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Abstract

Conflict resolution algorithms (CRA) for broadcast communications have become increasingly
popular since the work of Capetanakis as well as Tsybakov and Mikhailov (CTM-algorithm). In
this paper we consider a class of CTM algorithms for which a common recurrence equation for
the expected length of the conflict resolution interval is found. An analysis of the equation is the
primary goal of this paper. A closed form expression for the solution of the recurrence is given.
Then we present an asymptotic approximation of it. In addition, we solve a functional equation
associated with the recurrence and study a small value as well as an asymptotic approximation of
the solution. Finally, we apply these approximations to compute maximum throughput of some
CRA algorithms. We also point out that the studies are not only restricted to analysis of CRA
algorithms, and a wide class of algorithms might be investigated by the proposed recurrence
equation.

Categories and Subject Descriptions: C.4 [Performance of Systems]: Model Techniques: D.4.8
[Operating Systems]: Performance: Queueing theory, F2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical algorithms and Problems: - computations on discrete
Struclures.

General Terms: Performance, Theory, Algorithms

Addidonal Key Words and Phases: Conflict resolution algorithms, recurrence equation,
asymptotic approximation, performance analysis.

1. INTRODUCTION

In a broadcast packet-switching network a finite or infinite number of users share a common
comrmunication channel. If no central coordination is provided, then packet collisions are inevit-

able. The problem is to find an efficient algorithm for retransmitting conflicting packets. A
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variety of conflict resolution algorithms (CRA) have become more and more popular since the
work of Capetanakis [3] [4] as well as Tsybakov and Mikhailov [16] [17]. The common assump-
tions specifying the environment are:

- infinite number of users

- a single, error-free channel is available

- the channel time is slotted, and a slot duration is equal to a packet transmission time

- propagation delay is negligible

- the users are identical

- at the end of any slot each user can determine a status of the slot, that is, with a binary
feedback channel a user distinguishes only between collision and no collision (
something/nothing), and with ternary feedback channel a user recognizes idle, success

or collision slot.

The basic idea of CRA is to solve each conflict through a conflict resolution interval (CRI).
In such an interval a conflict of multiplicity n is partitioned inte conflicts of multiplicity smaller
or equal to », and this process is continued as long as » conflicts of multiplicity one (success) are
reached. The partition can be made on the basis of a random variable [3] [4], [13], [16] or on the
basis of the time when the user became active [1], [6], [17]. Many modifications of the basic
algorithm are ‘possible depending on the additional information acquired during a CRI [2] [9]

[107 [12] [13] (for more details see also next section),

The average and higher moments of a CRI length are an important information needed to
determine the maximum throughput ard to compute other issues characterizing the algorithms. It
is proved that the expected CRI length satisfies a linear recurrence equation [9] ,[13] which has a
common form for a class of CRA algorithms. Each algorithm in that class is modelled by this

equation with an appropriate additive term. Although we restrict our considerations to CRA. algo-
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rithms, there are many other algorithms in the computer science field which might be analyzed by

this recurrence. Therefore, study of the recurrence equation is the primary goal of this work.

This paper is organized as follows. In the next section we describe three CRA algorithms
which are considered as motivating examples for studies of a linear recurrence equation in Sec-
ton 3. To cover a wide class of algorithms (in particular CRA algorithms) we assume that an
additive term in the equation is any sequence of numbers. Under such an assumption we solve the
recurrence and present an asymptotic approximation of it In addition, for some cases we find a
solution of the functional equation for the generating function associated with the recurrence.
Then, a small value anci asymptotic approximaton for the generating function is presented.
Finally, in Section 4 we apply the studies to throughput analysis of the three algorithms discussed

in Section 2,

Previous analysis of CRA algorithms was mainly restricted either to direct numerical com-
putations of the basic recurrence [1], [2], [12], [16], [17] or to analytical solution and asymptotic
approximation of a given recurrence describing a conflict resolution algorithm [5], [9], [13]. We
extend these analyses in the sense that a class of CRA algerithms is studied through a common

recurrence equation.

2. CONFLICT RESOLUTION ALGORITHMS (CRA)

In this section we shorily describe three CRA algorithms, which are considered as motivat-
ing examples for general studies of Section 3. The first algorithm presented here is static V-ary
tree algorithm with arbitrary biased coins and binary feedback [13), i.e., it is a generalization of
Capetanakis-Tsybakov-Mikhailov (CTM) algorithm [3], [4], [16] with asymmetric tree. We call
it, in short, a CTM-algorithm with V-ary asymmetric tree. Next we discuss static modified V-ary
tree algorithm with arbitrary coins and ternary feedback, which is called i':ere modified CTM-
algorithm with V-ary asymmetric tree. For both algorithms a collision is partitioned on the basis

of a random variable ( stack-type algorithms) in the contrary to the third discussed algorithm
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where a partition of a collision is made on the basis of the time when the user became active {
interval-searching algorithm [6], [17]). More precisely, the last algorithm is a dynamic V-ary tree
algorithm with multbit OR-channel overhead and binary feedback, called here interval searching

algorithm (abbreviated ISA} with multibit overhead.

2.1 CTM-algorithm with V-ary asymmetric tree

‘We assume a binary feedback channel and blocked-access protocol [12], [13], that is, a user
recognizes only collision/no collision, and new packets remains blocked until the current conflict

resolution interval (CRI) terminates, Then, the algorithm works as follows:

i)  Whenever a user becomes active it tries to transmit a packet in the next slot. The access

protocol specifies who is allowed to do so.

ii)  Each active user maintains a conceptual global stack, and at each slot-end it specifies its

position in the stack according to the following procedure:

1.  All users at level 0 are allowed to transmit their packets in the nearest slot.

2. Ifit was not a collision slot, then a user becomes inactive and all other users decrease

their stack level by 1.

3. Ifit was a collision slot, then all users at stack level i >= 1 change to level i + V-1,
The users at level 0 are randomly split into V groups and they are placed at 0,1,. ..
,V-1levels. The partition is made on the basis of a random variable, that is, each user
at level zero selects randomly and independently of the other active users an integer in
the range [0, V-1] with probabilities p, ..., py, respectively.
iii) This algorithm is repeated as long as the initial conflict is resolved. To know when the ori-
ginal collision is solved each user has a counter which is set initially to zero, incremented
by V-1 for each collision and decremented by one for any non-collision slot. When the

counter is decremented to -1, then the orginal collision is resolved, and the counter is



zeroed again.

This algorithm is summarized below in the procedure RESOLVE, which is activated at each user

at the end of any slot:

procedure RESOLVE  (V:integer; var top: integer; M: array [1..max: integer] of integer);
{M represents global stack, and M(i) conlains the number of packeis at level i; counter is a global variable
which indicates when a conflict is resolved; RANDOM is a procedure which retuns a random number in

the range [0..V-1] with probabilities p; p s ..., Py, respectively}

var ik: inteper;

collision: boolean;

begin
iIFM(0) = 0 or M(0) = 1 then begin
collision: = false; counter: = counter - 1;
for i: =1 to top do M(i-1)}:=M(i); top:=top -1
end

else begin

collision: = true; counter; = counter + V-1;
for i=1 to top do M(i+V-1):=M(i); top:=top+V-1
end
if counter = -1 then counter:=0 { conflict resolved,restart counter}

else begin

for i =1 to M(0) do begin

RANDOM (k);
Mk)=M(¥) + 1
end
end; {RESOLVE}
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To analyze the algorithm let N; denote the number of users transmitting at the first slot of
the k-th CRI. We call N, multiplicity of the k-th conflict, and we omit the index £ when no con-
fusion can arise. Assume now N=n, then by L, ( random variable ) we denote the conditional
length of a CRI with multiplicity n,and by I; i =1,2,...,V,I;+I;+...+Iy =n we define the
number of packets at level i —1 in the global stack after random distribution of the collision.

Then, the algorithm implies that

L,=1 n=0,1
Ln=1+L11+LL+"-+LIv nz? (1)
and
. . . n! oG : V..
Prili=jul=j2 . ...Iy=jyIN=n}= ————pip.p¢, Xi=n )
Ji1Ja-Jdy: E=1
Denoting
n)% n! . .

def
and L, = E{Lny|N=n}, then by (1) and (2) the conditional average length of CRI , L,,, satisfies

the following recurrence
Lo=L,=1

R ®
Lﬂ=1+z [j ]p{'p-f ...p&v(le+Lj2+...+Ljv)
J

where the sum is over all j=(j ,...,jy) such that j j+ jo+...+jy =n,

To determine the maximum throughput of the algorithm, Ap,,, note that N; is a Markov
chain [5], [16]. Then, by Pakes condition [14] the process {Ng,k20} is ergodic if

lim sup E{N; ;1= Ni| Ny=n}< 0. But ENg,;=AE Ly,, where A is the input rate of new packets

e
generation. Hence, limsup E {AL, — n} < 0 is sufficient for ergodicity, and if A< Ap,, where
A=y

Ly,
Amix= lim sup— (4)

—pon n

then the condition is satisfied and the ajgorithm is stable.
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2.2 Modified CTM algorithm with V-ary asymmetric tree

The basic collision resolufon mechanism is the same as described above except that ter-
nary feedback is assumed. Note now that if after a collision I; =I,=...=1Iy_; =0, { the next V-1
slots are empty ), then the next slot must contain a collision ( Iy > 1 ). This can be simply
avoided if after V-1 consecutive empty slots following a collision slot we immediately activate

procedure ii3) from the previous section. Therefore, instead of (1) we find

1+Ly +Lg+...+Ly, otherwise

and the recurrence for L, becomes
Lo=L;=1

N ®)
Ly=1-pf+3 [i]p-[’...p&"(Lj‘+Lj=+...+Lj,) nz2
J

The main difference between (3) and (5) lies in the first additive term of the linear recurrences (3)
and (5) for n 22. Moreover, the same analysis as before shows that the algorithm is stable if

A< Amax, Where A, is computed as in (4).

2.3 Interval-searching algorithm with multibit overhead

In that case we assume binary feedback channel and Poisson armrival of new packets. The
algorithm combines interval-searching strategy - introduced by Gallager [6] and Tsybakov-
Mikhailov [17] - with V-ary symmetric voting mechanism employed by dedicating a small frac-
tion of the channel capacity to feedback overhead. More precisely, each channel slot consists of
two parts: the first one corresponds to data packet transmission , and the second part is composed
of V minislots. A minislot is capable of carrying at least one bit of information. Equivalently, we
may assume that a packet contains a standard data packet and V-bit subfield used for overhead

purposes. By 8 we denote the ratio of V minislots duration and data packet transmission time.
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Each time a user transmits a data packet, he also sends 2 pulse in one of the V minislots , and the

algorithm specifies which minislot is chosen.

This is an interval-searching algorithm what means that the partition of a collision is made
on the basis of time when users became active. At each step the algorithm marks 2 subset ( an
interval) of time axis called enabled interval (EI), and packets which fall in it are transmitted in
the next slot together with pulses in appropriate minislots. The duration of the subset depends on

the past outcome of the channel.

More precisely, access to the channel is controlled by a window based on the current packet
age and content of minislots (something/nothing) of the current slot. Let s; denote the starting
point for {-th El, and ¢; is comresponding starting point for the conflict resolution interval (CRI). A
conflict is solved if all packets which fall into the initial EI are successfully sent in the
corresponding CRI, Initially, the enabled interval is set to be [5;,min{s;+x,}), where x is a con-
stant which will be further optimized. This EI is also divided into V identical parts, say
EIEl,, ... Ely, and packets which fall into EI}, [=1,2,..,V, send a pulse in the / -th minislot . If
at most one packet falls in the initial EI, then the conflict resolution interval ends immediately,
and- 8; =s;+min{x 4;—s;}. Otherwise, the first nonempty minislot is found, say the I* -th, and the
algorithm skip over {* -1 parts of the EI, inspecting next the {* -th part of the EI. The above pro-
cedure is repeated for EI. A CRI that begins with a collision continues until all packets from the
initial EI are successfully sent. Then, the next starting point for EI is computed according to
Sip=sy+minfx | 4—s;}.

This algorithm is a slight modification of multibit feedback algorithm discussed in [2] ( see
[2] for more detailed description of the algorithm ) , however, our algorithm is FCFS (fist-come-
first-serve). Moreover, contrary to the Gallager-Tsybakov-Mikhailov algorithm [6], [17] we

resolve a whole initial EI before next El is analyzed.
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To investigate the algorithm let N, L* denote the multiplicity and the length of CRI for the
k-th conflict, respectively. Let also L, =E {L*|N,=n}. We normalize L, with respect to data
packet transmission time. Then, the following recurrence holds

Lo=L,=14PB
L,= 1+|3+§"Pr{U1 =j,Uz=js...,Uy=jyl N=n} LA +LL+.. +L})
where the sum is over all j such that j+j,+...+jy =r,and Pr{l =, ..., Uy = jy} denotes
the probability of jy j, ... jy amivals in the first, second,. .. , V—th part of a EI, while L;! is the
expected length of CRI for U;-conflict. Assuming Poisson arrivals one immediately obtains (as

a consequence of uniform distribution of events in a Poisson stream):
PriU =j,Uz=Jjs..,Ur=jyl N=n}= E:] (awvy

Moreover, according to the algorithm rule it is clear that

1.0 j=0
Li=g; 521

Then, after some algebra one finds
Lo=L;=1 +B

’ o (6)
Lo=+p vV 3 [2]pigniL,
j=0

wherep =1/V andg=1-p.
More sophisticated analysis is necessary to determine the maximum throughput of the algo-

rithm. It follows from the fact that N, is not longer a Markov chain. Fortunately, it is proved [2],

def
[17] that so called transmission lag, T}, defined as T, = #,—s; is a Markov process with continu-

ous state-space and discrete time. Then, by Tweedie’s condition [18] the process is ergodic if
E{Te—Ti| Te2t}< Qfore=r%, ¢ is a finite real number. But, one can show that [2], [17]

E{T—Tyl Tp> x}=E{L*| T, 2x}-x )
On the other hand, {T;=x} implies that the length of the &-th enabled interval EI is equal to x,

so the average number of arrivals in this interval, p, is equal to p =Ax, where 2 is the arrival rate
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for the Poisson process. By (7) the following condition x > E{L*| T,=x}=E{L|EI =x} is

sufficient for ergodicity and the maximum throughput of the algorithm is

Aax= FQ)= EL,,J:L'e"‘ (8)
n=0 -

su )
)
Note that F (t)e! is exponential generating function for L.

3. A RECURRENCE EQUATION AND SOME APPROXIMATIONS

Generalizing the above three examples we consider a sequence L,, n =0,1,... which

satisfies the following recumrence
L O L 1— given

(%)
L, —an+bzﬁp{pf ff(L +Lp+..+L;)

where the sum is over all j suchthat j1+jo+...+ jy=n,and V, b, m<V are constants, a, is a

v
given sequence, and Y’ p; = 1. Let
i=1

P.I.

. L(z)= Z L, —
be exponential generating function for L,. 'I'hen after some algebra we find the following func-

tional equations for L (z)

L{z)-b EL(P.'Z)EXP[(I—P;-)Z]=A(Z)—t'o—112 (10)
i=1

where A (z) is exponential generating function for a,, and

lo=ag+Lo(mb -1}
m (11)
11=a1+b(L1—Lg) zp; +Logmb — L,
i=1
Let us define now a new function H(z) =L (z)e™. Multiplying both sides of (10} by ¢™

find

H@Ez)-b f', H(piz)=A(z)e™ —lge™ -1 z¢™* (12)
i=]

This functional equation is suitable for establishing a closed form expression for L,. Therefore,
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let us introduce a sequence d, defined as

b= 2 |-y 13
Note also that
A@)e™ = 3 41 Zmd(2) 14)
n=0 B

Relationship (13) is well known in the combinatorial analysis. In fact, a, and 4, represent so
called inverse relations [10] ,[15] that is, ci";, =d,. In [15] a number of inverse relations are

presented. In particular,

ay = [ﬁ ]c" d, = [’: ](-c)"(l-c)""’ (15)
where §,,, is Kronecker delta.

Now a closed form solution for L, might be established. Define &, as a coefficient in Tay-

lor expansion of H (z), that is, H (z) = 3, h,z". Let also k* be such an index & that
n=0

1-b 3 pF=0 16)
i=1

Then, equating the coefficients of power z in (12}, and taking into account (14), (16) we find

-

[0 k=0
e = Klo+dg =1
ki(l-5 rr'p,")
:'{Jl k> 0 and k#k*

-

However, the relation L (z )= H (z)e ~* implies that

Ly=nt3 —
i (n=k)!

Moreover, h;+ may be found either from the boundary conditons (L, L) or from recurrence

equation itself. For example, we may apply formula

h =2 I a”)
BT A i)
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and for b=1 (17) becomes 4 ; = (L ;—L ), where &*=1. Finally,

| Hird=to s

_ n! - x| 7
Ln_LO""mhk' +‘§1 -1y [k m
v 1=b _Z'ipi

In some cases we can optimize L, with respect to p. For example, if Lg=L ,, m=V, b=1,

and 4 does not depend on p, then it is easy to prove that

L,=min for all » iff p;=WV, i=12,.V (19)
what suggests that V-ary symmetric tree is optimal in this case.

Asympiotic approximation

It should be noted that the equation for L, given by (18) is neither useful for direct compu-
tations of L, nor interesting for throughput analysis. It is a consequence of the fact that the factor
(—1)" leads to numerical instabilities for n > 20, and the formula is too complex to derive some
qualitative properties of L,. However, (18) might be used to establish an asymptotic approxima-
tion for L, and produce easily verifiable conditions for stability of algorithms ( at least for the
first two algorithms discussed in the previous section ). Therefore, we now deal with asymptotic
analysis of L, for n—oo. Naturally, the most difficult te handle is the sum in (18). It is not rea-

sonable to derive an asymptotic approximation for any sequence a,, therefore, we restrict a class
of the sequences to a, = [’:]c", where ¢ is a constant and r is an integer. Then, d, is given by

(15). Note also that the first and the third term in the numerator of (18) may be considered as spe-
cial cases of the sequence a,, namely for r=1,c=1 and r=0,c=1, respectively. Concluding,
asymptotic analysis of (18) with a, given by (15) might be easily derived from asymptotic

analysis of the following

S(n ,r,d,c)=’§2 1yt [E ] [f ] < (20)

n
where ¥, d;=D,0<4d; < 1, ¢ is a constant and r is a non-negative integer. We often write

i=1
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S(n,r}instead of S(n,r,d,c).

In the further part of this section we focus our attention on (20). For simplicity of the fol-

lowing derivations we consider separately three cases, namely r=0,r=1 and r2>2.

Case r=0. Expanding the reciprocal of the denominator of (20) in a geometric series we find that

ck

S(n,0)= f‘, -1)* [2] ————=pD"1 i Dt [’}c] ck f‘,D-‘ (_ﬁ abl =
k=2 D— E df k=2 =0 i=1

i=]

D'lé(—l)k [’1 ] ;94 z [j ] (c 5131 iy

21)

n .
where the last sum is over all j such that j, + jo+ ...+ j, =. Let us define now ¢ =c¢ sl'Il ai.

Note also that [15]

S 1 gt =1~ 4 +no—1
’Ez( )[k]¢ n

hence (21) becomes
S(r0=D13 D'y [Z ] (1-¢)" +n$-1]
1=0 7
Introducing x = #¢ and noting that (1 — =) = e~ +x20 (n~!) we may approximate S (» ,0) by
n
Tm0)=D ¥ D'y [:' ] [e™ +x = 1]
1=0 7

But using Mellin transform we find that for x>0 [8],[11]

eF+x—1= [ Tlxde (22)
(-312)
1 ctio
where I'(z) is gamma function [8] and the notation _[ stands for o _[ . Then, for Re (z <0
{c) c—im
L] =7 .2
T(H,O)=D_1 I I'(z) Z D E [; ] n—z¢—z — J __I:(_z_)nmc—dz (23)
-v2) =0 ] -¥2) D - z d‘_—z

i=1

since an appropriate geometric series is convergent for Re (z)< 0.
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Case r=1. Let us compute S (n+1,1) instead of S (,1). Then, by the same arguments as above we

obtain
oo a4+l
Sn+,1)=D' ¥ DY [;] f‘, 1 ["Il ]kq;" (24)
=0 J k=2
Noting that [15]
n+l
2 et ["Il ]fc¢" = (r+1)9[1 - (1~4)"]
=2

and evaluating the expression in the square brackets of the above by 1—e ™, where x =n¢, we

finally approximate § (n+1,1) by T{n+1,1), where

T(n+l,1)=D1 3 DIy [J" ]¢[1 — e (n+1)
= ]
But , by Mellin transform [8], [11]

1-e*=— [ TEx~d (25)
-12)

hence, manipulating terms of (24) we obtain for Re (z)< 1

T(z)n2cl2dz

T(n+l,1)=—(n+1}) (26)

m
i p -3 4l
i=1
where an appropriate series in (26) is convergent for Re (z)< 1.

Case r = 2. We compute S (n+r,r) instead of S(n,r). The same procedure as above applied to

S (n,r) gives formula similar to (24), however, the last sum becomes

Tt [ (k=T [ (2 Jet e 73 Jraor

ka2

Approximating (1 —¢)* =(1—x/n)" e™* +x20(n"") and noting that

e*= | Tzx7dz @n
(V)

we finally find an approximation T (n+r,r) of S(n+r,r) where

rearn=ey 7] [ T 8y
@ p_ 3 ar

i=1



-15-

assuming Re(z)<r .

To justify the above approximations we prove that

Theorem 1. Forall » and n
Stn,r)=Tr,rY+0(1)
Proof. The proof is based on the idea presented in [9]. We assume that r>2 (for r=0,1 the proof'is

similar). Let us denote 8(d,n)=T(n+r,r)—S(n+r,r). Then

samy=c1y | " | b s oty [ or le= = —xmy 29
my=c1y ("7 ] 3 }j:[]]qa[e (A—sxmy | (29)
Note that
x2 x
e X —(l-xin"'s—e* <= (30
n n

where the last inequality follows from xe ™ < 1, x>0. Now split the sum over { in (29) into three
parts 0! S ny,n S < ny I 2 ng, where

ni=[nna-In{+Dinnlnd? ny=Inn/in(Dia)
and

m
d=mnd, a=%d*
o gicy Y El ¢

For 0 <1 <« n, we use the first inequalities of (30). Then
51—1
Sl(d,n)= O n7Hp-? E p-! Z [{ ]¢G)r+l e e
1=0 7

where in the last expression we show explicit that ¢ depends on j. But, by the above definitions

of d, and §(j) , we find that §(j) = d! > d*' = ¢* (n,) and e™"*0) < 29" ) Therefore,

JI]—I
5y(dn)< 0 [“”1“"_”-("”9'1 Z 07V E [ ] =0 (expl(r+1)ln 1 — n¢* ()]
1=0 ]

Note that by our choice of ) one finds that (r+1)Inn — n* (n)) < 0,s08;(d,n} < O(1).

For! > n, we use the second inequality in (30). Then
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53(d.ﬂ)=0[ ) D““): [ ]w)’“ ] < O[n' 3 DT arty

faﬂ: .[Zﬂg i=l

O(n"D™a"Y(D—a))=0(n"(@/D)')=0(explrinn +n,in(a/D)])
and under our choice of n, the exponent is negative, so §5(d,n ) is O (1).

Finally, for ny <! < ny we apply discrete version of mean value theorem and arguing as in

[9] we prove that 8,(d,n) < O (1).

By Theorem 1 the evaluaton of S {(n,r) is reduced to computation of T (n,r). A suitable for-
mula for T (n,r) is given in the following

Corollary 1. Forany n , and r

T(ntr,r)= (—1y 22X ("+’)‘ [1+0@™1G (n,r) (31a)
where
r-1-z
Gnr)= Hene) —dz (31b)
(l1i2-[2-r]" D - Z d‘_r—z
i=l
and a*=max{a ,0}.
Proof.. By (23), (26) and (28) we find immediately that
-z .r—z
T(n+r,r)=(1y [n:—r ] Tzjnc” 2dz mc dz
-0l p -y dr-
i=1
Noting now that
[”:" ] == (n+r) % [1+1/n [ 142n ] - [1Hr-1)n 1= "—*’ [140 (n7Y) ]
n :
we obtain (31).
O

The evaluadon of the contour integral in (31) is routine: one goes from (a,-—iN;) to
(a,iN ) to (N9,iN |) to (N, — iN{) to (@, — iN ) in a negative sense, where a =% —[2—r]*,r 2 0.

For N;—>ee the  horizontal parts of the integral  vanish  since
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| T(¢-+N)] = O (| ++iN |~ % e~/ [19], while vertical component (N, —iN ) decays due to
the factor n"~1~% [8], [19]. Hence, the required integral is minus the sum of residues of the fune-
tion under the integral to the right of the vertical line fixed at point @ = %2 — [2~r]*. The function
under integral is analytical except the roots of the denominator and eventually poles of the

gamma function. Letus denote by z{, r =0,1,..., ¥ =0,%1,... the roots of the denominator, that is

D - E dri=0 (32)

i=1
This equation is quite difficult to analyze, and only for few isolated values of d may be solved
[51,[11],[13] , and it is proved that the roots of (32) are well separated [5]. Naturally, for k=0 we
have z§ =r — 1. Note also that z§ =—1 and z} =0 coincide with the poles —1, 0 of the gamma
function, while for r 2 2 z[ # nonpositive integer. Let us denote by g,(z) the function under the

integral. Then

G{n,r)= J g(z)dz =—[1-rT'res go(0) —res g, (r—1)— ¥, rmsg (zf) (33)
{(12~[2-rT) 20,r-1

where res g () = re=s§ g (z). Letus also denote the sumin (33) as f,_;(nc). Then
F4

TDn 84z
frafn)=- ¥ ———— (34)
nlr~1 ¥ dir—zk Ind;
i=1
or in another form

T r-1-z -
Fooin)= J- (Z)nm dz + T'(r-1)

m
a2 p Z dlr—z Z d;1nd;

i=1 i=1

(35)

This sum is quite difficult to evaluate, In particular, it turns out [10], [11], [13] that the function
fr_1(n) does not necessary have a limit as 2—ee ( fluctuating function ). Fortunately, for small
value of V f,_j(n) is extremely small and may be safely ignored in practical calculations ( see

also Section 4).

The second term in (33) is also easy to evaluate for r> 1, since
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I"(r 1)

Y d;lnd,
i=1

resg.(r-1)= r>1 (36)

however, for r = 0,1 more sophisticated computations are needed to compute it. In Appendix

we prove that

1
res g o(0) = D] (37a)
B
resgo(-1)=— ’"("ch)d”'l - ﬂfzz (37b)
d
h 2)
resg (0)=+ l"(';f:” + 2:2 (37c)
d

where ¥=0.57721 is the Euler constant, and

m m
— 3 d;Ind;, h§P =Y, d;(Ind;)?
i=I i=1

Thus we have shown that

Proposition 1. For any » and r the following holds
)

In(nc)+ "f-l 42)

S(n0)=nc{ A 2h2 +f—1(ﬂf-‘)}— +0(1)
In(n—l)e+y r
S(rn,1)=nc{ Py 2}: 7 —fol(n-1)c )} +0(1) (38)

ﬁ(f 2)

S(rry=01) +fral(n=ric)}+0(1)

Progf.. Tt follows immediately from Theorem 1, Corollary 1 and the above analysis.

Formulas (38) might be used to evaluate an asymptotic approximation for

n Py(k)c*
S(n.Py)= 3 1) [2 ] —
k=2 D-3 df
=1
where Py (k) is a polynomial of &, i.e.

N
Py(k)=Y ek’®,

i=0
where ¢; are given coefficients. To show it, note that [11]

Al
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where {j }is a Stirling number of second kind. Then,

N *
S(r.Py)=Y e X {i ]v!scn.r)
s=) r=0

where S {n,r)}is given in (38).

Functional equation

To compute maximum throughput for ISA with multibit overhead we must evaluate the
function F (u) which is defined in (8). But F{u)=L u)e™*=H (i) where L(L) is exponential
generating function of L,, and A (1) satisfies functional equation {(12). Approximations of L(z)
and H (z) might be computed from (38), but a direct solution of (12} gives better insight into the
behavior of the algorithms and produces better approximation, In this subsection, we solve this
function equation for a special case which will be further used to evaluate A, for the third algo-
rithm. Note also that H (i) is unconditional average length of CRI. Moreover, many other quan-
tities of interest might be calculated through H (). Therefore, an explicit or approximate formula
for H () is very important for detailed analysis of the algorithm.

Solution of functional (12) is too troublesome in its present form. Therefore, for simplicity
we solve it only for two cases: either we assume m=1 or py=p Or p1=ps= """ =pp=p.
Moreover, instead of finding H(z) we put h(z)=H(z)—Lg (note that now A (0)=0) and (12)

under the above assumption is

h(z)=oh(zp)+f(z)e™ (39)
where

f2)=A(z)-lo—1 1z +Loe* (1) (402)

lo=ag+Lolo—1) (40b)

ly=ay+op(L,~Lo)+Lgo~=L, (40c)
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b for m=1,p=p
=

bm for pi=po= * =Pm=p (40d)
Yterating (3a) n -times and letting # — co we find that
h(z)=h*(2)+ Y of f (pFz)e ' (41)
k=0

where A* (z)=k1im o n(p*+1z). Eq.(41) holds if A*(z) exists and the series is convergent.
—pca
By D’ Alembert’s criterion [8] the latter is satisfied ifaklim F @ 2)f (p*z)< 1. But h(0)=0
— oo

implies f (0)=0, hence {'Hospital rule shows that the following condition

re k4l
ap Lim ﬂf’k—z)u (42)
ke f(pkz)

is sufficient for the series in (41) to be convergent . If £'(0)#0 then op < 1 implies conver-
gence in (41). For £’(0)=0 by I’Hospital rule we show that

wre ktl
ap? lim L2 . | 3)
k—e fU(ptz)

must be satisfied. We prove that

Corollary 2. If pa=1 (0<p < 1) and f”(0)+0, then (41) is a solution of (39)-(40) for any z

with A% (z)=z(L —L).

Proof. By (40a) one shows that f (0)=0 and £’(0)=0 for pa=1. Hence by (43) the series is
convergent if p <1 what is assumed. Moreover, if the series is convergent then

k]im a"f(p"z)e"f"=0 must be satisfied. Since a=1/p > 1 and f (0)=0 this is equivalent to
—5 o
(u=p*z)
i k k2y=1li —+ k2 y=z 1i -‘f—(u)= li (M=0
kl-l—?lwa A kh-?]wp fp72) zx;h—linﬂ u zul—I}nOf ©

The last equatity holds since f’(0)=0. To prove the formula for #* (z) note that



-21-

B*(z )=gli_,mmak+lh @*z)=z “11'310 h E‘u)

=z h'(0)

and finding &’ (0)=L ;—L o one proves the corollary,

O

In Corollary 2 we have restricted our analysis to pot=1 since it is the most interesting case for

us. However, the same idea might be used forpot# 1,

Formula (41) is not very useful for computation, and - what is most important - it is not

suitable for some approximations. Therefore, we prove

Theorem 2. Under assumptions of Corollary 2 the following holds

H(z)=L+z(L PN - o 44
z)=Lotz(Ly—Lg) Eﬁ( ) i l—p ) (44)
where

fe=dp— Lotk +Loo—1)8,0 (45)

Proof. Note that by (14) f (zp*)e "= f (—zp*). Hence the series in (41) with aip =1 is equal to

S pH =T pt T CI S o= B 1 ——
k=0 k=0 : =2 n:

n=2 (1-p"

where the sum staris with =2 since f o=f 1=0. Formula (45) follows directly from
f(=2)=f (z)e* and (40a).

O

Equation (44) is very useful for small value approximations, that is, for approximation of H(z)

for z < g, € is small real number. Then

M k
H(z)=Lo+z(L1=Lo+ Y (-1) fiz +0 M (46)

) kN1-p*)

where M > 2, and M is rather small integer. However, for an asymptotic approximation for i (z)
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we need a little more sophisticated analysis.

For the purpose of asymptotic analysis we use (41) and assume that a,, is given by (15), that

isA(z)=(zc) /rle*. Note also that (40a) may be rewritten in a form

f@)=A(@)~apgaiz +Lgla-1)[e*—z—1]

Introducing
def r
re = (Z:') e’ —ap—ayz
we find that
F@)=F, (z)+Lola—1)Fq,(z) (47)

and analysis of (41) is reduced to an asymptotic approximation of the following series

szire)= 3 pFF, (zph)e ™ (48)
k=0

Note that ag=a =0 forr 22, ay=0 for r =1 and a0 for r =0. Therefore, three cases must
be considered. We present below detailed analysis for r =2, while for r =0, 1 only some hints

and final results will be given.

Assume r =2, Then zg=a ;=0 and one finds

r &=
s(z,r,c)= (Z‘:‘) Epk(r—l)e—zp‘(l—c)
Tk=0
For ¢ =1 we find immediately
s(z,r D= 2’ (49)
T ora-ptth
For 0 < ¢ < 1 we use Mellin transform (27) and after some algebra we find
r AT el-x
s c)=—->7=FE J- I'x)z(1—e)] dsc (50)

ril—cy ! 4 p-p’*
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But the integral is equal to G(z,r,p,1—c) defined in (31b) and analyzed by (33). Hence we

immediately find that

ze” {V(r—2)!
(1-cy ! oV

+fro1liz —r)(1-c)}+0(1)

s(z,r.cl)=

forO< c < 1.

Forr =1 we have g ;=zc and a4=0. Then (48) becomes after some algebra

s(z,l,c)=zc i [(1- e-ZP') -(1- g~ (l~e)
k=0

Using now Mellin transform as given in (25) we find for0<c < 1

s(Ley=—zep{ | TERT g4 TOEA-CNZ (52)

iy P=p'* dm p-p'7
. and for ¢ =1 the second term is (52) should be dropped. Thus the problem is reduced to evalua-

tonof G(z,1,p,1)and G(z,1,p,1 —¢) ( see Eq. (31b)) as it was done before.

Finally, forr =0 ag=1 a,=zc (48) may be transformed into

$@0,6)= Y, pH(1 -8, )[e P =14 (1=c)pFz]—[e ' — 1+p*z ] cp*z[e "~ 1]}
ko0

Hence, using Mellin transforms (22) and (25) we may argue as before.

The following proposition summarizes the results

Proposition 2. For z — - and

(yec=1
s(2.0,1)= 7~ [f ol = D)+ @)1 +0 (1) (53a)
s(z,l,l)=z{%)ﬂ+%—%fo(z—1)}+0(1) (53b)
s(z,r,1)=r—!(li;Tl), r22 (53c)
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(ii)0<ex1
=% -1 - -
s(z,0,c)= lW{c:ln(l z)+(1 cn(l—c)+c }+

, c (54a)

i =) l(1=c)z]-F a(z)—cf ofz)}- V—1 +0 (1}
5(z Ic)—zc{—l-n—(l_—c-);l-—i[f -D—folz-1D(1-c+0(1 54b
)= ™ v U olz olz-1)(1-c)) (N (54b)

_ zc” Vir-2)! _ _
s@re)= oy (g el =r )=o) (54c)
Finally, by (47) and (41) we obtain

H(z)=Lg+s(z,r,c)+Lofa—1Ds(z,0,1)+0(1) (55)

where s(z,r,c) and s(z,0,1) are computed according to (53) and (54), Summarizing, we have
obtained three formulas which might be used to evaluate H (z }: for small values of z (46) is the
most appropriate, for large values of z (53) (54) give good approximations, and for other values

of z we must use (44),

4. APPLICATIONS

Ia this secion we apply formulas (18), (38) and (53), (54) to approximate the average
length of CRI for the previously described algorithms. In addiiom, we find maximum

throughput for stable CRA algorithms, and we solve some optimization problems .

4.1 CTM algorithm

For, by (3) and (18), withLo=L =1, b=1,m=V, a, =1, 4, =8, we find that

L,=14VY (1) [:] =D
k=2 1'2!’!‘

il

Hence, L, = 1 +V[§{(n,1,p,1)- S (»n,0,p,1)], and by (38)
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v -1
> p,-fnp,-] +f ()~ f oln=1) }— S +0Wm
i=1

L, = nV{

Then maximum throughput A, (p,V ) is given by (4) and together with the above we obtain

L,
Aake(®V)= lim sup—- = —— o, (56

= 2 pilop;
i=I

where r l=ﬂli_1)]isup [f -1(n)—f o(n—1)). The value of r, is rather small compared with the lead-
ing factor in (56}, hence in many computations it may be omitted, however, it depends on particu-
lar values of py,...,py ( see [13] and Section 4.3). The advantage of such an approximation lies
also in the fact that it gives an insight into the behavior of the algorithm. Moreover, the approxi-
mation is acceptable - even if value of r is relatively large - from the qualitative point of view
when structured properties of algorithms are studied instead of numerical values of functions
describing the algorithms ( quantitative analysis ). Therefore, considering now only leading fac-
tor in (56) we might easily maximized A, .(p,V) over p and V. In (19) we have proved that L,
is minimized for all nif and only if p;=1/V,i=1,2,...,VV. Then

e (V) = 0% e (V)= 13

and maximizing over V one finds that for V¥ = ¢
s, = M3X Do (V) = - = 03618,

but Ay (2)=0.34657 and Apnu.(3)=0.36620. Taking into account r, one finds that

Amax(3)=0.36611 which is very closed to the value obtained by approximate formula,

4.2 Modified CTM algorithm
In that case (5) shows that Lo=L ;=1 a,=1-p{. Hence, by (15) &, =—1—py)" and
(18) gives

L=1+3 1 k(V—pv) - (I-py) —(V-1)

v
=2 1- 3 pt
i=]
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But, L, = 1 + (V=py)S (2,1,p,1) = S (n,0,p,1-py) — (V=1)S (»,0,p ,1) and

V—py—(I-py)ln(1-py) 14
— — S gm0 (D)
— Y. pilnp;

i=l]

L,=1+n

where f _; o(n)=(V —1-py)f o(n—1)—(V — 1)f _1(n). Then (4) implies

v
— 3, pilnp;

i=1

L,
Amax (P,V) 1 = lim sup —~ (57)

= +r
n Vepy=(l-py)in(l-py)  *

where r;= limsup f _ o(n), and r; is much smaller then the leading factor in (57), however, for
n—rx

bigger V r, is not negligible from the numerical point of view. Mevertheless, the leading factor

is responsible for qualitative properties of the algorithm. Optimizing it with respect to p we may

prove that (57) is maximized iff p; =p,= -+ - = py_; =p and py satisfy the following equation

(V-pyXInp —Inpy +V-2) +Inpy - In(1-py} — (V-2)(1-py)in (1-py) =0 (58)
For V=2 numerical solution of (58) yields the single root po=0.5825, and Apa(2) is then
0.38126. Direct search over the exact formula for A, gives 0.5825 and 0.3808 , respectively.

We have found also that (57) is optimized in a set of real numbers for V* =2.08 with

Amax = 3.8208.

4.3 ISA algorithm with multibit overhead

For (6) we must substitute in () b=V, m=l, py=p =1V, py=qg =1-p. Moreover,

8, = (14B){1-Vq"), 4, =— (14B)Vp", Lo=L = 1+ and by (18)

n k=1
L=y + () 3 1f EE o n20
k=2 PP
and by (38)
Le=apyn LV I gy fone-aepf amvo 9)

Before we present stability analysis let us note that in this case we are able to present expli-

cit formula for f,_j(n) defined in (34), Indeed, for m=1 equation (32) with | =p possesses the
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following solution
zg=r—1+4+2xik/lnp , k=1,+1,%£2,.. r=0 60

Then, the function f,_;{(n) is

Fri(n)= % Y, T(r—1 + 2mik/lnp Yexp [~2mik log,n] (61)
=—0a

k20

= ﬁ 2, Re T(r—1 + 2mik /lnp Yexp [2mik log,n ]
k=1

where Re(z) is the real part of z. This function was studied by Knuth [11] (see also [10]). In par-

ticular, the following propenies may be established.
(P1)  f,(n)is a pericdic function of log,n. Indeed, f,(np)=f.(n).

(P2) f,(n)isbounded. This is proved by using the following properties of I'(z) [8], [19]
|Te) 2=/t siphmt), T(z41)=zT{(z).

(P3) For any fixed a f,(n—a)=f,(r)}+O(n™"), since log{(n-a)=logn + log(l—%) =

logn +0 (™).

In particular, property (P1) implies that L,/r as » — = does not converge to any point, but
it has a tiny oscillaton [10]. In fact, property (P2) tells us how tiny the oscilation is. For exam-
ple, Knuth [11] has computed that for p=0.5 f _;(n) < 1.725 1077, p=0.2 f _1(n) < 8.5 1074, how-

ever, for p =1/16 f _;< 0.0032 which is not quite negligible from the numerical point of view.

Maximum throughput An, for the algorithm is computed according to (8). Note that
FQ=H{W)=hu)+Lp and £{1) is a solution of (39) with a=V and p =1/V ( op =1). Bu,

H () is given by (44) with £}, = (1 43}k - Vp®), that is

H@)=(1+B) 1+§(—1>“w] 62)
k

2 k1-p*Th
In Table 1 for f =V /1024 we compare the optimal value [, of U and maximum throughput A,

found by direct search over (8) with L, computed according to the recurrence (6), with optimal
value p* and A* ., evaluated according to (8) and series approximation (62). The table shows

very good accuracy between i, , ¥ , Aoy and A* gy, however, it indicates also that optimal
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value of W lies between 2 and 8 for 4<V < 16. This implies that neither small value approxima-
tion mor asymptotic approximation may give a good approach of the maximum throughput.
Nevertheless, by (535) H () is H)=1+f +5 ({1,0,1-1/V)+5 (,0,1)+ O (1), and using proper-

tes (P1)- (P3) we find after some algebra

HW=1+Bp{(+InV)inv -v1 f o) —F )1 +(1+BYV-1)inV + 2(143)+ O (1)
Using this in (8) and finding supremum over L we are able to compute A... However, these com-
putation are neither much more simpler than the ones used in (62) ( numerical point of view ) nor
they give better insight into the algorithm behavior ( qualitative point of view ). But this might be
relaxed if we ignore the fluctuating terms f o(l) and f _;{t) which turns out to be much smaller
then the leading factors. This approach is acceptable at least for qualiatative analysis of the algo-

rithm. Then, the supremum of p/H () is reached for i =oo and we find the following approxima-

tion for Apay

w InV
Aan= (1) (1+1nV)

In Table 1 we compare Amay with Apay. It suggests that approximation (63) is acceptable only for

(63)

bigger values of V, however, the advantage of (63) lies in its simplicity.

Table 1

Vi Bope Armax | A*max || Amax
4 2.3 0.6144 || 23  0.6144 [} 0.578
8 50 | 0.6870 (| 5.0 | 0.6870 || 0.670
16 72 0.7456 || 7.2 | 0.7456 (]| 0.723

In particular, (63) shows the impact of V and P on the maximum throughput. Moreover, other
quantities of interest may be evaluated through A (u) which represents unconditional average

length of CRI ( see [5] ). Then, small value and asymptotic approximations can be used.



-29 -

5. CONCLUSIONS

Three conflict resolution algorithms were considered. Two of them slightly generalized
Capetanakis - Tsybakov - Mikhailov stack algorithm, while the third one is an interval-searching
algorithm with multibit overhead. To analyze them we have introduced a recurrence equation
which was solved (a closed form expression }, and we have presented an asymptotic approxima-
tion for it. In addition, small value and asymptotic approximations for a solution of a functional
equation associated with the recurrence were considered. These general studies were applied in

Section 4 to evaluate maximum throughput for the three CRA algorithms.

The analysis of Section 3 is not only restricted to throughput evalnation of the above three
conflict resolution algorithms. For example, a class of tree-type CRA algorithms considered in
[10] might be analyzed in 2 uniform way using the studies from Section 3. Moreover, more
sophisticated performance evaluation of some CRA algorithms may be done through analysis of
the recurrence and functional analysis introduced in this paper ( see [5], [9], [13] ). In addition,
many problems in algorithm design and analysis of computer science field may be reduced to 2
solution of recurrence (9),e.g. for radix exchange sorting [11], analysis of tries [7] and so on.

More examples the reader may find in [7) and [11].

APPENDIX
'We prove formulas (37b) and (37c). For (37b) we have to find the residue of

_ T)ne !
D-% 4~

i=1

golz) (Al

for zg=—1. Note that zg=-1 is a pole of T'(z) as well as the zero of the denominator. To handle

it we first determine an expansion of I'(z) around z =—1. Letw =z+1, Then [8], [19]

T(z4+2)=T(z)z(z+1)
Tw+l)=1—yw +0Ww?

—-1—=—1—w+0(w2),
w-1
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and
Tiw+1 -
I”(z)=ﬁ=-—w T+ (=D +0w) (A2)
Moreover,
(neY 12 =1—win(nc)+ 0 w? (A3)
-1
1 — Y i Fo+OW) (Ad)

D—Edf’= ha

m
where b g=— Z d; Ind;. To find f ¢ we note that

i=]
= 1 S d;? "
foslimyP-X%7 | *y

and

(z+1)?

5 )m: d; (In d;* + O (w3

i=1

D -3 di*=—(z+1)hg-

i=l

Leth§? =¥ d;(in d;)>. Then
i=1
. wRProwhH) rP
fo=lim 2 2 I - o 2
wol 2[wh g +0(w?)]  2h4

The residue at zp=-1 is the coefficient of w1 in the product of (A2), (A3) and (A4), and is

given by (37b).

The proof of (37¢) is similar, however, now the following expansions must be considered

Tz)=z"'-y+0()
(reY*=1-z1Innc +0@?%

1 ==z Yha+hPRK3 +0(2)

m
D— Z d‘_l—z

i=1

The product of these gives the coefficient at z~! which is the desired residue presented by (37c).
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