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BROADCAST SYSTEM

Wojciech Szpankowski*
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Department ofComputer Sciences

West lAfayette. INDIANA 47907

Abstract

A finite number of users communicating through a broadcast channel is considered. Each user
has a buffer of infinile capacity, and a user randomly accesses the channel ( ALOHA-type pro
tocol). Moreover, only one packet per user might be sent in an access time. Both symmetric
and asymmetric models are considered, that is, we assume either indistinguishable or distin
guishable users. An exact analysis is now not available, therefore, based on some algebraic
studies we shall present some lower and some upper bounds for the average queue lengths.
These bounds are quite tight for a wide range of input parameters in the symmelric case. In
the asymmetric case the bounds are "good" for light and heavy input traffic. In addition, sla.
bility conditions for lhe system will be presented.

1. INTRODUCTION

A queueing system containing some dependent discrete-time queues is analyzed. The sys-

tern consists ofM users transmitting fixed-length packets to each other through a common shared

channel. Packets generated at users are buffered until the channel is made available to the users.

The capacity of a user's buffer is unlimited. The channel time is divided into slots of the size

conesponding to a packet transmission time and transmissions must start at the beginning of a

slot The key problem for such systems is multiple access of the shared channel. Many access

protocols have been proposed, but the analysis has been mainly restricted to unbuffed users [12].

We shall assume throughout the paper random access protocol, however, buffered symmetric and

asymmetric users are considered.

In recent years the analysis of multiaccess systems with finite number of buffered users has
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been addressed in some papers. Saadawi and Ephremides [5] proposed an iterative approxima-

tion analyzing so called user and system Markov chains. Sidi and Segall [6J. [7] found an expli-

cit expression for the mean delay, but they restricted the analysis either to two identical users [6]

or to so-called structured priority multi-access systems. Lately, Takagi and Kleinrock Ill]

presented the diffusion approximation for the system, while Hofri [1] proposed the exact solution

of the system if a reservation protocol and exhaustive service is assumed. On the other hand,

Tsybakov and Mikhaikov [13] found a simple upper bound, while Szpankowski [8] found upper

and lower bounds for buffered symmetric ALOHA system (see also Takagi [10]). This paper

directly extends the results from [8] to buffered asymmetric case. Based on some algebraic con-

siderations, we shall present some lower and some upper bounds for the average queue lengths.

The stability (ergodicity) problem will also be covered in this paper.

2. MODEL FORMULATION

In this section we fonnulate the model of the system in terms of a multiqueue problem. Let

us consider M dependent queues competing for access to a server. We assume that time is slotted

and a packet must start its transmission at the beginning of a slot, while duration of a slot

corresponds to a packet transmission lime. The queue lengths of the i -th buffer at the beginning

of the k-th slot we denote by Nl. i = 1,2.... •M. k =0,1•.... Let also xl: represent the input

traffic to i ~th buffer. that is, the number of packets introduced to the i -th buffer during the k-th

slot Therefore. the M -th dimensional random variable (Ni, ... ,Nit) determines the state pro-

cess of the system for k =0,1, ... ,. We denote also by zl. i = 1,2, ... ,M. k =0,1, ... , a con-

trol variable (access rights) for the i ~th queue, which takes the values of zero or one. A random

sequence (Z1, Z1, ... ,zit) controls the access of queues to the server. Then. the queue lengths

(N 1, ....Nit) satisfy the following stochastic equations:

M
N\+! ={N\ -Zf[)- :r,Zfx (Nfl l'}++x\

i'=2

M
N~+I={N~-Z~[I- LZfx(Nf)l+'V+X~

j=\
i_

(1)
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where a+=max{O,a}, while x(n)=O and x(n)=1 otherwise. The above equations describe a

multiqueue system with non·exhaustive service, that is, when one packet per user is served during

an access time. Various access schemes are modeled by (1) depending on the interpretation of

the control variables (ZL ... ,Zt(. In general, zl may be a function of the queue lengths

(Nt, ... ,NtI, the other control variables Z}. j '#i or it may depend on the arrival process

(xi, ... ,xM

In this paper, for the simplicity of the analysis. we assume random access scheme. In other

words, me control variables satisfy lhe following conditions:

(i) for each 1::;; i :s;; M the random variables {Zit, 0::;:; k < oo} do not depend on {Xl, O:s;; k < oo}

and {Nl. OS:k < oo}.

(ii) the Zik, 1S; i SM. k =0.1•.... are statistically independent and for each k =0,1 •....

Pr{Z/=l}=rj ; Pr{Zl=O}=l-rj='i (2)

(iii) for each l::;;i::;;M the random variables {Xf, O::;;k ::;;oo} are i.i.d. with mean Ai. variance al

and generating function Hi(z).

In a symmetric case all users are indistinguishable. that is, H l(z)= ... =HM(z)=H(z) and

The interpretation of the probability ri is obvious. It is the probability of transmitting a

packet by the i -th user. Moreover. if zf= 1 and any other user with nonempty buffer sends

packet (zj=O for Nf> 0), then successful transmission takes place; otherwise the i-th user is

involved in a collision.

The M -dimensional stochastic process Nt = (Nt, ... ,Nit) k =0,1, ... , under the above

assumptions becomes M -dimensional Markov chain. We shall study the generating function of

N'· d .ID a stea y-state, I.e.,

dtf M

O(z) = 0('1'·.· "M)= lim E {II 'J'~
k-+oo j=\

where z= (z I' ... ,zM). In the further part of this paper. we shall omit a time-index k if sleady-
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state is considered.

3. ANALYSIS - ASYMMETRIC CASE

In this section the generating function G (z) will be found as a function of some unknown

boundary functions. Then, the average queue lengths will be studied and upper as well as lower

bounds will be determined. We shall also establish sufficient conditions for ergodicity of the M-

dimensional Markov chain. All derivations are done here for a general asymmetric system, how-

ever, in Section 4 a symmetric case will be considered.

3.1 Generating funclion

Let us start with some notations. We assume that users are numbered from 1 to M and U

denotes the set of all users, that is, U={I,2•... ,M}. Throughout the paper a k-combination

without repetition ofU is used, therefore, by Ci; we define a set of such k-combinations, Le.,

de!
CJ; = {{i It i2.· .. ,(tJ: ijE U J l~j 5.k ; ij";f::ik iff j *-k}

An element of Ck is denoted by I • Le., I ={i 1•...• i,t} EC,t, while complement of 1 in U is

represented by Ut>h..... )M_,t}=U-I, lEC,t. Moreover, if l={il,.,.,i,t}ECi; then

1 -{ij}={i I, . , . ,ij-I> ij+l • ... ,i,t} ECl;-h 1~) ~ k, and

"'I
C,t-[n 1.' .. ,nil] = {{i I.· ..• i,t}E Ci;: ijEU-{n I, ...• nil}, 1~) Sk}

Finally. to express the generating function G (z) in a readable form we shall widely use the fol-

lowing notation: let! =(i 1,· ..• i,t)E C,t, and U1," .•)M-/JEU-l, then

"'I
r1rU-I - r· - _. r'" ... r'

- 11 1.0 }I }Jl..,j

",1 U-I ~G (v ,Z ) - G (z) Izj,:=zj.:= ... :=z.:=O

d,j

G (ri. 1u-I) :;:: G (z) 1'1,:= ... :=z.",O: ZJ.:= ... z;..=1 M

In particular. if 1 ={i}, then iIl'itead of (3a) we shall write rJM- 1=ri jf}l rj.

#i

ZlJ-l) will be called boundary function, while G(rf, 1u-I) boundary value.

(3.)

(3b)

(3c)

The function G (oJ',
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Under the above notation in Appendix A we prove that the generating function G (z) has a

fonn:

where

(4.)

(4b)

The boundary functions G(rf,zV-l), leek> t=:;kS,M are unknown in (4). We do not

detennine them (even for M =2 the problem is still unsolved), but some propenies of the system

will be studied based on Eqs.(4).

First of all, we shall determine the generating function of the queue length in the n-th

buffer, n E U. Substituting in Eq.(4) zk= 1 for all k EU-{n} one finds

where

(5b)

The function G(z/I) is a generating function itself. ie. G(1)= I, and it represents the queue length

in the n·th buffer under the condition that all other buffers are never empty [8] (for each t ~ 0,

Nj(t» 0, i E U -in}). Let us denote

tkl -M-I
a/l=rnr -A.II neD

Since G(lu) = 1 and G(1)= I, then (5) implies that for all n EU
(6)
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Note that in (7) there are 2M - 1 unknown boundary values G (oJ •1M-I), I e Ct. 0~ k s: M -1 and

only M equations. Therefore, Eqs.(7) do not determine the boundary values, but they are useful

for further considerations.

Finding in (5) the derivative with respect to Zn for Zn = lone may calculate the average

queue length, ENn• in the n -th buffer. Let us denote

"'I d
Gn(1",oJ.IlJ-l-{n1) =-d G(zn,or,tu-J-{II})I:.:l0 feCi,lS:kS:M (8)

z.
Then, after some algebra

where

- p.
ENn=EN,,-

a.
nED (9a)

(9b)

(ge)

(9d)

The average queue length EN" (Eq.(9b» is the queue length in the n -th buffer under the condi-

rion that all other buffers are never empty. In order to find explicit formula on ENn one must

determine the derivatives of boundary functions, G,,(I I1
• 0'.1U-l-{II]). I E Ct. 1s: k < M -1.

There is a small chance to find mem, but some improvement over (9) might be achieved perform-

ing some algebra on tenns in (9). The general idea is to choose some users from U and determine

total average queue lengths in the chosen buffers. Then this average value is compared with the

sum of average queue lengths found in (9) to reduce the number of unknown boundary values.

Total queue lengths jar two chosen users

Let us choose two users, Sijy nand m. n. m E U. The generating function of

"'I
N~,m = Nn+Nm is G(ZM Zm. lu-{n,m})lz.=z.. =z where Izl < I, that is. in (4a) we substitute
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2n= Zm = z. Zi = 1 for i eU -{n ,m}. Finding the derivative with respect to z for z = lone obtains

the following fonnuta for the average queue length ofN£"":

(10)

where

M-l
R1l.1"" = L L r l rmrtJ-l-{m} [Gn(1l1 •am. oJ. 1tJ-l-{m])-X(k-I)G/I(l" ,1m•oJ J 1u-I-{m})J

k=l [ee._I -[II,m]

M-l
R,,2,m = L L ,1Tllru- 1-{1I} [Gm (011 ,1m • 0', 1U-I-{II}) -X(k-l)Gm(lll ,1m • or. 1U-J-{II})]

1=lleC._1-[II,m]

and Pko n,b k E{n,m} are defined in (ge) and (9d), respectively. Note now that

ENr:m =ENn +ENm • where EN'i,nl is given by (to) while EN" and ENm by (9). Comparing

both sides of the above equation one finds a formula for a weighted sum of P/I and Pm as a func-

tion of known values ENn • ENm EN£,nI and unknown values Rnl,m and R,,2,m. Since Pn and Pm

is a function of ENn and ENm respectively, we finally obtain a weighted sum for ENn and ENm .

Let us denote for all n, m E U. n '#.m

"'f
dll(m) = anrll+amrll

Then. after some tedious algebra we find,

where

(11)

(12)

M-'
S =r r ~ ~ rJru-l-{n,m}[r G (11'1 1m ri lu-l-{II,m})+r G (III 1m ri IV-J-{II,m}l]n,m II m ~ £oJ II II I • , m m , • ,

k"'lIEC~-[II,mJ

Let us notice that for M = 2 we completely eliminate the unknowns involved in SII,m. and then

(13)

Unfortunately, there are still in (13) two unknown values ENn and ENn and only one equation,

but (13) (as well as (12» is a significant improvement in comparison with Eq.(9). For symmetric
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case, as we shall see, we get in this case an exact formula for ENn. .

Total queue length for all users

The above idea might be used to find a weighted sum for k ~M chosen users. However.

since the computations become more and more complex we restrict our considerations to the case

k =M. that is, we derive below a weighted sum for average queue lengths of all users.

M
Let N};= :LNj. Then the average value of N:I:. EN1;. is the derivative of G (z ,z, ... I z) at

i:l

z = 1. After some algebra one shows that

(14)
where

M M-I
L L L G

II
(l't,oJ',llJ-/-{II})[k·,I,lJ-/_ L ,/,lrtJ-I-{/}]

11=1 k=11EC.-(n] I£IJ-f

M
Ln.-2 L ',A,
n=l ISk<ISMEN"·~=--""M==--

2:L Qn
11=1

As in (10) the derivative of boundary functions, GII(lll,oT. lu-l-{n}) ,are unknown and we do not

determine memo

The same procedure as above is needed to determine a weighted sum of the average queue

M
lengths in all buffers. Since ENL= LENj then by (9) and (14) we find initially a weighted sum

i=1

for P11' n = 1,2, ... ,M and then noting that P11 is a function of ENfl we derive a formula for a

weighted sum for ENII • n = 1,2, ... ,M. To express it in a compact form let us introduce some

more notations. IfXl, X2'" . ,XM is a sequence of real values, then we denote

M

xn= II Xi,
i=l

M

XL= LXi.
i=}

M
xn(n)= IT Xj

i=I

if·
xI(n)= LXj

i=l
i'tll
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Then, we prove that

where

M M-I k . .
S,~ L L L [ L G.(l' , o'-{',l. Iu-l-{'1v{',1)_ (k-I)G.(l', 0', IU-I-{·J) J

1I",lk=2IeCl -[II] j=l

(15)

Eq.(15) is synonymous to Eq.(12) and the advantages of these equations will be obvious in the

further part of the paper when upper and lower bounds of the average queue lengths will be stu-

died.

3.2 Ergodicity and some other properties

For further investigations we must derive some inequalities. Noting that for

G (oJ. 1V-I) =Pr {Nj ,=0•... ,Ni.= O}::;: i: {Ni,=O, ... ,NiJ_,=O NiJ = 1,
I=<J

N· = 0 N· ~ O} = G (o'-{i,J IU-Iv{i,l)IJ+l •••• I It ,

weprovethatforanyI={i!•.. . ,i.t}eCb 1-5.k::;:M and 15.j5.k

In panicular, using (16) and (7) one shows that for all n EU

(16)

(17)

Applying similar considerations to the derivatives of boundary functions we easily obtain

the following inequality: for all I ={i I•... ,ik} ECot - [n l, nED, 1::;: k $M and 15.j ::;: k

These inequalities will be useful in establishing bounds for the average queue lengths.

(18)

Let us now consider ergodicity (stability) conditions for the Markov chain

N·~(NL ... ,Ntt). We prove that
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Theorem 1:

Let 0 < T /I < 1 for all n E U. Then the Markov chain Nk is ergodic if for all n, m eU the fol-

lowing hold:

(a) dn(m» 0 and dm(n»O if fn+rm$l

(19)

where dfl(m) n. meU is defined in (11).

Proof: See Appendix B.

As a simple conclusion of Theorem 1 we have

Corollary 1: The Markov chain Nt is ergodic if

o

Q/I>O for all neU

Proof It follows directly from Theorem 1 (see proof in Appendix B).

(20)

o

The conditions proved in the theorem are only sufficient for the ergodicity but not neees-

sary. For more detailed considerations see [9] where some necessary conditions are established.

In the further part of this paper we shall often refer to the Theorem 1. For our convenience

we shall introduce some sets. Let

E(n,m)~{(A.,Am):(19) is satisfied}
EI(n,m)~{(A"Am):d,(m» 0 AND dm(n» O}
EU(n,m)={(A"Am):d,(m»O OR dm(n»O}

(2la)
(21b)
(21c)

EI(n,m) for '/1+'/1.$1

E(n,m)= (21d)

EU(n,m) for rn+rm> 1

M M
E=n n E(n,m),

11=1 m=l
,.",

M M
EI=n n EI(n,m)

11=1 m=l
"m

(21e)

(21t)
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The theorem states that the Markov chain is ergodic if the input rates J..=(A.!,'Jvz• ... ,f"M) E E. but

let us notice that for some Afi. E the chain may be also ergodic. Moreover. for M =2 conditions

(19) are necessary and sufficient for ergodicity.

The next theorem gives sufficient condition for finiteness of the average queue length in a

buffer.

Theorem 2: The average queue length in the n-th buffer, ENn• isfinite ifafl > O.

Proof Let JIi: be a one-dimensional Markov chain representing queue length in the n ~th buffer

under the condition that all other buffen; are never empty, Le., Nf> 0 for k =0,1, ... , and

j eU-{n}. Then, it is obvious that N: is stochastically smaller than N:, {N:, k ;;:: O}:::;; {N:, k ;?: O}

"
[13] [9]. Moreover, ENn :S:EN" and Eiin is given by Eq.(9b). But ENn if finite if all> 0, and that

finishes lhe proof.

o

The condition an > ais not necessary. To show it let us consider a system consisting of two

users. When ~~ 0, then EN 1 is finite for Al < r I-E, where E is a small number such that E-7 a

as A~ a(see Fig.Bl in Appendix B).

33 Lower and upper bounds

We shall derive in this section some lower and upper bounds based on Eqs.(9)-(II) and ine-

quality (18). The l-th lower and the loth upper bound will be denoted by E,N". E/N". nED,

respectively.

Let us start with Eq.(9). Because of (18) one finds for all n EU

(22)

and the LHS of (22) is lliied for upper bound while the RHS of (22) for lower bound. Substituting
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(22) in (9) one immediately obtains

Corollary 2:

(ii) for all> a

(23)

(24)

o

Let us now consider Eq.(12) and denote the first term of (12) as

Moreover, because of (18) we find the following inequalities for the second term of (12):

where qnm is defined as

(25a)

<14 M
q - II

nm - j:=1

#1I,rTl

(25b)

To find the next upper and lower bounds we substitute in LHS of (12) ENm either by E JNm or

E tNm and we use (25a). Then we prove

Corollary 3:

(i) ForQ...l.m)EEI(n,m)aodn,mEU

(26)

_ dz[ _

EN" < min E 2N(m) = E 2Nn
m

(27)
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"'I
EN,.> max{O, max E 2N/I(m)} = E 2Nn

m

Finally, let us consider Eq.(15) for A.EEa . Then, S 1: in (15) may be bounded as below

(29)

o

M M-I k . .
0< S.m = L L L [ L G, (l" ,oJ-{"),1lJ-l-{,)u(,,)_ (k-l)G.(l" ,oJ ,I lJ-l-{.) <

11;1 k=2 feel -[1I1 j=1

M M
L EN"r,. L rk(l-qnm)

n=1 k=I,>!/1

(30)

To derive upper and lower bounds from (15) we must evaluate M -1 unknown values of the LHS

of (15), namely: ENm for m eD-{n}. But we have just found that E1Nm$ENm$Eiin• J= 1,2

(Corollary 2 and 3). Using these bounds for ENm • meU-{n} in the LHS of (15) and bounding

the S E in (15) by (30) we evaluate RHS of (15). Denoting

we finally obtain

Corollary 4:

For aU n eUand

(i) For~EE

(31.)
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(31b)

(iii) For AI:: Ea

EN,,>

(iv) For A.£ EI

Concluding out, we have established fOUf upper and four lower bounds for the average queue

lengths in the asymmetric buffered ALOHA - type system.

4. ANALYSIS - SYMMETRIC CASE

o

We assume now that users are indistinguishable, that is,

the expected input rate and variance of the input process, respectively. Symmetry means also that

all queue lengths have the same distributions, what implies that all expected queue lengths are the

same and equal to EN. But, what is more important, for all k-combinations I e Ck. the appropri-

ate boundary functions are equal. In particular, for alII ECt - [n] and neD the derivatives afthe

boundary functions at Zn = 1 are reduced to

(33)

where the LHS of (33) denotes the derivative with respect to Z I at z 1= 1 with k other variables

equal to 0 and the remaining M-k-l variables equal to 1. This radically reduces previously

obtained fonnulas. For example EN and EN t (Eqs.(lO, (14» become
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and

(340)

(34b)

cr2+A.._M).,2

2(rrM '-A)
(35b)

Then analogous to (12) and (15) hold, but instead of using them we derive directly from (34) and

(35) an appropriate "improvement". Hence, comparing (34) and (35) and noting that

EN1;= M EN we find

Mil krkr:M-k-l [M;l JG1(1,lM-k-l,O.l;)
k=l

(M-l),,2+(M-l)A

2
(36)

The LHS of (36) is "almost" the unknown denominator in (34) except the factor k in (36).

Divide now (36) by a real number ex, 0< lX~M-l (we call ex a splitting factor) and note that

kla =1+ (k--o:)/a, that is, we split the LHS sum of (36) into two sums, the first being exactly the

denominator of (34). Hence, by (36) and the above after some algebra we obtain our fmal result

(37)

where 0< a:5M-l. This equation is an analogous to (12) and (15) (asymmetric case). In partie-

ulaf, forM =2 either (3?) or (13) implies that (see also [7])

r(,,2+A)-A.'
EN= M~2

2(rr -A)

Moreover, stability conditions are reduced to:

Corollary 5: Symmetric system is ergodic if and only if

(38)
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(39)

Proof Sufficient condition follows from Corollary I, while necessary condition is more complex

to prove. However, using so-called unbounded random walk approach we showed in [9] that

h.2: i,M-l is sufficient condition for nonergodicity of the system (see also [13]).

o

Let us now derive lower and upper bound for the average queue length. Previously

obtained formula might be applied here, however, formula (37) gives us a chance to derive more

sophisticated bounds. Therefore, let us for simplicity assume that the splitting factor ex is an

integer in a range [1. M -1]. Then, dividing the second term of (37) into two components we find

I: k-a r"'+I;:M-k-1 [M-1 ]G\(l.lM-t-I,lY')
EN "" (cr+A)(l-r(M-l)!a]-A? + 1;-1 ex k +

2(rrM-'-A) rrM-1_A

~1 k-a rt+I;M-k-1 [Mk-l ] G 1(1.lM-.I:-1.li)
k:u+1 ex

"-M '-A

(40)

Note now that for fixed ex the second term is positive while the third one is negative. Therefore to

find lower bound we use for l:5k :50.-1 the inequality G t(I,IM-.l:-1,0.1:)< EN while for k :2 CHI

Corollary 6: For all a= 1,2....•M-I

EN"? "?,2+A.)[l-r~M-l)/"]-V ":!Es"N

2{:E [M;IJ a k r.l:+l;;M-.l:-I_ A}

''''' k
where subscript S in RHS of (41) stands for symmetric.

(41)

o

Note also, that ElJN is positive only for r :5aJ(M-I). Two values of a are very attractive,

namelya=1 anda=M-I. Then
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2(rrM '-,-)

Efl-1N = (02+)..)r _')}
2(rr -'_)
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r> It(M-I) (42.)

(42b)

It is easy to notice in the presence of(39) tlIatEiN is tight bound for A.--?- rrM - 1 wIllie Ef-1N

is more appropriate for A.-7 O.

To derive upper bounds from (40) we argue as above but now we must assume that for

Corollary7: ForaIla=1,2, .. . ,M-l

-----"i(cr,='ci-+~'-)"'['-I--.:.r-"(M"----.:.I)",ta."']L--''-;,'cc-",",_ d,tm~ =~N

2( -M-l M~l k-a k+l-M-k.-l [M-I ] ')rr -.t.J -- r r k-f'.
k=a+l a.

iff

-M-I M~l k-a hl-M-t-I [M-k ] 0rr -.t.J --r r k >
..1:=«+1 IX

As above two values of a are very attractive, namely a= 1 and a=M -1. Then

(43.)

(43b)

o

(44.)

(44b)

,- (cr'+,_)[I-r(M-I)j-,_'
EsN - 2[r(I-r(M-I)-'_J r < l/(M-I)

EM-IN = (cr2+A}r-),,,2
s 2(rrM I A)

We Dote also that EiN is better than Ef-1N for A.~ awhile fOfA.-7 rrM - 1 the reverse is true.

The upper bound (43) might be further improved if one finds better bounds for

G l(l,lM-t-I.Ok). But noting that G 1(I,aM-I) < G 1(l,lM-k-10.l:)< G 1(l,lM-2,O) and substituting

it into (36) a simple computation reveals that

Using RHS of (45) and arguing as above we show that

(45)
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EN s; (cr'+lc)[I-r(M -1)/<X+rM-'(M -I--o:)/<x] _1..'

2(rrM-1_ ~2 k-a r.l:+1rM-.l:-1 (M;l J-1..)
k=CHI a

for a = 1,2, ... ,M-1 under the following assumption

-M-I M~2 k-a k+l-M-k-l [M-I ] 0rr - £J --r r >
.1::«+1 a k

Finally, applying (45) directly 10 (37) for a=M-1 we enhance (44b) obtaining

This bound is very attractive for small values ofM.

5. NUMERICAL RESULTS

(46)

(47)

In this section using numerical computations we compare the above obtained lower and

upper bounds. Let us start with the symmetric case. Numerical results are contained in Table 1

and Table 2. Both tables show the best lower and the best upper bound, where the upper index at

each position in the columns indicates what value of the splitting factor a(= 1,2•... ,M-1) was

used to compute the best bounds. Table 1 for M = 10 compares the bounds for (M -1)r < 1 and

(M -1)r > 1. In the first case the bounds are quite tight, while the latter case show Quite a big gap

between lower and upper bounds. This is true for all values of M and r as it is easy to notice

comparing (41) and (43) (in particular, see (42) and (44)). In Table 2 the same bounds are shown

for M =50 and r=O.Ol. To investigate the influence ofM on the bounds we choose r in Table I

(first two columns) and Table 2 such that Mr =0.5. The results point out that greater M is worse

the bounds are, however, for all Mr < 1 the bounds are still quite tight. Note also that from the

practical point of view the probability r should be less then 11M [3], so it is the most interesting

case. Moreover. the maximum throughput A.max = rrM
-

1 is the greatest for r = 11M. so restricting

rand M to the case Mr < I is quite reasonable. Finally. note that for small values of A. bigger

splitting factor IX is better lower bound is , while for bigger values of 1..--7 "-max lower splitting
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factor ex is better lower bound is. For upper bound the reverse is true.

Let us know discuss asymmetric system, and the bounds E/in • E1N,., l = 1,2,3,4 (Corollary

2-4). This case is much more difficult to study since a lot of factors must be taken into account

We have decided to compare the following issues:

the influence ofM on the bounds - (Table 3),

the influence of Ai. i =1,2, ... ,M on the bounds - (Table 4),

M M
:L rj < 1 versus L rj > 1 - (Table 5).
i=1 i=1

All results in Tables 3-5 are computed for the first buffer, EN I versus AI for different values of

Ti' A.i' i =2, ... 1M and M. To present the results in a compact fann we assume that vector

R = (r 1>'2•...• rM) contains lhe values of probabilities Til i = 1,2, ... ,M. Moreover, let

A,FX=r.\:ru-{k} and in each row of the tables we increment AI by ",FIlO, what is denoted as

Al =1..1+).Y·"1l0. However, since /..F strongly depends on the vector R and the number of

users M in Table 3 and 5 we use different values of Al for each case. Therefore, in the column

/..1 we show two values of/..1> namely, Al'!A.1" where /..t' is valid for the ftrst two columns of

bounds, while Al" for the next bounds. Moreover, the values of Aj. j =2, ... ,M are chosen

such that A.:z and ~ are high fractions of ~mllJ; and AF while /..k = /..ruu IIafor k = 4,5, ... ,M.

It means that the input traffic to the second and third buffer is high, while for the remaining

buffers we assume light traffic. Finally, with each value of the best lower and the best upper

bound is associated an upper index (either I or 2 or 3 or 4) which indicates which bound was used

to compute the best upper and the best lower bounds (Corollary 2-4).

In Table 3 we assume R =(0.1; 0.15; 0.2; 0.05; 0.1; 0.05; 0.1; 0.05; 0.1; .05), and results for

M =5 and M = 10 are compared. We put ~=i"-2maJ;, :l.3=t:l.:r"x and Aj=:l.rllO U =4,5 for

M = 5 andj = 4,5, ... , 10 for M = 10). The table shows that:
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Table 1. M = 10

r=O.05< I/(M-I) r=O.15> lI(M-I)

"- BestEsN BestEsN BestEsN BestEsN
0.005 0.1132) 0.1221) 0.034') 0.112')
0.01 0.2662) 0.311 1) 0.073') 0.268')
0.02 0.9391) 1.441 1) 0.1673) 0.9154)

0.025 2.0671) 3.4789) 0.2133) 1.985')
0.03 10.7141) 18.001') 0.2943) 4.321')
0.0315 = = 0.3262) 8.275')
0.034 = = = =

Table 2. M = 10 r =0.01

"- BestEsN BestEsN

0.005 0.0529') 0.05541)

0.001 0.1139') 0.12421)

0.003 0.49051) 0.72641)

0.004 0.96301) 1.8010")

0.005 2.28601) 4.4213")

0.00611 = =

(i) in most cases the best lower bound is E 1 N 1

(ii) for small values of Al the best upper bound is E I NI, while for larger AI E 3 fi I is

better

(iii) lhe smaller M is the tighter the bounds are.

In Table 4 we compare the best lower bound and the best upper bound for M = 10 and two

sets of input rates to buffers i =3,4, ... I 10, namely, either Ai='A.{WJJ:.120 or Aj='A.{nxx15,

i = 3,4, . .. ,10. We assume the same values of probabilities rj as in Table 3. It is easy to notice

that conclusions (i) and (ii) from the previous results are valid here too, and in addition,

(iv) the smaller input rates to other buffers are, the tighter bounds are.

Finally, in Table 5 we compare the bounds for two sets of probabilities fj. namely

R 1= (0.05; 0.1; 0.05; 0.02; 0.03; 0.05; 0.05; 0.02; 0.03) and R 2= (0.05; 0.1; 0.1; 0.2; 0.3; 0.1; 0.2;



- 21 -

M M
0.3; 0.1; 0.05). Note that in the first case :Er;=O.5< 1 while in the second case t,ri=L5> 1

;=1 i=1

(we identify these cases as Vi < 1 and Di> 1). Once again we confirm our conclusions (i) and

(ii) from Tables 3 and 4, however, in addition we establish the next remark:

M M
(v) for.r, Tj < 1 the bounds are quite tight, while the results for L Tj > 1 cannot be accepted

i=! i=l

and more research is needed to find tighter bounds. However. from the practical point of

M

view only the case L rj < 1 is important by the same reasons as in the symmetric case.
;=1

Finally in Fig. 1 simulation results are compared with the bounds from Table 3 for M = 5.

As one may expect for small values of Al the lower bound is quite close to the simulation results.

For bigger values of Athe simulation curve lies between lower and upper bound.

Table3:

Probability vector R = (0.1; 0.15; 0.2; 0.05; 0.1; 0.05; 0.1; 0.05; 0.1; 0.05);
, 10

CLr,=0.6; Lr,=0.95)
i=1 i=l

A.z=1~max,A3=A.fax /4, Aj =AjJImIlO•. i =4,5, . .. ,10

M 5
M=5 M=IOM-IO

I"I o"I+"l"u/1O BESTEN 1 BEST EN I BEST EN I BEST EN I
0.01210.049 0.131" 0.248" 0.087 0.249"
0.023/0.016 0.300" 0.613<' 0.191 0.651<'
0.035/0.024 0.526" 1.136"' 0.316 1.060
0.047/0.032 0.850" 1.900 0.470 1.519"
0.058/0.040 1.346" 3.463" 0.663" 2.231 '1
0.069/0.048 5.654 8.507" 0.917" 3.488
0.08110.0565 1.263"' 6.305
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Table 4:
Probability vector R - as in Table 3. M = 10

M=M""'72 A..3 =)..3 12
Ai =A.~/20 i 3•... ,10 Ai ='A.FJ5. i -3.... ,10

AI BESTEN 1 BEST EN 1 BESTEN I BEST EN I
0.008 0.08fIT 0.249 0.087" 0.249"
0.016 0.191'T 0.603" 0.191" 0.661 "
0.024 0.316" 0.914" 0.316" 1.240
0.032 0.469" 1.334 0.469" 1.756"

0.0404 0.663 1.983 0.663" 2.572"
0.0485 1.409" 3.117" 0.917" 4.04Y'
0.0565 1.710" 5.622" 1.263" 7.527

Table 5:

Probability vectors:

M
a) R 1~ (0.05; 0.1; 0.1; 0.05; 0.02; 0.03; 0.05; 0.05; 0.02; 0.03); L 'i ~0.5< 1

i=!

M
b) R ,=(0.05; 0.1; 0.1; 0.2; 0.3; 0.1; 0.2; 0.3; 0.1; 0.05); L 'i = 1.5> I

j:4

M=1O

J,.,=l.fUI2, A,=Aj""'/2, Ai=A.f'''''/1O,.i =4,5, ...• 10

Ui<l
Lrj> 1 Ui=O.5 L'i= 1.5

I Al-=A.I+A.1 11 BEsr-mv1 BESTEN 1 BEST J:.N 1 BEST bll 1
0.006'0.002 U.143 Uol.- U.U41 U.231
0.013/0.004 0.33: U.66: J.U8: 0.481
0.019/0.006 0.598 1.22: .1 0.729"
0.02510.008 o.<J<Jli 2.051

~
U.n4·

0.031410.009 l.658 j.85 U. 1.169·
0.03810.012 1.338 1U.562' .3U: 1.485
0.04410.014 16.130 ~ 1.041 1.907

10.016 ~ ~ .1 DUU·

6. CONCLUSIONS

The finite number of buffered users in a packet contention broadcast environment was con-

sidered. We assumed throughout the paper random access protocol, however, it is not essential
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for the analysis. Some upper and some lower bounds for the average queue lengths were

presented. We found also stability conditions for the system, however, they are only sufficient

but not necessary.

M
Numerical results showed that the accuracy of the method depends on the sign of 1 - L rj,

i=l

M M
that is, for :E rj < 1 the upper and lower bounds are quite tight, but for L'j > 1 more research is

i=l ;=1

needed to improve (mainly) the lower bounds. For symmelIic systems the bounds for Mr < 1 are

very attractive, however, even for 1< Mr < 3 lhe bounds are acceptable. We also pointed out that

from the practical point of view the case Mr < 1 (Di < 1 for asymmetric case) is the most impor-

tant.

Funher research should go into two directions. To recognize the behavior of the system we

should establish sufficient and necessary conditions for stability of the system. Although the con-

ditions are known for the symmetric case, an asymmetric system is very difficult to handle. It

seems that establishing such conditions for this type of systems needs some general consideration

for a wide class of multidimensional Markov chains. Such an effort was undertaken in [9].

The second problem is to find tighter bounds for queue length, waiting time and so forth. It

is reasonable to assume that in the near future an exact analysis for two users will be available

(Riemman-Hilbert approach), however, for more dimensional systems only bounds and approxi-

mations seems to be in these days achievable. For symmetric case the bounds might be quite

well improved if one notices that by (34a) and (36) evaluation of the unknown denominator in

(34a) is reduced to a solution of the following problem. Let X be a Bernoulli distributed random

variable and h (X) an unknown function (in our case h (k)= G l(l,lM-.t-I,O.l)). Then the problem

is to find Eh (X) assuming that 2Eh (X)X = (M-1)(02+)..). On the other hand, in the asymmetric

case stochastic dominance approach seems to be promising, e.g. by creating two systems with

well known solutions we might upper and lower bound the ALOHA-type system ( see for
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example [3]) .

APPENDIX A: Generating function G(z)

In this appendix we shall derive the formula (4) for the generating function of the M-

dimensional Markov chain (Nt. ... ,N;; defined in Eqs.(l). Let us denote by N/ the queue

length in the i-th buffer if Zi=l. Then, in the steady state the generating function

G (z \'%2' ••• 'ZM)=G(z) may be obtained as:

M M M U-f '} N,' f{,' N,' N N
G(z)=rrH·(,·){Il;::G(z)+~ ~ r· ···r·r ',····· .. Ez·'·z·'· ···z·"z'/'···z ..L..)• " . 1 I £J £J., I. " '1 I.}, J.....

,<:1 .= k=11 E C.

(AI)

where (i l' ... •iIJ=I E Ci; and U I' . _ . ')M-k)= U-I. Hence, to evaluate G (z) we must compute

lhe psudo-generating function under the sums of Eq.(Al). Note that for k=l we have I ={i} and

N;'=(Ni -l)+. Then

Ezf' ... 4No
-

1)' ... z1:,,=z,-I[G(z)+(Zi-1)G(Zt.··· ,Zj_1,0,2'+1'··· ,2M)}

=Z II (G (z)+(Zj-l) G(ri,z U-{j})}
(A2)

M

G(Zt.O'Z3"" ,zM)(Z2-1) n Zj}
j=1
j ..2

For k > 1 the computations are much complicated. For example for k=2 (T={1.2}) we find

-Ezf" zf{ z~'· ··zff"= L L L zt'z~'Z~'" ·z};Pr{N,=k l,N2=k2•··· ,NM=kM} =
1:,=0 k.=O k,,=O

~ ... :i: z~,··· z;;Pr{N 1=0.N2=0,N3=k3•...• NM=kM}+
1:.=0 k.,=O

~ ~ i ... :E. zt'z~'Z~"" zf;Pr{Nt=kl'N2=k2'N3=k3.··· ,NM=kM} +
1:,1:11:,=11:."0 ...."0

i:. i:. ... i:. zt·....lz~····zt;Pr{N,=O,N2=k2.···.NM=kM}+
1:, =11:.=0 .... =0

i; i: ... i zt'-'z~···· zt;'Pr{NI=k.N2=0,N3=k3....,NM=kM}=
k,=lk.=O 1:,,=0

M M M M
G(z)+ )1 Zj-I{G (0.0.Z3•... 'ZM )[(z 1-1) )1 Zj+ (z2-1) )1 Zj} -G (0.z2.z3' ... ,zM)(z ,-i) )1 Zj-

1=1 J=2 1=1 1=2
j.2

Generalizing the above we prove lhat for I=(i ,•. _. •il:)

(A3)
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Taking into account (AI) - (A3) we finally obtain Eq.(4).

Appendix B: Proof of Theorem 1.

We prove Theorem 1 using so called comparison lest established in [9 , Lemma 2]. Let us

a define two-dimensional Markov chain (/'1:. N~) which represents the queue lengths in the n-th

and m -til buffer under the condition that all other buffers are never empty, that is Nt> 0 for all

k ~ 0 and j E U -{ n ,m}. It is easy to notice that [9]

(Bl)

i.e. the two-dimensional process (N~.N~) is stochastically smaller than the two-dimensional

Markov chain (N:JN~) . In [9] it is shown that M -dimensional Markov chain is ergodic if one

finds such ergodic two-dimensional Markov chains (N:.N~) that (Bt) is satisfied for all n,

mE U. Therefore, to prove the theorem we must establish ergodic condition for (/~:. N~). Bur

Malyshev conditions [2] [9] state that the two-dimensional Markov chain is ergodic if the follow-

ing conditions are satisfied:

(i) a",>O,am>O implies qfNl,d",(m» 0 and qfNl,dm(n» 0

(ii) an .5 0, am > 0 implies qmJI dn(m) > 0

(iii) a",> O,am.50 implies qfNl,dm(n» 0
where

M
q - IT

fll1I- j=\
I#.n,m

Note now that (see (11) )

(B2)

(B3)

lhat is, d",(m) and dm(n) are linear functions of A", and A.m , (see Fig.B1 ). Let us assume now

that qfll1l#O for all n,m eU, Le. O<r,.< I, n eU (if any ofrj ,i=I, ... ,M is equal to one then

ergodicity conditions might be established using Lyapunov function method [9]). Then, because

of (11) the condition (i) is satisfied whenever a",> 0 and am> O. Moreover, dn(m)=dm(n)=O
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fora,. =om =0. Therefore, the conditions (i) - (iii) hold if

dn(m»O and d"..(n» 0 for rll::;;r", (Fig.B 1a)
crif

dll(m» 0 or dm(n» 0 for '11> rm (Fig.B Ib)

what proves (19).
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NOTATIONS

Definitions ofsets:

U={I,2, ... ,M}

C,t ={(i I,i 2' ...• i,t}): ij £. U; 1$.j $. k, i/*ij iff 1* j}

C.t- [n 11 ... ,nh]={(i hi2.· ..• i,l;)£ Cj;: ij£.U-{n I•...• nh}}

E ~ ergodicity subsets defined in (21).

Random variables:

N: -queue length in the n -th buffer at the beginning of the k-th slot

ENfl - the average queue length in the n -th buffer

E,tNfl - the k -th lower bound for the queue length ENfl
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EkNn ~ the k -th upper bound for the queue length EN1/.

G (z) - the generating function of the queue lengths (N I •... •NM )

Xn - arrival process to the n -th buffer; An =EXn J (J;= varXn

Hn(z) - generating function of X"

2" - conttol variable; Pr{Zn = I} ='/1' Pr{Z" = O} = 1- r /I = Tn

Boundary junt:tions:

Miscellaneous

M ~ number of users

- -l!-{.J , . d ( - - , Uan-T,,' -11./1. /I m)-a"T,.+amTn. lorn,m E

M
; qnm= n (I-Tj);

j=1,1"11 ,m

M
arr= nat;

k=l

M
arr(n)= nat;

k=l,n

M
ar-(n)= L a,

k""l,otn
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