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ON THE ANALYSIS OF THE AVERAGE HEIGHT OF A

DIGITAL TRIE: ANOTHER APPROACH

Wojciech Szpankowski.*
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

Abstract

The average height of a digital me has been recently investigated in many papers
[2]-[8]. In most works on binary digital tries, a Bernoulli model and independent
keys are assumed. We relax these assumptions in that V-ary asymmetric tries. Ber
noulli and Poisson models. and dependent keys are considered. We show that the
average height of the trie is asymptotically equal to 2 19u n (for the Bernoulli model)
and 2 19w J.L (the Poisson model) where n and I.l are the number of records and the

v
average number of records respectively. The parameter u is defined as u-1 = L p?

i=l
and the V elements of the alphabet are dislributed according to probabilities Pi.
i = 1 I ••• , V. Finally, a generalization to the so called b -tries is discussed. In con

trast to the previous analysis. our approach is very simple since we avoid explicit
computation of lhe height disttibutioIL

"' and the Technical UniversiLy of Gdansk., Poiwld
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1. INTRODUCTION

Let A be a V-ary alphabet, i.e., A = Cal I' .•• {lv} and let S denote the set of n sl:rings

(keys) built over the alphabet A. A trie (digital search time) is a V-ary digital search tree in

which edges are labeled by elements from A and leaves (external nodes) contain the keys

(records) [1]. The access path from the root to a leaf is a m~al prefix of the information COD-

tained in the leaf. An important variant of tries is obtained using sequential storage algorithm for

subtries with the size less than or equal to a fixed bound b, i.e. external node is capable of storing

at most b keys. Such a me is called b -hie [2], [3].

Digital tries find many applications in computer science. A trie is used as an index to access

data in a secondary memory (e.g. extendible hashing) [2], [7], [81. [18], it can be used in the

pattern-matching algorithms ( position trees and string identifiers) [1] and in sorting algorithms

like triesort [4], [16] and radix exchange sort [16],[ 19]. Some other applications of the digital

tries include: conflict resolution algorithms for broadcast communications, polynomial factoriza-

tion and Hufrnan's algorithm [1]. [3]. [16]. [17]. [19). We analyze a random family oflries with

n stored records from the height view point. It is assumed that each key consists of (possible

infinite) elements from the alphabet A , and the element elk E A, k = I, 2 •... , V, occurs with

probability PI: at any position of a key (asymmetric V-ary trie). In most analyses (see [2]-[4],

[7], [8]) binary symmetric tries were investigated which restricts the applications of the analysis (

e.g., see matching-string problem where English characters occur with very different probabilities

).

This paper provides a new methodology to study the average height of general asymmetric

digital tries. Using a simple ineqUality for order statistics we prove that the average height EHn,

v
of a me is EHn - 21K" n, where u-1= L pl. This result is generalized in three different direc-

i=l

lions. At first, we drop the assumption that lhe fixed number of keys are stored in the trie.
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Assuming that a tric is built over random number of keys distributed according to Poisson pro-

cess with parameter J.L (poisson model), we prove that EHlJ. - 21gu J.L. Secondly, for b-tries we

v·
show that the average height is asymptocially equal to (1 + ~ )lgll n, where u-1 = .r, pf+l.

i"'1

Finally, we assume that there exists some statistical dependency between keys. Then. it is proved

that ER" = 0 (lgu n), where u is a constant which reflex statistical dependency among the keys.

The average height of digital tries has been recently investigated in [2]-[8]. In [2J Flajolet

studied binary symmebic b-trles. Based on some classical counting results in occupancy prob-

lerns, Flajolet derived asymptotic distribution of the height. Using complex analysis (Cauchy

integral fonnula) he also found the average height of a trie. Jacquet and Regnier [3J extended

Aajolet's result to binary asymmetric tries. They have made extensive use of the Mellin

transform technique. Devroye [4] analyzed binary symmetric tries. and based on the occupancy

problem he derived some inequalities on the asymptotic distribution of the height. The most gen-

era! results were obtained by Pinel [5] (see also [6]), where V-ary asymmetric tries with b = 1

were investigated. Unfortunately. the proofs in [5] and [6] are not constructive, and the results

are well hidden. For some more results, see also [7] and [8]. Our approach to the problem is

essentially different In contrast to the previous analysis we use elementary calculus, and we

avoid explicit computation of the height distribution. In this paper we only concentrate on the

asymptotic results for the average height of digital tries, however, the methodology can be

extended to the analysis of digital trees and Patricia tries.

2. MAIN RESULTS

Let us consider a set of all digital tries with n records, X 10 X2 •...• X". over an alphabet

A = {al. Cl2 ' ... , <Xv}. Each record consists of (possible infinite) string of elements (digits)

from A. e.g., Xk = (Xk)' xk2," . , Xkj •...) where Xkj E A, j = 1 ,2 , .. , . For a given

keys XI. X2 •...• X" the digital trie is built in a usual manner (see [1]). For example, in Figure
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1 we show a 3-ary trie built over A = {I, 2, 3} with 6 records A. B •... , F. Note that a trie

consists of two types of nodes, namely internal nodes and external nodes. The internal nodes are

used to determine branching strategy I while keys (records) are stored in the external nodes.

The common assumptions under which the random family of tries is analyzed, are specified

below:

A = ()()()
B =010
C=012
D = l()()

E=200
F=221

Figure 1. Example of 3-ary digital me with n=6.

(i) A key Xl: = (Xkl ,xk2 ...) is a sequence of elements (digits) from A which form an

independent sequence of Bernoulli trials with Pr {Xkj = <Xi} = Pi. k = 1, 2 , .... n,

i = 1, 2 I ••• , V.

(ii) ThekeysX1,XZ ,"" XII are statistically independent.

(iii) The number of records stored in a trie is fixed and equal to n.

These asswnptions create the so called Bernoulli model. In addition, we also assume that

(iv) the external node is capable to store only one record, i.e.• regular tries (b = 1) are

analyzed in this section.
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In a me three quantities are of particular interests: the depth of a leaf (the paths from the

mot to a randomly chosen leaf), the height, H". of a me (the maximum over all depths), and the

smallest path from the root to a leaf. The depth of a leaf was previously analyzed in (3], [5], [6]

and [9J. Here we concentrate on the average height, EHn..

Let us define a common path of two keys, com(Xi , Xj), i I j = 1.2, ...• n I as lhe COffi-

mon prefix ofXj andXj , that is. com(Xi, Xj) = k ifXj and Xj agree exactly on their first k digits,

but differ in their (k + 1)-51. Let Yjj = com (Xi. Xj ), i *" j. Note that Yjj = Yji • hence we ces-

triet the indices to i = 1, 2 , ... , n I j = i +1, i+2 , ...• .n. Sometimes. for simplicity, we

renumber the random variables Yij • and we write Y1. Y2 I •••• Ym where m = n(n - 1)/2.

There is. of course, a one-to-one correspondence between Yij and Yk . Under the assumptions

(i}-(iv) the random variable ¥ij I for any i and j I is geometrically distributed with parameter

Pf +Pf + ... +pJ,thatis

[I-fp?]
1=1

k = 0, I , . .. . (I)

"'f v
Let u-l = L p? Note lhat although Xj , i = 1 , ... , n are independent, the random variables

1=1

Yij are dependent

To find a relationship between the height Hfl and com(Xj , Xj ) note that the common prefix

of a particular key Xk and all other keys Xj , j = I, 2 , ... , n I j ;t:. k, determine lhe position of

Xk in the lrie. Hence

Hfl = 1 + max max{Yij} = 1 + min {Yk}'
lSiSII j~i ISkSm

(2)

To illustrate (2), let us consider the me in Figure 1. We find that H 6 = 3, and

com (A ,B) = corn(A, C) = I, corn(A, D) = com (A ,E) = corn(A, F) = 0; corn(B, C) = 2,

corn(B, D) = 0, etc. Hence 3 = H, = I + max {com (X" Xj )} = I + corn(D, C) = 3.
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Eq.(2) suggests that to compute Hn we need to know some statistics of the maximum of m

dependent random variables. YI. Y2 , ... , Ym . Such a statistic is known in the literature as the

order statistic. In the next subsection. we derive some simple properties of the average of

max {Yk }. thatis,E max{Yk}.

The average value a/max {Y;}

Let YI. Y2 •... , Ym be identically distributed random variables with the distribution func-

tion F (y). Define

Mm = max {Yi}'
l.siSm

It is easy to see that

m

Mm $am + L (Yi -amt
i=l

(3)

where am is a parameter dependent on m, and x+ = max {O, x}. For a nonnegative random vari-

able Y with distribution function F (y) the average EY may be computed as

-
EY = f [1 - F(y )]dy. Hence, by (3) the average EMm is

o

for continuous random variables

EMm $ am + m J [1 - F(x)]lb:
••

for discrete random variables

-EM. ,,; am + m L [1 - F(k)]
,=.

The RHS of (4) is minimized if am is chosen such that

am = min{k : Pr{Y > k}::;;..!..- }.
m

EXAMPLE 1: Exponential distribution

(4a)

(4b)

(5)
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Let F (y) = 1 - e-;i.)'. A. is a parameter. Then by (5) am = ~ in m I and (4a) implies

1 1
EMm s: "i In m +"["

If, in addition, Y 1 , . . .• Ym are independent, then [10]

1 rEMm="[lnm+ T

(6)

(7)

where 'Y = 0.577 is the Euler constant. Note that the difference between (6) and (7) is of order

0(1).

o

EXAMPLE 2: Geometric distribution

Let Y be geomebically disbibuted, Le. Pr{Y = k} = pk(l - p). Then Pr{Y > k} = pk+l, and

In ~I J. where L.J is the floor operator. Also by (4b)
In p

EM
m

::;; In m +-----L-.
In p-l 1 - P

(8)

Note that the geometric distribution may be approximated by an exponential distribution with

parameter A= In p-l. Since one finds that (8) is equivalent to (6) with

o

Both inequalities (6) and (8) imply that the leading leIDl in EMm is am' The question is

whelher EMm - am' Le. lim EMmlam = 1. Lai and Robbin proved [lOl, [11] that EMm - amm ~_

if the distribution F (y) satisfies the following conditions

I-F(cy) = 0 for every c > 1
1- F(y)

(9,)
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o
J Ix 17 d F(x) < 00 for some r > O.-

Note that (9) holds for the exponential and geometric distributions, i.e., EMm - ~ in m.

The average height ofa trie

(9b)

By (2) EH" = 1 +E max {Yk}, where m = n(n -1)/2 and Yk is geometrically distri
lSkSm

v
buted with parameter "-1 ~ L p,'. Deline h ~ In ". Then (8)(ooe also (6») implies

1=1

n(n -1) 1+--
2 " -1

and after simple algebra one finds

2
EHn Shin n + 1 +

Hence by (9) EHn - ~ in n = 2 19l1. n. that is.

1 -In 2 O( -1)
h ~ n . (10)

(l1a)

How tight is the upper bound (10)? For binary symmetric hies (h = In 2) Devroy proved

that [4]

1-ln 2EHn :::; 2 Ig2 n + 1 + .L,...::::-::
In 2

(lib)

hence the upper bound (10) is greater than (11) by 0.61. On the other hand, Flajolet [2] shows

that for binary symmetric tries

1-ln2
EH. = 218' n + In 2 + P(lnn) + 0(1) (12)

where P (Inn) is a periodic function with very small amplitude. The derivation of (11) and (12)

require, however, much more advanced techniques. In both cases the average EHn was obtained
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through the analysis of the asymptotic approximation of the distribution function of Nfl'

Some remarks on the asymptotic distribution of Btl

In the subsection we offer some remarks on the asymptotic distribution of H". We do Dot

pretend to present rigorous proofs. Rather. we give some reasons justifying the fann of the

asymptotic disbibulion.

Asswne first that Xl' Xz ,··· I Xfl are identically independently dislributed random vari-

abIes with distribution function F(x). Let alsoX(n) = max{X 1 , ... , X,,}. It is shown [12], [13]

that there exist constants an and bfl such that (X (n) - all )/b" has a proper distribution A(x), as n

tcnds to infinity. In fact, it is proved that the extreme distribution A(x) may have three different

forms. IfXj is exponentially distributed with parameters A., then A(x) = exp[- e-X ], that is [12],

[13]

limPr{(X(.)_ln, n )1..<x}=A(x)=exp(-e-').
/I --t "" '"

(13)

The situation is a little more delicate for discrete random variables. Anderson [14] showed that

ifXi is geometrically distributed with parametcrp • then

A(x-l):::;' lim infPr{(X(II)- Innl)lnp-I<X}$
11-)- inp

lim sup Pr{(X(II) - In n1 In p-t < x}:5 A(x).
11-)- inp

(14)

From the practical view point, the difference between (13) and (14) may be ignored if one

asswncs A. = in p-l (Le., one approximates the geomeUic distribution with parameter p by the

exponential distribution willi parameter A. = In p-I). It is also proved [13] that under some

assumptions (13) holds for dependent random variables X I, X2 , ... , XII.

The height ofa tric, H II , is given by (2), where Y.. Y2 '.... , Ym• m = n(n -1)/2 - n2 are

v
dependent random variables geomeUically distributed willi parameter u-1= L p? Approxi-

1=1
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mating the geometric disbibution by the appropriate exponential distribution with parameter

h = In n and using (13), one may show that

lim Pr{HlI < x + ZIg" n} = exp[--exp(-x in u)].
.~-

(15)

A rigorous proof of (15) is given in [6], however, quite a different approach is adopted there. The

discrete version of (15) for binary symrnelric tries can be found in [4].

Note lhat for large n (15) implies the followi':lg approximation

Pr{H. < x} =exp{-exp[-In u(x - 21g. n)]}. (16)

Let Z be a random variable with lhe distribution function A[(x - ~)A.] = exp{--exp[ - (x - ~)t...]).

Then, it is shown [IS] that EZ = ~ + yO., var X = 72
2

, where y = 0.577 is the Euler constant.
6..

By (16) we find that for large n

2 1-ln2
ERn:::: h In n + h + 1

_ i'
var Hn - --2

6h

(17.)

(ITh)

Flajolet in [2] proved that for binary symmetric tries the approximation (17a) is different from the

exact asymptotic expression by a fluctuating function with a small amplitude. He also found that

the variance, var Hn" is not a constant, but rather a fluctuating function.

3. GENERALIZATIONS

In. this section, we generalize the results from Section 2. that is, we investigate Poisson

model, consider b -tries (b > I), and finally present some results for dependent keys.

3.1 Poisson model

We replace assumption (iii) by
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(iii'). The number of records stored in a trie, N I is a random variable dislIibuted according to

Poisson with parameter ~. Le..

Pr {N = n} = IJ.~ e-Jl,
n. (18)

Under (iii') the Bernoulli model becomes the Poisson model. Let H Jl' Hn denote the height in

the Poisson and Bernoulli models, respectively. Then

and using (to) we fmd

J.L" e-Jl
n!

2 -
EHIl~ Ii e-j.l. L In n

n=1

• I
E:....-+ 1 +
n!

In2
h

(19)

To evaluate the series in (19) we usc the inequality In n ~ In. where Xn is the n-lh Harmonic

number. It is known that [16], [i7]

Lx.
n=1

hence

,
~ = I eX - e:r::J dy
n! 0 l-y

"" J..I.II 00 J.1n J.l. 1 _ e-Y
e-j' L In n -, ~ e-j' L x. -, ~ J-'--"-- dy = In lJ. + Y+ E,{JJ.)

n=1 n. 11=1 n. 0 y
(20)

where E1{J.L) is the exponential integral defined as EI(X') = Je-l t-I dt (I arg x I < 1C). Thus.
x

(II) and (20) implies that

Also, by (11) and (20) we fmd

+1 (21)

(22)
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Le., EN J.I. - 2 [gu. J.1.

3.2 The average height of b -tires

We now drop assumption (iv), and consider h-mes with b > 1, that is, each external node

may store at most b keys. Let Xl, X2 ' ...• X" be the keys, and for

the common prefix for XiI I •••• Xi...l' i.e.• the number of digits that X/, •...• X~+l agree. Note

that we have (b~l ] random variables Y(i l •... , ib+1), and for simplicity we sometimes

renumber them and denote Y 1, Y 2 , ... , Ym' m = (b~1 ). Figure 2 shows 2-Uies for the same

keys as in Figure 1.

A =()()()
B=OIO
C=012
D= 100
E=2oo
F=221

A B.C

Figure 2. Example of 3-ary digital2-trie with n=6.

Note that the height of b-tries is given by

H" = 1 + max {Yj}
ts:iSm

(23)

v
as in (2). The distribution of YO t , ... I ib+1) is geometric with parameter u-1 = L Plb+I , that is

[=1

Let also h = In u.

(24)
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TocomputeEH/I wencedE max Yj • By (4) and (5) we find
1 Si Sm

~

E max Yj ::;; am + m L u-{k+l)
tSi:Sm .1:=.:1..

where

(25)

h = a..

Note that

and

m L u--(k+l) < 1.
- h

(26)

[
n ] nb+1

b+1 = (b+I)!

hence. these and (25), (26) imply

1 2(1--)(1--) ...
n n

b
(I --)

n

b+1
EHn ::; h In n + 1 + 1 -/n(b+I)! D( -1)

h + n . (27)

Since the geomeUic distribution satisfies (9), we also obtain

EHn b+l
II~OO In n = -h-' (28)

For symmetric V-ary trie, Le., PI = P2 = ... Pv = ~ onc immediately shows that h = b In V

and

which generalizes Flajolet's result

(29)

To evaluate the asymptotic distribution of H" we may use the arguments from the preced-

ing section. Then

lim Pr{Hn <x+(b+I)/g. n}=exp{-exp[-x In un
n~~

(30)
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which agrees with the result obtained in [6].

3.3 Dependent keys

In many applications the keys are statistically dependent. e.g. see position trees and sub-

string identifiers (suffix trie) [1]. In this subsection. we relax assumption (ii) keeping the other

assumptions unchanged (for simplicity we set b = 1).

Let xl, xi denote the l-th and the j -th digit in the k -th and the l-tb keys. We assume that

there is a dependency between xl. xi. which we express in (elms of the joint distribution, that is,

"'I .
P••m(k,l) = Pr{xk = a" , xi= a".} < 1 (31)

wherek,l = I, 2, ... •n, n,m = 1, 2, ...• V, i.) = 1" .. _. The probability (31) does not

depend on i and j because of the assumption (i). Define Ykl = com(X,b XI) as the common

prefix of Xl and Xl_ By assumption (i) the distribution of Ykl is geomettic with parameter

v
[u(k,l)r1 = L p/fCk,l). Note that now Yk/ are not identically distribuLed, and

i=1

Ffc1(j) = Pr {Ykl < j} = 1-[u(k,l)rU+1). The height of the Uie is given by (2), and to compute

EHn we need max Yk,l
t,/

We now generalize formula (3)-(5). Since inequality (3) holds we also have

. ~

E max YH Sam + L L [I-FHU)]
k,1 k,t"'l j =0"

where m = n (n - 1)/2. The RHS of (32) is minimized for such am that

• •L L FH(am)=n-1
.1:=1 I = k+1

For geomeLric distribution with parameter u-1(k ,I) (33) is equiValent to

• •L L [u(k,I)J-(,·+I)=1
k=l / = t+1

(32)

(33)

(34)
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and one finds that

In m

In [min n(k,I)J
'./

(35)

Let umin = min {u (k ,i)} = [max {f Pi.l2 (k,[n] -I, and hmin = in Umirl. Noting that
k,l t,/ i=}

m = n (n - 1)/2 and the contribution of the sum in (32) is 0(1) we prove that

2
EH. ~ -h. In n + 0 (I),

m~

(36)

hence ERn = 0 (In n). TIlls result is easy to generalize to b -Eries and Poisson model. Note also

that the assumption Pn.m (k It) < 1 ( see (31) )is important. For example, if one builds a prefIx

tree (the k-th key is the prefix of the (k - l)stkey). Lhen the height is equal to n.

4. CONCLUSIONS

This paper studies the average height of digital tries. Using elementary methods. in contrast

to the previous analysis. we proved that EHn - 2 19l1 n. where u is a parameter dependent on the

distributions of the digits in a key. This result is next extended to Poisson model, b-tries and

dependent keys. Under quite general assumptions, we show that ER" = O(ln n), even for

dependent keys. The methodology proposed here can be applied to analyze some other quanLities

of the digital mes, as well as to oblain some characteristics for Patricia tries and digital trees.
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