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1. MOTIVATIONS

Digital search trees find many applications in computer science and telecommunications.

Among others we mention here: an index file in dynamic hashing [3], partial match retrieval of

multidimensional data, radix exchange son, polynomial factorization, simulation, Huffman's

algorithm [2] [9], generating an exponentially distributed variate [5]; also in recently developed

conflict resolution algorithms for broadcast communication [7] [10] [12] [13], etc. It is well

known [4],[9], [14], [15] that some properties (average complexity) of digital search trees can be

studied through a solution of some recurrences. To illustrate it. let us assume that n records are

stored in a tree, and keys consist of (possibly infinite) sequence of a's and I's; the digit a occurs

with probability p and I with probability q = I-p. Then. for example, all moments of the suc-

cessful search in radix search tries and Patricia tries satisfy the following recurrence [4] [8] [9]

[13] [14].

XII =a1l + i:, [zJ pA: q ll-k[x1I +x1I _k], n;::: 2
'-<l

and xo. x 1 are given. The sequence a1l is called additive term and various properties of tries can

be modelled by appropriate choice of all. For digital search tree [3] [15J (records are stored in

internal nodes instead of external nodes as in radix tries and Patricia tries) the equivalent

recurrence is
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(2)n :2: 2XII = an +I: (nk"l] pkqll-l-k[X,t + XII_I_k],..,
with Xo and x 1 given. Some other properties as the average number of internal nodes, the average

number of nodes with both sons null and so on, satisfy recurrences (1) and (2), too. Recurrence

(1) finds also applications in performance evaluation of the so caIled stack protocols for conflict

resolution algorithms [7] [10] [12].

Another recurrence of similar type, however more sophisticated, appears in the unsuccessful

search in a Patricia trie [5] [8J [9] [13] and the analysis of the so called interval-searching algo-

rithIns in broadcast communication [13]. Namely:

(3)(211 +.1' - 2)xn = 211 a/l + IIi [ ~J Xk

k=l

where Xo • xl are given, s is an integer, and an is any sequence which models different properties

of the trees.

It can be proved that all three recurrences have a common pattern for the solution, namely

[4] [12] [13] [14]

(4)x. = i; (-I)' [ Z] !k
k=2

where f k is different for (1M3). For example, in [12] it is proved that (1) possesses a solution

(5)
• ,[n]a/c+ka1-aO

x. = L (-1) k "
k=2 I-p-q

for Xo = XI = 0, where an is the so called inverse relation ( or binomial transform) of a" [11],

that is, an = ±(_I)k [ ZJ a1;. The recurrence (3) is more intricate (see [13]), and the so called,..,
Bernoulli inverse relation is involved in the solution. For example, for a" = q", 0 <; q ::;; 1, [13]

[15]

x. = i; (-I)' [ Z]
k=l

where B1;(X) is the Bernoulli polynomial [1].

B,+,(I-q) I
k +1 ~2·k+;:'-':1'_-:-1 (6)
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From the average complexity view point, the most interesting situation occurs when n

becomes large. We investigate an asymptotic approximation of XII given by (4) for any ik. This

paper provides a general solution to this problem. The previous solutions have been restricted to

very particular cases. For example, for the alternative sum of form (5), with the numerator

replaced by a constant, de Bruijn (see [9], 5.2.2) has suggested to develop the denominator into a

geometric series, then after a lengthy algebraic manipulation, to obtain a sum with a term

(1 - xln )11 which is next approximated by e-:.c. Finally, the Mellin transform replaces e-x and

the residue theorem is recalled to obtain asymptotic approximation. OUf approach is quite dif-

ferenL The final formula is Mellin like, but we do not explicitly use the Mellin transform.

2. MAIN RESULTS

Let us consider an alternative sum

(7)

where!k is any sequence of numbers. Assume now that f k has an analytical continuation to a

complex function f (z), that is, f (k) = !k. To present our results in a compact form, let us also

define for a, p> 0

c
K,(a) = f (alx)"lf(-x +ia)ldx C > 0 (Ba)

We prove

K2(~)= f e-I"lf(~-'h-iy)ldy (Bb)

Theorem 1. If f (z) is an analytic function left to the line (lh - m - ioo, 1h - m + i 00),

then

provided that

lh.-m +;00

Sm(n)~-2~-i f
lh.-m-joo

(9)
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(10)

h ~ d5 r(n+l)
w eren- - r(n+l-z)' r(z) is the gamma function [6].

Proof We evaluate the integral in (9) by the Cauchy Theorem. Let us consider a large rec-

tangle R Cl~' left to the line of integration, with corners at four points (lh - P:; i a, C +- i 00), a.,

p;:; a and C = 1h - m. Then, by the Cauchy Theorem [6] the integral in (9) is equal to the sum

of residues in R atI minus the values of the integral on the bottom, top and left lines of R crp. with

a, p--7 00, We first evaluate these integrals. that is, on the bottom, top and left lines, which are

further denoted as In. lr and It respectively. Consider first Is. After simple manipulation one

shows that

C

IB = f-
withz=x+ia.. But [6]

r(x + ia)r(n+l - z) f( ')dx
-X-lex.

r(n+l)

r(n+l - z)

r(n+l)

Hence

(11)

C

lIB I =O(e~ f (aln)"lf(-x -ia)ldx)-
Now note that under condition (10) for K 1(0.) In --70 as 0: --7 DO. In similar ways, we prove

lr --7 0 for 0: --7 0<1. For the integral on the left line, one finds with a --t DO

h ~ j r('h - ~ - iy) r(n+l- z) f(~ - \h - iy)dy
_ r(n+l)

To evaluate h we use (11) together with [6] [9]

r('h-~-i)= r(\h-iy)
y O(~!)

Hence

Ihl =o[ ;: 1'r('h+iyJl If(~-'h-iY)ldY]
Using the Stirling approximation for ~! and (11), we prove that h ....,)0 afor ~ ....,)0 00 provided (10)
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holds for K2(~)'

It remains to compute residues left to the line of integration. that is, in Ra~ for c£~oo.

~~oo. By the assumption that f (z) is analytic in R a,13' hence by Cauchy Theorem, the integral

is equal to the sum of residues at points Zk = -k. k ~ m (k is an integer), where the gamma

function r(z) has singularities of value (~1( [6]. TItis implies

C - joo ... k
1 J r(z)f(-z) dz = L (-1) f(-{-k))n!

2ix C-ioo n!. k=m k!

But n~ = n (n -1 )..(n - 1+k) = n ~ , hence (9) immediately follows.
(n- )!

D

The function n! is hard to analyze, and therefore, a simplification of (9) might be useful.

We prove

Theorem 2. Under the assumptions ofTheorem I, the following holds

Y.!.-m+i<:o

Sm(n) = -2-:1t- J r(z)f(-z)n-Zdz + en
Y.I.-m-ioo

where

Y.!.-m +ioo

en = o(n-I ) -2-:1t- J zr(z)f(-z)n-Zdz
Y.!.-m -i...

Proof Eqs. (12) aod (13) directly follow from [I]

(12)

(13)

D

To simplify further the computation, it is convenient to consider the following generaliza-

tionofSm(n)

where r is an integer. Then

(14)
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Corollary 1. If hypotheses ofTheorem 1 hold, then

[ ]

~-[m~['+i~

Sm,r(n+r) = (-IY· n;r _1_ J
2t1t Y.I-[m-r]'-ioo

and

(15)

'1.1. - [m-r]" + i_

Sm (n) = (_1)' _1_ J r(z)f(r-z)n'-Zdz + ell
,r r! 2i1t

'h.-[m-r]+-i_

with en given by (13) with some obvious modifications.

Proof Note that

(16)

(-1)' i; (-l)k[~Jf(k+r).
k = [m-r]'

Then. (15) and (16) follow from Theorem 1 and 2.

o

For asymptotic analysis of Sm,r(n) we use (9) or (15), but this time we integrate along a

path which extends far to the right from the line of the integration. More preciselyJ define a large

rectangle R'a/3 right to the line (C -ioo,C+oo) • C='h-[m-r]+ • with comers

(lh + ~ + i a ; C ± i a.). As before, the integrals on the bottom and top lines of R'aP are small

for a -) 00 by the same arguments as above. The integrallR. on the right line can be estimated

as

11R [ ~o[ ~!n-'I e-IYllf(-Yo.-~-iY)[dY] (17)

assuming a ~ 00. For fixed but large ~. we find IR = 0 (n-{l), hence for large n the integral IR

has negligible contribution, and Sm,r(n) is equal to the sum of residues right to the line of integra-

tion. In the next section, we show how this idea can be applied to evaluate some alternative sums

arising in the analysis of algorithms. Finally, let us mention that an alternative approach, using

Rice's method, to obtain an asymptotic approximation of the sum (7) is discussed in [4].



-7-

3. APPLICATION TO ASYMPTOTIC ANALYSIS

As explained in the first section, a sum of the form

S,(n)~ f. (-I)k [~J [~J
k:=2

I
(18)

finds applications in the analysis of successful search in radix tries and Patricia tries as well as in

conflict resolution algorithms. By (15) we find

Y.!.-[2-rJ~+ie<l 1
Sr(n) = (-t,Y ~ I _.or-,,(z:c),,-n:c'_-_~__ dz + en

r. 21tl Y.!.-[2-r)"-ioo I_pr-z _qr-z
(19)

where p + q = 1. The function under the integral has (right to the line of integration) poles at

zeros of the denominator, that is. for zk = r - 1 + ixk. k = 0, ± I, ± 2 . .. . , with XQ = O. For

r = 0 and r = 1 the roots z8 = -1 and zJ = 0 are also poles of the gamma function. It is known

that the main contribution to the asymptotic approximation comes from the real roots z[, that is,

for k = O. To compute the residues for k = O. we use the following Taylor expressions for

w = z - 20 = Z + 1 - r [12]

(20a)

(20b)

where h, = (_I)' IP ln'p + q In'qJ. In addition, we have [6J [9J [12]

forr=O (z8=-I)

for r = 1 (z6 = 0)

forr;;:: 2

r(z) = _w-1 + (y- I) + O(w)

r(z) = z-I - y+ O(z)

r(z) = (r-I)! + O(w)

(21a)

(21b)

(21e)

where y=0.577 is the Euler constant. To find the residue at zo. we multiply (20}-(21) and iden-
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tify the coefficient of w-I . In a similar way. residues at Zk. k ':/:. aare obtained. Then after simple

algebra

S,(n) =

{
Inn+y-5,. h, }

n h' + --2 + (_l)rg,(n) + en
1 211 1

r=O,1

(22)

(23)

(24)

(-I)'n{ 1 +g,(n)}+e. ,;>2
r(T-I)h}

where g,en) is the contribution from zf. k ¢ 0, and it is proved that this is a periodic function

with a very small amplitude [3] [8] [9] [12]. For example, ifp=q=O.5 then [9]

cy(n)=f- i r(r+2xiklln2) exp[-21Ciklog2n]
n2 .~

".
To complete the analysis, it remains to evaluate ell given by (13). But we can use exactly the

same computation as before noting that the tenn z in en "cancels" the term In n in (22), hence

the integral is of order 0 (n), and en = 0 (1). We note also that the proposed evaluation of en is

much simpler than by traditional techniques (see [9] [12]).

The last example deals with the sum of the form (6). Let for s ~ a

R (n) = ±(-I)' [n] -B.+1(1-</) 1
~ k=l k k+12"+S_1

To apply Theorem I, we need an analytical continuation of -B,Hl(I-q)/(k+I). Fortunately, it is

known that [I]

'(-k ) =_B.+M)
, , q k+1

where ~(z, q) is the generalized Riemman zeta function [1] [6] [13]. Hence, by (9)

1 -~f+iOO ~(z, l-q -Oq l)r(z)n-Z

Rs(n)=-.- s-z ' dz +en
2i1t -Y.z-i"" 2-1

where On,k is the Kronecker delta. Again, we consider the poles of the function under the integral

right to the line of integration, that is, zeros of the denominator. Let Zk = S + 21tik lin 2. The

main contribution comes from z0 = s. To compute the residues of z0. we use the Taylor
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expansion (21) together with [1] [6] [13]

n-Z = n-S(l _ wIn n + o(w 2»

1 w- I

= In2 -'h+O(w)2s-Z _ 1

where w = z - s. For s = 0 and s = 1. we also need Taylor expansions of the zeta function.

Butfars = 0 [1]

~(z, q) ~-('h-q) + z~'(O, q) + 0(z2)

while for s = 1 with w = z-1

~(z, q) = w-1 - 1jI(q) + O(w)

where 'V(z) is the psi function [1]. Finding the coefficient at w-I we compute the residue of the

function under the integral. For example, for s = I, we obtain ( see [13] for details)

and for s=O

Ro(n)= ('h+ Bq,l-q ) (lg n -'h+y/ln2) + ~'(I-q+Bq,d/ln2 + F o(n )+e. (25b)

where Fs (n) is the contribution from Z.b k ¢ 0 and one proves [13]

F,(n) = 1n\ i; ~(s +2niklln 2)r(s +2niklln 2)exp[-2niklg n] (26)
Ie =-00

'"The most interesting, by some standards, is the evaluation of ell. Note that in terms of big Oh

notation, the contribution to ell comes from n-z in the integral (24). In the case s = aand s = I,

a term [g n has appeared before, but it is "naturalized" in ell by the term z. Hence the integral

is o (n-S ), and en = o(n-s- 1). This fact required a lengthy proof in [9] and [13].
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