
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2003

Idioms in Ovm Idioms in Ovm

C. Flack

Antony L. Hosking
Purdue University, hosking@purdue.edu

Jan Vitek
Purdue University, jv@cs.purdue.edu

Report Number:
03-017

Flack, C.; Hosking, Antony L.; and Vitek, Jan, "Idioms in Ovm" (2003). Department of Computer Science
Technical Reports. Paper 1566.
https://docs.lib.purdue.edu/cstech/1566

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

IDIOMS IN OVM

Chapman Flack
Antony Hosking

Jan Vitek

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #03·017
May 2003

Idioms in Ovm

C. Flack T. Hosking J. Vitek
8 3 lab, Department of Computer Sciences, Purdue Universily

{flack,hosking.jv}~cs_purdue.edu

ABSTRACT
The need to express important non.Javal behaviors con­
fronts the Ovm virtual machine framework no less than
any other VM-in-Java project such as JikesRVM[1].2 Any
such project needs mechanisms for the purpose, but different
choices in the VM design affect the shape those mechanisms
can take. In exploring how a component that makes non­
trivial use of such mechanisms-the JMTk memory man­
agement toolkit-can be made to interoperate with Dvm
and JikesRVM, some Dvm mechanisms have been both con­
tributed to and borrowed from JikesRVM, and some remain
distinct. We describe mechanisms we find useful in Dvm
because of its design differences from JikcsRVM.

We have developed idioms that use familiar Java syntax at
the source level, and familiar, recognizable design patterns,
for problems such as VM configurability that involve ad hoc
techniques in prior work, and we transform the idioms to
code without the indirection and inefficiency that would oth­
erwise weigh against the familiar patterns.

1. INTRODUCTION
There arc mechanisms in Dvm with clear similarities to their
counterparts in JikesRVM. The similarities attest to our on­
going work with the developers of JikcsRVM and the JMTk
memory management toolkit, toward using the toolkit with
both platforms. Of more interest for this paper, that collab­
oration also highlights differences. Exploring the differences
can help delineate aspects of problems that are common to
any such project, differing VM design choices that facilitate
ODe approach more than another, and optional design goals

I JavaTIl is a trademark of Sun Microsystems, Inc.
2 JikesRVM refers to the JikesTII Research Virtual Machine-­
trademark held by IBM Corporation-a distinct project
from Dvm. References to JikesRVM in this paper arc to
illustrate where these two projects with similar objedives
take different approaches.

that motivate a mechanism in one VM that auother may
omit. We present some mechanisms we have found useful
in Dvm, and consider the choices in Dvm design that have
motivated our mechanisms or helped in their implementa­
tion. Some of the design choices in question relate to the
Dvm intermediate representation, a thorough intrOduction
to which may be found in Palacz et al. {S] hut will not be
essential for the material in this paper.

The aims of the Dvm framework are to provide an open
source testbed for experimenting with language implemen­
tation techniques. A specific goal of the project is to support
multiple virtual machine configurations. Thus it should be
possible to use the framework to construct virtual machines
for problem domains as different as real-time embedded sys·
terns and cluster computing.

This paper is organized as follows. The remainder of the in­
troduction will introduce classes of idiom recognition we find
useful. Section 2 will describe idioms we have implemented
in Dvm, including idioms for VM configurability and object
models that we believe are improvements over prior work.
Section 3 concludes.

1.1 Idiom Recognition
Granting that a VM will need to execute operations at rUll
time that Java semantics cannot express (except by the na­
tive interface, not suited to the heavily-used, small opera­
tions in question) entails that the execution engines, whether
interpreters or compilers, accept a richer language as input
than JVM bytecode. The problem of compiling source pro­
grams into that form cau be approached in two ways:

A Devise a richer extended·Java source language and a
new compiler to produce the richer compiled language
from it.

B Use syntactically standard Java for the source lan­
guage and compile with existing tools, but adopt cer­
tain idioms that can be recognized in the resulting
bytecode and transformed into other instruction se­
quences in the extended language.

We choose the second approach and, compatibly with Hove­
meyer e.t al.[5], we use the term idiom recognition to describe
it.

1.1.1 Classifying idiom recognition
To place the techniques we use in DVM within the space of
related approaches, we propose these dimensions for com­
paring idiom recognition designs.

1.1.1.1 Ungl/ardedv. guarded
Pottenger and Eigenmann[9] developed a paralleli7.ing FOR­
TRAN compiler that would attempt to recognize certain
uses of variables anywhere in the source code, and auto­
matically apply transformations anywhere the recognition
dictated.

Hovemeyer et 0.1. attempt to recognize sequences of fetch,
compare, and store operations that can be implemented with
an atomic instruction such as compare-and-swap. To avoid
doing the transformation where it is not wanted, though,
they introduce a way for the programmer to explicitly mark
regions of code where the idiom recognition should be at­
tempted. We propose the term guarded for idiom recogni­
tion within regions the programmer marks.

1.1.1.2 Heuristic v. tag
Unless the source language provides an c.',<plicit way to de­
limit a region where idiom recognition is wanted, guarded
recognition seems to involve regress: what language feature
should be recognized to mark a guarded region? Hovemeyer
et 0./. use a synchronized block on a reference of a pre­
arranged reserved type--idiom recognition to guard idiom
recognition.

On the bright side, the liew idiom has a property the first
did not. The heuristic for matching fetch-compare-store se­
quences could match sequences the programmer would not
want transformed, but the test for whether the synchro­
nized expression has the reserved type is unequivocal. We
will use tag to describe an idiom with that property.

A language may have only a few constructs that can be
pressed into service as tag idioms; they may look contrived,
and they may be simply inadequate to e.....press the range
of operations needed. In contrast, heuristic idioms can be
based on any appropriate patterns in program text-at best,
uncluttered and mnemonic ones-and made as expressive as
needed. The risk is of surprising the programmer, either be­
cause an idiom was matched incorrectly or because the pro­
grammer forgot it was a meaning-carrying idiom. Heuristic
idioms guarded by tags help by directing both the recog­
nizer's and the programmer's attention to the interesting
code regions.

Another risk with heuristic idioms is they may fail to match
where intended, either because their matching code is insuf­
ficiently general or, more insidiously, because a source com­
piler has optimized or reordered code that in source form
looks like a perfect match. Guarded idioms arc again help­
ful because a guard region implies that the programmer in­
tends an idiom to match within. If nothing is matched, a
warning can be issued, instead of silently failing to realize
the programmer's intent.

1.1.1.3 Explicit tag syntax

A proposal, JSR~175, in the Java Community Process would
introduce explicit syntax for metadata that can be associ­
ated with chosen regions or entities in a Java program. It is
likely to offer a form of tag more explicit and less contrived
than the tag idioms that can be devised now and, if not
expressive enough to convey every meaning we might need,
it could still replace tag idioms for the pllrpose of guarding
other idioms.

Important uses of idiom recognition in Dvm will be de­
scribed in Section 2.

1.2 Other background
This section very briefly describes some aspects of Dvm that
are not the focus of the paper but will be referred to in laler
sections.

/.2.1 Address and word types
An abstraction to manipulate and dereference arbitrary memo
ory addresses was introduced in JikesRVM and adapted for
Dvm. As both projects aim to share a common lllemory
management toolkit, uniformity of this interface has been
the subject of much inter-project diplomacy, and so our
VM...Addre55 differs little from its JikesRVM counterpart. We
describe briefly holV it is used.

VM...Address is the type of a variable or method that holds or
returns an address into memory, which mayor may not be
an object reference. It is declared with instance methods for
arithmetic, comparison, dereferencing3

, and an unsafe "nar­
rowing" cast to type Object, which must be used only when
the programmer is certain the VM...Addre55 is the address of
an object. A static method serves as a cast from Object to
VM...Address, which always succeeds. The effect of instance
methods is achieved with tag idioms on the methods4 to
replace call sites with inlined instructions that involve no
dynamic dispatch. A method that "casts" a VM...Address
unsafely to another type is trivially implemented by trans­
forming its call sites to nothing.

It is important in using this type that 110 V1i...Address into
collected space should be live across a point where the thread
could be suspended or interrupted by the collector. Methods
that manipulate such addresses may require special tech­
niques (e.g. an idiom for suppressing yield points) to ensure
safe~y.

VK...Address is somewhat painstakingly implemented to be­
have intuitively, in analogy to its runtime semantics, when
used in code that runs at boot image build time when it is
an ordinary Java class, and its dereference methods access
the memory image being built.

VM...Addre5s, unlike any Java primitive type, does not have
a size fixed by specification; it is the natural width of a
pointer on the underlying platform. This is one reason it
has its own arithmetic methods, as neither casting to int

3JikesRVM places the dereference methods in another class
1JikcsRVM recognizes these methods with special-case code
in each compiler.

nor to long would be sure to be appropriate. Another type,
VM_Word, is similar but for platform-width quantities that are
not addresses; it has no dereference operations, and a larger
complement of arithmetic and logical ones. Casts between
VM-Address and VK_Word are free in either direction.

2. IDIOMS IN OVID
We present important Dvm idioms as of two types. A few
primitive idioms were implemented early and by adding ded­
icated special code into the Ovm class loading and trans­
formation machinery. These primitive idioms are all tags.
Since then, access to most new Dvm functionality has been
through new idioms built on existing ones, with the im­
plementing code localized to modules being added. These
compound idioms arc best seen as guarded idioms with a
primitive idiom serving as the guard tag.

2.1 Primitive Dvm idioms
2.1.1 Marker interfaces
Marker interfaces are a common idiom to tag an entire class
or interface with some special behvalor. Dvm, for example,
bas an Ephemeral interface to tag classes that are used dur­
ing boot-image building but need to be excluded from the
image, and a converse idiom to tag iI. class live even if naive
reachability declares it dead.5

3. Dvm's transformations to this IR, which include the
effects of pragmas as well as replacement of some high­
level Java operations with lower-level sequences, are
performed iteratively until a fixed point is reached.
This allows the effect of a pragma to be expressed in
high-level IR constructs that may even include other
idioms as long as cycles are avoided.

These three choices in Dvm have effectively decoupled cer­
tain pragma families from interpreter and compiler inter­
nals, so that new and useful pragmas can be added as small,
self·contained modules, defined near the code they tag.

2.1.2.1 Pragmafacilities compared
The notion of pragma hierarchies is a simple extension to the
pragma mechanism and could as easily be made in JikesRVM.
Its chief benefit, pragmas defining new behavior that can he
added without compiler modifications, would be more lim­
ited in JikesRVM where there is no single IR with which all
execution modes begin, so new behavior must be defined in
compiler specifics. In JikesRVM a pragma's semantics may
vary with the compiler used to compile a method (which may
change with adaptive recompilation), and proposals for new
behavior must consider whether every JikesRVM compiler
will be able to recognize the idiom.

Applications:

2.1.3 A llsefltllR-transforming pragma
PragmaTransformCallsiteIR, as the n<llIle implies, tags any
method to bring about, in the simplest case, the following
effect: As the input Java bytecode is converted to Dvm's IR,
call sites of the tagged method are replaced by an instruction
sequence bound to the pragma, leaving the original method
body dead.

2.1.2 Pragmas
The pragma exception mechanism in Dvm is the same one
we contributed to JikesRVM, but has developed differently
in the two platforms. PragmaException, a subclass of Run­
timeExceptioD., is the parent of various concrete pragmas
that tag methods by being mentioned in their throws clauses.6

Reflection over throws clauses records the presence of prag­
mas for special treatment by interpreter or compiler. JikcsRVM
has developed several subclasses of PragmaEl:CeptiOll, han­
dled directly by one or more of the JikesRVM compilers as
flags for inlining, optimizatiou, or inteTTuptibility. In that
system, each pragma implies special code in a compiler that
tests it and acts appropriately.

Three design choices have made Dvm's pragma an especially
useful primitive idiom.

1. Ovrn's pragma mechanism allows the class hierarchy to
delimit families of related pragmas, detected by testing
for their common ancestor. New pragmas can be added
within a family v.-ithout new compiler or interpreter
modifications. This is, in essence, a roundabout way
of getting tags with parameters; when JSR-175 tagging
is available, it may allow doing that explicitly, and be
simpler than our mechanism.

2. Ovm transforms incoming bytecode to an IR that is
the common input of all execution modes (interpret/compile).
A pragma whose effect can be stated as a transforma-
tion on this IR can be added without touching an inter-
preter or compiler and will have well-defined semantics
independent of the execution mode.

5 A class accessed reflectively can require that treatment.
6Reserved exception types in throva clauses also appear as
tag idioms in, e.g., the RTSJ[3].

• Methods that have one behavior in host JVM for im­
age building, and another at rIm time. The host JVM
is unaware of the pragma idiom and runs the original
method body; the substitute code is used at run time.
This technique is useful to give a method the same
behavior in both contexts, when the same implemen­
tation is not possible. Other code can call the same
method whether at build time or run time.

• Methods whose behavior is not Java (e.g.. cast refer·
euce to inti trivial replacement of callsite with noth­
ing). Can achieve desired non-Java behavior by:

- operations corresponding to standard Java byte­
codes but in an unusual and perhaps nonverifying
sequence

- new IR operations withont Java equivalents

- a combination

A given behavior can be achieved in multiple ways,
representing points in a design space balancing size and
typability of the Ovm IR, simplicity of pragma defini­
tion, and complexity of components that consume the
IR

• Permit source idiom of instance method call on types
(e.g. VM_Word, VM..Address, Oop) that might not be
object references, by transforming the callsite to inline
code with no dynamic di:spatch.

PragmaTransformCallsitelR is not limited to inlining a fi."(ed
sequence of instructions in place of any call site. A pragma
in this family can be bound to a rewrite method that re­
ceives control in Dvm's IR editing framework, positioned
at the callsite of the tagged method. Thus a method can
be given behavior defined by a peephole transformation of
the JR at the method's call site, and variable according to
conte]l..1; or Dvm configuration selections.

2.2 Compound idioms
Except for the unchecked cast and bitfield idioms, Dvm's
compound idioms based on pragmas involve simple JR trans­
formations at the single invoke instruction carrying the tag.
Defining them requires only subclassing PragmaTransform­
Cal1siteIR to create anew tag, and binding to it a Revriter
that will recognize the new idiom and transform the callsite
IR.

2.2.1 VM Conjig/lrability
Dvm is a framework for building virtual machines, assem­
bling them from components (e.g. thread implementations,
memory management algorithms, schedulers, language sup­
port) specialized and selected for a problem domain. The
job of selecting components and implementations to include
in a VM is one Ovm shares with JikcsRVMj the latter uses
a preprocessor for conditional compilation combined with
shell scripts that select among source files containing imple­
mentations of the same class.

Ovm approaches the problem with a combination of As­
pectJ[6] and an embellishment on the Abstract Factory pat­
tern[4] called Invisib1eStitcher. As in the cl<lSSic Ab­
stract Factory, an interface or abstract class describes a
component with its factory methods, for which one imple­
mentation will be selected in a VM configuration.

\Ve embellish the pattern to address the performance objec­
tion to indirection through the Abstract Factory and elimi­
nate editing any Java sources to specify the concrete imple­
menting class. Figure 1 illustrates the mechanism.

public static ObjllctModal glltObjllcttlodlllO
throws InvisiblIlStitchllr.PragmaStitchSinglll't:on {
return (Ohj Ilcttlodel) Invis ibleStitchllr

. singllltonFor("Dvm. core. domain. Objllcttlodel");
)

Figure 1: A stitched Abstract Factory method. It
returns a singleton of an abstract implementing
class. After code transformation, its call sites have
been replaced with constant-loads of the singleton.

Call sites of the getObjectMode1 method may execute ei­
ther during boot image building or at Ovm run time, with
the same semantics: obtain the singleton instance of the
concrete factory, which the InvisibleStitcher has instanti­
ated reflectively by looking up the abstract class name in the

user's configuration file. Under the host VM, this method
is in fact called, and indirects to the Invisib1eStitcher
to obtain the result. At run time, though, no call site for
getObjectHode1 remains. The effect of the pragma is that
all call sites have been transformed to LDC, with the correct
singleton in the constant pool.7

The pragma is a nested class of InvisibleStitcher and is
completely defined in 32 lines of that source file. It was de­
fined without modification to any Dvm interpreter or com­
piler. During transformation of a method's JR, any instruc­
tion that invokes a method tagged with this pragma will
be presented to the pragma's Re....ri ter for rewriting. The
method descriptor can he retrieved from the instruction, the
return type identifies the abstract factory, and that is suffi­
cient information to look up the configured implementation
and replace the INVOKE instnlction with LDC.

2.2.1.1 Repeated application
The technique can be applied at more than one level. The
example eliminates indirection in obtaining the concrete fac­
tory itself. But the factory interface defines methods that
return objects too. Those methods can also carry pragmas.
'When the abstract factory itself is initialized by the first ref­
erence, it can add mappings to Invisib1eStitcher for the
concrete classes to be returned by those methods. Call sites
for those methods can then be transformed themselvcs, to
LDC of a singleton or direct NEW of a concrete class, without
touching the factory reference. We achieve source code in
classic Abstract Factory style, configuration without source
editing, correct execution under a host JVM, and runtime
performance of direct LDC or NEW.

2.2.2 Object models
We follow Bacon et al.[2J in using the term object model for
the collection of data that must be retrievably associated
with every object to support the language runtime opera­
tions. Abstractly, the object model defines these data and
the interface for getting and setting them. A concrete model
determines how the association is managed; one or more
words of object header are commonly involved.

Configurability placcs demands on the object model at both
levels. Different components configured into the VM (dif­
ferent styles of garbage collector, synchroni'l:ation manager,
etc.) call for different abstract object models, with accessors
for the specific data the components need. For a given set
of components-fixing the abstract modcl---concrete mod­
els that pack the data with more or less cleverness can be
compared.

Pluggability, and support for the many memory manage­
ment strategies of JMTk, are goals common to Ovm and
JikesRVM, SO both VMs provide for configurable object mod­
els. We describe first our mechanism, then what we suggest
are its comparative strengths.

2.2.2.1 Object models in Ovm

7After transformation to Dvm JR, arbitrary reference types
may exist in the constant pool and be loaded using LDC.

Figure 2 shows the Oop interface, describing the minimal
interface our VM requires to the object model. The name
suggests an object-oriented pointer; we use it for an ad­
dress known to be an object, but for which the VM's view
is wanted instead of the programmer's.

public interfa<;e oop {
Bluep.int getBluep.intO throws P.agmaModdOp;
int getHashO throws P.agmaModelOp;
VM-Address heade.Skip() throws PragmaModelOp;
Oop asAnyOopO throws PragmaEatcaat;

}

Figure 2: The Oop interface: the minimal VM view
of an object.

Most objects, of course, do not implement Oop, but a value
with static type Oop can be obtained by the unchecked cast
idiom, and the Umethods" of Oop invoked with natural Java
syntax to obtain the Blueprint (Dvm's type and dispatch
structure), default (identity) hash, or the address of the
object's first field or component. The pragmas effect the
rewriting of call sites to non-dispatching inlined code.

The Re-.;rri ter for a PragmaHodelOp method obtains the cor­
red code to inline by asking the object model, a concrete
class extending the abstract ObjectHodel and configured via
the InvisiblaStitcher. Despite the configurability through
a familiar Abstract Factory pattern, what remains in the IR
at the call site of a model operation is nothing but the bare
instruction sequence to retrieve or store the data.

public interface Monitorl1apper extends Oop {
Monitor getMonitorO throws P.agmaHodelOp;
void releaseMonitor() throws PragmaModelOp;

Figure 3: A !;iy,nchronization component's view of an
object.

public interface MovingGC extends Oop {
void markAsForvarded(VM_Address tvdaddr)

throws PragmaHodelOp;
boolean isForvarded() throws p.agmaModelOp;
IlJLAddrea9 getForvardAddrassO throws Pre.gmaKodelOp;

Figure 4: A memory management component's view
of an object.

Figures 3 and 4 show interfaces added to the abstract ob­
ject model by a synchronization component and a simple
copying allocator/collector, respectively. Each interface de­
scribes only what the corresponding component needs of the
object model. Each component manipulates objects simply
by casting them (unchecked) to its own model interface and
using the interface methods in familiar Java syntax. Given
any Oop 0, an idiom like (MovingGC)o .asAnyDop() is recog­
nized and rewritten away to an unchecked cast.

Configurability at the level of component selection and the
abstract object model comes for free in our design. Plug­
gable VM components, with their own abstract model inter­
faces, are independent and unaware of each other, and can
be included in a configuration or excluded at will.

When the components included in an Dvm configuration
have been selected, fixing the abstract object model, a con­
crete object model must be provided that implements all
of the chosen interfaces. A new concrete object model is
made by subclassing DbjectModel to implement the neces­
sary interfacesB and register the instruction sequences to be
inlined for the supported methods. This concrete class can
be created by hand. It contains in one place the implemen­
tations for the otherwise independent abstract model inter­
faces, so it is the place to consider the known relationships
and redundancies among the data and devise a compact and
efficient concrete format. For example, we can exploit the
knowledge that the blueprint will not be retrieved from a
forwarded object and arrange for a forwarding address to
occupy a blueprint's slot. The bitfield idiom may be used to
advantage in a concrete object model.

To write concrete models exploring different ways to pack a
given ahstract model is straightfonvard. For e.xample, two
existing models differ only in whether an object's monitor is
kept in a header slot or an ancillary hash map. The simple
syntax o.getMonitorO obtains o's monitor in either case.

2.2.2.2 Object models compared
In comparison to JikesRVM's pluggable object model mech­
anism,9 an Ovm abstract model is more abstract, and an
Dvm concrete model is more concrete. JikesRVM partitions
the object model into a VH_JavaHeader (dispatch, hashing,
synchronization), a VH.AllocatorHaader (allocator and col·
lector data), and a VH..HiscHeadar (everything else). Differ­
ent versions of these three are configured by source substitu­
tion. The Dvm stitcher and the pragma mechanism, which
can tag methods on any interface, make possible Dvm's
straightfonvard model of independently selectable interfaces.

On the concrete side, the JikesRVM model allows the
VH..JavaReader to e.xport as "available~ some unused
bits, by way of accessor methods that can be used by
VH.AllocatorHeader and VM..MiscHeader to pack some of
their own data into those bits. A mechanism is available for
the allocator header and mise header to register the num­
ber of available bits each will need. The overhead of mutual
nested calls to access the bits presumably is obviated by
aggressive inlining in the optimizing compiler.

By contrast, the Dvm approach makes no such effort to all­
tomate the composition of a concrete model; we look at the
interfaces to be supported and write a concrete model that
will work-using available Java mechanisms to inherit or
rellse functionality of e.xisting models, of course. We believe
this simplifies the Dvm model without appreciably sacri­
ficing composability: given the premium on finding clever
packing schemes, and the limited value of exporting hits
between arbitrary partitions, we are not sure there was ap­
preciable composability there to be sacrificed. An Dvm con·
crete object model supplies efficient IR instruction sequences

8S0 operations on the object model work at image building
time under a host VM.
9Touched on in [2], but to see its structure the CVS reposi­
tory at i1lTIl'. ibm. comldeveloperworks/oss/cvsl j ikeervm/
rvrn/arc/vrn/objectModel is indispensable.

for the object model operations under any interpreted or
compiled mode of execution. An optimizing compiler will
achieve further speedup, but is not relied on simply to make
the operations reasonable.

2.3 Harder compound idioms
Two compound idioms in OVM demand slightly more pow­
erful recognition, though still simpler than those of Hove­
meyer ct al..

2.3. J Unchecked cast
An example of the unchecked cast idiom was seen
in Section 2.2.2. An idiom of the form (O'lov­
ingGC)o.asAnyOopO), where the method carries an eat­
cast pragma, represents an llnchecked cast. The idiom
recognized (in Java bytecode) is an invocation of any Ca5t­

eating method, followed by a CHECKCAST instruction; both
the invocation and the check are removed. The Java com­
piler enforces that the cast must be compatible with the
declared return type of the method, so by declaring asAny­
Oop to return Oop, we still impose a modicum of control on
the idiom's use. The same pragma serves in VM..Address to
declare an asAnyObject method, an unrestricted unchecked
cast. IO

The unchecked cast idiom trivially works in code that exe­
cutes in the host JVM at image build time, with the same
semantics except that the cast is actually checked in that
case. ll

2.3.2 Bitjie/d
Opportunities to define fields of contiguous bits within a
word are common in a VM, for example in efficiently pack­
ing object model data or encoding operands in a compact
m. Bitfield operations in either context will be frequently
executed. Java's shift and logical operations are sufficient to
manipulate bitfields, and necessary for fields whose widths
or offsets are computed at run time. \Ve up the ante, though,
with additional design goals for the common case of prede­
fined, noncomputed bitfields.

• Optimize operations on predefined bitfielrls. Manyar­
chitectures have instructions with immediate operands
that are better for this purpose than code produced for
the general case of a Java mask/shift sequence.

• Improve expression of intent in source code, with ded·
icated methods to get and set portions of a word ac­
cording to a named bitfield declaration, instead of a
longer expression of nots, ands, shifts, and ors.

laThe two methods are typically used for slightly different
purposes. The object model depends on asAnyOop to permit
the syntax of Oop method invocation on objects that are not
of type Oop. The chief purpose of asAnyObject is to allow
the programmer to save the cost of checking a cast from
VH..Address to its actual type when that type is known.

lITo support the object model's casts from VH..Addres6 to
Oop subinterfaces under the host JVM, the Java objects that
represent VH..Address in the hosted case are declared by the
concrete object model, obtained via the stitcher, and imple­
ment the set of interfaces making up the supported object
model.

The two goals complement each other, because by defining
a simple source level idiom for bitfield manipulation, we are
able to use simple idiom recognition to put appropriate op­
erations into the JR. In the alternative, a highly optimizing
compiler might still determine by analysis that a sequence
of bit operations involve constant mask and shift operands,
and emit the desired code. By introducing a simple idiom to
make the programmer's intent explicit, we reduce reliance on
the optimizing compiler, and can get good bitfield code out
of even a simple compiler that recognizes the corresponding
IR instructions.

Development of our idiom was further guided by these cri­
teria:

• Support use of bitfields in code that runs at image
build time as well as at run time. The idiom we choose
must be meaningful Java that will effect the same bit­
field operations when running untransformed Ullder a
host JVM. The motivation for this requirement is to
facilitate code re-use between build-time and run-time
operations; for this we are willing to accept that bit­
field operations under the host JVM may be less effi­
cient than their transformed equivalents at run time.

• Isolate code from platform word size. We provide bit­
field methods whose parameter and return types arc
all VM_'ilord, and all uses of these methods arc valid in­
dependent of the platform word size. We also provide
methods to set or retrieve a bitfield as int or long,
and these we define as valid whenever the bitjiefd fits
in the desired type----a property that depends only 011

the bitfield definition and its use in the code, not on
the architecture. 12

• Provide methods to access any bitfield either with
shifting semanties (normalizing so the value retrieved
from or to be stored in the bitfield has its least signif­
icant bit in the unit place) or masking oIlly (for speed
when the shift is not needed).

• !(eep the synta..... to declare a bitfield reasonably simple,
subject to the other constraints. Avoid requiring the
bitficld name to be repeated, or any other text to be
varied except the width and shift values.

With get/set, Word/int/long variants, and unshifted vari­
ants, the total complement of bitfield operations comes to
twelve methods. These are instance methods on VH_'ilord,
and the last parameter of each method is of type Bitfield.
Figure 5 illustrates the idiom.

The idiom that is recognized and replaced in the IR is the
access of a Bitfield static field bf immediately preceding
(because it is the last argument) invocation of one of the
bitfield methods of VH_'ilord (set, in the figure). This idiom
makes the heaviest demands so far on our m editing frame­
work, because it is the VM_'ilord method that is tagged. The

12For this reason, these are our only non-deprecated methods
to "cast~ between VM_Word and primitive integral types.

class HashState extends Bitfield {
static final int IlIOTH=>2, SHIFT=>5;
static final Bittield bf '" h:HIIIDTH,SHIFT):

v. set(HASHED..-ANDJlOVED, HasbStetB. hf);

Figure 5: Defining and using a bitfield. The value
HASHEDJ.ND,..HOVED will be stored in bits 5:6 of the
VH_Word w. The bitfleld being set, HashState, is known
by the mention of its bf field as the last parameter
to the set method. The entire idiom is recognized
and replaced with m for bitfleld access. The code
executes correctly under a host JVM, only less effi­
ciently; the method call really happens.

pragma's Revriter must look backward in the control flow
to find the preceding static field access and identify the bit­
field. Our IR editing framework is not especially convenient
for lookinG backward, but this bitficld idiom is much cleaner
than the best one we could devise for recognition in a pure
linear scan.

An idiom like this one lends itself to introduction ill two
steps. The first step is to implement the gnard pragma with
a rewrite method that at first only recogni'l:cs the idiom and
transforms the IR to a sequence of existing instructions with
the right effect. This requires only coding the pragma itself;
we touch no interpreter or compiler code, and run and test
the system for the intended semantics. In the second step,
we introduce the new dedicated IR instructions and update
the pragma's rewrite method to emit them. Only at this
point must we llpdate interpreters and compilers, and only
to implement the new IR instructions.

3. CONCLUSION
From a small set of primitive tag idioms, we have been able
to implement several useful compound idioms in Dvm while
confining new code to the llew modules affected. \Ve have
developed idioms that usc familiar Java synta.x at the source
level, and familiar, recogni'l:able design patterns, for prob­
lems such as VM configuration that involve ad hoc tech­
niques in prior work, and we recognize the idioms to produce
code without the indirectioll and inefficiency that would oth­
erwise weigh against the familiar patterns. As the bitfield
exam.ple shows, the capabilities of our IR analysis and edit­
ing framework affect the lllliverse of idioms we can devise.
Our current IR and peephole editing framework has been
sufficient to support a selection of lIseful idioms with com­
fortable syntax.

There is dearly a tradeoff in adding a common IR to which
Java bytecode must be converted before any mode of exe­
cution. Balancing the benefit of easily added new behavior
with well-defined semantics, time is required for the con­
version, the IR may be less compact than bytecode or re­
quire many allocations, and some IR choices (e.g. register
rather than stack based) may not be amenable to direct in·
terpretation or fast nonoptimizing compilation. Something
resembling the high.level (HIR) format of JikesRVM's opti­
mizing compiler would not be ideal as a common IR, as the

time to genexate it could impose a fivefold 13 slowdown on
a nonoptimizing "baseline" compiler. Ovm's common m is
a compact, stack-based, executable representa~ion for that
reason.

The choice to do transformations on our IR iteratively to
a fixed point complicates the tradeoff. A cost of our cur­
rent representation is the need to resolve relative offsets and
variable-si'l:e instructions after a transformation pass. There
is opportunity to compare different points in the IR design
space for the balance of compactness, executability, and cost
of manipulation.

4. REFERENCES
[IJ Bowen Alpern, C. llichard Attanasio, John J. Bartoll,

Anthony Cocchi, Susan FIYllll Hummel, Derek Lieber,
Ton Ngo, Mark F. Mergen, Janice C. Shepherd, and
Stephen Smith. Implementing jalapeno in java. In
A. Michael Berman, editor, Conference on
Object-Oriented Programming Systems, Languages, llnd
Applications, pages 314-324. ACM Press, 1999.

[2] David F. Bacon, Stephen J. Fink, and David Grove.
Space- and time-efficient implementation of the Java
object model. In Magnusson [7], pages 111-132.

[31 Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. Tile REal-Time
Specification for Java. Java Series. Addison.Wesley,
2000.
vvv .javaseries .comlrtj .pdf.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterm. Addison.Wesley, 1994.

[5J David Hovemeyer, William Pugh, and Jaime Spacco.
Atomic instructions in java. In Magnusson [7J, pages
133-154.

(6J Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
I(ersen, Jeffrey Palm, and 'William G. Griswold. An
overview of AspectJ. In Jcrgen Lindskov Knudsen,
editor, ECOOP 2001 - Objed-Oriented Programming:
15th European Conference, Budapest, HunganJ:
procecdings, volume 2072 of Lccturc Notes in CompTJter
Science, pages 327-353, Berlin, Heidelberg, New York,
June 2001. Springer-Verlag.

{7] Boris Magnusson, editor. ECOOP 2002 -
Object. Oriented Progro.mming: 15th European
Conference, Malaga, Spain: proceedings, volume 2374 of
Lecture Notes in Computer Science, Berlin, Heidelberg,
New York, June 2002. Springer-Verlag.

[8J K. Palacz, J. Baker, C. Flack, C. Grothoff,
H. Yamauchi, and J. Vitek. Engineering a customizable
intermediate representation. Technical report, Purdue
University Department of Computer Sciences, 2003.

[9] W. Pottenger and R. Eigenmann. Parallelization in the
presence of generalized induction and reduction

13Vivek Sarkar, to question in JikesRVM presentation, 6
March 2003

variables. Technical Report 1396, Univ. of Illinois at
Urbana-Champaign, Center for Supercomputing
Research & Development, January 1995.

	Idioms in Ovm
	Report Number:
	

	tmp.1307986960.pdf.6ibN1

