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ON THE ANALYSIS OF THE TAIL QUEUE LENGTH AND WAITING TIME
DISTRIBUTIONS OF A GIIGIIc QUEUE
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This paper deals with the tail hehavior of the stationary queue length and
waiting time distributions for a GI/GIIe queueing system. There are c ~ 1
servers and each server may have a different service time distribution. Our
results extend well known classical results for the GIIGI/l queue.
Presentation of the key constructions and ideas of this new proof is the main
goal of this paper. We also apply these results to ohtain limiting distributions
of the maximum queue length and waiting time distributions for the case of c
~ 1 servers.

1. INTRODUCTION AND SUMMARY

Consider a stable GIIGIIl queueing system. Let (Ak) denote the i.i.d. inter-arrival

times and let (Bk) denote the i.i.d. service times. A*Co;) and B*Co;) shall denote re­

spectively the inter-arrival time and service time distribution Laplace-Stieltjes
transforms. Qk and Wk shall denote the queue length and waiting time observed by

the k'th job upon it's arrival. Define

ACIl) - 10g(A*CIl)) + 10g(B*C-Il)). (l.I)

If there is a positive solution of the characteristic equation A(8) = 0 (which is neces­
sarily unique because of the convexity of ACIl)), and if A'(8) <~, then Feller [1] proved
that under stationary operation

1\Qk;,n) - ~ron

where ro = A *(8), and for FIFO Cfirst in - first out) queueing discipline

1\ Wk ;, w) - Kwe-Sw,

where~ and Kw are constants.

C1.2)

C1.3)

The classical approach by which one can obtain these results is presented by Feller
[1]. CThere are also several refinements, such as [2].) This approach is based on the
FIFO waiting time relationship

• This research was supported in part by AFQSR (90-0107), in part by NSF (CCR·B900305) and in part
bv the National Librarv of Medicine eROl LM05l1B).



W k = (Wk_1 + B k - Ak )+

where x+ =x ifx ,,0 and =0 if x < O. From (1.4) it follows that
k

fR: Wk " w) = 'f( max L (~. - Ak, )" w ).
kO?:l k'= 1

(1.4) 2

(1.5)

Feller obtains (1.3) by using an exponential change in distribution of the form

dF~)(a) = e-4la dFA(a) / A*(e) and dF~)(a)= eBb dFB(b) / B*(--e).

In works such as [1] and [2], the change in distribution is actually applied to
analyze the maximum of a random walk, that is, the right side of (1.5), and hence,
this approach is not really a direct analysis of the queueing problem. Moreover, in
[3] Kingman presents a very convincing argument indicating that any approach
based on (1.4) and (1.5) can not be extended to the case of c > 1 servers.

An alternative approach is to use the analytical methods associated with phase-type
distributions (abbreviated PH). In [4], Takahashi obtains these results for the
PH/PH/e queue with homogeneous service time distributions, that is, all c servers
have the same service time distribution. In [5], Neuts and Takahashi present the
extension to the GIIPH/c with heterogeneous service time distributions. As in the
GIIGlil case, the results of [4] and [5] can be expressed in terms of the solution of a
characteristic equation of the form A(e) = 0 with A(1]) being appropriately defined in
terms of the inter-arrival time and service time Laplace transforms. For example,
in [4] the function is

A(1]) = 10g(A*(1]») + 10g(B*c-1]/c»). (1.6)

The analysis presented in this paper is similar to classical approach because our
basic tool is an exponential change in distribution. However, we do not employ (1.4)
or (l.5), so Kingman's argument against generalization does not apply. Instead,
we apply change in distribution directly to the queueing problem. Our analysis is
based on a natural regeneration of the queue in terms of busy/idle cycles and the
basic idea is to consider the behavior of a busy periods that produce large maximum
queue lengths, or large maximum waiting times.

In comparison to the work of Neuts and Takahashi, our approach has certain
advantages. First, our results for the GI/GI/c queue are somewhat more general.
We obtain (1.2) and (1.3) under the essentially the full generality classical c = 1
result; A(e) = 0 and A'(e) <~. We also obtain weaker "logarithmic limits" which
hold under essentially no hypothesis (other than the LLd. inter-arrival time and
service time assumption). But generality is not the only advantage. The exponen­
tial change in distribution provides the means to efficiently and accurately evaluate
the actual probabilities fR:Qk " n) and fR:Wk " w), for finite nand w. This can be
done using the Monte Carlo technique of importance sampling (or "quick
simulation") as in [6], [7] and [8]. Reference [8] gives an asymptotic analysis of the
importance sampling estimator's variance for the case of estimating P(Q;::: n)

where Q is the maximum queue length over a busy period. It is demonstrated that
the exponential change in distribution as an importance sampling simulation



distribution has a strong asymptotic optimality property called asymptotic effi­
ciency. While we shall not do this here. the analysis of [8] can be applied to the
constructions of this paper to obtain asymptotically efficient importance sampling
simulation for estimating '1{Qk ;0, n) and '1{Wk ;0, w). Finally, a third advantage of

our approach is that one can apply the exponential twisting techniques for Markov
additive processes Csee [9] and references therein) to extend our analysis to the case
of stationary Markov distributions for both inter-arrival time and service time
processes. This extension is in principle straightforward, at least in the case of the
logarithmic limits.

This paper is organized as follows. Section 2 presents the decomposition of the
queueing problem into busy/idle cycles and then presents the main results. Cycle
based analysis is not new [6], [8]. However, for the case of c > 1 servers we use a
sequence of dependent cycles that form a Markov chain. Section 3 then presents the
main ideas and constructions used to prove our results for queue length. Section 4
briefly presents the parallel approach for waiting time analysis. Due to space limi­
tation, we make no attempt to provide complete proofs. Instead, our goal here is to
simply present the main ideas behind these proofs in an illustrative fashion. Sec­
tion 5 presents some sample numerical results obtained by applying our construc­
tions to the importance sampling method.

2. CYCLE BASED ANALYSIS AND STATEMENT OF MAIN RESULTS

We consider a single queue with c ~ 1 servers. Ak shall denote the inter-arrival
time between the k-l'th and k'th jobs. The sequence (Ak: k = 1.2... ) is i.i.d. with dis-

tribution function FACal. Bji) shall denote the service time required for the j'th job

processed by the i'th server. For each fixed i. lBji): j = 1.2... ) is an i.i.d. sequence

with distribution function Fi(b). The sequences (Ak) and lBji\ i = 1....c, are inde­

pendent. Throughout this paper we shall refer to k as the "arrival index". i as the
"server index" and, for each fixed i, j is the "service index." We assume throughout
that FACO) < 1 and FiCO) < 1 for each i = 1...,c. We also assume that the service time
distributions are "spread out," that is, some convolution power has an absolutely
continuous component. This "spread out" condition is required for application of
certain renewal theory results in the proof, but it will not be discussed further.

We define a busy period to be a contiguous time interval during which all servers
are continuously busy. A busy period begins at the instant that a job arrives to find
exactly 0-1 servers busy, and terminates at the first instant that one of the servers
becomes idle. Conversely, an idle period is contiguous time interval during which
at each instant there is at least one idle server. Notice that this definition differs
from the conventional busy/idle cycle definition in which a busy period has at least
one server busy and an idle period has all servers idle. An advantage of the conven­
tional definition is that successive cycles are independent. However, in the case of

3



multiple servers, the disadvantage is that idle time during busy periods signifi­
cantly complicates the analysis. In order to distinguish our definition from the
conventional one, we shall refer to our busy/idle cycle as a c-cycle.

A c-cycle begins with the arrival of a job that finds exactly c-1 busy servers and one

idle server. Define 13;:; to be the residual service time (that is, the service time
remaining) for the job being processed by the i'th server at the instant that the

(m+1)'th c-cycle begins. (Precisely one of the B;;;'s is zero.) For compact notation

we write Bm = cB~), .. ,B~\ Let em denote the m'th c-cycle; that is, Cm is a ran­
dom element that includes all of the service times and inter-arrival times that occur
during the m'th cycle. In particular Bm is determined by Cm . It is evident that
{Cm} is a Markov chain, and furthermore,

Pi. Cm +l E . I Cm , Cm _ l ' ... ) = Pi. Cm +l E . I Bm ). (2.1)

To gain some insight, we now indicate that for a very large class of GI/Glic queues
the c-cycle chain has a natural regeneration structure that is directly related to the
conventional cycles. Define

-' all servers become idle at I - - )
pCb) = '" some instant during Cm+l B m = b

and
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Then

v(·) = 'f( Bm+l E . I all servers become idle at
some instant durring Cm+1 ).

'l{ B m+ l E . I Bm = b) ~ pCb) v(·).

The above minorization determines a regeneration that can be interpreted in terms
of a weighted coin toss that is performed for each c-cycle. (See [la, ch. 4].) Given
(Bm+l = b) the probability of head for c-cycle Cm+l is p(b). If the result of this coin

toss is a head then Bm + 1 can be interpreted as an independent sample from the

distribution v(·) and this outcome causes a regeneration: given a head for c-cycle
Cm+ 1 the future c-cycles Cm+2,Cm+3 , ... are conditionally independent of the past c­
cycles Cm,Cm_I ' .... Notice that it is this regeneration structure that relates our c­

cycle definition to the conventional definition.

Not all queues regenerate in the above fashion. (It may happen that 'l{ p(Bm) ~ 0)

= O. There is a well known DID/2 example in which this does happen. See [la, p.
57].) However, all that we actually require in terms of stability of the c-cycle chain is
listed in the definition below and this stability condition does not necessarily rely on
the above regeneration.

Definition: Let Lm denote the number of jobs that arrive during the m'th cycle Cm'

We shall say that the GIIGIIc queueing system is stable if the c-cycle chain (Cm) is

ergodic and if under the stationary distribution we have E[Lm] < ~.



(2.2)

We do not investigate conditions for stability here. We simply adopt the above defini­
tion as a hypothesis. For the purpose of reference below, it is appropriate mention
that one criteria for stability depends on the utilization parameter

arrival rate E[Akr
1

P = total service rate = ? 1 E[iiJr1 .
~l= J

It is known, at least in the case of homogeneous service distributions [11], that the
queueing process is stahle if and only if p < 1. We shall see in the next section that p
plays a key role in OUT analysis.

Now, let L\::> denote the number of jobs that arrive during the m'th cycle and find
at least n jobs in queue (that is, Qk ;, n). Let:fM denote the history of the first M

cycles, and let Q(M) denote the queue length seen upon arrival by a job that is
randomly selected from these M cycles. If the queue is stable, then by the ergodicity
of the c-cyc1e chain we have

5

total II ofjobs that find> n queue length
total II ofjobs

=

(2.4)

(2.3)

,<,M L(n)
.L.-m-l m

->
L~=l Lm

as M -> ~ almost surely. In the last line, E.[.] denotes the expectation with respect
to the stationary distribution of the c-cycle chain. It is apparent that all we really
require is the stationary distribution of Bo- We now have that the stationary queue
length distribution can be expressed as

E.[L~n>]

E.[L1]

Likewise, let L\:> denote the number of jobs in that arrived during the m'th cycle
and experience a waiting time of at least w (that is, Wk ;, w). Then

E.[Liw)]
'l{ Wk > w) =

E.[L1]

Before presenting OUT theorems, we must first indicate how to construct the charac­
teristic equation A(S) = 0 for the case of multiple servers with possibly different
service time distributions. This equation is to be expressed in terms of the inter­
arrival time and service time Laplace transforms

A*(1]) = E[ exp(-1]Ak)] and B;(e<;) = E[ eXP(--<,-;Bjil)]. (2.5)

The problem is that with c possibly different service time transforms B;(a). we

actually have a c-dimensional vector to work with; a = (al>oo,ac)' The following

"basic lemma" provides the appropriate reduction to a scalar parameter 11. The



(2.6)

idea is that we restrict attention to a curve 0:(11) in [O.~)C that is defined such that at

each point on the curve all of the service time transforms (B;Clli ), i = l ... ,c) have the
same value.

Basic Lemma: Define

_ {there exists an 0: E [O.~)c with 11 = L';" O:j }
T1 = sup 11: * * .

and Bi(-O:i) =Bl·-{Xl) < ~ for i =2, .. ,c

Then for each 11 E [O.'ij) there is a unique 0:(11) E [O.~)C such that 2::;', O:j(11) = 11 and

B;(--<Xi(11)) = B~(-O:l(11)) < ~ for i = 2•..•c. Moreover, 0:(11) is an analytic curve on (O.'ij)

with 0:(0) = O. In the case 'ij < ~. define O:('ij) = lim~11j 0:(11) allowing +~ as a limit.

Next define

6

(2.7)

for 11 E [O.'ij] and A(11) = _ for 11 > 'ij. Then A(11) is a lower semicontinuous proper

convex function. and moreover. A(11) is analytic on (O.'ij). 0

In the case of homogeneous service distributions, we have Tl = (T\/c... ,T\/c). In this

case A(11) of formula (2.6) agrees with Takahashi's formula [4]. (See equation (1.6).)
With a little manipulation. the results of [5] can also be expressed in terms of defini­
tion (2.7).

There is the possibility certain pathological behaviors of the function A(11) that do not
occur in the case of phase type service distributions. We may have A(l1) ---7 ---C>O as 11
---700, or we may have 0 < Tj < 00 and A01) < o. In both cases there is no positive solu­
tion of A(8) = o. In general. we define

(2.8)

This allows the possibility 8 = +00 which occurs in the first case mentioned above.
Also. (2.8) yields 8 = 'ij in the case that 0 < 'ij < ~ and A('ij) < O. Define

0) = inf A '(11). (2.9)
0:51159

For 11 ~ 0, 0 < A*(11) < 00, A*(11) is continuous and A*(11) is strictly decreasing (since,
FA(O) < 1). It follows that 0) = A (8) when 8 < ~ and 0) = 0 when 8 =~.

Define Q = maximum Qk over the first c-cycle with Bo being sampled from the

stationary distribution 1t{.). where 1t{.) is the c-cyc1e stationary distribution. It

turns out that Q is a key variable in our analysis of the stationary queue length, but

we note that the distribution of Q is of interest in its own right as it is related to the
problem of buffer overflow in systems with a finite queue buffer. See [6], [8] and [12].



Theorem 1: Assume that the queueing system is stable and operating under the
stationary distribution. Then

lim n1 log( '1{ Qk <: n)) = lim n1 log( '1{ Q <: n )) = log(ro) (2.10)
n~~ n~~

If in addition we have 0 < 8 < 00, A(8) = 0 and A'(S) < 00, then there exists constants
KQ and ~ in (O,~) such that

lim ro-n '1{ Q <: n) = K", (2.11)
n -7 00 -"'1cl

aud
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lim ro-n '1{ Qk <: n) = K_.n --) 00 -'""'l (2.12)

o

OUT analysis of the stationary waiting time distribution is a direct parallel of the
queue length analysis, Define W = maximum Wk over the first (stationary) busy
period.

Theorem 2: Assume that the queueing system is stahle and operating under the
stationary distribution. Then

lim wI log( '1{ Wk <: w)) = lim wI log( '1{ W <: w )) = log(8) (2.13)
w--)oo w--)oo

If in addition we have 0 < 8 <~. A(8) = 0 and A'(8) < ~. then there exists constants
Kw and Kwin (O,~) such that

lim e8w '1{ W <: w) = K- (2.14)
n--)oo W

and

(2.15)

o

Finally, define Q;:,ax = max [Qk': k' ,; k) and Wrax = max (Wk': k' ,; k). Then as a

consequence of Theorems 1 and 2 we have. Following the work of Iglehart [12] (see
also Anderson [12]) we can apply Theorems 1 and 2 to prove the following theorem.

Theorem 3: Assume that the queue is stable and that is regenerates with E[L] < ~
where L is distributed as the length of a regeneration cycle. Then

Qmax Wffiax
k k

_ log",(k) --> 1 and log(k) --> 1 (2.9)

where the convergence is in probability. Define ~ = E[L]-l, Ifwe have 0 < 8 <~. A(8)

= 0 and A'(8) < ~. then there exists constants K~ and KW such that



(2.10)

8

and

lim 'l( Wk
max < w + loalu!'" k)) = exp(_pe-W ).k ..-.) <>0 ov."VV

3.ANALYffiSOFQUEUELENGTH

(2.11)

o

(3.1)

Appealing to formula (2.3), we now concentrate on the behavior of a single c-cycle
busy period that begins with the arrival ofjob k = 0 at time t = 0 in order to determine

(n) - d1) -(e)
the large n behavior of the expectation E.[L1 ]. B o = (.tSo , .. ,Eo ) is the vector of

residual service times for the jobs being serviced at time t = O. As discussed above,
the distribution of this vector is assumed to be the stationary distribution.

Define

J (i) _ inf{" ~ A ;;~i) ~ Ffi,)}
k - J. LJ k' < ~ + LJ J

k' = 1 j' = 1

(with inf0 = ~). Prior to the end of the first busy period, J~) is the service index of

the job being processed by the i'th server at the instant that the k'th job arrives. At
the instant that job k arrives, a total of k+c jobs have entered the system. (This
includes the job that arrives at time t = 0 and the c - 1 jobs being processed at time t

=0.) The total number of jobs to have exited the system is I~=1 f;). Hence, the first

job to arrive and find an idle server is the job with arrival index

Ko = inf{ k: .t f;) " k + I}. (3.2)
1= 1

Next define

Kn = inf{ k: .t f~) = k-n}. (3.3)
1= 1

To see the meaning of (3.3), note that Qk = # of jobs that have arrived - # of jobs
. ( e -'i)) e-'i)served and bemg served =k + c - I i=1 Jio + c = k - I i=1 Jio. Hence, on the

event [Kn < KoJ, we have Kn =inf(k: Qk =n}. In words, given that the queue length

exceeds n during the cycle, Kn is the arrival index of the first job to arrive to find n
jobs in queue. Finally, define

K" = min {Ko,Kn} ,

Q = max{Qk:k,;Kol,

(3.4)

(3.5)



and

'" (A A B B(i). 1 T(i)· 1 )Jk = a 1'·') k; 0; j ,J= "'Pk ,1= ,..,c.

for k ~ O. The following lemma simply summarizes some immediate facts.

(3.6)
9

Lemma 3.1: .'Tk is an increasing sequence of a-fields, Ko is an 9i-stopping time,

(Kn) and [K"l are increasing sequences of .?i-stopping times, and 'II: Ie" < ~ ) = l.
(i) (il - --

Define I n =J Kn' Then on the event (Q ;, n) = [K" = Knl = (Kn < !Col we have

±J~i) = Kn - n. (3.7)
i= 1

Next we present our exponential change in distribution for the queueing process

busy period which we call the (a,n)-conjugate distribution. We write in,nl(.).
c

Define '1J = (a: 0.;;' 0 and Ai(o.;) < ~l = a closed rectangle in [O,~) containing O. For

any a E '1J define

and

enib dF·(b),
(3.8)

(3.9)

where 11 = 11("') = I;;'! "'i > O. The residual service time vector Bo is not twisted, that

is, B o is sampled from the stationary distribution of the c-cycle Markov chain (em)'

This specifies restriction of in,nl(.) to 'fo = ,,(Bo)' We extend to 'fk recursively.

Given 'fk_!, we determine if Ie" < k or Ie" ;, k. If Ie" ;, k, then Ak is sampled from

F(n)( ) d h II t' (B(i)· J(i) 1 J(i l j . . .dIdA . an eac co ec IOn j: J = k-l+ P" k IS an 1.1. . sequence samp e

from F\n)(-) stopped at time J~). Otherwise, if Ie" < k, then Ak is sampled from

. ( (i). (i) (i) jFA(.) and the random vanables Bj ,J::;;: Jk+n_l+1, .. ,Jk+n is an i.i.d. sequence

sampled from Fi(-) stopped at time J~ l .

In words, the (a,D)-conjugate distribution twists the Li.d. inter-arrival time and
service sequence distributions according to formulas (3.8) and (3.9), but ouly up to
the arrival ofjob~. Below we shall select the twisting parameter vector a in such
a way that the queueing process is unstable up to arrival index ~. After this
instant the process reverts to its nominal stable evolution.



We shall also refer to the a-conjugate distribution which is simply the Li.d.

sequence distribution generated by F~\.) and F\")(.). i = 1•..•c. One can think of

the a-conjugate distribution as the (a,oo)-conjugate distribution.

For each i = I, .. , c, we define

S(i) the service time remaining for the job being
k = served by server i at the instant that job k arrives

10

pl
= iilJil + f, B~i)

j= 1

In vector notation we write Sk = (~)•..•S~\

kr Ak ,·
k' =1

(3.10)

We have the following change of measure formula. We note that proof is a standard
and straightforward computation. In the notation, 0.·13 shall denote the Euclidean
inner product.

= expC et.SKn - ±f"illog(B;(-eti)-K"log(A*(l])).
i= 1

Lemma 3.2: For any et E 'D. the process distributions '/{.) and p.",n10 are
ally -absolutely continuous and

dP.,,·n)

dP

mutu-

(3.11)

Having defined an exponential change of measure, for a general vector of twisting
parameters a, recall our key Lemma which defines and characterizes the curve
et(l]) and the function A(l]) (formula (2.7)). In particular. recall that the curve O:(l]) is

defined by the relationships B;(-cti(l])) = B~(-ct;(l])) for i =2....c. In (3.11) we now see

the reason for this definition; it equates the coefficients of the J~i)IS. This in turn
allows us to apply formula (3.7) which significantly reduces the complexity of (3.11).
The following lemma presents this reduction.

Lemma 3.3: For any l] E (O.Ti). or for l] = Ti ifA(rj) < ~. formula (3.11) reduces to

dP.~,nl
dP = exp( et(l])-SKn - (K,,- n) A(l]) ) A*(l])-n (3.12)

on the event (Q ;;, nJ.

Hereafter we shall refer to the (et(l]).n)-conjugate distribution (or the O:(l])-conjugate
distribution) as simply the (1),n)-conjugate distribution (or the l]-conjugate distribu-



(3.14)

tion). All notation is modified accordingly by replacing the vector IX with the scalar 11
Tj and we shall simply write a; instead of a;(Tj).

The proof of the Basic Lemma is for the most part a straightforward application of
convex function theory. In the process, one obtains the derivative

A'(Tj) = (P(Tj) - 1) E(~)[Al] (3.13)

where

p(Tj) = '<': EC<!l[B(i)]-I'
.L.1=1 1

Tbis is an interesting observation because recalling formula (2.3) we see that the
parameter p(Tj) determines the stability, or more importantly the instability of the Tj­
conjugate distribution. By our stability assumption, we have P = p(O) < 1 which is
equivalent to A'(O) < O. We shall shortly set TJ = e where e is the unique positive
solution of A(8) = 0 (which we assume exists for the sake of discussion). By convex­
ity, we must have A'(e) > 0 which implies pee) > 1 which in turn implies that the e­
conjugate distribution is unstable! So, we now see how the (8,n)-conjugate distribu­
tion behaves; it is unstable up to time Ie" and then reverts back to the original stable

behavior. Notice that this instability will greatly increase the likelihood of the event
{Q ;" n) = (K" = KnJ.

We mention that the above characterization of the (8,n)-conjugate distribution as
typical behavior of busy periods that cause large backlogs is also apparent in
Anatharam's paper [14].

We conclude this section by summarizing the proof of Theorem 1. Appealing to

formula (3.2), it is sufficient to consider E.[Lin)J. From Lemma 3.3, we have

E.[Lin)] = E~~,n)[Lin) exp( - a(TJ)SK
n
) + (Ie,,- n) A(Tj) ) ; Q;" n] A*(Tj)n

In particular, if ACe) = 0, then

E.[Lin)] = E~,n)[Lin) exp( - a(e),sK
n
) ) ; Q;" n] A*(e)n. (3.15)

Theorem 1 follows by demonstrating that the expectation above tends to a limit, in
particular. we have

J!..,m_ E~,n)[Lin) exp( - a(8)-SKn) ) ; Q;" n] = KQ E,,[L1]

The fact that this expectation does not vauish follows intuitively from the instability
of the 8-conjugate distribution. The technical step is to demonstrate that the
residual service time vectors SKn have a limiting distribution as n ~ QQ. To do this
we observe that (Sk) is an irreducible and aperiodic Markov chain. Using renewal
theory, we can prove that (Sk) positive recurrent. This ergodicity of (Sk) is not

sufficient to obtain the desired convergence in distribution SKn' however, it is a key

step.



4. ANALYSIS OF WAITING TIME

Unlike the queue length analysis of Section 3, waiting time analysis depends on the
service priority to be employed. For example, the classical analysis based on (1.4)
and (1.5) are valid only for FIFO service priority. Here we shall only consider FIFO
priority, however, it will be evident that the analysis could be modified for other
kinds of priorities as well.

Even though there is actually only one queue, for the purpose of waiting time
analysis it is convenient to think of c separate queues; one queue for each server.
The service priority can be thought of as a function that assigos the jobs to the
various queues. In the real queueing process this assignment is actually
performed as the jobs leave the queue and enter service. However, by allowing the
queue assignment function to know the service times of the jobs in queue, there is
an equivalent assignment function that assigns jobs to these conceptual server

queues as they arrive at the system. Define J~) to be the service index for the last job

in the i'th queue at the instant that job k arrives. (This is in contrast to J~) = the

service index of the job being processed by the i'th server at the instant that the k'th
job arrives.) Next define

J(i)
••1i) -(i) k..1i) k
wi< = Bo + L lSj' - L Ak,· (4.1)

j'=l k'=l

Notice that (4.1) is similar to (3.10). In fact, in this section W~) plays a role that is

analogous to the role of the residual service time ~) in Section 3. For FIFO

priority, the waiting time for job k is Wk = miIl;=l....CW~). leo is as in (3.2), but

instead ofKn we now use Kw = inf (k: Wk 2: w) and~ = min fKo,Kw).

Next, we redefine the conjugate distribution. The (a,w)-conjugate distribution is

defined just like the (a,n)·conjugate distribution, except that we replace J~) by J~)
and we replace Ie" by~. The key difference between the two definitions is that in
the new definition at the instant that job Kw arrives we have twisted the

distributions of the service times for jobs that are in queue (but not already
serviced). In contrast, in the Section 3 definition the service time distribution
twisting is applied only for jobs that have been or are being serviced, but not to jobs
in queue when job~ arrives.

Using the above definitions we can prove Theorem 2 in a fashion completely
analogous to the way we prove Theorem 1. For brevity we shall not investigate the
now obvious parallels further.
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5. CONCLUSION AND NUMERICAL EXAMPLES

We conclude with some numerical data obtained using the Monte Carlo simulation.
We actually first estimate the expected c-cycle length En[L1] and the quantities

~[DrJ] and En[D]"J], and then apply these estimates to formulas (2.3) and (2.4) to

obtain estimates of'l( Qk ;, n ) and 'l( Wk > w ).

Our algorithm is as follows. First, Li.d. samples of the residual service time vector
and the c-cycle length (Bo,L 1) were obtained using the regeneration scheme

described in Section 2. The queueing system was simulated in a continuous fashion
keeping track of the instances when new c-cycles begin. At the beginning of each
new c-cycle, the algorithm stores the residual service time vector and the length of
the last c-cycle. When a regeneration occurs, that is, when the service system
completely empties out during some c-cycle, the simulation stops and one of the

CBo,L1) pairs is randomly selected (with nniform likelihood) from the stored re­

generation block. Thus, successive (Bo,L I ) are Li.d. Moreover, it turns out that this
is equivalent to sampling from the stationary distribution. The i.i.d. samples of L1

were used to estimate the expected c-cycle length En[L1]. To estimate En[DrJ] (or

En[L(]")]) we used the importance sampling technique. Busy periods were

simulated using the i.i.d. samples of Bo and (S,n)-conjugate distribution. Unbiased

Monte Carlo estimates are then obtained using formulas (3.11) as the importance
sampling weighting function. We direct the reader to references [6], [7] and [8] for
more discussion of importance sampling.

For particular example presented here, inter-arrival time distribution is uniform
on the interval [0,1] and service time distributions are uniform on the interval
[O,.8c]. In this way, the utilization factor (see (2.2)) is p = .8 for all values of c.
Moreover, the characteristic equation is exactly the same for different c. By
numerical solution of the characteristic equation, we determine that 8 = 1.486 and ro
= .5206 for all c ;, 1. Table 1 and Figures 1 and 2 present the numerical results of the
simulations.
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Table 1: Summary of c-cycle simulation data

Expected Expected # of
c c-cycle Length c-cycle per ~ Kwregeneration

1 3.13 1.00 .469 .077
3 4.04 9.27 .371 .072
5 4.93 60.19 .306 .064
7 5.62 481.0 .286 .062

10" 10-1
I Ii

a c= 1 0 Ii a c=1

a 0• c=3 I • c=3•10 -1 0 a 10-2• 0 c=7 , 0 c=7
0 Ii

0 a 8
• 80 a 810-2 8 10"a III a II,

a II
I

10-' 10"
0 2 4 6 8 0 1 2 3 4

n = queue length w = waiting time
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Figure 1: Estimate of 1( Qk " n )
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