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Isolates: Serializability Enforcement for
Concurrent ML

Lukasz Ziarek, Armand Navabi, and Suresh Jagannathan

Purdue University
{lziarek, anavabi, suresh}@cs.purdue.edu

Abstract. There has been much recent interest in exploring higher-level
concurrency control abstractions such as software transactional mem-
ory (STM) to alleviate the complexity of reasoning about interactions
among concurrent threads of control. Isolation and atomicity are the two
critical properties provided by an STM that guarantee serializability of
concurrent actions. Isolation ensures that transactions execute without
interference from effects performed by other transactions, and atomicity
guarantees that intermediate effects performed by a transaction are not
seen by other concurrently executing transactions.

While these properties have been primarily designed with shared mem-
ory in mind, there has been recent work (5; 6) that explores how atom-
icity could be leveraged to increase the expressivity of message-passing
abstractions such as the first-class synchronous events found in Concur-
rent ML (CML) (17). Notably, these proposals do not enforce isolation
of concurrently executing events, and thus cannot be used to enforce
transactional execution of CML programs. In this paper, we consider
the introduction of a new event combinator that addresses this signifi-
cant limitation. An isolate is a combinator that allows a complex event to
execute in isolation with other concurrently executing events (including
other isolates). By doing so, it enables the integration of a true transac-
tional semantics into a CML-style concurrency model, enabling reasoning
about CML programs in terms of serializable event orderings. Incorporat-
ing isolation into CML poses a number of challenging problems, however,
whose solutions form the focus of this paper.

1 Introduction

Programming with concurrency is challenging because reasoning about non-
deterministic interactions among concurrently executing computations is dif-
ficult. Concurrency control abstractions such as software transactions (15) have
attracted significant interest because they simplify reasoning about these in-
teractions. Transactions provide two key guarantees on the computations they
encapsulate: (1) isolation ensures that a computation can execute without in-
terference from effects performed by other threads; (2) atomicity ensures that
intermediate effects performed within a transaction do not become visible until
the transaction completes.



Recently, transactional events (5; 6) have been proposed as a way to leverage
the power of atomicity to increase the expressivity of message-passing abstrac-
tions such as first-synchronous events found in languages like Concurrent ML
(CML) (17). While CML allows the construction of complex events from base
events, synchronization can only take place on a single event. This limitation
makes it difficult to express certain communication protocols and impossible
to express others, such as three-way rendezvous. Transactional events address
this limitation by allowing multiple communication actions to be encapsulated
within a new event combinator ( thenEvt) that makes the effects of these ac-
tions visible to other threads provided all of them can succeed. For example, the
expression, thenEvt(sendEvt (c1, v), fn() => recvEvt c2), when synchronized
will only complete if the operation executes in a state in which both the sendEvt

and recvEvt can succeed in that order as a single atomic action. The guarantee
of atomicity provided by thenEvt distinguishes it from the functionality pro-
vided by other CML event combinators, and leads to a substantial increase in
expressive power and programmability.

Unfortunately, unlike mainstream software transactions, two threads concur-
rently executing thenEvts can have their communication effects witnessed by the
other; when this happens, a larger atomic unit is formed. Thus, while transac-
tional events provide an all-or-nothing property on the events they encapsulate,
they provide no mechanism to restrict visibility of effects performed within the
dynamic context of a transactional event. Repairing this limitation forms the
focus of this paper. The ability to isolate effects of different concurrently execut-
ing transactional events simplifies program reasoning, and prevents unwanted
interactions. Without isolation, any effect witnessed by one transactional event
performed by another effectively pairs the two together: even though failure of
one results in the failure of the other, there is no facility available to prevent
these intermediate actions from being observed in the first place.

To support isolation, we introduce isolates, a new abstraction that enforces
isolation of concurrently evaluating events. The ability to execute concurrent
events in isolation along with the all-or-nothing atomicity property of transac-
tional events not only allows the construction of truly transactional (i.e., serial-
izable) CML programs, but leads to additional expressivity and efficiency that
would otherwise not be possible.

The remainder of the paper is organized as follows. The next section briefly
describes CML and transactional events. Section 3 provides a motivating ex-
ample. Section 4 presents a naive semantics for isolates that that imposes a
simple a priori ordering on isolate evaluation that ensures serializability but at
the price of constraining concurrency. In Section 5 we relax this restriction; our
new formulation uses capabilities to track potential interfering communication
actions, limiting concurrent evaluation only when necessary. Section 6 states
soundness results that relate the two different formulations. Section 7 discusses
implementation issues, and Section 8 presents related work and conclusions.



2 CML and Transactional Events

Concurrent ML (17) (CML) is a concurrent extension of Standard ML that
utilizes synchronous message passing for communication among concurrently
executing threads. Threads perform send and recv operations on typed channels;
these operations block until a matching action on the same channel is performed
by another thread.

CML also provides first-class synchronous events that abstract synchronous
message-passing operations. An event value of type ’a event when synchronized
yields a value of type ’a. Thus, an event value represents a potential compu-
tation, with latent effect until a thread synchronizes upon it by calling sync.
The following equivalences thus hold: send(c, v) ≡ sync(sendEvt(c,v)) and
recv(c) ≡ sync(recvEvt(c). Besides sendEvt and recvEvt, there are two other
base events that we refer to in the paper: alwaysEvt given a value returns an
event that when synchronized upon returns that value; neverEvt yields an event
that can never be successfully synchronized upon.

Much of CML’s expressive power derives from event combinators that con-
struct complex event values from other events. We list some of these combinators
in Fig. 1. The chooseEvt event combinator takes a list of events and constructs
an event value that represents the non-deterministic choice of the events in the
list; for example, choosEvt[recvEvt(a),sendEvt(b,v)] when synchronized will
either receive a unit value from channel a, or send value v on channel b. The
expression wrap (ev, f) creates an event that when synchronized applies the
result of synchronizing on event ev to function f. Conversely, guard(f) creates
an event which when synchronized evaluates f() to yield event ev and then acts
as ev.

sendEvt : a chan * a -> unit event

recvEvt : a chan -> a event

neverEvt : a event

alwaysEvt : a -> a event

sync : a event -> a

choose : a event list -> a event

wrap : a event * (a -> b) -> b event

guard : (unit -> a event) -> a event

Fig. 1. CML event operators.

While CML’s event combinators provide a great deal of expressivity, there
are nonetheless useful abstractions that are difficult or impossible to define. One
such example is a safe guarded receive; given a channel c and a guard g, the
operation accepts v from c only if g(v) yields true. Expressing this functionality
in CML is difficult because the act of transmitting a value from the sender to
receiver requires a synchronization; once the synchronization is complete, there
is no facility to revoke the communication in case the guard yields false.



To address these limitations, a transactional event) combinator (written as
thenEvt(evt,f)), that sequences multiple communication actions into a single
atomic event is necessary (5; 6). A transactional event takes an event evt and
a function f for producing a new event from the result of the first event. A
synchronization action on a thenEvt first (provisionally) synchronizes on evt,
and calls f with the resulting value. The event yielded by the application is then
synchronized on as well. If both synchronizations succeed (i.e., neither event
yields neverEvt) the transactional event succeeds, yielding the value of the last
event; if either fails, the entire event fails to synchronize, effectively erasing any
of the provisional actions. Using transactional events, we can now easily express
a guarded receive:

thenEvt(recvEvt(ch),

fn(v) => if g(v) then alwaysEvt(v)

else neverEvt)

Because the neverEvt returned when g(v) yields false can never be synchronized
upon, we ensure that the act of receiving a value from channel ch occurs only
if g(v) is true. Thus, transactional events abstractly define atomic sets of com-
munication actions through the use of the thenEvt combinator. Such sets are
dynamically linked to create larger atomic units.

3 The Need for Isolation

Consider a server abstraction that mediates access to a pool of identical re-
sources. The server provides three operations: (1) query that returns informa-
tion about the resources it holds; (2) reserve that requests some number of these
resources to a client; and (3) release that returns a previously reserved set of
resources back to the pool. A simple implementation of the server written in
CML in which resources are abstracted as integers is given in Fig. 2.

The server is implemented as a thread that loops, repeatedly waiting for input
on a dedicated input channel. The server loop is implemented as a transactional
event that encapsulates the act of reading the next operation from a client, and
yielding the result. If a client asks to reserve a number of resources fewer than
the number of available, the server indicates the success of the operation by
yielding an alwaysEvt; if the client request is not satisfiable, a neverEvt, which
can never be successfully synchronized against, is returned, thus preventing a
client communicating with the server from within its own transactional event
from committing any other actions performed by that event. The sync operation
is successful only if the requested operation is successful, in which case the new
server state is available for the next iteration.

With this interface, we might consider writing a client (see Fig. 3 that queries
a server to check the number of resources it has, and based on the result, makes
a request to reserve some number of them, using transactional events to ensure
that the query and reservation execute atomically.

The query function communicates to the server to query the server’s state;
once known, the client uses auxiliary function f to reserve some number of



datatype ops = Query of int chan | Req of int | Rel of int

fun server(n) =

let val reqCh = channel()

fun serverLoop(n) =

let val evt =

thenEvt(recvEvt(reqCh),

fn (req) =>

case req of

Query ch => wrapEvt(sendEvt(ch,n),

fn () => alwaysEvt(n))

| Res i => if n >= i

then alwaysEvt(n-i)

else neverEvt

| Rel j => ...)

in serverLoop(sync(evt))

end

in (spawn(serverLoop(n));

reqCh)

end

Fig. 2. A simple server abstraction that uses transactional events.

fun query(server,replyCh) =

thenEvt(sendEvt(server,Query(replyCh))

fn () => recvEvt(replyCh)

fun client(server,f) =

let val replyCh = channel()

val evt = thenEvt(query(server,replyCh),

fn (n) => let val k = f(n)

in sendEvt(server,Res(k))

end

in sync(evt)

end

Fig. 3. A client that defines a protocol involving multiple communication events with
a server.



resources based on this state. While this solution is disarmingly simple, it is
unfortunately incorrect. This is because the transactional event that defines the
server loop can commit only when the client’s transaction does. But, the client
requires two operations involving the server to be atomically executed, the first
to perform the query, and the second to make the actual reservation. However,
the server will not initiate the next iteration of its server loop until the query
first performed by the client successfully commits; this transaction cannot com-
mit until the client can successfully complete its second communication with the
server. In other words, the communication parity mismatch between the server
and client foils the construction of a complex atomic client-side protocol: the
client requires two communications with the server for its transaction to be suc-
cessful, whereas the server only expects a single interaction. Simply changing the
client implementation so that the query and subsequent reservation do not exe-
cute within a transactional event would break obvious atomicity requirements.
Alternatively, we could change the server code to accept two requests as part of
its transactional event; this would allow the client protocol to succeed for this
example, but would be a very brittle solution, since it not work for other kinds
of protocols that initiate a different number of communication actions with the
server.

An alternative is to modify the server by allowing it to accept an arbitrary
number of requests as part of a given transaction (see Fig. 4).

fun server (n) =

let val reqCh = channel()

fun serverLoop(n) =

let val evt =

thenEvt(recvEvt(reqCh),

fn (req) =>

wrap (case req of

Query ch =>

wrapEvt(sendEvt(ch,n)

fn () => alwaysEvt(n))

| Res i => if n < i

then neverEvt

else alwaysEvt(n-i)

| Rel j => ...),

fn (n) => serverLoop(n))

in sync(evt)

end

in (spawn(serverLoop(n));

reqCh)

end

Fig. 4. A server implementation that accepts multiple requests as part of a given
transaction.



In this revised implementation, the internal server loop itself is implemented
as a transactional event. This enables the server to receive multiple requests as
part of a complex client protocol. Unfortunately, there remain problems with
this solution as well. The simpler problem is that the loop itself does not have
a termination condition, and thus has no apparent commit point; this can be
easily fixed by extending the interface to allow clients to notify the server when
the client-side transaction is complete.

A more problematic issue is the loss of serializability due to the possibility
the server may accept requests from different clients while participating in an
ongoing transaction. Consider clients C1 and C2 both implementing the protocol
described above. Suppose both issue queries to the server and receive the same
result indicating the current server state. If client C1 now succeeds in performing
its reservation, C2’s subsequent computation of its desired reservation, which was
based on a server state that is no longer accurate, is now incorrect. Although
atomicity is preserved – none of the operations results in a neverEvt being yielded
by the server, and thus all communication actions succeed – isolation is lost
because C1’s effects are visible in the middle of C2’s transaction.

To provide a solution that permits multiple clients to concurrently commu-
nicate with the server without violating serializability guarantees, we introduce
a new abstraction that isolates the execution of one transactional event from the
concurrent effects performed by another. The abstraction is expressed using a
new event combinator: isolateEvt: ′a evt → ′a evt that given an event value
yields an isolated event value that when synchronized executes in isolation of all
other isolated events.

Thus, to ensure that a client executes in isolation from all other clients, we
could write:

fun client(server,f,dom) =

let val replyCh = channel()

val evt = client protocol
in sync(isolateEvt(evt))

end

To prevent interference induced by such communication, isolate evaluation en-
sures that all communication to the server by C1 are performed prior to all
communication by C2 or vise versa, effectively serializing their execution with re-
spect to their common channels. Because the communication actions performed
by the event arguments to an isolateEvt may be arbitrarily complex, enforcing
such ordering requires tracking the effects performed by the event arguments
transitively; in the following sections, we discuss how to efficiently identify and
collect this information.

4 Semantics

Our semantics is defined in terms of a core call-by-value functional language
with threading and communication primitives. Communication between threads
is achieved using synchronous channels and transaction-encapsulated events. Our



language extends a transactional event core language with one additional con-
struct used to express isolated events. For perspicuity, the language omits many
useful event combinators such as chooseEvt, wrap, or guard since they raise no
interesting semantic issues with respect to isolates. References are also omitted
for this reason.

We first present a semantics for this language whose syntax and grammar is
shown in Fig. 5 using a naive definition of isolates in which concurrent evaluation
of isolated events is not allowed; we subsequently consider refinements to this
semantics that relax this restriction.

e := unit | γ | x | λx.e | e e
| spawn e | sync e | ch()
| sendEvt(e, e) | recvEvt(e)
| neverEvt | alwaysEvt e
| thenEvt (e, e) | isolateEvt(e)

v := unit | c | γ | λx.e
| sendEvt(v, v) | recvEvt(v)
| neverEvt | alwaysEvt v
| thenEvt (v, v) | isolateEvt(v)

E := · | E e | v E
| sync E
| sendEvt(E, e) | sendEvt(c, E)
| recvEvt(E) | alwaysEvt E
| thenEvt (E, e) | thenEvt (v, E)
| isolateEvt(E)

F := · |
thenEvt (F , v) |
isolateEvt(v) |
alwaysEvt v

M ∈ ContextStack := I | E | F | M : M
T ∈ NonTransactionThread := (t, e)

T := T | T || T
K ∈ TransactionThread := (t, M, e)

K := K | K || K

Fig. 5. Language Syntax and Grammar

In our syntax (see Fig. 5) v ranges over values, c over channel references, γ
over constants, e over expressions, and t over thread identifiers. The semantics
shown in Fig. 6 defines three relations. The ↪→ relation defines thread-local
actions that can be performed within or outside a transactional context. Function
application (rule App) and channel creation (rule Channel) can be performed
in either context.

Global evaluation is defined via relation →. A global state consists of a set of
transactional threads (K) and non-transactional threads (T ). Threads that get
spawned (rule Spawn) are initially not part of any ongoing transaction, and are
initially added to the set of non-transactional threads (T ). The StepThread
rule simply allows local execution within a non-transactional thread.

A thread gets added to K when it attempts to synchronize an event (rule
SyncThread). Thus, every event synchronization initiates a transaction. For



App

(λx.e)v ↪→ e[v/x]

Channel

c fresh

ch() ↪→ c

Spawn

t′ fresh

〈K , (t, E[spawn e]) || T 〉 →
〈K , (t′, [e]) || (t, E[unit]) || T 〉

SyncThread

〈K , (t, E[sync v])〉 || T →
〈(t, E, v) || K ,T 〉

StepThread

e ↪→ e′

〈K , (t, E[e])‖T 〉 → 〈K , (t, E[e′])‖T 〉

StepTransactionalThread

K ; K
′

〈K ,T 〉 → 〈K ′
,T 〉

CommitTransThreads

K = (t1, E1, alwaysEvt v1) || ... || (tn, En, alwaysEvt vn)

T
′
= T || (t1, E1[v1]) || ... || (tn, En[vn])

〈K ,T 〉 → 〈φ,T
′〉

StepRunThread

e ↪→ e′

K || (t, M,F [e]) ; K || (t, M,F [e′])

NestedSync

K || (t, M,F [sync v]) ; K || (t,F : M, v)

NestedSyncComplete

K || (t,F : M, alwaysEvt v) ;

K || (t, M,F [v])

ThenAlways

K || (t, M,F [thenEvt(alwaysEvt (v1), v2)]) ;

K || (t, M,F [v2 v1])

SendRecv

(t1, M1,F1[sendEvt(c, v)]) || (t2, M2,F2[recvEvt(c)]) || K ;

(t1, M1,F1[alwaysEvt unit]) || (t2, M2,F2[alwaysEvt v]) || K

IsolateEvt

(t1, M1 : I : M2, e) 6∈ K

K || (t, M,F [isolateEvt(v)]) ;

K || (t, I : M,F [v])

NestedIsolateEvt

K || (t, M1 : I : M2,F [isolateEvt(v)]) ;

K || (t, M1 : I : M2,F [v])

IsolateEvtComplete

K || (t, I : M, alwaysEvt v) ; K || (t, M, alwaysEvt v)

Fig. 6. High-level semantics.



our purposes here, complex events are only built using thenEvts. A thread exe-
cuting transactionally is represented as a triple, (t,M, v) consisting of the thread
identifier, a context stack that holds the continuation of the synchronization ac-
tion, and the event. Rule StepTransactionalThread yields new global states
based on the evaluation of expressions within transactions.

If all transactional threads in K have completed (i.e., have evaluated the
event that they are synchronized upon to an alwaysEvt(v)), they can be removed
from the transactional thread set and may resume execution as regular non-
transactional threads (rule CommitTransThreads). The requirement that all
threads complete is essential for ensuring atomicity in the presence of commu-
nicating message-passing operations. The value encapsulated by the alwaysEvt

combinator fills the context that surrounded the original sync operation that
made the computation transactional. Recall that the context is recorded in a
context stack. Contexts must be saved on a stack because transactions can be
nested, as we describe below. When the stack contains a single entry, and the
thread term is of the form alwaysEvt(v), the thread is guaranteed to be no longer
executing transactionally.

Transactional evaluation is defined via relation ; and takes place within F
evaluation contexts; these contexts enforce atomicity of transactional execution
by preventing intermediate actions from being visible to other non-transactional
threads until the transaction fully completes.

The StepRunThread rule allows local reductions within transactions. Rule
NestedSync permits new transactions (initiated by a sync action) to be in-
stantiated within existing ones. The current context of the outer transaction is
recorded on the context transaction stack. When a transaction completes (rule
NestedSyncComplete), the saved context of the outer transaction is popped
from the stack and the value yielded by the completed inner transaction is sup-
plied to fill its hole. Since transactions can be nested, the stack is necessary to
record the distinction between nested and top-level transactions, to facilitate
the transition from transactional to non-transactional execution. Note that a
transactional event that is synchronized upon can only successfully commit if
it yields an alwaysEvt value – an expression that yields neverEvt can never be
successfully synchronized.

A thenEvt evaluates its first event argument to an alwaysEvt value containing
argument v1, and applies the function defined by its second argument (v2) to v1

(rule ThenAlways). Two transactional threads can communicate via a sendEvt

and recvEvt.

Rule IsolateEvt defines isolate evaluation. An isolate combinator given an
event value enforces isolation on that event value by prohibiting concurrent eval-
uation of any other isolates; we record that a transactional thread is executing
an isolate by explicitly marking the context stack using token I. Rule Neste-
dIsolateEvt allows a thread executing an isolate to initate another one. When
an isolate completes, the thread state reverts to an ordinary transaction (rule
IsolateEvtComplete).



5 Concurrent Isolate Execution

The formulation of isolates given in the previous section enforces serializability
by preventing threads executing different isolates from executing concurrently.
Unfortuately, simply removing this constraint to extract greater concurrency can
lead to incorrect (non-isolated) executions. Fig.7(a) depicts one such example.
Here, isolate `a initiates communication with T1 (and then T2); similarly, isolate
`b initiates a synchronous communication action with T2 and then T1. The re-
sulting global state could not have been produced via a serial execution of the
two isolate computations – if `a were sequenced before `b (or vise versa) the
communication with thread T2 (or conversely, T1) would be blocked.
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Fig. 7. Serializability violations introduced by incorrect parallel evaluation of isolates.

Even when isolate computations are serialized with respect to a single thread,
care must still be taken to ensure all threads witness a consistent serializable view
of the different isolates they communicate with. Consider the execution depicted
in Fig. 7(b). Observe that T1 witnesses an ordering in which `a executes before
`b. Similarly, T2 observes a serialization in which `c occurs before `d. Each of
the isolates shown in the figure also communicate with T3 and T4. Thread T3

participates in an action with `a before an action from `c; T4 participates in an
action with `d before `b; the communication between T3 and T4 (labelled edge
5) must enforce this ordering. There are now two serializable executions induced
by these different actions. From T1 and T4’s perspective, we need to ensure that
`d, `b, `a and `c are executed atomically in that order. On the other hand, from
T2 and T3’s perspective, the required ordering is `a, `c, `d and `b.

Clearly, there is no schedule that satisfies both evaluation order sequences,
even though each thread on its own witnesses what appears to be a consistent
serializable execution. The inconsistency occurs because every thread must share
the same view of how isolates are serialized with respect to one another.



5.1 Capabilities

To enable scalable construction of such views, we formulate a new semantics that
associates capabilities with threads and isolates. Capabilities are used to indicate
the isolate computations a given thread may communicate with. We prevent the
global serializability failure of the previous example by tracking serialization or-
der globally; i.e. when an isolate discovers a potential serialization order based
on how other isolates have communicated, subsequent communications that vi-
olate this order are prohibited. As such, a communication action that forces a
serialization order can be viewed as a commit point for that isolate.

A capability is defined as a mapping between labels ` denoting the dynamic
instances of isolate event expressions, and tags. When an isolate event ` is syn-
chronized, a constraint is established that relates the execution of the thread
executing this isolate with threads evaluating other isolates. This constraint is
modeled by the tag. Intuitively, from `’s perspective, the set of all isolates can
be partitioned into two sets: the set L that only includes itself, and the set R

that is composed of I, the set of all other evaluating isolates. To ensure a thread
T ’s communication with ` is serializable, it must be the case that either (a) T
has thus far communicated only with ` (i.e., the sole element in set L); (b) T
has thus far communicated only with isolates other than ` (i.e., elements in the
set R); or (c) T had previously communicated with isolates in I, but now only
communicates with `. One possibility is prohibited: T cannot have previously
communicated with `, and then subsequently engaged in communication with
isolates in I; allowing T to engage in further communications with ` would break
obvious isolation guarantees on `’s execution.

Thus, suppose thread T has a capability ` 7→ L. The tag L indicates that the
thread witnesses only the actions performed by `, and no other isolate compu-
tation. Conversely, if T is given capability ` 7→ R, it means it has only communi-
cated with isolates other than `. Tag LR indicates that T has first communicated
with ` and then other isolates; tag RL indicates that T has first communicated
with other isolates before communicating exclusively with `.
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Fig. 8. Capabilities regulate communication with isolates.



Examples Consider the two examples given in Fig. 8. In both diagrams, there
are two isolate expressions ` and I, resp. The expression I represents an ab-
stract set of isolates. Consider the execution shown in Fig. ??. ` performs two
communication actions with thread T ; once these actions complete some isolate
from the set I initiates a communication as well. After the communication with
`, T ’s capability map has the entry: [` 7→ LR]. The entry indicates that T first
engaged in a communication with ` and then with other isolates found in I.

Now, consider the more complex example shown in Fig. 8(a)). Isolate ` at-
tempts to perform two communications with thread T . Between these commu-
nications is a communication action performed by another isolate in I. The first
communication by ` results in T acquiring a capability map containing capabil-
ities ` 7→ L. The first capability indicates that T has only communicated with
`. The capability map is adjusted after the second communication via channel
y. Now the capability map contains the capability ` 7→ LR. When ` tries to
communicate via z, a serializability violation occurs: the capability ` 7→ LR in-
dicates that T has previously communicated with ` and then some other isolate
in I, in that order. Allowing the communication event on z to occur would thus
violate our required serializability invariant since `’s actions with respect to T
cannot be grouped in their entirety either before or after I’s.

5.2 Semantics

We define the semantics in Figs. 9 and 13. The semantics makes use of a new
relation � (see Tag Enrichment) that captures the obvious ordering relation-
ship among tags. Informally, tag ι can be enriched to tag ι′ if ι imposes the same
or fewer restrictions on isolate communication than ι′. Note the presence of two
additional tags L̂ and R̂ that we haven’t discussed thus far – these tags are
used to build capabilites for threads executing isolate computations. If thread T
executes isolate expression with label `, its capability map is extended with the
capability ` 7→ L̂: such a capability can never be enriched since isolates, by defi-
nition, cannot communicate with other isolates. Similarly, the capability map of
all other threads executing isolate computations is updated with the capability
` 7→ R̂: such a capability prohibits these threads from communicating with `.

Global evaluation is defined via relation 7−→ that is the analog of → in the
semantics given in Fig. ??. Transactional evaluation specifically (defined by rela-
tion =⇒) is now defined with respect to both global (∆) and local (δ) capability
maps. The global map fixes a specific serialization order for all ”committed”
isolates; the local map captures a thread’s specific view of the isolates it has
communicated with thus far prior to a commit point.

Rule Capability Enrichment introduces capabilities to a thread’s capa-
bility map. If the thread does not already have a tag for this isolate, it can
choose one (either L or R). The thread’s capability map is then updated (via
auxiliary function lift) to reflect this new binding. Rule Isolate Serialization
allows enriching a capability to a serial ordering, namely LR or RL. This rule
affects the global capability map. The antecedent condition ι � ι′ leverages the
structure of the relation to allow a capability that is currently L or R to become



` ∈ Label
ι ∈ Tag := · | L̂ | R̂ | L | R | LR | RL

∆ ∈ CapabilityMap := Label
fin→ Tag

δ ∈ LocalCapabilityMap := TID
fin→ CapabilityMap

Tag Enrichment

·�L ·�R

L � RL L � LR

R � LR R � RL

Capability Lifting

lift ` ι δ t = δ[t 7→ δ(t)[` 7→ ι]]

Capability Enrichment

` 6∈ Dom(δ(t)) ι′ ∈ { L,R} δ′ = lift ` ι′ δ t

∆, δ,K || (t, M, e) =⇒ ∆, δ′,K || (t, M, e)

Isolate Serialization

` /∈ Dom(∆) δ t ` = ι ι � ι′ δ′ = lift ` ι′ δ t

∆, δ,K || (t, M, e) =⇒ ∆[` 7→ ι′], δ′,K || (t, M, e)

Serialization Check

∆(`) = ι′ δ t ` = ι ι � ι′ δ′ = lift ` ι′ δ t

∆, δ,K || (t, M, e) =⇒ ∆, δ′,K || (t, M, e)

Fig. 9. Capabilities and Capability Enrichment.

LR or RL. Thus, this rule enforces a specific serialization order on an isolate and
serves as a commit point for isolate evaluation. Since the global capability map
defines a consistent serial ordering of isolates, all threads must adhere to this
ordering. Rule Serialization Check thus ”imports” the capability tag of an
isolate found in the global state to a thread’s local capability map.

Fig. 13 presents the salient rules that define transactional evaluation. Rule
SyncThread begins transactional evaluation by initializing the local capability
map of the thread performing the synchronization to the empty set, and adds
a new transactional thread to K . Conversely, rule CommitTransThreads re-
verts the state from transactional execution to ordinary evaluation by ”clearing”
the global and local capability maps. The appendix provides a complete defini-
tion of all the rules.

Rule IsolateFresh commences an isolate computation for a transactional
event that has not yet communicated with any other isolate. A new isolate
label (`) is created, and the local capability map of the thread t performing the
operation is updated to reflect this fact; δ′ is the capability map that binds `
to L for t. To prevent serializability violations, we also require that all other
threads (t̄′) currently executing isolate operations not communicate with this
isolate. To facilitate this, we update the capability maps of these threads (δ′′)
to bind ` to R; note that we leverage the curried definition of lift in defining
the fold. Isolation is enforced by the SendRecv rule shown below that prevents



SyncThread

〈∆, δ,K , (t, E[sync v]) || T 〉 7−→
〈∆, δ[t 7→ φ], (t, E :· , v) || K ,T 〉

CommitTransThreads

K = (t1, E1, alwaysEvt v1) || ... || (tn, En, alwaysEvt vn)

T
′
= T || (t1, E1[v1]) || ... || (tn, En[vn])

〈∆, δ,K ,T 〉 7−→ 〈φ, φ, φ,T
′〉

IsolateFresh

` fresh δ(t) = φ δ′ = lift ` L̂ δ t

t̄′ = {t | (t, M1 : I : M2, e
′) ∈ K

δ′′ = fold(lift ` R̂, δ′, t̄′)

∆, δ,K || (t, M, F [isolateEvt(v)]) =⇒
∆, δ′′,K || (t, I : M, F [v])

IsolateComm

` fresh δ(t) 6= φ δ′ = lift ` RL δ t

t̄′ = {t | (t, M1 : I : M2, e
′) ∈ K

δ′′ = fold(lift ` RL, δ′, t̄′)

∆, δ,K || (t, M, F [isolateEvt(v)]) =⇒
∆, δ′′,K || (t, I : M, F [v])

SendRecv

∆′ = δ(t1)3δ(t2)

∆, δ, (t1, M1, F1[sendEvt(c, v)]) || (t2, M2, F2[recvEvt(c)]) || K =⇒
∆, δ[t1 7→ ∆′, t2 7→ ∆′], (t1, M1, F1[alwaysEvt unit]) || (t2, M2, F2[alwaysEvt v]) || K

Fig. 10. Concurrent isolate evaluation using capabilities.

communication between threads that have either L̂ and R̂ bindings for the same
isolate label. Thus, for a given isolate’s lifetime, it cannot communicate with any
other isolate either currently executing or which commences evaluation at some
later point. However, isolates are still free to communicate with other threads not
themselves executing isolate computations provided that such communications
are permissible as defined by Fig. ??.

Rule IsolateComm handles the case when a thread executing a transac-
tional event which has previously communicated with other isolates, commences
execution of a new isolate (i.e., the thread has capability bindings for other iso-
lates in its capability map). In this case, the newly created isolate (call it I)
should be serialized after the isolate the transaction has previously communi-
cated with. If it were serialized before, it would imply the isolate was created prior
to the communication which is obviously incorrect. The rule, therefore, chooses
the appropriate serial ordering ( RL) and propagates it to all active isolates; rule
IsolateSerialization takes care of updating the global capability map with
this binding when any non-isolated thread communicates with an isolate event.

Rule SendRecv allows two threads to communicate provided their capability
maps are compatible. Informally, two maps are compatible if the tags for the
isolates they have in common are the same. More precisely, I3I ′ if Dom(I) =
Dom(I ′) andI(`)3I(`′) where L̂3L, L̂3RL, R̂3R, R̂3LR and ι3ι. For example,
L̂3L holds because a thread executing an isolate ` (thus having capability ` 7→ L̂



can certainly communicate with a thread that has previously only communicated
with this isolate (that thread would therefore have capability ` 7→ L). As another
example, if thread T1 had previously communicated with isolate ` and thread
T2 had previously communicated with isolate `′, T1 must acquire the capability
for `′ maintained by T2 and T2 must acquire the capability for ` maintained
by T1. Capability enrichment allows this to happen, and thus prevents T1 from
subsequently communicating with `′ in ways inconsistent with tag associated
with T2’s capability on `′. In other words, to preserve isolation and enforce
serializability, we must ensure that effects from one isolate argument does not
leak into another via third-party interaction.

Notice that not none of the rules in Fig. ?? update the global capability
map ∆. Consistency among the capabilities two communicating threads have is
enforced by the 3 relation in rule SendRecv that is satisfied via the capability
enrichment rules.

Examples The first example shown in Fig. 11(a) is a refined version of Fig. 7(a).
The isolate `a is created initially. Since there are no other isolates, it is mapped
to L̂ in the capability map for the thread that executes it. Subsequently, isolate
`b is created. The creation of the second isolate adds the capability `b 7→ R̂ to
`a’s thread’s capability map. Now, when thread T communicates with isolates
`a it inherites `a’s bindings. No new bindings are introduced on the second
communication with `a, but when T communicates to `b, T’s capability for `b is
lifted to RL.

The second example, shown in Fig. 11(b), illustrates capability enrichment
in the case when two threads have communicated with two seperate isolates.
Like the previous example, after the creation of `b, the thread executing `a

has a local capability map with capabilities `a 7→ L̂ and `b 7→ R̂. When `a

communicates with T1, T1 acquires capabilities `a 7→ L and `b 7→ R. Similarly,
when T2 communicates with isolate `b its capability map becomes `b 7→ R. When
T1 and T2 communicate they must coordinate to make sure they both see a
consistent view of the isolates they have communicated with. Both threads agree
on `a as T2 can lift its capability for `a to L. However, for `b, T1 has a capability
R and T2 has a capability L. In this case, either serial ordering of LR or RL

is possible as the threads have never interacted before. Therefore, we simply
choose a particular ordering, here RL. After this point, neither T1 nor T2 can
communicate with `a – the serial ordering defined by the capability map dictates
that communication with `a precede all communication with `b.

6 Soundness

Our main soundness result asserts that concurrent isolate evaluation (as defined
by Figs. 9 and 13) is equivalent to serial isolate evaluation (as defined by Fig. 6):

Theorem. If
∆, δ,K || (t,M,F [isolateEvt(v)]) =⇒ . . . =⇒ ∆′, δ′,K

′ || (t, I : M,F [alwaysEvt(v′)])
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Fig. 11. Capabilities permit threads to communicate with multiple isolates, even those
that are nested within one another, provided serializability invariants are preserved.

then
K || (t,M,F [isolateEvt(v)])) ; . . . ; K

′ || (t, I : M,F [alwaysEvt(v′)])
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Fig. 12. Serializability of concurrent evaluation means all actions performed by the
left-hand side of an isolate can be permuted before the actions performed by the right
and vise versa.

The intuition underlying the proof for Theorem ?? is shown in Fig. 12. States
S1 through S4 depict communication between an isolate with label ` and a set
of other isolates I with threads T2, T3 and T4. In S1, isolate ` communicates
with T2 via channel x; in S2, I communicates with T3 via channel v; in S3,
there is a communication between T4 and I; and, finally in S4, T4 establishes a
communication with `. Even though the isolate ` and the set of isolates I inter-
leave their communication actions, their behavior is equivalent to an execution
in which, for example, the I fully completes before `. This alternative schedule
is shown via states S′

1 through S′
4 in the figure. Here, each of the right-hand side



actions are performed before the left. Note that S4 and S′
4 are identical. It is

this permutability property on communication actions enforced by isolates that
ensures our soundness result.

7 Implementation

There are three critical issues in building an efficient and feasible implementa-
tion of transactional events and isolation: (1) performing a systematic search of
potential communication actions, initiating exploration of new communication
pairings when an existing search yields neverEvt, or fails to make progress (e.g.,
deadlocks); (2) determining when to perform capability enrichment on local ca-
pability maps; and, (3) minimizing the cost of maintaining and updating the
global map.

When a thread commences evaluation of an isolate executing within a trans-
actional event, a new search thread is created (5; 6) that attempts to discharge all
communication actions in that event that preserves serializability with respect
to all other isolate computations. A serializability violation may manifest either
because an event synchronization yields neverEvt, or a violation of isolation is
discovered (i.e., the 3 relation fails to hold on a communication). In either case,
we must abort the search thread, and revert any effects it has induced. To do
this, we leverage stabilizers (24), a lightweight checkpointing mechanism meant
to provide global state recovery for CML. Once a particular communication se-
quence is aborted, a new search is undertaken to explore an alternative set of
communication pairings. Stabilizers provide sufficient information to synthesize
a new search space from an aborted one.

We can restrict when capability enrichment on local capability maps occur
to communication actions. Instead of allowing threads to lift their capabilities at
arbitrary points prior to a communication, our implementation lifts capabilities
during a communication. If one thread does not have a capability binding, it
simply inherits one from its communicaiton partner. If both threads contain a
capability mapping then they must agree or communication is not possible. We
represent capabilities using two bits of information communicated along with the
message. If agreement results in a new serialization (i.e., lifting to LR or RL when
neither of the communicating threads was LR or RL prior to the communication),
we check the global capability map for this isolate. If there was no previous
serialization of this isolate, we commit this serialization; if one existed, we check
to see if the two are equal. If the new serialization does not match the old, the
communication is invalid.

The global capability map needs to be consulted at most once per thread
precisely at a communication. When two threads engage in a communication
that must agree on a particular serialization, they consult their local capability
maps. Once agreement is reached, the global capability map must be updated
only if a particular serial order (i.e., LR or RL) for an isolate is required. The
global capability prevents any other serialization of such isolates. Once such an



order is decided, the thread never needs to subsequently consult the global map
for that isolate since the tag enrichment relation does not lift LR or RL tags.

8 Related Work and Conclusions

Our work fully integrates a transactional semantics into the CML, a concur-
rent extension to SML that supports synchronous message passing (17). Previ-
ous work has leveraged the atomicity guarantee of transactional semantics to
add expressivity to message-passing abstractions by introducing transactional
events (5; 6). These proposals allow multiple communicating actions encapsu-
lated by transactional events to make their effects visible only once all commu-
nicating actions can succeed. However, they do not provide a means to restrict
the visibility of one transactional event from another, and therefore do not guar-
antee serializability of transactional computations. In (6), the authors extended
transactional events to support mutable references and nested synchronizations.
Because this formulation of transactional events follows (5), nested transactions
can always be flattened so that they execute as part of a top-level outer trans-
action.

In contrast, the focus of our work is a formulation of transactional events that
allows programmers to achieve isolation among concurrently executing transac-
tional events via an isolate combinator. Guaranteeing isolation requires tracking
the communication of all threads that have communicated with isolates, and
ensuring the communications do not violate serializability. Furthermore, nested
isolates cannot be flattened, because the effects performed by a nested isolate
must remain isolated from all transactional computations specified at each nest-
ing level.

Synchronous message-passing and event abstractions, like those in CML, have
also been introduced in other languages. For example, an implementation of
events for Concurrent Haskell has been described in (19), for Scheme in (7) and
for Caml in (4). Asynchronous message-passing has been used in languages like
Erlang (2). Transactional events (5; 6) have been implemented in Concurrent
Haskell and CML, respectively.

Transactional memory systems were proposed in (13). Previous work (21;
9; 3; 12; 11; 16; 22; 1; 20) has considered using software transactions to simplify
reasoning about interactions between concurrently executing computations in
a shared-memory system. Implementations for software transactional memory
have been presented in functional languages such as Caml (18), Scheme (14) and
Haskell (10). For example, the implementation of transactional events presented
in (5) uses a software transactional memory extension of Concurrent Haskell (10)
available in the Glasgow Haskell Compiler (GHC) (8).

There has also been other previous work that has combined inter-thread
communication and software transactions. In (23) the authors extend tradition
transactional memory with the ability to observe the effects of other threads
at selected points. (24) describes the construction of transparent checkpoints,
which can be used for transactional roll-back, in the context of CML.



A Appendix

Lemma 1. If
〈∆, δ, (t1,M1, e1)||(t2,M2, e2)||K ,T 〉 =⇒
〈∆, δ, (t1,M1, e1)||(t2,M2, e

′
2)||K ,T 〉 =⇒

〈∆, δ, (t1,M1, e
′
1)||(t2,M2, e

′
2)||K ,T 〉

then
〈∆, δ, (t1,M1, e1)||(t2,M2, e2)||K ,T 〉 =⇒
〈∆, δ, (t1,M1, e

′
1)||(t2,M2, e2)||K ,T 〉 =⇒

〈∆, δ, (t1,M1, e
′
1)||(t2,M2, e

′
2)||K ,T 〉

Lemma 2. If
〈∆, δ,K , (t1, e1)||(t2, e2) || T 〉 7−→
〈∆, δ,K , (t1, e

′
1)||(t2, e2) || T 〉 7−→

〈∆, δ,K , (t1, e
′
1)||(t2, e

′
2) || T 〉

then
〈∆, δ,K , (t1, e1)||(t2, e2) || T 〉 7−→
〈∆, δ,K , (t1, e1)||(t2, e

′
2) || T 〉 7−→

〈∆, δ,K , (t1, e
′
1)||(t2, e

′
2) || T 〉

Lemma 3. If
〈∆, δ,K || (t1,M1, e1) || (t2,M2, e2),T 〉 =⇒
〈∆[` 7→ ι′], δ′,K || (t1,M1, e1) || (t1,M1, e1),T 〉 =⇒
〈∆[` 7→ ι′, `′ 7→ ι′′], δ′′,K || (t1,M1, e1) || (t2,M2, e2),T 〉
then
〈∆, δ,K || (t1,M1, e1) || (t2,M2, e2),T 〉 =⇒
〈∆[`′ 7→ ι′′], δ′′′,K || (t1,M1, e1) || (t2,M2, e2),T 〉 =⇒
〈∆[` 7→ ι′, `′ 7→ ι′′], δ′′,K || (t1,M1, e1) || (t2,M2, e2),T 〉

Lemma 4. If
〈∆, δ, (t1,M1, e1)||(t2,M2,F2[sendEvt(ch, v)])||(t3,M3,F3[recvEvt(ch)])||K ,T 〉 =⇒
〈∆, δ, (t1,M1, e1)||(t2,M2,F2[alwaysEvt unit])||(t3,M3,F3[alwaysEvt v])||K ,T 〉 =⇒
〈∆, δ, (t1,M1, e

′
1)||(t2,M2,F2[alwaysEvt unit])||(t3,M3,F3[alwaysEvt v])||K ,T 〉

then
〈∆, δ, (t1,M1, e1)||(t2,M2,F2[sendEvt(ch, v)])||(t3,M3,F3[recvEvt(ch)])||K ,T 〉 =⇒
〈∆, δ, (t1,M1, e

′
1)||(t2,M2,F2[sendEvt(ch, v)])||(t3,M3,F3[recvEvt(ch)])||K ,T 〉 =⇒

〈∆, δ, (t1,M1, e
′
1)||(t2,M2,F2[alwaysEvt unit])||(t3,M3,F3[alwaysEvt v])||K ,T 〉

Lemma 5. If
〈∆, δ, (t1,M1,F1[sendEvt(ch1, v1)])||(t2,M2,F2[recvEvt(ch1)])

||(t3,M3,F3[sendEvt(ch2, v2)])||(t4,M4,F4[recvEvt(ch2)])||K ,T 〉 =⇒
〈∆, δ, (t1,M1,F1[alwaysEvt unit])||(t2,M2,F2[alwaysEvt v])

||(t3,M3,F3[sendEvt(ch2, v2)])||(t4,M4,F4[recvEvt(ch2)])||K ,T 〉 =⇒
〈∆, δ, (t1,M1,F1[alwaysEvt unit])||(t2,M2,F2[alwaysEvt v])

||(t3,M3,F3[alwaysEvtunit])||(t4,M4,F4[alwaysEvtv])||K ,T 〉
then
〈∆, δ, (t1,M1,F1[sendEvt(ch1, v1)])||(t2,M2,F2[recvEvt(ch1)])



Spawn

t′ fresh

〈∆, δ,K , (t, E[spawn e]) || T 〉 7−→
〈∆, δ,K , (t′, [e]) || (t, E[unit]) || T 〉

SyncThread

〈∆, δ,K , (t, E[sync v]) || T 〉 7−→
〈∆, δ[t 7→ φ], (t, E :· , v) || K ,T 〉

StepThread

e ↪→ e′

〈∆, δ,K , (t, E[e])‖T 〉 7−→
〈∆, δ,K , (t, E[e′])‖T 〉

StepTransactionalThread

∆, δ,K =⇒ ∆′, δ′,K
′

〈∆, δ,K ,T 〉 7−→ 〈∆′, δ′,K
′
,T 〉

CommitTransThreads

K = (t1, E1, alwaysEvt v1) || ... || (tn, En, alwaysEvt vn)

T
′
= T || (t1, E1[v1]) || ... || (tn, En[vn])

〈∆, δ,K ,T 〉 7−→ 〈φ, φ, φ,T
′〉

StepRunThread

e ↪→ e′

∆, δ,K || (t, M,F [e]) =⇒
∆, δ,K || (t, M,F [e′])

NestedSync

∆, δ,K || (t, M,F [sync v]) =⇒
∆, δ,K || (t,F : M, v)

NestedSyncComplete

∆, δ,K || (t,F : M, alwaysEvt v) =⇒
∆, δ,K || (t, M,F [v])

ThenAlways

∆, δ,K || (t, M,F [thenEvt(alwaysEvt (v1), v2)]) =⇒
∆, δ,K || (t, M,F [v2 v1])

IsolateFresh

` fresh δ(t) = φ δ′ = lift ` L̂ δ t

t̄′ = {t | (t, M1 : I : M2, e
′) ∈ K

δ′′ = fold(lift ` R̂, δ′, t̄′)

∆, δ,K || (t, M, F [isolateEvt(v)]) =⇒
∆, δ′′,K || (t, I : M, F [v])

IsolateComm

` fresh δ(t) 6= φ δ′ = lift ` RL δ t

t̄′ = {t | (t, M1 : I : M2, e
′) ∈ K

δ′′ = fold(lift ` RL, δ′, t̄′)

∆, δ,K || (t, M, F [isolateEvt(v)]) =⇒
∆, δ′′,K || (t, I : M, F [v])

SendRecv

∆′ = δ(t1)3δ(t2)

∆, δ, (t1, M1, F1[sendEvt(c, v)]) || (t2, M2, F2[recvEvt(c)]) || K =⇒
∆, δ[t1 7→ ∆′, t2 7→ ∆′], (t1, M1, F1[alwaysEvt unit]) || (t2, M2, F2[alwaysEvt v]) || K

NestedIsolateEvt

∆, δ,K || (t, M1 : I : M2, F [isolateEvt(v)]) =⇒
∆, δ,K || (t, M1 : I : M2, F [v])

IsolateEvtComplete

∆, δ,K || (t, I : M, alwaysEvt v) =⇒
∆, δ,K || (t, M, alwaysEvt v)

Fig. 13. Semantics for concurrent isolate evaluation using capabilities.



||(t3,M3,F3[sendEvt(ch2, v2)])||(t4,M4,F4[recvEvt(ch2)])||K ,T 〉 =⇒
〈∆, δ, (t1,M1,F1[sendEvt(ch1, v1)])||(t2,M2,F2[recvEvt(ch1)])

||(t3,M3,F3[alwaysEvtunit])||(t4,M4,F4[alwaysEvtv])||K ,T 〉 =⇒
〈∆, δ, (t1,M1,F1[alwaysEvt unit])||(t2,M2,F2[alwaysEvt v])

||(t3,M3,F3[alwaysEvtunit])||(t4,M4,F4[alwaysEvtv])||K ,T 〉

Lemma 6. If
〈∆, δ,K ,T 〉 7−→ 〈∆′, δ′,K

′
,T 〉 7−→ 〈∆′, δ′,K

′
,T

′ 〉
then
〈∆, δ,K ,T 〉 7−→ 〈∆, δ,K ,T

′ 〉 7−→ 〈∆, δ,K
′
,T

′ 〉

Lemma 7. If
〈∆, δ,K ,T 〉 7−→ 〈φ, φ, φ,T || T

′ 〉 7−→ 〈φ, φ, φ,T
′′ || T

′ 〉
then
〈∆, δ,K ,T 〉 7−→ 〈∆, δ,K ,T

′′ 〉 7−→ 〈φ, φ, φ,T
′′ || T

′ 〉

Lemma 8. If
〈∆, δ,K ,T || (t, E[syncv]) 〉 7−→ 〈∆, δ,K || (t, E, v),T 〉 7−→ 〈∆, δ,K || (t, E, v),T

′ 〉
then
〈∆, δ,K ,T || (t, E[syncv]) 〉 7−→ 〈∆, δ,K ,T

′ || (t, E[syncv]) 〉 7−→ 〈∆, δ,K || (t, E, v),T
′ 〉

Theorem 1. (Soundness of Transactional Evaluation)
If
∆, δ,K || (t,M,F [isolateEvt(v)]) =⇒ . . . =⇒ ∆′, δ′,K

′ || (t, I : M,F [alwaysEvt(v′)])
then
K || (t,M,F [isolateEvt(v)])) ; . . . ; K

′ || (t, I : M,F [alwaysEvt(v′)])

Proof Theorem 1.
Base Case

Inductive Case

Theorem 2. (Soundness) If
〈∆, δ,K || (t,M,F [isolateEvt(v)]),T 〉 7−→ . . . 7−→ 〈∆′, δ′,K

′ || (t, I : M,F [alwaysEvt(v′)]),T
′ 〉

then
〈K || (t,M,F [isolateEvt(v)]),T 〉) → . . . → 〈K ′ || (t, I : M,F [alwaysEvt(v′)]),T

′〉
Proof Theorem 2.
Base Case

Assume:
〈∆, δ,K || (t,M,F [isolateEvt(v)]),T 〉 7−→ 〈∆′, δ′,K

′ || (t, I : M,F [alwaysEvt(v′)]),T 〉
By Theorem 1.

〈K || (t,M,F [isolateEvt(v)]),T 〉) → 〈K ′ || (t, I : M,F [alwaysEvt(v′)]),T 〉
2

Inductive Case



Assume Theorem 2. holds for evaluation sequences of length n:
We know:
〈∆, δ,K || (t,M,F [isolateEvt(v)]),T 〉 7−→ ... 7−→ 〈∆′′, δ′′,K

′′
,T

′′ 〉
If:
〈∆′′, δ′′,K

′′
,T

′′ 〉 7−→ 〈∆′, δ′,K
′ || (t, I : M,F [alwaysEvt(v′)]),T

′ 〉
Need to show:
〈K ′′

,T
′′〉 → 〈K ′ || (t, I : M,F [alwaysEvt(v′)]),T

′〉
Case Spawn:
By definition of Spawn:
T

′′
= T

′′′ || (t, E[spawn e])
T

′
= (t′, [e]) || (t, E[unit]) || T

′′′

K
′′

= K
′ || (t, I : M,F [alwaysEvt(v′)])

Implies:
〈K ′′

,T
′′〉 → 〈K ′ || (t, I : M,F [alwaysEvt(v′)]),T

′〉
Case SyncThread:
By definition of SyncThread:
e ↪→ e′

T
′′

= threadtE[sync v] || T
′

K
′′

= K
′′′ || || (t, I : M,F [alwaysEvt(v′)])

K
′
= K

′′′ || (t, E :· , v)
Implies:
〈K ′′

,T
′′〉 → 〈K ′ || (t, I : M,F [alwaysEvt(v′)]),T

′〉
Case StepThread:
By definition of StepThread:
T

′′
= (t, E[e]) || T

′′′

T
′
= (t, E[e′]) || T

′′′

K
′′

= K
′ || (t, I : M,F [alwaysEvt(v′)])

Implies:
〈K ′′

,T
′′〉 → 〈K ′ || (t, I : M,F [alwaysEvt(v′)]),T

′〉
Case StepTransactionalThread:
By definition of StepTransactionalThread:
∆′′, δ′′,K

′′
=⇒ Delta′, δ′,K

′ || (t, I : M,F [alwaysEvt(v′)])
By Theorem 1.:

K
′′ → K

′ || (t, I : M,F [alwaysEvt(v′)])
Case CommitTransThread:
By definition of CommitTransThread this reduction cannot be applied.
2
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