKETS(sM =1,T=5,EPOCH=10S).

Packet Sampling CLAMP

sR sM # Flows Percentage # Flows Percentage Coverage gain
0.001 0.0043 6,524 0.3% 24,454 1.1% 3.74x
0.004 0.0267 22,472 1.0% 114,188 5.2% 5.08x
0.016 0.146 73,968 3.4% 456,357 20.8% 6.17x
0.064 0.845 233,825 10.7% 1,894,616 86.4% 8.10x
0.073 1.0 261,872 11.9% 2,179,399 99.4% 8.32x

TABLE IV
COVERAGE FOR FLOWS OF SIZE0-1K PACKETS(ABIL TRACE,T=1,EPOCH=600S,MEMORY=436.25KBYTES).

Packet Sampling CLAMP

sR sM # Flows Percentage # Flows Percentage Coverage gain
0.001 0.0010 5,003 0.4% 4,984 0.4% 0.99x
0.004 0.0041 19,079 1.6% 19,697 1.7% 1.03x
0.016 0.0179 69,623 6.0% 76,960 6.7% 1.11x
0.064 0.0965 216,170 18.7% 293,108 25.3% 1.36x
0.307 1.0 622,214 53.8% 1,147,231 99.2% 1.84x

TABLE V
COVERAGE FOR FLOWS OF SIZE0-100PACKETS(CHIC TRACE,T=5,EPOCH=10S,MEMORY=50KBYTES).

major reason is attributed to the highEM/c ratios for all of
these configurations in Table V, because of smaller epoch size
(10s) and higher threshold (T=5), effectively decreasing the
coverage gain (see Equation 6 for the1−EM/c term). How-
ever, operating insample and blockmode for the CHIC trace
(with T=1, epoch=60s), a lower sampling rate (sR=0.138)
results in a much better coverage gain of 3.05x (with only
flow memory reset after every 10s), by reducing the share of
EM/c. For brevity, we omit those results for CHIC trace.

E. Flow size estimation

The second objective we consider is to provide flexibility
to improve flow accuracy for certain types of flows. We
characterize the accuracy of flow size estimates obtained with
CLAMP using the mean relative estimation error metric. We
calculate the relative estimation error for each flow, and then
average it for small groups of flows on the basis of their sizes.
For our analysis, we classify flows into three groups—small
(0-1K packets), medium (1K-10K packets) and large flows
(greater than 10K packets).

Getting good estimates for flow sizes of the small flows
is really difficult for random sampling because of high quan-
tization errors involved. Increasing the packet coverage for
small flows will require allocating a disproportionately higher
budget to the small flows as compared to the larger ones. Thus,
we configured CLAMP in thesample and blockmode with
T=1, single epoch and memory 436.25KBytes. Results are
shown in Table VI for flows of size 0-1K packets. For each of
the points, we started with a base sampling budget (by fixing

sR) and allocating all this budget the mouse flows (sM is the
computed sampling rate) and ignoring completely the elephant
flows. As we can see, atsR = 0.073, we could sample all the
mouse flows and thussM = 1.0.

We observe at all sampling ratessR, CLAMP achieves
much better accuracy than random packet sampling. Of course
this result is expected because instead of sampling all the
sR · E elephant packets, our approach results in shifting
some of this budget to sampling mouse packets. However, the
comparisons at very low sampling rates (sR=0.001) are not
very meaningful, because both CLAMP and random packet
sampling are affected by huge quantization errors. However,
for typical sampling rates (sR=0.016) and high sampling rates
(sR=0.073), errors are highly reduced for CLAMP. AtsR

equal to 0.073, for example, CLAMP gives an error of 7%
with a standard deviation of 22%. This is almost 105.43x better
than random packet sampling. We also note that till a sampling
rate ofsR = 0.064, all mean relative estimation errors are due
to overestimation of flow size estimates. ForsR = 0.073, the
mean error for CLAMP of 7% is due to underestimation. This
is expected because of a high value of sampling rate used for
normalization.

We show the results for medium (1K-10K) and large (10K-
more) size flows in Table VII. In the table, we start with the
sample and blockconfiguration,i.e., sE = 0 and sM = 1.0
and increasesE and reducesM correspondingly such that
the total number of packets sampled remains the same. By
increasingsE , we sample more packets corresponding to
elephants and thus increase the accuracy of the flow size

9

Packet Sampling CLAMP Comparison

sR sM # Flows Error Dev. # Flows Error Dev. Error reduction Coverage gain
0.001 0.0043 6,524 342.64 431.50 24,454 91.30 102.34 3.75x 3.74x
0.004 0.0267 22,472 96.87 109.91 114,188 18.39 16.48 5.27x 5.08x
0.016 0.146 73,968 28.82 27.64 456,357 3.69 2.69 7.81x 6.17x
0.064 0.845 233,825 8.37 6.55 1,894,616 0.07 0.28 119.57x 8.10x
0.073 1.0 261,872 7.38 5.65 2,179,399 0.07(u) 0.22 105.43x 8.32x

TABLE VI
ACCURACY FOR SMALL FLOWS OF SIZE0-1K PACKETS(ABIL TRACE,SAMPLE& BLOCK,T=1,MEMORY=436.25KBYTES).

CLAMP 1K-10K 10K-more Coverage

sE sM # Flows Error Dev. # Flows Error Dev. 1K-10K 10K-more
0 1.0 3,152 0.999 0.0005 594 0.999 5.515 99.9% 99.5%

0.001 0.982 3,156 0.102 0.729 597 0.091 0.245 100% 100%
0.004 0.935 3,156 0.019 0.349 597 0.0024 0.121 100% 100%
0.016 0.75 3,156 0.0074 0.179 597 0.0055 0.059 100% 100%
0.064 0.148 3,156 0.003 0.084 597 0.0007 0.029 100% 100%
0.128 0.0004 2,307 0.372 0.694 592 0.0008 0.148 73.1% 99.2%

Packet Sampling 3,156 0.0017 0.0756 597 0.0006 0.0262 100% 100%

TABLE VII
ACCURACY FOR MEDIUM AND LARGE FLOWS(ABIL TRACE,sR=0.073,T=1,MEMORY=436.25KBYTES).

estimates. For example, atsE = 0.064, the mean relative
error of medium flows reduces to 0.3% from about 10.2%
at sE = 0.001. At this value ofsE , CLAMP performs similar
to that of random packet sampling. In almost all the cases,
the flow coverage remains at almost 100%. Interestingly, small
values ofsE does not reduce the overall flow coverage as well,
as can be seen under the coverage column in Table VII, except
when we increasesE beyondsR. This is because large values
of sE lead to reducing the value ofsM significantly. Given
all flows initially start off being mouse, with smallsM several
medium flows fail to get even sampled to take advantage of
highersE allocated to such flows.

VII. C ONCLUSIONS

Flow monitoring solutions in routers have evolved signif-
icantly over the years from their modest origins in simple
NetFlow-like solutions. While most solutions revolve around
better handling router resource constraints such as CPU, mem-
ory and flow reporting, there is little research on providingan
efficient and flexible class-based sampling architecture, with
dynamic class definitions that include specific flow properties
such as the size. In this paper, we have discussed the archi-
tecture of CLAMP to address this challenge that involves the
use of a set of simple Bloom filters for class membership
and a feedback from the actual flow memory to record class-
membership information about flows. Using this architecture,
we have shown how to implement a simple two-class size
based packet sampling framework.

We have analyzed the architecture for this particular ap-
plication both theoretically as well as empirically using a
prototype software implementation over real ISP traces. Our
results clearly indicate the simplicity of our approach over the
previous solutions. For example, for some configurations, we
achieve over 80x reduction in the amount of memory required

for same rate of packet misclassifications. In addition, we have
also shown how we can configure the CLAMP architecture for
specific network monitoring objectives such as increasing flow
coverage and improving the volume estimates of a specific
class of flows (based on size). While we have primarily fo-
cused on size-based class definitions, our architecture itself is
quite generic and lends itself to a wide variety of applications,
some of which we intend to pursue in the future.

REFERENCES

[1] CAIDA Anonymized 2008 Internet Trace (equinix-chicagocollection).
http://www.caida.org/data/passive/passive2008 dataset.xml.

[2] NLANR Abilene-I Internet dataset. http://pma.nlanr.net/Traces/long/
ipls1.html.

[3] Cisco Systems. NetFlow Input filters. http://www.cisco.com/en/US/docs/
ios/12 3t/12 3t4/feature/guide/gtnfinpf.html.

[4] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC
3954.

[5] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a Better
NetFlow. In Proc. of ACM SIGCOMM, 2004.

[6] C. Estan and G. Varghese. New Directions in Traffic Measurement and
Accounting. InSIGCOMM, 2002.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area Web cache sharing protocol.IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000.

[8] R. Kompella and C. Estan. The Power of Slicing in InternetFlow
Measurement. InProc. of IMC, 2005.

[9] A. Kumar and J. J. Xu. Sketch guided sampling - using on-line estimates
of flow size for adaptive data collection. InIEEE INFOCOM, 2006.

[10] M. Molina, S. Niccolini, and N. Duffield. A comparitive experimental
study of hash functions applied to packet sampling. InTechnical Report,
AT&T.

[11] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani.
Building a Better Mousetrap. InGeorgia Tech CSS Technical Report
GIT-CSS-07-01, 2007.

[12] L. Yuan, C.-N. Chuah, and P. Mohapatra. Progme: towardspro-
grammable network measurement.SIGCOMM Comput. Commun. Rev.,
37(4):97–108, 2007.

	A Framework for Efficient Class-based Sampling
	Report Number:
	

	tmp.1307986960.pdf.ITWJu

