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Abstract

Function precedence protocols define ordering rela-
tions among function calls in a program. In some in-
stances, precedence protocols are well-understood (e.g., a
call to pthread mutex init must always be present on
all program paths before a call to pthread mutex lock ).
Oftentimes, however, these protocols are neither well-
documented, nor easily derived. As a result, protocol vio-
lations can lead to subtle errors that are difficult to identify
and correct.

In this paper, we present CHRONICLER, a tool that ap-
plies scalable inter-procedural path-sensitive static analy-
sis to automatically infer accurate function precedence pro-
tocols. CHRONICLER computes precedence relations based
on a program’s control-flow structure, integrates these re-
lations into a repository, and analyzes them using sequence
mining techniques to generate a collection of feasible prece-
dence protocols. Deviations from these protocols found in
the program are tagged as violations, and represent poten-
tial sources of bugs.

We demonstrate CHRONICLER’s effectiveness by deriv-
ing protocols for a collection of benchmarks ranging in size
from 66K to 2M lines of code. Our results not only con-
firm the existence of bugs in these programs due to prece-
dence protocol violations, but also highlight the importance
of path sensitivity on accuracy and scalability.

1 Introduction

Program specifications form an important aspect of the
software development process. The lack of proper specifi-
cations has two significant negative consequences: (a) in-
terfaces may be used incorrectly as programs evolve; and
(b) confidence in the correctness of programs and absence
of bugs is reduced. Indeed, absence of precise specifications
often leads to incompletely validated software, and compro-
mises software dependability and reliability.

Many of these errors occur because program imple-
mentations do not adhere to implicitly-assumed precedence

protocols, which dictate how different program compo-
nents may be ordered. For example, a call to function
pthread mutex init must be present upstream on any pro-
gram path from a call to pthread mutex lock , since the for-
mer initializes data structures associated with the mutex into
an initially unlocked state.The precedence relation between
pthread mutex init and pthread mutex lock forms part
of a precedence protocol that define how these functions
can be used in programs.

In some cases, precedence protocols are well-specified.
Certain groups of library functions, for example, a call to
accept should always be preceded by a call to bind and
socket , a call to pthread mutex lock must always be pre-
ceded by a call to pthread mutex init , etc., have well-
understood relationships with one another. When prece-
dence protocols are known, a variety of techniques can be
employed to check that they are faithfully obeyed in pro-
grams [7, 13, 24]. In general, however, the relationships
that exist among most functions in a program (especially
non-library ones), are known only to the designers of those
functions, and are rarely documented precisely.

Existing research on specification inference [15, 3, 4, 9,
14, 23, 22, 12, 6, 16, 10, 25, 20, 17, 21] is based on the
premise that commonly occurring patterns in analyzed pro-
grams are indicative of a likely specification. In this paper,
we further qualify this notion by statically deriving proce-
dure call patterns that reflect precedence relations. Like pre-
vious efforts, we also assume that most programs are well-
written, and that call patterns which occur often are likely
to be correct.

We define an inter-procedural path-sensitive static anal-
ysis that computes a collection of constraints whose solu-
tion defines potential precedence relations among procedure
calls. These relations are of the form, “a call to procedure
q must always be preceded by a call to procedure p”. Path-
sensitivity ensures that all paths leading to q have a call to
procedure p; in contrast, path-insensitivity would only re-
quire that some path exists between p and q. However, naive
exploration of all paths in a program is infeasible. To make
our approach tractable, we memoize path information. To
infer the precedence protocol for q, we construct ordered
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sequences of function calls that always precede q at each
call-site of q. Let C = {c1, c2, ..., ck} be the set of call sites
to function q. At any call-site ci ∈ C , the memoized path
associated with ci forms an ordered sequence sci

q of func-
tion calls that always precede ci. We sequence mine [2] the
set of sequences,

⋃
ci∈C sci

q based on a user-defined confi-
dence level to obtain the precedence protocol.

181 RI FKey check(PG FUNCTION ARGS)
182 {
199 ri CheckTrigger(...);
210 pk rel = heap open(...);
248 if (tgnargs == 4)
249 {

// match type not checked
250 ri BuildQueryKeyFull(...);
294 }
296 match type = ri DetermineMatchType(...);
298 if (match type == RI MATCH TYPE PARTIAL)
299 ereport(...);
303 ri BuildQueryKeyFull(...);
437 }

Figure 1. Extract from RI FKey check in
postGreSQL-8.1.3.

To motivate the problem, consider the code fragment
in Figure 1. This fragment shows part of procedure
RI FKey check from postGreSQL , version 8.1.3. Observe
that the call to ri BuildQueryKeyFull at line 303 is pre-
ceded by calls to ri DetermineMatchType , heap open ,
and ri CheckTrigger in this order. This pattern occurs
at several other locations in the program. However, in
one specific instance of the call to ri BuildQueryKeyFull

at line 250, the rule is not satisfied, as there is no
call to ri DetermineMatchType preceding it. The ab-
sence of this call is significant; if the match type is
RI MATCH TYPE PARTIAL , the call to ri BuildQueryKeyFull

is erroneous because the procedure does not handle argu-
ments of this type. Path sensitive analysis is critical to de-
riving these inferences. We are unaware of other specifi-
cation inference mechanisms that can generate precedence
relations among function calls in this manner.

1.1 Preceded-by and Followed-by Rela-
tions

In this paper, we focus only on precedence properties (“a
call to q must be preceded by a call to p”). Notably, our im-
plementation does not consider constraints of the form “a
call to p is followed-by a call to q”. While useful in certain
contexts, we observe that protocols of this form are less pre-
cise than precedence protocols, especially in the presence of

non-local jumps, errors, and exceptions. A precedence rela-
tion captures the set of antecedent constraints (e.g., initial-
ization invariants) that must be satisfied before a procedure
call can be made; a follows relation captures the set of con-
sequent actions (e.g., finalization invariants) that must occur
after a procedure call is executed.

A precedence relation captures behavior that is guaran-
teed to occur if the protocol is properly obeyed (e.g., a
call to pthread mutex lock must be preceded by a call to
pthread mutex init ). On the other hand, the fact that a
forward relation is not satisfied does not necessarily imply
that program behavior is incorrect. Consider the following
snippet from some procedure p :

if((id = user open(...)) == err) {
print("error");
return;

}
user close(id);

Here, we cannot assert that every call to user open will
always be followed by a call to user close because an er-
ror condition that occurs in the interim may lead to an ab-
normal exit from procedure p . On the other hand, if a call to
user close does take place, it is guaranteed that a preced-
ing call to user open would have occurred if the protocol
was properly followed. This is a key insight that enables us
to infer precise precedence protocols whose violation may
signal the presence of a bug.

1.2 Technical Contributions

This paper makes the following technical contributions:

1. Precedence Protocol Inference: We present a new
inter-procedural static analysis for inferring function
precedence protocols. The constraints computed by
the analysis capture causal (path-sensitive) dependen-
cies.

2. Experimentation: We demonstrate the practicality
of our techniques by applying CHRONICLER, a tool
that incorporates the above techniques, to real-world C
sources ranging from 66K to 2M lines of code.

3. Assessment: We provide a qualitative assessment of
violations of precedence protocols that signify the
presence of bugs, potential performance bottlenecks,
and possible security-related errors.

1.3 Running Example

To provide further motivation for the goals of our work,
consider the program fragments shown in Figure 2 that
serve as a running example in the rest of the paper. We
define eight procedures: main , f , g , h , lwrap , uwrap ,
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void main() { void f() { void g() { void h() { void lwrap() { void uwrap() {
if(cond1) u init(); if(cond) if(cond3) u init(); u access();

f(); ... u init(); lwrap(); ... ...
elseif(cond2) ... ... else } }

g(); u access(); u access(); lwrap();
else ... ... ...

h(); } } uwrap();
} }

Figure 2. Illustrative Example

u init and u access . The definitions of procedures
u init and u access are not shown; u init initializes
data structures (e.g., by allocating memory, opening files,
etc.) and u access accesses these data structures (e.g., by
writing into memory, reading files, etc.). By examining the
interaction of these eight procedures, we can postulate a
precedence protocol that every call to u access must be
preceded by a call to u init . Observe that this rule is quite
obvious in procedure f , not so obvious in h since proce-
dure boundaries are crossed, and not guaranteed to be satis-
fied in g (when cond is false, there is no call to u init ).
Our goal is to extract similar interesting protocols (of arbi-
trary complexity), and to locate regions in the source where
these protocols are violated. Before describing our tech-
nique, we formally introduce terms and notation used in the
rest of the paper.

2 Framework

2.1 Definitions and Notation

• Precedes relation (a ← b): A binary relation between
procedures a and b, which specifies that a call to b is
always preceded by a call to a. It is important to note
that this relation does not imply immediacy; rather it
implies that a call to a definitely occurs at some point
upstream from a call to b. The precedes relation is
insensitive to procedure boundaries, and thus the calls
to a and b may be in different procedures.

• Relation Chain: An n-ary relation among procedures
defined, such that if (a ← b) holds and (b ← c) holds,
then (a ← b ← c) also holds.

• Anchor: In a relation chain (a1 ← a2 ← a3 . . . ),
∀i, j, i < j, ai is an anchor for aj .

• Definitive constraint (a
p← b): Within the context of

any call to procedure p, b is always called and the pre-

cedes relation a ← b holds; e.g., u init
f← u access .

Relation chains generalize to constraints in an obvious
manner.

• Conditional constraint (a
p← b̂): For each call to pro-

cedure p, b may be called, and whenever b is invoked,
the precedes relation a ← b always holds. e.g., u init
g← ĝ C. A conditional constraint chain that emanates

from b is a composition of the definitive constraint
chain emanating from a and the conditional constraint
a

p← b̂.

2.2 Generating Constraints

Every procedure p is associated with two phantom ele-
ments, pC and pR. The entry to a procedure p is always
through pC and the exit is always through pR, unless control
exits abnormally. An inferred precedes relation1, a ← b is
classified as a definitive constraint a

p← b if and only if there
exists a satisfying precedes relation chain b ← . . . ← pR.
In other words, the constraint is definitive if in any call to
the procedure p, b is always called (such constraints are sub-
sequently used in the construction of a constraint summary
for the procedure.). Otherwise, the precedes relation is clas-
sified as conditional a

p← b̂.
We do not apply transitive closure on the precedes re-

lation and only consider immediate predecessors in our
framework. If we considered transitive closure, we
would potentially infer a large number of spurious re-
lations. For example, even though pthread mutex init

← pthread mutex lock and pthread mutex lock ←
pthread mutex unlock are true, considering the relation
pthread mutex init ← pthread mutex unlock , while
true, is unhelpful and does not reflect an interesting case.
Instead, it is the relation chain, pthread mutex init ←
pthread mutex lock ← pthread mutex unlock derived
from the above two relations that yields a useful proto-
col. Thus, rather than using transitivity to build new rela-
tions from immediate precedences, we use relation chains
instead. In our framework, for any element y (except pC )
within procedure p, we consider exactly one other element
x in p for which x ← y is true.

Table 1 presents the definitive and conditional prece-

1We defer the discussion on how the precedes relation is generated to
Section 3.1.
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Proc Definitive Conditional

main mainC
main← mainR main C

main← bf
main C

main← bg
main C

main← bh
f u access

f← fR

u init
f← u access

fC
f← u init

g u access
g
← gR gC

g
← û init

gC

g
← u access

h uwrap
h← hR hC

h← l̂wrap

lwrap
h← uwrap hC

h← l̂wrap

hC
h← lwrap

lwrap u init
lwrap
← lwrapR

lwrapC

lwrap
← u init

uwrap u access
uwrap
← uwrapR

uwrapC

uwrap
← u access

Table 1. Constraint Repository for the source
in Fig 2. lwrap denotes lwrap occurs on both
branches.

dence constraints for the example in Figure 2 for
procedures u init and u access . We assume the

definitive constraints u init C
u init← u init R and

u access C
u access← u access R are present. Note that

a conditional constraint need not always be present for ev-
ery procedure (e.g., procedure f ). Also observe that there
may be the same conditional constraint may be duplicated
(e.g., procedure h ); these constraints correspond to calls of
the same procedure executed along different branches of a
conditional expression. The duplicate constraints are kept
for increasing the confidence in any protocol – notice that
the elements associated in the duplicate constraints refer to
different call-sites of the same procedure.

To further improve precision, constraint summaries de-
rived for one procedure can be used to refine constraints
for procedures that call it. Suppose p is a procedure called
from q. Instead of recomputing the constraints for p when-
ever it is called to build accurate constraint chains for q, we
use p’s constraint summary, as a representation of its in-
variants. Intuitively, a constraint summary for procedure
p is a memoized characterization of a definite constraint
chain for pR. Thus, a constraint summary for p is ob-
tained by computing a constraint chain over its definitive
constraints, and is of the form pC ...

p← ...pR. Thus, p’s
summary specifies the constraints that definitely hold when-
ever it is called. After generating the initial set of defini-
tive constraints, constraint summaries (γ(q)) for each pro-

cedure (q) are computed using a fixed point calculation to
take into account cyclic constraints that arise in the pres-
ence of recursion and loops. An example use of constraint

summary is refining the constraint u access
f← fR to

u access C
u access← u access R

f← fR.

2.3 Mining the Constraint Repository

Sequence mining is used to extract precedence informa-
tion from constraint chains. If precedence protocols need
to be identified for procedure p, we first identify constraint
chains that emanate from each call-site of p. These com-
prise the set of sequences that is input to the sequence min-
ing component. We present below the sequences associated
with u access from the refined constraint repository in our
example:

• mainC
main← fC

f← u init C
u init← u init R

f←
u access C

• mainC
main← gC

g← u access C

• mainC
main← hC

h← lwrap C
lwrap←

u init C
u init← u initR

lwrap← lwrap R
h←

uwrap C
uwrap← u access C

A sequence for each constraint chain is easily obtained
by listing all the anchors in order. Recall that an element a
is an anchor of b if and only if a ← ... ← b holds.

A sequence mining algorithm takes as input a set of se-
quences (I), user-defined confidence threshold, and outputs
a set (S) of sequences that occur as subsequences in a min-
imum fraction (as specified by the confidence threshold) of
input sequences. Observe that if a subsequence x is fre-
quently occurring, all subsequences of x also occur at least
as frequently as x. Therefore, we consider only maximal
subsequences, i.e., it is the case that every sequence(si) in S
is not a subsequence of any other sequence present in S.

For example, if the set of sequences is given by {(a ←
b ← c ← e), (a ← d ← c ← e), (a ← c ← e),
(a ← c ← d ← e ← f), (e ← f ← d ← c ← a)} ,
a sequence miner detects (a ← c ← e) as a frequently
occurring subsequence. We use the Apriori-all algorithm
by Agrawal and Srikant [2], which is known to scale over
a million sequences. Due to space limitations, we refer the
reader to [2] for more details.

The use of a confidence level provides added flexibility
to discover protocols that occur frequently, not just exclu-
sively, and allows greater scalability of the implementation
by permitting more aggressive abstraction of the call graph.
Identifying frequently occurring protocols is also essential
for bug finding. For example, if a discovered protocol oc-
curs nine of 10 times, it is reasonable to assume that the
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protocol is indeed genuine, and the sole deviation is likely
to be a bug. Protocols discovered with a 100% confidence
are those that are guaranteed to be true, and for which no
violations occur.

Consider the three calls to u access in Figure 2. In
two of these calls, namely calls that occur within proce-
dures f and uwrap , we discover that a call to u init must
have preceded the call to u access . However, the call to
u access that occurs in procedure g is not guaranteed to
be preceded by u init because of the unknown value of
the guard cond . If we perform sequence mining with a con-
fidence level of 0.66, we deduce that u access is preceded
by u init , and that there is one violation of this protocol at
procedure g . This violation signals a potential error.

3 Implementation

CHRONICLER takes as input the program source and a
user-defined confidence level for determining when a con-
straint chain should form part of a procedure’s protocol.
We first generate the control-flow graph for each procedure
in the program using [5]. We simplify the control-flow
graph by pruning all nodes other than those corresponding
to procedure calls. We reverse the direction of all edges in
the control flow graph since we need to construct the pre-
cedes relation. The graphs obtained are fed into the relation
builder and a cycle of relation, constraint, and constraint
summary calculations is executed. The sequences obtained
as a result of this process are then fed to a sequence miner
implemented based on the ideas presented in [2]. The pro-
tocols output by the sequence miner and the associated vio-
lations are ranked by processing them according to the con-
fidence, length and frequency of occurrence of the protocol.
The output of the entire process is a ranked order of function
precedence protocols and the program points in the source
where these protocols are violated.

The time taken by CHRONICLER is essentially composed
of the time taken for constraint generation and sequence
mining. It is easy to show that the time taken for constraint
generation for a procedure is sub-quadratic in the number
of call-sites within the procedure. The time taken for se-
quential mining is dependent on the user-confidence level
and the sequences generated; readers are referred to [2] for
details.

3.1 Relation Builder

A relation builder builds relations among procedure
calls. Recall that a precedes relation (a ← b) for proce-
dures a and b states that a call to b is preceded by a call to
a in the pruned control-flow graph. Thus, for any call to b,
there can be exactly one call to a such that a ← b.

We employ a simple graph walking strategy to build the
precedes relations on the simplified (and reversed) control-
flow graph. To find the nearest anchor for any call to pro-
cedure b within the body of procedure p, a unit flow is initi-
ated at the node corresponding to the call in p’s control-flow
graph. If the out-degree of the node is d, the flow on each
edge emanating from that node is 1

d . Each neighbor, on re-
ceiving a flow adds the incoming value to its flow value,
defined as the flows from all of its incoming edges, and dis-
tributes the received value (as described above) to its neigh-
bors, unless the sum of the flow received equals one. A
node that receives a unit flow is considered an anchor for
the node on whose behalf the flow was generated. Observe
that our definition of the precedes relation is not captured
using standard notions of dominance [18].

Figure 4 presents (reversed) control-flow graphs for the
program fragments shown in Figure 3. Circles correspond
to call-sites and the squares correspond to other nodes in
the control flow graph. The square nodes are presented here
only for ease of understanding. For these fragments, we de-
termine a ← b is satisfied, i.e., a call to procedure b is
always preceded by a call to a . In Figure 4(a), a ← b is
obvious. In Figure 4(b), the unit flow initiated at b results
in a total inflow of 0.5 at the square nodes and 1 at the call
to a , again allowing us to deduce that a ← b . In Fig-
ure 4(c), even though a call to a is present in a path on the
branch, the inflow received at that node is 0.5 and therefore
a ← b does not hold. Figure 4(d) is similar to Figure 4(c).
Observe, however, that determining whether the precedence
relation a ← b holds in this case depends upon the actions
performed by procedures c and d . Consider the case when
both these procedures in turn call procedure e . In this case,
the correct precedence relation should be e ← b .

In other words, suppose the constraint summaries for c

and d are cC ← e ← cR and dC ← e ← dR, respec-
tively. In this case, the precedes relation a ← b no longer
holds (recall we do not consider the closure of the relation
under transitivity), even though a is still an anchor of b .
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Figure 4. Graphs for program fragments
shown in Figure 3.

In Figure 4(e), a unit flow from b ’s call-site results in
an inflow of 0.5 at each of the calls to a and unit inflow
at node c . Our algorithm adds the inflow of all the nodes
with the same label within a procedure, leading to a unit in-
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void p() { void q() { void r() { void s() { void t() { void u() {
a(); a(); a(); a(); c();
b(); if(cond) if(cond) if(cond) if(cond) while(a())

x++; x++; d(); a(); b();
else else else else ...
y++; c(); c(); a();

b(); b(); b(); b();
} } } } } }

Figure 3. Program Constructions.

flow for a virtual node corresponding to the two calls to a ,
again allowing us to determine that a ← b holds. Observe
that the inflows cannot be added if the corresponding nodes
are not in different paths. We apply a conservative approx-
imation and eliminate all loops in our implementation i.e.,
every loop is unrolled exactly once. In other words, every
loop is treated as a conditional branch, except that nothing is
present on the ‘else’ part of the branch. Because of this ap-
proximation, the relation a ← b holds for the graph shown
in Figure 4(f) as well. Note that the relation b ← a is not
generated because the call to a is not preceded by b always
and therefore the edge from a to b in the (reversed) con-
trol flow graph will be removed. We present the algorithm
in Figure 5.

procedure BUILDRELATION

" Input: G(V,E) , directed, acyclic (reversed) CFG of p ;
V is topologically sorted, p C = | V |, pR = 0;

" Output: R =
⋃

(i, j) where i ← j and i, j ∈ V
1 for each node i in V
2 for each neighbor j of i
3 table (i, j) ← 1

d(i)

4 for each k > j
5 table (i, k) ← 1

d(i) * table (j, k)
6 Find minimum k in table s.t table (i, k) = 1
7 for each element x between i and k
8 Q ← elements between i and k with label(x)

such that for any y, z ∈ Q , y ← z = false

9 Create new node n with label(x)
10 Modify E to show collapse of nodes in Q into n
11 Remove elements in Q from V

12 Topological sort of vertices between i and k
13 table (n, *) ← Σm∈ Q table (m, *)
14 Find minimum k in table s.t table (i, k) = 1
15 R ←

⋃
(k, i)

Figure 5. Building the precedes relation.

3.2 Constraint Identification

In this section, we discuss the methodology to identify
definitive constraints. After building the basic precedes re-
lation, the next step is to identify the constraints so that they
can be effectively used in constructing the constraint sum-
mary for a procedure and can serve as input to the sequence
miner. The input to this process of constraint identification
is the relation pairs obtained from the relation builder. For
procedure p, we identify the precedes-relation for pR and
label the corresponding relation as a definitive constraint. If
a ← pR is the identified relation, we obtain the precedes
relation for a and label it as a definitive constraint and iter-
ate through this process until pC is reached. Relations not
labeled definitive are labeled conditional.

3.3 Constraint Summaries

Recall constraint summaries are used to improve the pre-
cision of the generated constraints. After identifying con-
straints, a constraint summary for a procedure p is con-
structed by calculating the definitive constraint chain with
pR as the source and pC as the sink. Observe that the con-
straint summary of a procedure signifies that the calls in the
chain associated with the constraint summary always hap-
pens.

Depending on the precision desired, the constraint sum-
mary of p can be used at a call-site for p in some other pro-
cedure q to improve the precision of q’s constraint summary
and other constraints associated with q. This is achieved by
replacing the node corresponding to p in q with p’s con-
straint summary in q. As new nodes are introduced into q,
the relation builder needs to be reinvoked to handle changed
scenarios which may be similar to the construction shown
in Figure 4(d).

We can tradeoff precision for efficiency by reducing the
number of iterations in the fixpoint calculation used to com-
pute relation chains. A larger number of iterations will
“fold” more constraints into a relation chain, and capture
a larger number of precedence relations, but will lead to
longer analysis times. In practice, we expect that com-
plex cyclic dependency chains will not often arise, and that
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precedence protocols will not often span many procedure
boundaries. Nonetheless, the relationship between the qual-
ity of computed dependencies and the number of iterations
executed in the fixpoint used to build relation chains is a
topic for further investigation.

4 Experiments

We validate CHRONICLER on selected benchmark
sources, with a view to demonstrating its scalability and ef-
fectiveness. We also examine the impact of confidence pa-
rameters on the number and nature of inferred precedence
protocols.

We extract precedence relations for five sources:
apache , gimp , linux , openssh and postgresql . Specific
details relating to the sources are provided in Table 2. The
size of selected benchmarks varies from 66K to 2M lines
of code. Since default configurations are used to compile
these sources, we believe that the number of control flow
nodes may be a more reliable indicator of effective source
size than lines of code. The number of control flow nodes
ranged from 66K to 1M. However, as discussed earlier, we
can prune the nodes of the control flow graph that do not
correspond to procedure call sites. In such a pruned control
flow graph, the number of nodes varied from 6K - 108K.
We also present the number of user-defined procedures ex-
amined in the table.

We implemented the constraint generator framework and
sequence miner in C++. We perform our experiments on a
Linux 2.6.11.10 (Gentoo release 3.3.4-r1) system running
on an Intel(R) Pentium(R) 4 CPU machine operating at
3.00GHz, with 1GB memory. We use a confidence level
of 80% when mining the constraint chains. The precedence
protocols detected, the number of violations associated with
it along with the time taken for performing the analysis are
presented in Table 2 .

4.1 Quantitative Assessment

Figure 6(a) presents the distribution of the protocols with
respect to the confidence intervals for each of the bench-
marks. Note that with a 5% increase in the confidence
threshold level, the total number of protocols inferred could
be easily cut by 50% for most of the benchmarks. Fig-
ure 6(b) presents the distribution of frequency of the prece-
dence protocols (usually referred to as support). For any
two protocols with the same confidence, the protocol that
occurs with greater frequency is ranked higher; recall our
intuition that protocol frequency should be positively corre-
lated to correctness. Figure 6(c) presents the distribution of
length of the precedence protocols, where length is defined
in terms of constraint chain sizes. Note that while many
protocols have a constraint length of two or less, there is a

significant fraction with length five or more. The length of
a protocol is loosely correlated with its complexity; longer
length protocols are less likely to be easily verified manu-
ally, and bugs that arise because of violations of these pro-
tocols can be expected to be more difficult to identify.

We also consider the impact of path sensitivity on the ac-
curacy of our results. We designed a path insensitive vari-
ant, roughly based on PR-Miner [15], where we associate,
for every call-site of function f , all the functions that are
called from the function that calls f and the functions called
from those functions, etc.. For example, an association
for function h in main in Figure 2 would include {f, g}
and all the functions subsequently called from those func-
tions i.e., u init and u access . Therefore, the association
for function h in this case is {f, g, u init, u access} .
Contrast this with the path-sensitive variant (see Table 1)
that preserves explicit precedence constraints. CHRONI-
CLER’s implementation guarantees that using path sensitiv-
ity does not generate any additional false negatives com-
pared to the path insensitive implementation.

After computing the associations for each call-site for a
given function f , we use a frequent item set mining tool,
MAFIA [8], to generate the item sets that appear frequently
based on a given confidence threshold. PR-Miner [15]
adopts a similar approach except that it does not focus on
generating a protocol for a specific function, generating pro-
tocols for the entire program instead. The results of the
comparison between CHRONICLER and the path insensi-
tive variant is given in Figure 7. As can be seen from the
figure, path sensitivity greatly reduces the number of pro-
tocols generated. In addition, we verified that these proto-
cols form a proper subset of the protocols inferred by the
path-insensitive variant. While fewer protocols are gener-
ated using our approach, it is reasonable to ask whether we
have eliminated valid protocols that would be detected by
the path-insensitive variant. We show in the next section
that our technique does not generate additional false nega-
tives.

Path Insensitive
CHRONICLER 
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Figure 7. Comparison of CHRONICLER with a
path insensitive variant.
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Source Version LoC CFG CFG nodes Procedure Protocol Violation Constraint Sequence
nodes Pruned count count count generation time mining time

apache 2.2.0 272K 125K 9K 2067 35 16 85 4
gimp 2.2.9 662K 982K 108K 10192 249 133 621 27
linux 2.2.26 1.98M 330K 24K 7465 101 105 1270 138
openssh 4.1 65.9K 92K 12.6K 1242 56 31 123 7
postgresql 8.1.3 561K 625K 66K 8755 355 277 653 191

Table 2. Details about the benchmarks used in our experiments and the number of protocols discov-
ered with an 80% confidence threshold. Time given in seconds.
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(a) Confidence Distribution
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(b) Frequency Distribution
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(c) Length Distribution

Figure 6. Confidence, frequency and length parameters associated with the precedence protocols

4.2 Qualitative Assessment

While the above results address the scalability, complex-
ity, and quantitative aspects of precedence analysis, we also
consider some specific instances of protocol violations ob-
served in the benchmarks. Though this is by no means a
comprehensive study, the examples given below do provide
interesting insights into the nature of the violations that can
be detected using our system.

4.2.1 Case Study: Library calls in Apache

To study the quality of our results, we examined how ef-
fective our implementation was in discovering protocols as-
sociated with library calls made in apache , under a 100%
confidence threshold. We correlate its effectiveness by com-
paring our results with the documentation found in the man

pages of the corresponding library functions.
Out of the 87 library functions that are called at least

more than once in apache , we found 26 functions that have

some form of precedence requirement. Of these, 10 func-
tions have relations that can be satisfied by any one of a set
of functions of the same kind, e.g., a call to write can al-
ways preceded by a call to open or socket . While not a
significant limitation, the current implementation only deals
with precedence chains, and not arbitrary trees or graphs.

Based on the system’s constraints there are potentially
16 protocols that could be inferred. CHRONICLER indeed
discovered 16 protocols, of which 11 were confirmed to be
valid (included in the set of 16 verified manually), and five
were false positives, protocols that were not substantiated
by existing documentation. These false positives all had
low frequency count, and low ranking, and could be easily
filtered.

Our implementation failed to detect five protocols. Of
these five, CHRONICLER detected one potential bug. Every
call to procedure atexit in the source was always preceded
by apr app initialize except in one instance where it
was only preceded by apr initialize instead of the wrap-
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per function apr app initialize . On Windows platforms,
the documentation indicates that the wrapper call is neces-
sary to supply appropriate command arguments and repair
data formats. The path-insensitive approach also failed to
detect the five protocols. We emphasize that path sensitiv-
ity is essential to derive this protocol violation.

4.2.2 Sample Violations

Hardware Bug: In Linux, we observe that calls to
global restore flags are preceded by global cli

and global save flags . The only violation of
this protocol is present in procedure init amd

where global restore flags is only preceded by
global save flags . Thus, the violation occurs in a

platform-dependent section of the kernel.
We observe two relevant patterns in the source:

save flags(flags);
cli();
...
restore flags(flags);

save flags(flags);
cli();

...
restore flags(flags);

The fragment on the right is intended for non-symmetric
multiprocessors. From the header file, we discover that
save flags , cli , and restore flags are macros and
are defined as global save flags , global cli , and
global restore flags , respectively for symmetric mul-

tiprocessors. Otherwise, they are defined as save flags ,
cli , and restore flags , respectively. Given the header

file, the correct programming practice is to use the former
code fragment. Nevertheless, as long as they are used to-
gether, problems do not arise. The potential bug is subtle,
because in init amd , save flags is followed by cli and
then restore flags . If this code is to be executed on an
SMP, potentially degraded performance can result. This bug
is difficult to observe since its occurrence is also dependent
on the hardware used. We were able to discover this bug as
it manifests when a complex function precedence protocol
consisting of three procedures is violated.

Performance Bug: We also discover another vi-
olation in Linux that negatively impacts performance.
A call to procedure filemap fdatawait is not pre-
ceded by a call to procedure filemap fdatawrite in
sync single inode . Procedure filemap fdatawrite en-

sures that a block is dirty before writing the data by calling
do writepages . In the procedure where we detect the viola-
tion, do writepages is directly called. While this violation
is not necessarily erroneous, correct usage can improve per-
formance since data writes are avoided if the page is not
dirty.

Security Bug: Besides the violation described in Fig-
ure 1, CHRONICLER also discovered another protocol vi-
olation in PostGreSQL. The protocol in question requires

any call to procedure CreateComments to be preceded
by a call to getUserId to ensure that users have appro-
priate authorization before being allowed to create new
comments. This protocol was violated in the procedure
CommentLargeObject . Although this violation does not
lead to a visible program error, it is an obvious security
violation that permits unauthorized users to change docu-
mentation.

5 Related Work

Li and Zhou present PR-Miner [15], a tool that relies on
association rule mining [1] to identify frequent program pat-
terns. CHRONICLER fundamentally differs from PR-Miner
as it ensures path-sensitivity; it is this difference that allows
CHRONICLER to detect bugs such as the one presented in
Figure 1, which would not be flagged by PR-Miner. Livshits
and Zimmermann [16] present another mining-based tech-
nique by analyzing revision histories of programs for infer-
ring invariants. In this paper, we also use a mining strategy,
albeit with a different emphasis and methodology.

In a seminal work, Engler et al. [9] identify that bugs
are a result of deviant behavior and statically analyze the
program to detect bugs. They present an approach to detect
relations between pairs of functions by exploring all pos-
sible paths. Gopalakrishna et al. extend this approach to
detect protocols of arbitrary size in FaultMiner [12], a tool
that performs sequence mining on sets of paths to generate
temporal invariants. The brute-force path exploration used
in these approaches limits their utility in practice to identify
protocols of arbitrary size. In our experiments, we iden-
tify that on an average 50% of the protocols detected have
size 3 or more (precedence length 2 or more) which cannot
be detected by these approaches scalably. By folding con-
straints at join points and using memoization techniques for
procedures, we are able to successfully apply our approach
to large software systems.

There are several other salient approaches that address
the problem of inferring specifications. Kremenek et
al. [14] classify functions as claiming or returning owner-
ship and infer specifications based on factor graphs. This
semantic-based approach is complementary to program
analysis-based systems like CHRONICLER. Weimer and
Necula [22] present an automatic specification mining tech-
nique that uses information about exceptions and errors to
identify temporal safety rules, and provide elaborate exper-
iments to show the scalability and correctness of their ap-
proach. They compare their scheme to four existing min-
ers [3, 4, 9, 23]. It is not clear how their approach can be
extended to extract protocols of arbitrary complexity.

In [4], Ammons et al. perform specification mining by
summarizing frequent interaction patterns as state machines
that capture temporal and data dependencies when interact-
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ing with API’s or abstract data types. Yang et al. [25] pro-
vide a scalable solution by using dynamic inference tech-
niques that are effective in the presence of imperfect traces.
Ernst et al. [10] present Daikon, a tool for dynamically de-
tecting invariants in a program. These techniques are all
based on a dynamic runtime analysis. Even though dynamic
techniques can be more precise as inference is made based
on observed program behavior, the dependence on test in-
puts to provide program coverage limits their utility. As
with any static analysis technique, our approach is not de-
pendent on test inputs for precision.

Function summaries have been used in a variety of appli-
cation contexts (e.g., testing [11], verifying multi-threaded
programs [19]). In [11], Godefroid presents an approach
that uses function summaries to encode the test results in
the form of pre- and post-conditions. In [19], Qadeer
et al. present an approach to encode function summaries
for multi-threaded programs. In this work, we propose us-
ing function summaries for effectively inferring precedence
protocols using an inter-procedural static analysis.

6 Conclusion

This paper focuses on the problem of inferring function
precedence protocols, and identifying when these protocols
are violated. It presents a scalable and effective approach
to extract protocols of arbitrary length. The proposed
technique is path sensitive and has been validated on large
real-world systems. We are able to detect several subtle
protocols in our benchmarks, and identify non-trivial
violations. Some of the interesting problems stemming
from this work, which are topics of current investigation,
include automatically identifying the correctness of an
inferred protocol (currently the protocols are validated
manually), integrating dataflow information to potentially
improve precision, and associating confidence intervals
with violations to provide additional refinement.
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