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Abstract

The MESSIAHS project is investigating mechanisms
thai support task placement in heterogeneous, dis­
tributed, autonomous systems. MESSIAHS provides a
substrate on which scheduling algorithms can be imple­
mwted. These mechanisms were designed to support
diverse task placement and load balancing algorithms.

As part of this work, we have constructed an in­
terface layer to the underlying mechanisms. This in­
cludes the MESSIAHS Inter/ace Language (MIL) for
constructing distributed schedulers. This paper gives
an overview a/MEssIAHS, describes a sample interface
layer in detail, and gives example implementations 0/
well· known algorithms from the literature built using
this layer.

1 Introduction

Recent initiatives in high-speed, heterogeneous
computing have spurred renewed interest in large-scale
distributed systems, and the desire for better utiliza­
tion ofexisting resources has contributed to this move­
ment. A typical departmental computingenvironment
already has a substantial investment in computing
equipment, including dozens or hundreds of worksta­
tions. Studies have shown that the utilization of this
equipment can be as low as 30% of capacity [17, 23].

A solution to this problem is to conglomerate the
separate processors into a distributed system, and to

·This paper also appears in tile proceedings of the 27th
Hawaii International Conference on Sy~tem Sciences.

lThis work was sponsored in part by NASA GSRP grlUit
number NGT 50919.
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recursively join the distributed systems into larger sys­
tems to further expand the computational power of
the whole. Large-scale distributed systems can have
a combined computing power outperforming that of
supercomputers [22].

A central element of effective utilization of such
systems is task scheduling. Task scheduling has two
components: macro-scheduling (also defined as global
scheduling [8] and task assignment [24]) aud micro­
scheduling (or local scheduling [8]). :Mncro-scheduling
chooses where to run a process, while micro-scheduling
selects which eligible process to execute next on a par­
ticular processor. All further uses of tIle term schcd111­
ing in this paper refer to macro-scheduling.

The MESSIAHS l system [9, 10, ll]I'r<lI'ides a set of
mechanisms that facilitate schedulill:; ill (Jistributed,
heterogeneous, autonomous systems. For our pur­
poses, distributed, or loosely-coupled, systems com­
municate via message passing rather than a shared
memory bus. Heterogeneous systems may have dif­
ferent instruction set architecturcs, data formats, and
attached devices. All policy decisions in autonolllous
systems are made locally. Our vision of distributed
systems includes all three attributes, connecting ma­
chines of different architectures with individual admin­
istrative authorities via a communications network.
Section 2 gives precise definitions of aut.onomy and
heterogeneity.

It is vital that a system for dist.ributed computa­
tion support autonomy because of the pre\'ailing de­
centralization of computing re:;ources. There is llSU­

ally no longer a single, authoritative controllillg ent ity
for the computers in a large organization. A scien-

1Mechanisms ElTecling Scheduling Supporl In
AutonomolI5, Hcterogeneo\l.'l Systems



Figure 1: a sample distributed system

2 The MESSIAHS Architecture

rather than the programmer.

NyneveAnhurPercival

Cypress

Bredbeddle

2These correspond to the formal definitions of father, son,
and bTOlhcr found in [I}.

MESSIAHS supports task placement in distributed
systems with hierarchical structure based on adminis­
trative domains, modeled by directed acyclic graphs.
Multiple subordinate systems can be combined into an
encapsulating system, yielding the hierarchical struc­
ture. The nodes of the graph represent t.he au­
tonomous systems, and edges indicate encapsulation.
The graph is directed downward; the edges are di­
rected from cncapsulat.ing nodes, or parents, to sub­
ordinate nodes, or children. Children of the same par­
ent are siblings2 • The nfighbors of a system are its
children, parents, and siblings.

Figure 1 shows an example distributed system
based on the Purdue University Computer Sciences
depaIlment. In the example, the Complller Sciences
department contains two administrative domains, Cy­
press and General. Cypress in turn encapsulates the
research machines belonging to the Cypress project.
and General contains the general purpose servers for
the department. Bredbeddle and Percival are children
of Cypress, and therefore are siblings.

Each component system runs a Scltfdllling mod­
ulf that implements the local scheduling policy and
manages administrative aspects of the system. These
modules exchange data sets describing the status of
the systems. On demand, the modules also process
scheduling requests, which contain a description of the
task for which the sender requests service.

Each module only exchanges status informat.ion
with modules running on its neighbors. Because of
the hierarchical structure of the system, some nodes
might be invisible to other nodes. In the example
system from figure 1, Arthur receives SDVs only from

Within this distributed system, each individual sys­
tem has its own policy for deciding when to accept
or remove tasks. The local administrator defines this
policy, which is implemented over the MESSIAHS mech·
anisms via an interface layer. The interface layer
provides a virtual machine interface; the underlying
mechanism can be presented to algorithm writers in
various ways. The language described here provides
an interface that is easy to use, yet powerful enough
to implement a wide variety of scheduling algorithms.
Primitive operations are supplied to access system and
task state information, manipulate tasks, and control
the behavior of the local system.

This approach is distinct from that taken in dis­
tributed programming systems such as PVM [18] in
which the program distribution is visible, and even
forced upon, the programmer. The MESSIAHS ap­
proach more closely reflects that taken in Condor [7],
which schedules processes invisibly for the program­
mer. Program distribution is under the control of the
autonomous system, anclthererore the administrators,

tist may control a few of his own machines, and his
department may have administrative control over sev­
eral such sets of machines. That department may be
part. of a regional site, which is, in turn, part of a na­
tionalorganization. No single entity, from the scientist
up to the national organization, has complete control
over all the computers it may wish to use. An example
of such usage is when two research organizations pool
their resources to solve a common problem.

Heterogeneity is important because it yields the
most cost-effective and efficient method for performing
some computations. A large computation might have
certain pieces best suited for execution on asupercom­
puter, wbile other parts might run best on a hypercube
or a graphics workstation. If the distributed system is
restricted to only using one architecture, the compu­
tation will suffer needless delay. In other cases, tasks
such as text processing or high-level language interpre­
tation may be independent of any single architecture.

Our subsequent uses of the terms distributed sys­
tem or system refer to a distributed, autonomous, het­
erogeneous system, and node refers to an individual
machine within an autonomous system. Our defini­
tion of system includes a single machine, as well as
two homogeneous workstations communicating via a
local-area network. This definition also encompasses
systems as complex as thousands of machines, includ­
ing personal computers, workstations, file and com­
putation servers, and supercomputers, spread among
several remote sites and connected by a wide-area net­
work.



~~;~gLMlIClI>-SchO'Mor I TukMa""w~"""jLP<IIIcy
r~lJIf\.o nl andTaI<lIan1 1-'IOnlnl'r1_~I.

I.IESSlAHS AbstraOl Data....:l TUk Manag.omlnl Mocharism"...."
I

Figure 2: structure of a MESSIAHS scheduling module

Nyneve and General, and sees no information that can
be directly related to Percival or Bredbeddle. The ca·
pabilities of Bredbeddle and Percival are subsumed
and combined within General's SDV.

Individual systems enjoy execution autonomy, com­
munication autonomy, design autonomy, and adminis­
trative autoflomy as defined in [11, 16, 14]. Execution
autonomy means that each system decides whether it
will honor a request to execute a task, each system
also has the right to revoke a task that it had pre­
viously accepted. Communication autonomy means
Lhat each system decides the content and frequency
of state advertisements, and what other messag~ it
sends. A system is not required to advertise all its
capabilities, nor is it required to respond to messages
from other systems. Design autonomy gives the archi­
tects of a system freedom to design and construct it
without regard to existing systems, yielding heteroge­
neous systems.

Administrative autonomy means that each system
can have its own usage policies and behavioral char­
acteristics, independent of any others. In particular, a
local system can run in II manner counterproductive to
a global optimum. In the usual case, scheduling mod­
ules will cooperate, but administrators must be free
to set their local policies or they will not participate
in the distributed system. Both [7] and [17] note that
users are willing to execute remote jobs on their work­
stations if the scheduling policy places higher priority
on local jobs.

Figure 2 displays the structure of a MESSIAHS

scheduling module. The machine-dependent layer
handles raw data exchange between scheduling mod~

ules, collects the local state information, and interacts
with the task manipulation mechanisms specific to the
local operating system. The abstract data and task
management layer provides an abstract interface for
the machine-dependent operations to the data report­
ing layer. The shaded layer, data reporting and task
manipulation, is the focus of this paper. This layer
presents the user with the interface to the MESSIAHS

mechanisms. The administrator supplies the topmost
layer, which embodies the scheduling policy for the
system.

MESSIAHS does not determine policy; t.he three lay­
ers provide mechanisms to implement schedulillg poli­
cies. The interface layer is the administrator's vehi­
cle for expressing and implementing t.he local policy
through the MESSIAHS mechanisms.

3 Support for Scheduling Policies

As seen in figure 2, the scheduling policy is imple­
mented over the interface layer. Through the inter­
face layer, MESSIAHS either directly provides or sup­
ports five mechanisms that can be used to construct
scheduling policies. These five mechanisms are sys­
tem description, decision filters, task revocation, data
combination and condensation, and node configura­
tion and behavior customization.

3.1 Intrinsic Mechanisms

MESSIAHS uses a mechanism called descripiion vec­
tors to characterize available resources and requests
for resources. A system description vector, or SDV,
lists the capabilities of an autonomous system. A task
description vector, or TDV, describes the resources
required by a computational job. Description vectors
contain a fixed portion that is optimized for task place­
ment support, and an extensible portion that admin­
istrators can use to implement new scheduling policies
or to extend the basic descriptions of requirements or
abilities.

To determine the basis for the fixed portion of the
descript.ion vector, we reviewed 18 algorit.hms from
the existing scheduling literature [2-5, 7, 13, 11-20,
22-24, 26-28, 30, 31J. Table 1 depicts the resultillg
data set. We found that only two characteristics­
processor speed and inter-processor communication
time estimates-were used by more than fOllr algo­
rithms. Therefore, we included processor speed esti­
mates in the description vector and provide a mecha­
nism to determine inter-system communication time.
We also augmented SDVs with other data items t.hat
we expect will be useful to writers of future schedul­
ing algorithms. This data supports the common case.
as represented by the surveyed algorithms, while the
extension mechanism allows the inclusion of special­
purpose data.

The address and module fields uniqlll"ly ident.ify n
scheduling module: the address specifies a mac-hine,



in table 2.

Table 2: general state parameters

3.2 Supported Mechanisms

The recalc_timeout field and revocat.ion_timeout.
fields determine how often prescribed events OCClH.

The SPECint92 and SPECfp92 are measures of pro­
cessor speed using the SPEC benchmark suite [30J.
The SPEC benchmark suite consists of applications­
oriented programs, specifically selected to represent
real-world workloads.

The machine architecture type (e.g. SPARC or
VAX) does not appear as a universal parameter be­
cause many jobs are architecture independent. For
example, text formatting requests require the pres­
ence of a particular text processing package, but do
not depend on the underlying architecture.

MESSIAHS supports the use of filters to implement
scheduling policies. Decision filters take two descrip.
tion vectors as input, and return an integer value de­
noting how well the two vectors match according to
the local policy. Larger values indicate closer matches.
Scheduling modules employ filters to determine where
to attempt scheduling a task (including on the local
node), and what tasks are eligible for migration or re­
vocation.

MESSIAHS allows multiple scheduling policies to op­
erate within the system simultaneously, and a sill­
gle node can support two or more scheduling policics.
For example, batch queues for text processing, remot.c
compilation, and remote program execut.ion could all
coexist within the same distributed system, each wit,h
its own individual scheduling policy. The administra-

suggested period, in seconds,
between recaleulations of thc
local system description
period, in seconds, be­
tween checks for possible task
revocation
the integer performance rat­
ing of the node, per the
SPEC integer benchmark.
the Aoating point perfor­
mance rating of the nodc,
per the SPEC floating point
benchmark.

purposeparameter

SPECfp92

revocation_timeout

recale_timeout

SPECint92

Table 1: fixed portion of a system description vector

field name purpose
address address of the system
module id of module on this system
nsys number of systems described

by the vector
ntasks total

number of tasks currently ac­
cepted by the system

nactivetasks number of active tasks run-
ning on the system

nsuspendedtasks number of inactive tasks
waiting on the system

willingness desire of the system to take
on new tasks

loadave an estimate of the load aver­
age for the entire system

Procclass information on the different
classes of processors in the
system

and the module indicates which module on that ma­
chine. MESSIAHS allows multiple modules to run on
a single machine (see [9]). The nsys field indicates
holY many systems the vector represents; just as a
distributed system encapsulates multiple subordinate
systems, the description vector for a system contains
information describing its component systems. The
ntasks, nactivetasks, and nsuspendedtasks list
the number of total tasks, running tasks, and sus­
pended tasks for the system. The llillingness gives
the rough probability that the system will accept a
new task, and loadave estimates the computational
load on the entire system. The Procclass field is an
array of records describing statistical measures of the
processor utilization, processor speed, free memory,
and disk space.

Execution autonomy mandates the ability to re­
move a task from execution on the local system.
Aborting a running task fulfills the autonomy re­
quirements, but does not support load-balancing algo­
rithms based on process migration. Therefore, MESSI­

AHS includes mechanisms to kill, checkpoint, suspend,
resume, and migrate jobs.

In support of administrative and communication
autonomy, tunable parameters affect the general be­
havior of the node. These parameters are independent
of any single scheduling policy, and effect all polices
running on the node. These four parameters are listed



tor for each node could determine whether that node
would participate as a server for any or all of the ser­
vices.

Communication autonomy requires that the local
policy control the flow of information out of a sys­
tem. This mandates a mechanism to combine and
compact the data set, and to allow the advertisement
of restricted sets of information. In addition, data
condensation is essential to avoid arbitrary limits on
scaling the mechanisms. If systems concatenated all
the data describing subordinate systems, the resources
required to transmit and process a description vector
would soon outstrip the capabilities of many networks
and processors.

Unfortunately, some information loss is unavoid­
able if data compression takes place. Recall that in
our e.'i:amplesystem, Arthur has no first-hand informa­
tion about Bredbeddle or Percival. Therefore, Arthur
might misdirect scheduling requests to General, based
on the union of Percival's and Bredbeddle's abilities.
For example, if Percival had 100 megabytes offree disk
space and 4 megabytes of memory, while Bredbed­
dIe had 10 megabytes of disk space and 32 megabytes
of memory, the scheduling module on Arthur might
mistakenly think that resources were available to exe­
cute a task requiring 16 megabytes of memory and 50
megabytes of disk space. These misdirected requests
cause a small efficiency loss, but no tasks will be miss­
cheduled as a result.

4 The Language

The shaded interface layer shown in figure 2 pro­
vides scheduling algorithms with access to lower-level
mechanisms. We have chosen to provide a simple pro­
gramming language as our interface, similar to that
used in Univers [6]. Other interfaces are possible, such
us a library of high-level language functions (see [9]).

The MESSIAHS Interface Language (MIL) contains
direct support for dynamic scheduling algorithms,
without precluding support for static algorithms.
Static algorithms consider only the system topogra­
phy, not the state, when calculating the mapping. Dy­
namic algorithms take the current system state as in­
put, therefore the resultant mapping depends on the
state (see [8]). Figure 3 depicts the structure of an
MIL program. The grammars for deriving the vari­
ous rules, along with explanations of their semantics,
appear in the rest of this section.

begin state
<nods state rules>

ond
begin combining

<data combination rules>
.nd
begin schedfilter

<sched request filter rules>
.nd
begin taskfilter

<task request filter rules>
.nd
begin revokefilter

<revocation filter rules>
.nd
begin revokerules

<revocation rules>
.nd

Figure 3: Mil specification template

4.1 Expressions and Types

MIL defines four basic types for data values: Ill­

tegers (INT), booleans (BOOL), Boats (FLOAT), and
strings (STRING). Integers can be written in decimal or
in hexadecimal. Booleans have either the value true
or false. Floats are two decimal digit sequences sep­
arated by a decimal point, e.g. 123.45. Strings are a
sequence of characters delimited by quotation marks
c")·

Identifiers are a dollar sign followed by either a sin­
gle word, or two words separated by a period. The lat­
ter case specifies fields within description vectors. The
legal vectors are the received task description (taSk),
the description of a task already executing on the sys­
tem (loctask), the system description of a neighbor­
ing system (sys), the description of the local node
(me), and the description being constructed by data
combination (out). loctask is used for the task re­
quest filter and the revocation filter. sys is used for
the data combination rules and the schedule reqlLest
filter. out is used only for the data combination rules.
and me can appear in any of the combination rules.
filtering, or task revocation sections.

The following grammar defines the expression types
used by the language. This grammar only derives ex­
pressions of the base types; in particular, there is no



access to the Procclass field of the SDV with MIL.

int-binop _

int-expr _

+ I - I I I • I mod 1 & III
max I min
int.expr int~binop int-expr J

(int-ezpr) I integer I
int(jloat-expr) I id

system description vector. The four node state pa­
rameters are specint92, specfp92, recalc_timeout, and
revocation_timeout. The specint92 and specfp92 pa­
rameters list the speed of the host in terms of the
SPEC benchmarks [30]. The recalc_timeout and revo­
cation_timeout parameters determine the timeout pe­
riods for the associated events.

4.2 Access to Intrinsic Mechanisms

The node state section is a list of types, identi­
fiers, and constant values. Node state declarations are
parameters that affect system state. Unlike the ex­
tension variables, they do not directly appear in the

MIL includes five task manipulation primitives:
kill, suspend, wake, migrate, and revert. Other op­
erations, sud.] as process checkpointing, are available
in the lower-level mechanisms, but are not explicitly
included in the language. kill aborts a task, discards
any interim results, and frees system resources used by
the task. suspend temporarily blocks a running task.
\lake resumes a suspended task. migrate checkpoints
a task and attempts to schedule it on neighboring sys­
tems. revert checkpoints the task and returns it to
the originating system for rescheduling. Task revo­
cation rules take the following form, using a boolean
guard to determine when to take an action.

discard I set illt-expr
discard I set floai-expr
discard J set bool-expr
discard I set strillg-expr

int id bool-expr:
illt-action ;

float id bool-expr:
float-actioJl :

string id bool-expr:
string-action;

bool id bool-expr:
bool-action :

boo/-expr: int-expr,-jilter-simt _

ini-action
float-adiofl
bool-adion
string-action

combining-rufe _

In MIL, a filter is a series of guarded statements,
similar to combining rules. In place of an aciion, filters
define integer expressions,

4.3 Filters and Data Combination

A return value ofo indicates that there is 110 match.
A negative value indicates an error, and a positive
value measures the affinity of the two vectors. As
noted earlier, higher values indicate a better match. If
the guard expression uses an undefined variable, lhe
guard evaluates to false. If the integer expression
references an undefined variable, the filter returns -1,
indicating an error. With appropriate extension vari­
ables and guards, a single scheduling module can serve
multiple scheduling policies as stated in section 3.2.

MIL provides a mechanism to combine description
vectors. To support communication autonomy, this
mechanism allows the administrator to wrile rules
specifying operations to coalesce the data.

The boolean expression acts as a guard, and the
action is performed for a padicular (type, identificl)
pair if the value of the guard is true. Administ.ra­
tors may supply multiple rules for the same pair. If
multiple rules exist, the module evaluates t.hem in the
order written, performing the action corresponding to
the first guard that evaluates to true.

If no matching rule is found for a pilir, the idcnl,ifier
is discarded. Explicit discarding of dat-a items, via the

km I
suspend
wake I
migrate I
revert
bool-expr; task-action;

string-expr + siring-expr I
(string-expr) J string I id

<1>1=1>=1<=1<>
and I or I xor
bool-expr bool-binop bool-expr I
not bool-expr J

int-expr comp int-expr I
jloat-expr comp float.expr I
string-expr comp string-ezpr I
matcn(string-expr, string-expr) I
(boof-expr) I true I false I id

+ I - I I I• I mox I moo
/loat-expr float-binop jloat-expr I
(fioat~expr) I float I
f1oat(int-expr) I id

task-action _

revocalion-rule _

string-expr _

comp _

bool-binop _
bool-expr _

jloat-binop _
jloat-expr _



discard action, fulfills the constraint of communication
autonomy. The set value action assigns value to the
current pair in the outgoing description vector. An
error in evaluating a guard automatically evaluates
to false. I£ the evaluation of an action expression
causes a run-time error, e.g. a division by 0, the action
converts to discard.

4.4 Specification Evaluation

1.

2.

3.

begin state
int $recalc_period 60;

end
begin combining

bool $out.hasLaTeX
$sys.hasLaTeX: set true;

bool $out.hasLaTeX
$sys.address == $me.address:

set true;
The extcnsion and node state rules are interpreted

when the specification is first loaded. The data combi­
nation rules are applied when a recalculation timeout
occurs. When a revocation timeout occurs, the mod­
ule passes once through the list of revocation rules,
repeatedly evaluating each one until its guards return
false. If the guard evaluates to true, the revoca­
tion filter is applied to the appropriate list of tasks to
provide a target for the revocation action. If no task
matches, the module moves on to the next rule in the
list.

When a scheduling request arrives, the module it­
erates over the list of available systems, evaluating the
request filter rules in-order until a guard that evalu­
ates to true is found, or the rules are exhausted. If no
matching rule is found, 0 is returned. If a rule is found,
its value is returned as the suitability ranking for that
system. The module follows a similar procedure for
task requests, iterating over the set of available tasks.

4.5 A Small Example

Figure 4 shows a simple MIL specification for a
SPARC IPC participating in a distributed Ll'IEX text­
processing system. Line 1 in the node state section
sets the period for SOV recalculation at 60 seconds.
Every minute, each participating system will compute
its SOV and forward updates to its neighbors.

The SOV extension variable haslaTeX is true if the
system has Jb.TEX available and wishes to act as a for­
matting server. Clients requesting U.TE;X processing
set the needslaTeX variable to true in their task de­
scription vector. The combining rule in line 2 sets the
outgoing haslaTeX variable if any of the incoming de­
scription vectors have it set, and the rule on line 3 sets
the haslaTeX variable for the local hosts. Hosts pro­
viding the li\TEX service would use line 3; hosts not
providing the service would use line 2 to propagate
advertisements by other hosts.

The scheduling filter rule in line 4 compares the
available system vectors to the incoming task vector,
accepts servers with load averages of less than five,
and ranks the systems based on their load average.

end
begin schedfilter

4. $task.needsLaTeX and $sys.hasLaTeX
and int($sys.loadave) < 5 :

6 - int($sys.loadave);
end

Figure 4: a simple Mil specification

The guard would fail for a neighbor that had not set
the haslaTeX variable, and return false.

5 Example Algorithms

In addition to the simple L.\.TEX batch processing
system described earlier, we prp.sent two applications
built using MIL. The first demonstrates the task re­
vocation facility as used by a general-purpose dis­
tributed batch system. The second implements a load­
balancing algorithm.

5.1 Distributed Batch

The MITRE distributed batch [17), Condor [7], and
Remote Unix [23] systems support general-purpose
distributed processing for machines running the UNIX

operating system. Figure 5 lists a short specification
file for a SPARC IPC participating in a distributed
batching system. The state rules (lines 1-4) give thc
speed ratings for an IPC and the recalculation and
revocation timeout periods.

The combining rules in lines 5 and 6 ensure that t.he
processor type variable, proctype, contains the string
":5PARC" and that the operating system variable as­
name contains the string" :5un054.1". Lines i and
8 propagate incoming processor and operating system
names.

The example schedule request filter (lines 9 and 10)
computes a rating function in the range [0, 200] for



13.8;
11.1 ;
30;
30;

begin state
1. float $SPECint92
2. float $SPECfp92
3. int $recalc_period
4. int $revocation_period

end
begin combining

5. string $out.proctype
not match($out.proctype, "SPARe"):

set $out.proctype + ":SPARC"j

6. string $out.OSname
not match($out .OSname, "SunOS4.1"):

set $out.OSname + u:SunOS4.1";

7. string $out.proctype
not match($out.proctype, $sys.proctype):

set $out.proctype + $sys.proctype;

8. string $out.OSname
not match($out.OSname, $sys.OSname):

set $out.OSname + $sys.OSname;
end
begin schedfilter

9. $ays.address == $me.address and
match($sys.proctype, $task.proctype)
and match($ays.OSname, $task.OSname):

max(200 - (100 • int($sys.loadave»,
0);

10. match($sys.proctype, $task.proctype)
and match($sys.OSname, $task.OSname):

max(400 - (100 • int($sys.loadave»,
0) ;

end
begin revokefilter

11. true: 1;
end
begin revokerules

12. $me.loadave > 2.0 and
$me.nactivetasks > 2:

suspend;

13. $me.loadave < 1.0 and
$me.nsuspendedtasks > 0:

vake;
end

Figure 5: remote execution specification

the local system, and [0, 400] for remote systems. Tlle
scheduling request rules ensure that Lhe processor Lype
and operating system match, and assign a priority to
a match based on the system load average. Because
there is no provision for requesting Lasks from a busy
system, the section for task reqnest rules is empty.

Hosts participating in the batch system preserve
autonomy by varying the parameters of the schedule
request filter. For example, tasks submitted by a local
user can be given higher priority by basing the rating
function on the source address of the task.

The task revocation rules (lines 12 and 13) de­
termine, based on the computational load on t,he
node, whether active tasks should be suspended, or
whether suspended tasks should be returned to execu­
tion. The true guard in the revocation filter rule (line
10) matches any available task, and the value port-ion
of the rule assigns an equal priority to all tasks under
consideration.

5.2 Load Balancing

Several researchers have investigated load balancing
and sharing policies for distributed systems, such as
those described in [12], [15], and [26].

The greedy load-sharing algorithm [12J, makes deci­
sions based on a local optimum. When a user submits
a task for execution, the receiving sysLem attempts to
place the task with a less busy neighbor, according t.o
a weighting function. Ifno suitable neighbor is fonnd,
the task is accepted for local execution.

The suggested weighting function to determine if
a task should be placed remotely is f(n) = n div 3,
where n is the number of tasks currently executing on
the local system. The algorithm searches for neighbors
whose advertised load is less than or equal to one-third
the local load. Because the greedy algorithm depends
on local state, it is dynamic.

The policy specification in figure 6 implements a
variant of the greedy algorithm. The original algo­
rithm used a limited probing strategy to collect t.he
set of candidates for task reception. The version in fig­
ure 6 sets the recalculation and retransmission periods
low (line 1), and depends on the SDV dissemination
mechanism to determine the candidate syst.ems.

The combination rules (lines 2 and 3) set the
$minload field to be the minimum of the load ad­
vertised by neighbors and the local load. The fil­
ter assigns a low priority to local execution (line 4),
and rates the neighboring systems on a scale of t.wo
through 100 (line 5). Any eligible neighbor takes
precedence over local execution. hnt. if the result.ant



begin state
1. int $recalc_pariod 6;

end
begin combining

2. iut $out.minload
($ays.address == $ma.address):

set min($out.minload, $me.ntasks):

3. int $out.minload true:
set min($out.minload, $sys.minIoad);

end
begin schedtilter

4. $eys.address == $me.address: 1:

be trusted to tell the truth in their SDV advert.ise­
ments, and depends on a model of timely informat.ion
exchange. A more complex approach that addresses
these limitations, implemented as a set of library calls
for ligh-levellanguages, appears in [9].

In summary, MESSIAHS embodies mechanisms sup­
porting task placement in distributed, heterogeneous.
autonomous systems. This supporl includes extensi­
ble mechanisms for implementing the local schedul­
ing policy. This paper briefly described the MESSIAHS

scheduling support mechanisms, defined a simple lan­
guage for constructing schedulers, and gave sample
implementations of representative scheduling policies
using the language.

5. $sys.minload <= ($me.ntasks /3):
max(100 - $ays.minload, 2); References

end

Figure G: specification for greedy load sharing

candidate set is empty, the local system executes the
task.

The greedy algorithm has no provision for task re­
vocation; any tasks accepted run to completion. Thus,
systems using the depicted specification yield 1I0me ex­
ecution autonomy in the spirit of cooperation.

6 Concluding Remarks

The mechanisms provided by the MESSIAHS system
and MIL support global task scheduling and load shar­
ing in scalable distributed systems. These mechanisms
also protect the autonomy of the individual systems,
while uniting heterogeneous machines into a coherent
distributed system.

The language presented here is simple and expres­
sive. It addresses two neglected areas of distributed
scheduling, heterogeneity and autonomy. MIL sup­
ports a broad range of existing scheduling algorithms,
while enabling rapid development, prototyping, and
analysis of new policies.

Because of its simplicity, MIL is somewhat limited.
It cannot slore history and has no control flow or loop­
ing constructs. Because of this, scheduling algorithms
that accept multiple tasks and a set of system de­
scriptions as input cannot be expressed precisely using
this language. MIL also assumes that neighbors can
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