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In this paper we characterize the probabilistic nature of the maximum queue length and
the maximum waiting time in a multiseroer GIGlc queue. We assume a general Li.d. inter­
arrival process and a general Li.d. service time process for each server with the possibility
of having different service time distributions for different servers. Under a weak additional
condition we will prove that the maximum queue length and waiting time grow asymp­
totically in probability as lo&., n-1 and logn1/ O, respectively, where w < 1 and () > 0 are
parameters of the queueing system. Furthermore, it is shown that the maximum waiting
time - when appropriately normalized - converges in distribution to the extreme distri­
bution A(x) = exp(_e-Z

). The maximum queue length exhibits similar behavior, except
that some oscillation caused by discrete nature of the queue length must be taken into
account. The first results of this type were obtained for the GIM[1 queue by Heyde, and
for the GIGII queue by Iglehart. Our analysis is similar to that of Heyde and Iglehart. The
generalization to c > 1 servers is made possible due to the recent characterization of the
tail of the stationary queue length and waiting time in a GIGlc queue (d. Sadowsky and
Szpankowski [17]).

·This research was supporled by lhe NSF Grant ECS-9003001.
tThis research was supporled by tbe NSF Grant CCR-8900305, in part by AFOSR Grant 90-0107, and

in part by Grant ROI LM05118 from the National Library of Medicine.
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1. INTRODUCTION

The GIGlc queue is a single queue with an i.i.d. interarrival time process and 1 .s c < 00

servers each having an i.i.d. service time process. This model occurs in numerous applica­

tions including industrial process modeling, multiprocessor computer systems, telecommu­

nications networks and service counters. In some of these applications it is required that

different servers work with different speeds, or even more generally, that dlfferent servers

have different service time distributions. For example, in a (heterogeneous) multiprocessor

system there are efficient (task oriented) processors and slower (general-purpose oriented)

processors. vVhen the service time distributions differ, we say the GIGlc queueing system

is heterogeneous. It is known (d. Kiefer and Wolfowitz [9. 10], Loynes [11]) that such a

system is stable if and only if the rate of the arrival of new customers is smaller than the

total service rate. This paper investigate the maximum queue length and the maximum

waiting time of a stable GIGlc queue in its stationary mode of operation. We also give some

partial results on the maximum total workload.

Some important information about dynamics of a system can be obtained by investi­

gating the small tail of probabilities of large queue length and waiting time, or simply the

maximum size of the queue over a period of time. Such information, without any doubt,

has obvious significance to issues of resource allocation (e.g., the design of a buffer size in a

distributed system). Moreover, such an investigation can be used to assess space complexity

of other dynamic data structures that share common features with queues. We mention

here dictionaries, linear lists, stacks, priority queues, symbol tables, hashing and so forth

(cf. Szpankowski [19] and Aldous et .1 [1]).

The maximum queue length and the maximum waiting time were extensively studied

in the 1970's. Heyde [7] was the first who predicted the asymptotic growth of maximum

queue length in a GIMl1 system. Iglehart [8] continued this investigation by providing

the rate of growth and the limiting law for the maximum waiting time in GIGI!. The

maximum queue length - as shown by Anderson [2J - does not possess limiting distribution

due to some oscillation caused by the discrete nature of the queue length. Nevertheless, this

oscillation can be taken into account, and Anderson [2] derived the asymptotic behavior of

the maximum queue length. These results are obtained as a consequence of the exponential

(resp. geometric) tail distribution for the waiting time (resp. queue length) due to Feller

[4], and Iglehart [8] who derived the tail distribution of the maximum waiting time in a

busy period. Recently, we have obtained a tail characterization for the waiting time and

queue length distributions in the multiserver GIGlc queue. More importantly for the present
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application, we have characterized the distribution tails for the maximum waiting time and

queue length over a stationary full busy period (to be defined below) [17]. These results

will play the same role as Iglehart's result for the maximum waiting time in a GIGll busy

period.

We note that Neuts and Takahashi [12] have also characterized the stationary queue

length and waiting time distribution tails for the GIPH]c queue. However, their analysis

is not directly related to busy-idle cycles, and as a result, their results are not directly

applicable to the analysis of Anderson [2] and Iglehart [8].

This paper is organized a.s follows. In the next section we present a summary of our

results from [17] (see also [16]), as well as some important extensions of them that are

directly applicable to the maximum size of GIGlc. In Section 3 we present our main results.

In particular, after discussing one general result on the maximum order statistic, we show

the growth in probability of the maximum queue length, the maximum waiting time and the

maximum total workload. Finally, we extend these results to the convergence in distribution.

Thronghout the paper we assume a homogeneous GIGlc queue for simplicity of presen·

tation, however - as discussed in Remarks 2.1 and 3.5 - extension to heterogeneous case is

straightforward using the constructions of {17J.

2. PRELIMINARIES

We consider a G[Glc queue with 1 $ c < 00 servers, and general interarrival times

and service times distributions. The interarrival time process is denoted {Ad, and the

service time process for the i'th server is denoted {Bli
)}. The processes {Ad and {Byl},

i = I, .. ,c, are independent and i.l.d. with distribution functions A(t) = P(Ak $ t) and

B(t) = P(By) $ t) (which does not depend on the server index i for a homogeneous

queueing system). The Laplace-Stieltjes Transforms (1ST) are A·(s) = E[exp( -SAk)] and

B"'(.9) = E[exp( -sBy»)]. To avoid trivial cases we also assume throughout that A(O) < 1

and B(O) < 1. For waiting time analysis, the service discipline is FIFO (first in - first out),

and work-conserving (that is, a server cannot stays idle if there is a job in the queue). Of

course, queue length does not depend on service disciplines.

We denote the queue length at the instant of arrival of the k'th customer as Qk. The

queue length Qk does not include customers in service. The definition of the waiting time

for multiserver queues is a little more involved. Hfk will denote the waiting time of the

k'th customer, not including service time. A FIFO queueing system can be thought of

as c parallel queues, one for each server. Let W~il denote the waiting time that would be

e.xperienced by the k'th customer if it were assigned to the i'th queue. Then the FIFO service
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priority is equivalent to assignment of the k'th job to the queue having the minimal waiting

time, and hence, Wk = min{W~l), ... , W~c)}. (We assume some deterministic or random

assignment rule for the case of ties.) It will be convenient to denote the c waiting times as

a vector W k = (WP), .... , W~c»). Define p = AJ(Cp,) where ..\ = E[Ad-1 and p, = E[Byl]-l

for homogeneous GJGlc queue. It is well known that the system is stable if and only if p < 1

(d. [9,11]). If p < 1, then regardless of the initial state of the system W k and Ok have

unique stationary (limiting) distributions. 000 and WCQ will denote random variables that

are distributed accordlng to the stationary distributions of Qk and Wk. Likewise, Woo will

denote a random vector which is distributed according to the stationary distribution of the

waiting time vector Wk. Throughout the paper we shall assume that p < 1 and the waiting

time Wk as well as the queue length Qk are stationary processes.

Our interest is in estimating a probabilistic behavior of the maximum queue length Q~Q:&'

and the maximum waiting time W~Q:t' attained by the time the n'th customer has arrived,

that is,

Q~Q:t' = max {Qd and W:Q:t' = max {Wd.
l~k$n l$k$n

Our analysis follows that of Heyde [7] and Iglehart [8] for the c = 1 server case which

we briefly review here. As is very well known, the queueing process regenerates when the

entire system empties out and successive busy periods are U.d. Let L n denote the number

of busy periods completed prior to the n·th arrival. Busy periods are independent, and the

expected length (number of customers) of a busy period is finite [10]. Hence, from renewal

theory Ln/n -)0 a (a.s.) for some a > O. Let Qt. and Wt. denote the maximum queue length

and the maximum waiting time in the l'th busy period. Then, we have

l!!l~t{O,} s Q~Q:&' S l$~t:+l{Qll

and

l~~ {Wt} < WmQ:t' < max {W,}.n l$l$Ln+1- - "

(1)

(2)

The busy period maximums Qt. and W l, £ = 1,2, ... , are i.i.d. random variables. Therefore,

knowing the tail distributions of Qt and W t we can apply standard approach of the extreme

statistics for independent random variables (cf. Galambos [5], Gniedenko [6]), and obtain

the limiting distribution of the maximum queue length and the maximum waiting time.

The maximum queue length needs some additional care since some oscillations can occur

due to discretization (d. Anderson [2]).

In order to apply the ideas of the previous paragraph to a multiserver queue (which is

our contribution here), we need two results. First, we will require a sufficiently detailed
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estimate of tail probabilities for 7Jl and W l. We have recently obtained such an estimate

in [17]. Second, we require a regeneration structure. As in [7] and [8], we will appeal to the

regeneration that occurs due to busyjidle cycles, but to do this we will have to be careful

about the definition of such cycles.

In a multiserver queue, a full busy period is a maximal contiguous time interval during

which all servers are continuously busy. A partial busy period is a maximal contiguous

time interval during which at least one server is busy. Full busy periods are separated

by partial idle periods which are maximal contiguous time intervals during which there is

always at least one idle server. Conversely, partial busy periods are separated by full idle

periods which are maximal contiguous time intervals during which there is all servers are

idle. Notice that in the c = 1 case partial and full busy periods are the same thing. A busy

cycle is defined as a partial busy period followed by a full idle period. This conventional

definition has the advantage that successive cycles are Ll.d. However, in the multi server

case, these cycles do not necessarily occur 1.0. (infmitely often). Regenemtion by partial

busy period / full idle period cycles must be assumed. We will refer to the shorter cycles

consisting of a full busy period followed by a partial idle period as c-cycle. These are not

1.l.d. but they do form a Markov chain.

The following hypothesis is required to ensure the existence of both cycles and c-cycles.

(R) Assume that p < 1, 0 < P(Woo = 0) < I, and P(exactly one wt) = 0) > o.

The inequality peW00 = 0) < 1 rules out the trivial case that queue is always empty when

new customers arrive. This occurs when there is a constant M such that By) ::; M and

AI: > M almost surely. The inequalities 0 < peW00 = 0) < 1 together are equivalent to

P(injinitely many distinct full idle periods) := 1 by the ergodicity of the queue (d. [9J). As

noted above, infinitely many cycles is not automatic. For example, when c > 1, it is possible

to have a constant M > 0 such that AI: < M and By) > M almost surely, and still have

p < 1. However, in this case there will always be at least one server busy at all times, and

hence, full idle periods never occur. Whitt [20] gives some sufficient conditions that insures

infinitely many full idle periods, in particular, peAk - By) > 0) > 0 is sufficient. The

inequality P(exactly one w~) = 0) > 0 is equivalent to P( infinitely many distinct full busy

periods) = 1. Again, this condition is also not automatic. For example, if c > 2, By) < M

and AI: > (c - l)M almost surely for some constant M, then there will always be at least

c - 1 idle servers when a new customer arrives. However, P(exactly one wt) = 0) > 0 is a

less significant hypothesis than the other inequalities in (R) because it simply rules out the

trivial cases that Qk == O.
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Naturally, when a full idle period occurs the system is empty and the queueing process

restarts with the arrival of the next customer. That is, full idle periods are regeneration

events and successive busy cycles are Li.d. Hence, we refer to assumption (R) as the

regeneration hypothesis.

Assume (R) and define Bm = (il!J) , "', B~)) as the c-dimensional vector representing the

residual service times for the customers being processed at the beginning of the (m +1)'th

c-cyde. Notice that Bm = W k when k is the index of the customer that initiates the

(m + 1)'th c-cyde, and hence, e(·) = P(Woo E ·1 exactly one W£l = 0) is the stationary

distribution of Bm. (Notice that this conditional probability is well defined under (R).) It

turns out that {Bm} is a Markov chain, hence c - cylces form a Markov chain too [15, 17].

This property is strong enough to obtain a full characterization of the asymptotic behavior

the maximum queue length in a c - cycle.

Define Qm and Cll (resp. W m and Wt) as the maximum queue length (resp. waiting

time) in the m'th c- cycle and l'th busy cyde respectively. Furthermore, under assumption

(R) we note that (1) and (2) hold if Qm (resp. W m ) is replaced by QI. (resp. WI.).

Now we are ready to summarize results of Sadowsky and Szpankowski [17]. In general,

define

0= sup{ss s:A'(s)B'(-sle)S I},

where s = sup{s: B·(s) < oo}. Furthermore, we define

(3)

w A'(O) . (4)

Under some additional regularity, it turns out that () is the unique positive solutions of the

characteristic equation

A'(O)B'(-Ole) 1 (5)

The reader is referred to [17] (see also [16]) for a detailed presentation of the properties of

the characteristic equation, or more generally (3), for the heterogeneous queue. For some

results we require an additional hypothesis:

(E) 0> 0 satisfies (5), and f,B"(s) 1.=, = E[Bkexp(-OBkll < 00.

Let Q and W denote the maximum queue length and the maximum waiting time re­

spectively in a full busy period that starts with residual service time vector Bo having the

stationary distribution e(·). In Sadowsky and Szpankowskl [17] the following results are

proved.
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Theorem 1. (i) Assume p < 1. Then

log (P(Qro ~ n)) ~ log(w") and log (Pe (Q ~ n )) ~ log(w"). (0)

(ii) In addition assume (E) and the service times distribution B(t) is spread_out.! Then

there exists a constants !(Q' J(Q such that

(7)

where 0 < J(Q,J(Q < 00••

Theorem 2. (i) Assume p < 1 and FIFO queueing discipline. Then

log(P(Wro~w)) ~ -Ow and log(Pe(W~w)) - -Ow. (8)

(ii) In addition assume (E), the service times distribution B(t) is spread-out, and A(t) is

non-atomic. Then there exists a constants ](w,!(w sucll that

where 0 < J(w,J(w < 00 ••

For the purpose of tItis paper we need an extension of Theorems 1 and 2, which deals

with partial busy period maximum queue length an waiting time. Let Q and W denote the

maximum queue length and waiting time over a partial busy period (I.e., busy cycle).

Corollary 3. Let appropriate hypotheses of Theorem 1(i) and 2(i) hold, and in addition

we adopt assumption (R). Then,

log(P(Q~n)) _ log(w") and log(1'(W~w)) ~ -Ow (10)

where Q and W represent the maximum queue length and the maximum waiting time in a

busy cycle. Assume in addition the appropriate hypothesis of Theorem 1(ii) and Them'em

2(ii}. Then,

where 0 < J(Q ' J(,w < 00 •

and (11)

1 A distribution is spread. out if some convolution power has a. component that is a.bsolutely continuous

with respect to Lebesgue measure.
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Proof: We prove only the result (11) for the queue length. As in Sadowsky and Szpankowskl

[17], let C m = (Bm_t,Xm) denote the m'th c-cycle Markov chain where Xm is a random

element that contains all of the service times and interarrival times for customers that arrive

during the m'th c-cycle. Then Bm is determined by Cm_I, and {Cm} is a regenerative

positive recurrent Markov chain under hypothesis (R). Define Em = { no full idle periods

before the m'th full busy period }. The stationary distribution for the c-cycle chain {Cm}

is PeCCI E·). Let v(.) = Pb(BI E ·1 regeneration in C I ) (which does not depend on the

initial value Bo = b). Then

2::' I Pv(Cm E .; Em)

2::::=1 Pv(Em)
(12)

The above representation is easily verified to be the unique invariant, hence, the stationary

measure. See also Theorem 5.2 in [13]. Define Fm,n = { Qk < n for all k < m }. Then,

=
00

I: p. (Qm ;" n;Em n Fm,n)
m=2

00

= I: Pv ( Qm ;" n; Em)
m=I

00

I: Pv (Qm ;" n; Em n F';',n) .
m=2

Applying (12) to the first term in the last line above, we conclude that

00

L pv(Qm~niEmnF~,n)'
m=2

The first term in the last line above is '" !Cqwn where J('Q = J('Q L::'=I Pv(Em), by Theorem

1. We will now show that the second term in the last line above is o(wn ) as n --+ 00. It follows

from the proof of Theorem 2.1 in [17] that pCQm ;::: n [Bm_I = b) ::; exp(~ 2:f=I b(i») wn.

Thus, for m ;::: 2 we have

Pv (Qm;" n; Em nF,;"n)

< JP( Qm ;" n IBm _ 1 = b) Pv (Em n F';',n; Bm _ 1 E db)

< Ev [exp (~t, B~~1) ;Em nF';',n] w
n.

Notice that Pv(Em n F~.n) --+ 0 for each m as n --+ 00, hence, for each m the expectation

in the last line above vanishes n -1' 00. Moreover,
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~ %;, Eu [exp (~t.B~~1) ;Em]

[%;, Pu(Em)] Ee [exp (~t.B~'»)] < 00
where the convergence of this upper bound is proved in Lemma 4.8 in [17]. Thus, by the

dominated convergence theorem we have

00

I: Pu (Qm ~ n;Em n F';,.)
m=2

< (%;2 Eu [exp (~t.B~~1) ;Em nF';,.]) w'

and this completes the proof.•

o(1)w'

Another variable of interest in some applications is the total workload Uk = W~l) +
w12

) + ... +wlc
). It is quite likely that result analogous to Theorem 1 and Theorem 2 can

be proved using the methods of [17], but we shall present some more restricted results here.

Consider a slight generalization of the workload definition. Let Uk = ~'j;.1 CY> where

the cy)'s are Li.d. random that are independent OfQk. In particular, if cy)'s are the service

times of the jobs in queue at the instant that customer k arrives, then Uk is precisely the

total workload defined above. Another example occurs in computer system analysis. The

cy)'s might represent the memory requirement for computer jobs in queue. We shall prove

an asymptotic result for the stationary total workload Uoo .

Corollary 4. Assume hypothesis of Theorem 1(ii) is satisfied and that the queue is opemting

under its stationary distribution. Let the cyl,s be i.i.d. random variables independent of

Qk' Let C"'(s) = E[exp(_sCYl)] denote the LST of the cy) 's, and we assume it is finite in

some neighborhood of zero. Define s" as a unique positive solution of the following equation

C"( -5") = w-1. Then

(13)

as u --t 00 for some constant J(u E (0,00).

Proof. Under stationary operation, let Q-(z) = E[zQ"l = E[zQ""'l be the generating func­

tion of the stationary queue length distribution. Then clearly, U'"(s) = E[exp(-sUk)] =

Q"(C-(s)). An abelian theorem (d. Postnikov [14]) together with Theorem I(U) imply that

QO(z) ~
1 _ (1- z)1(Q

1 wz
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as z _ w-t . Thus, as .9 ! -s·. we have

U"(s) = Q(C"(s)) _ 1- (1- C"(s))KQ
l-wC"(s)

_ 1 _ (1- C"(s))KQ
C"'( -soles + S")w .

(14)

To obtain the tail of U from (14) we use a tauberian theorem. This needs some care.

Fortunately, according to OUI basic assumptions the average value of the total total work­

load is finite, and this implies that P{U > t} = o(l/t). Hence we can apply Hardy and

Littlewood's theorem (ct. Postnikov (14]) to (14), and this completes the proof. •

Remark 2.1. In Corollary 4, if Uk is the total workload, that is, C*(s) = B·(s), then by

(5) it follows that s· = Olc.

Remark 2.2. Theorems 1 and 2, as well as their extension Corollary 3, hold in fact under

more general assumptions, namely for heterogeneous O]O]e queues. In such a system there

are e sequences of service times, each one associated with different server (e.g., servers might

have dlfferent speeds). Let {Bli)} denote the service time required by the jth customer

processed by server i, and Bi(s;) = E[exp( -siBY»)] is the LST of {Bl i
)}. To formulate our

results in such a situation, we need to generalize the characteristic equation (5). This is done

by Sadowsky and Szpankowski [17J. We bdefly sketch this generalization here. For a fixed

p define a vector Si(P), i = 1, ... ,e such that Ei=tSi(p) = P and Bi(Sj(p)) = Bi(st(p)).

Then, under mild assumptions (for details see (17]) .9i(p) is a function of Step) such that on

the curve Step) the following holds Bt(.9;(p)) = Bi(St(p)). Then, the characteristic equation

(5) becomes

A"(9)Bi(Sl(9)) = 1 . (15)

If all of the LSTs of Bi(s) are defined on the same region, then Theorems 1 and 2, and

Corollaries 3 and 4, hold with 8 defined as in (15) provided assumption (E) is satisfied. For

"logarithmic" results (Theorems l(i) and 2(i)) the charactedstic equation (15) should be

replaced by a weaker form as in (4), that is,

9 = ,up{p, A"(p)Bi(Sl(P)) ,; 1) .

Note that in the homogeneous case, Step) = pIc as needed to transform (15) into (5).

3. MAIN RESULTS

In this section we present our main results regarding the maximum queue length Q~".o:,

the maximum waiting time W:"x, and the maximum total workload U~"X.
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Many of the results stated here follow directly from well know results on the maximum

of a set of LLd. random variables. For example, see Galambos [5]. We include some proofs

here only for completeness.

We discuss only the queue length problem. The reasoning for maximum waiting time

and total workload are obviously analogous to our queue length arguments.

max {Q,} < Qmo, = max {Qk} < max {Q,}
l$l$Ln - n 1::;;1.:::;;" - l$l$Ln+I '

(16)

where (assuming (R)) Ln denotes the number of busy cycles completed prior to the nth

arrival. By the ergodicity of the queueing process, Ln/n --+ a (a.s) for some a E (0,1].

Lemma 5. Let {Xk} be an i.i.d. sequence of random variables with common distribution

function F(.). Assume that for some constant (J E (0,00) we have log(l- F(x)) '" -f3x as

x --+ 00. Let {L,,} be a sequence of random variables such that Ln/n --+ a E (0,00) (pr.)

and define Mn = max1::;;k::;;L" XI.:. Let {an} and {bn} be sequences of real numbers such that

an - (J-1Iog(na) _ -00 and b" - f3- 1 Iog(na) --+ +00. Then P(an :$ M n :$ bn) _ O.

Proof. For a fixed 5 > 0, define M n = max1$k$(1_5)an XI.: and M n = ma.x1:$;k$(1+5)an XI.:.

We flul have P(Mn > bn) S P(Mn > bn) +P(Ln > (I + 6)<>n). Since Lnln ~ <> (pr.),

we only need to show that P(Mn > bn ) --+ O. Dy Boole's inequality, P(lVIn > bn) :$

(I + 6)<>n(1 - F(bn)). Thus,

log(P(Mn > bnll < log(1 + 6) +log(l- F(bn)) + log(na)

~ -(3bn + log(na) ~ -00

and this implies P(Mn > bn ) --+ 0 by the condition on the sequence {bn }. Next we have

P(Mn < an) :$ P(Mn :$ an) +P(Ln < (1- o)an) and again it is clear that we only need to

show that P(Mn :$ an) _ O. Using the independence of the XI.:'S we have P(Mn :$ an)

F(an)l(l-6)anJ• Using log(1 + x):$ x we have

-log(P(Mn San)) -l(1 - 6)<>nJ log (I - (1- F(an)))

~ l(1- 6)<>nJ (1- F(anll,

and hence,

log(-log(P(Mn S an))) ~ log(l- F(an)) + log(<>n) + log(l(l- 6)J).

By the assumption on the sequence {an}, log(l- F(an)) + log(na) --+ +00. This implies'

that -log(P(Mn :$ an)) --+ +00, and hence, P(Mn ::; an) --+ 0.•
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As an immediate consequence of (16), Lemma 5 and part (i) of Corollary 3 we have the

following result.

Corollary 6. Assume for stationary queue (p < 1) that (R) holds, and the"e exists a

positive solution, (J> 0, of (3).

(i) For any sequences of numbers {an} and {bn} such that an -lo&.,(an) --+ -00 and

bn -log",(an) --+ +00 we have P(an ::; Q~!I:J: ::; bn) --+ 0, and hence, Q~!I:J: flo&., (an) --+ 1

(pr.).

(li) For any sequence of numbers {an} and {bn} such that an - O-llog(an) --+ -00 and

bn - O-llog(cm) --+ 00 we have P(an ::; W;'!I:J: ::; bn) --+ 0, and hence, BW;'!I:J: Ilog(an) --+ 1

(pr.). •

Remark 3.1. The assumption 0 > 0 is important. It is easy to see that for heavy tail

service time distribution (e.g., 1- B(t) '" 1/t2 ), one can construct a stable queueing system

for which 0 = O. Then, the tail of the queue length decays slower than geometric, and

consequently the maximum queue length may grow faster than logarithmic.

Remark 3.2. Our results cannot be extended to c = 00 as the MIGloo example shows. In­

deed, in this case the stationary distribution is subexponential, that is, more precisely

P{Qoo ;:: n} '" e-ppnln! (d. \Volff [21]). In this case, we can prove that Q~!I:J: '"

logn((loglogn) (pr.) (cr. Aldous et al [1]).

Remark 3.3. How long one must wait until the asymptotics for the maximum queue length

and waiting time become valid'! Naturally this depends on p. For example, for p = 1 the

growth of Q~!I:J: is almost linear (d. Serfozo [18]). However, when p _ 0 the growth is

much slower. Consider - as an example - the case when n = w-1!p. Then, the rate of the

convergence is exponential. In practice one requires the exponential rate of convergence,

but then n must increase exponentially fast in lip for the asymptotics to be valid. Hence,

one must wait "exponential time" before the maximum queue reaches its value O(logn)

predicted by Corollary 6. For practical applications, it might be much sensible to consider

(the time of observation) n being at most polynomially large in 11p.

Remark 3.4. H additionally we assume (E) in Corollary 6, then one can characterize the

rate of convergence. For example, a simple modification of Lemma 5 leads to the following

estimates

P((l - 0) logJncr)-l ~ Q;:''' ~ (1+ 0) logw(na)-l)

P((l - 0) log(ncr)'!' ~ w:o
• ~ (1 + 0) log(ncr)'!')
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A similar result to the one presented in Corollary 6, can be obtained for the generalized

total workload Un. However, since we ne~d slightly different approach to prove it, we present

it separately in the following theorem.

Theorem 7. Assume hypotheses of Corollary 6 together with (E). Then, s· u::,a~/ log n -+ 1

(pr.).

Proof. For an upper bound we use u:a~ = max15k5n Uk and Corollary 4. Then, by

Boole's inequality we have

111
P(U;:'ox,;; (1 +e),logn) ,;; nP(Uk ,;; (1 +e),logn) _ ...

3 3 n

For the lower bound we note that u:a~ ~ max15k5Ln Uk where Uk is the maximum gen­

eralized workload in a busy period. But, we can bound it from the below by the following

Q.
Uk ~ I;Cj') = Uk.

;=1

Using the same approach as in the proof of Corollary 4 we can show that p{ih ~ 'IL} '"

J(fje- s•u. Since ih are LLd. with exponential tail, then by Lemma 5 s"Ud log n -+ 1 (pr.),

and this, together with the upper bound proved above, establishes the theorem.•

Finally, we present our strongest results regarding convergence in distribution of the

maximum waiting time and the maximum queue length.

Theorem 8. Let p < 1 with c < 00, and assumptions (R) and (E) hold together with

hypotheses of Theorem 1(ii) and Theorem 2{ii). Then,

lim P(BW;:'oX < x +10g(n1(w)) = exp( _a.-X)n_= (17)

for every nonnegative real x. Furthermore, the maximum queue length behaves for large n

as

lim max 1P(Q;:'ox < x) - exp(-n1(" awX
) 1= 0 ,

n-+oo ~ '"I'

or in another form

lim infP(Q;:'ox < m -logw(n1(~))
n-+oo Q

,;; lim supP(Q;:'ox < m -lo&,(n1(=))';; exp(_awm) ,
n-+<XI Q

where m is an integer.
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Proof. The proof is standard and along the lines of Iglehart's proof of GIGII results. For

example, for the maximum waiting time we first consider fixed number, say N, of busy

periods, and apply Corollary 3 to (16) in order to obtain

P(WFl'" <:; (x +log(NJ(w))/B) = p N (W <:; (x +log(NJ(w))/B) =

= (1- J(wexp(-x -]og(NJ(w) +o(exp(-x -log(NKw))t ~ exp(_eX
). (20)

Now, to prove (17) it is enough to make N random such that N In --+ a (a.s), and apply

Berman's lemma [3]. For the maximum queue length additional care is needed in order

to consider some fluctuation due to discretization as in Anderson (2]. This completes the

proof. •

Remark 3.5. As discussed in Remark 3.3 this analysis cannot be expanded to the cm>e of

infinite number of servers. For example, for MIGloo it is proved in Aldous et al [1] that for

some to > 0

n,a--+oo ,

and this is quite different than the limiting law in Theorem 7.

Remark 3.6. As discussed in Remark 2.1 our estimates on the tails for the maximum

queue length and waiting time in a busy period work for a heterogeneous GIGlc queue, if

one computes 8 m> a positive solution of (15). Naturally, in such a case Theorem 6 and

Theorem 7 are still valid with 8 and w appropriately evaluated.
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