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Abstract

Consider a given pattern H and a random text T of length n. We assume that symbols in
the text occur independently, and various symbols have different probabilities of occurrence
(l.e., the so called asymmetric Bernoulli modeQ. We are concerned with the probability of
exactly T occurrences of H in the text T. We derive the generating function of this probability,
and show that asymptotically it behaves as anrpfi-r-l, where a is an explicitly computed
constant, and PH < 1 is the root of an equation depending on the structure of the pattern.
We then extend these findings to random patterns.

Key Words: Pattern occurrence, Bernoulli model, autocorrelation polynomial, generating
functions, asymptotic analysis.

"Research of this author was supporled by NSF Grants CCR-9201078 and NCR-9206315.

1



1. INTRODUCTION

Repeated patterns and related phenomena in words (sequences, strings) are known to

playa central role in many facets of computer science, telecommunlcations, and molecular

biology. Some notable applications include coding theory and data compression, formal

language theory, finding repeated motifs of a DNA sequence, and the design and analysis of

algorithms. One of the most fundamental questions arising in such studies is the frequency

of pattern occurrences in another string known as text.

The goal of tills paper is to study the number of occurrences of a given pattern in a

mndom text of length n. More precisely, we compute the probability that a given pattern

occurs exactly T times in a random text (overlapping copies of the pattern being counted

separately). The text is generated according to the so called asymmetric Bernoulli model,

that is, every symbol of a finite alphabet :E is created independently of the other symbols,

and the probabilities of symbol generation are not the same. H all probabilities of symbol

generation are the same, the model is called symmetric Bernoulli model.

Studying the occurrence of patterns in a random string is a classical problem. FeUer [4]

already in 1968 suggested some solutions in his book. Several other authors also contributed

to this problem: e.g., see [2, 3, 8, 10] and references there. However, the most important

recent contributions belong to Guibas and Odlyzko, who in a series of papers (cf. [5, 6, 7])

laid the foundations ofthe analysis for the symmetric model. In particular, in [7] the authors

computed the moment generating function for the number of strings of length n that do not

contain anyone of a given set of patterns. Certainly, this suffices to estimate the probability

of at least one pattern occurrence in a random string generated by the symmetric Bernoulli

model. Furthermore, Guibas and Odlyzko [7J in a passing remark also presented some basic

results for several pattern occurrences in a random text for the symmetric Bernoulli model,

and for the probability of no occurrence of a given pattern in the asymmetric model. In

this paper, we extend some of the results of [7]. In particular, we compute the probability

of exactly T occurrences of a pattern (given or random) in a random text in the asymmet­

ric Bernoulli model. We also provide precise asymptotic results useful in some engineering

computations.

Applications of these results range from wireless communications (cf. [1]) to approximate

pattern matching (d. [9,14]), molecular biology (d. [12]), garnes, codes (cf. [5,6,7]), and

stock market analysis. In fact, this work was prompted by questions posed by E. Ukkonen

and T. Imleliuski concerning approximate pattern matching by q-grams (d. [9]), and devel­

oping performance analysis models for database systems in wireless communications (d. [1]),
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respectively.

In passing, we should point out that our findings can he a starting point for deriving

moments and the limiting dlstrihution for the frequency of pattern occurrences in a random

text. We leave these problems for future research.

Tills paper is organized as follows. In the next section we present OUI main results and

their consequences. The proofs are delayed till the last section.

2. MAIN RESULTS

Let us consider two strings, a pattern string H = h 1h2 ... h m and a text string T =

tl t2 ... t n of respective lengths equal to m and n over an alphabet :E of size V. We assume

that the pattern string is fixed and given, while the text string is random. More precisely, the

text string T is a realization of an independently, identically dlstributed sequence of random

variables (i.i.d.), such that a symbol s E :E occurs with probability P(s). In other words, the

text 1s generated according to the asymmetric Bernoulli model.

Our main goal is to estimate the probability of multiple pattern occurrences in the text

assuming the asymmetric Bernoulli model. More precisely, we compute the probability that

the pattern Hoccms exactly T times in T, where overlapping copies ofH are counted separately.

To present our main findings we adopt some notation from [6, 7] (d. also [3, 8]). Below,

we write P(H{) for the probability of the substring H{ = hi ...hj.

Definition 1. For two strings F and Hwe define the correlation polynomial CFH(Z), as follows

CFH(Z) = L: P(Hk'+l)zk-l,
hFH

(1)

where kEFH means that the last k symbols of F are equal to the first k symbols ofH (i. e., the

size k suffix of F is equal to the size k prefix of H). If F = H, then the correlation polynomial

is called the autocorrelation polynomial j and is denoted by AH(Z) = CHH(Z).

Observe that in the Bernoulli model, P(H{) = TIt=i P(hk). The following example illus­

trates the above definition. For a more comprehensive discussion of the correlation polynomial

the reader is referred to [6, 7] and [3, 8].

Example 1. Illustration to Definition 1

Let E = {a,b,c}, and PIa) = 2/3, P(b)

aabccaab and H= aabccaababc, then

1/6, and PIc) 1/6. If we assume F

1 1
CFH(Z) = P(ccaababc)z2 + P(abc)z7 = __Z2 + _Z7

26244 54
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for the Bernoulli model. o

We can now proceed to formulate our maln results. In the sequel, we denote by On(H) a

random variable representing the number of occurrences of Hin a random text T of size n. We

also write tr,n(H) = Pr{On(H) = 'i}. Furthermore, following Guibas and Odlyzko we introduce

in a non-standard way the probability generating function, namely: Tr(z) = Ln;?:o tr,nz-n

for Izi ~ 1.

In the next section, we prove the following result.

Theorem 1. Let H be a given patternl and T be a random text generated according to the

asymmetric Bernoulli model.

(i) For any r ~ 0

where

p(H)Z-l + (z - 1)(AH{z) _ z=-') ,

P{H) + (z - 1)AH{z) .

(2)

(3)

(4)

(ii) Let PH be the largest root in Izl < 1 of DH(Z) = O. Then, 0 < PH < 1, and more precisely

P(H) 2
PH = 1 - A

H
(1) +O(P (H)) .

For large n and fixed r the following asymptotic formula holds for some P < PH

(5)

,+'L a_jn;-1 PH-; +O(pn)
;=1
U_r_1nr pii-r- 1 + 0(nr- 1pfi)

(6)

(7)

where
PIl'P(H) (NH(PH))'-l

a_,_, = (DH(PH))'+l ' (8)

and the remaining coefficients can be computed according to the standard formula, namely

1 dr+l -;

a_j = ( . )1 lim d +I . (T,{z)(z- PHY+')r-J+l.z-+PH zr }
(9)

with j = 1,2, . .. r .•

Remark 1. In some applications, one is more interested in the probability of at least R

occurrences of Hin T. Often R is small, and then we immediately have (i.e., for R = 0(1))

1- Pr{On{H) = O} - ... - Pr{On(H) = R}

1- U_R_1nRpfi-R-1 + O(nR-1pfi)
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where a_R_1 is given by (8).

To illustrate the above theorem, and in particular the generating function Tr(z), we

consider one example.

Example 2: flluslmtion to Theorem 1

Let E = {a, b}, P(a) = i and P(b) = ~. We consider two different patterns:

(a) Let H= bb, then we obtain, AH(Z) = Z+ ~, P(H) = .± and for T = 1 from (15) and (18)
3 9

we arrive at,
Z2

T,(z)=36 2 2
(9z -3z-2)

Thus,

(b)

which can be checked by direct computations. For instance, for n = 3, the above

formula gives t1,3(H) = :7. Indeed, t1,3(H) = P(abb) + P(bba) = 2
8
7' Similarly, for

n = 4, the formula gives t1,4(H) = ~i, whlch is what we get from direct manipulations:

28
",,(H) = P(aabb) + P{abba) +P{babb) +P(bbaa) + P(bbab) = 81'

2 4
Let H = bab, then we have AH(z) = Z2 + 9' P(H) = 27 and for T = 2 from (15) and

(18) we obtain,

T
2
(z) = 216 z2(3z

2
- 3z +2)

(27z' - 27z' + 6z - 2)'
Thus, for n = 5, we get

8
'2,5(H) = 243

whlch we can verify by direct computations, (2,5(H) = P(babab) = 2~3. o

We nOw consider the case of a random pattern Hgenerated according to the same Bernoulli

model as the text T. Let On denote the number of occurrences of a pattern oflength m in a

text of length n. We also write Tr,n = Pr{On = r}. Clearly, we have the following

T"n = I: t"n{H)P(H)
HE1i

where 1t is the set of all strings of length m over the alphabet E.

5
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The next main finding is a direct consequence of Theorem 1 and formula (10).

Theorem 2. Assume that the pattern H and the text T are random strings saUsfying the

Bernoulli model.

0) For any m

(11)

More precisely,

max{tc n(H)P(H)} ~ T c n ~ V m max{tc n(H)P(H)} . (12)
HE1i ' 'HE1i I

(li) Let p. = maxHE1i{pH}1 and let H· be the pattern for which the maximum ofPH is achieved.

Ii'

• m=o(n)1 then
log Tr n

lim ' = log (po)
n-+oo n

• m = 0(1), then
r n-r-1p(Ho)Tr,n rv u_r_ln P.. ,

where U_r_l is defined in (8).•

(13)

(14)

We should observe that the asymptotic formula (13) is not too useful if p. = 1, which

can happen quite often. In general, nevertheless, deriving asymptotics for Tr,n is not too

difficult since all terms in (10) are nonnegative. It is well known (cf. Odlyzko (11]) that the

main contribution to the sum (10) comes from a few terms around maxHE1i{tr,n(H)P(H)}. For

example, more careful analysis can provide asymptotics for m = O(logn), but we will not

explore this issue any further in this note.

3. ANALYSIS

We first prove Theorem l(i), that is, we derive formula (2) for the generating function

Tr(z) = Ln~O tr,nz-n. Following Guibas and Odlyzko [7J, we introduce a new probability,

namely sr(n) representing the probability of H appearing exactly T + 1 times in a random

string T, where one of the occurrences of H is located at the very end of the string. Let

Sr(z) = L~-=oSr(n)z-n.

First, we will derive To(z) and So(z). From Theorem 3.3 of [7] we have

(z-I)To(z}+zSo(z) z

P(H) To(z) - z AH(Z) So(z) a

6



By solving for To(z), So(z) we get,

So(z)

To(z)

P(H)
(z-1)AH(z)+P(H)

Z AB(z)
(z - 1) AH(z) +PCB)

(15)

To illustrate the proof, we will use the analog of die-throwing, i.e., we consider that the

text T is generated by throwing a V-sided die n times. We observe that the probability tr(n),l

that H appears exactly T times by the n-th throw is equal to the sum of the probabilities of

all possible events at the (n + 1)-th throw, given that by the n-th throw we have exactly T

appearances of H. At the (n + 1)-th throw we can either have one more appearance of H at

the end of the string (an event having probability Sr (n +1) to occur) or we can have no more

appearances of H. The second event appears with probability Pl , where Pl is the probability

of having exactly T occurrences of the pattern in a text of length n + 1, where there is no

pattern occurrence at the very end of the text, and thus tr(n + 1) = Pl + Sr_l(n + 1). By

adding the probabilities of the two events we get,

i,(n) = i,(n + 1) + s,(n + 1) - s'_l(n + 1), T 2: 0, n 2: 0 (16)

Let k he the position of the last occurrence of Hin T. Then, the probability tr+t(n) that

we will have T + 1 appearances of H by the n-th throw can be written as the sum of the

products sr(k)u(n - k), where u(n - k) is the probability of a string of length n - k that it

does not itself contain Hand if appended to Hdoes not form any additional Hpatterns. Note,

that in the Bernoulli model, so(n - k +m) = P(H)u(n - k). Thus,

( )
_ n~ (k)so(n-k+m)

t r+l n - L.J Sr ,
'=0 P(H)

T ~ 0, n 2: 0 . (17)

By multiplying both (16) and (17) by z-n and summing on n we obtain the following

system,

S,(z)

Solving now for Tr(z) we get,

1- z ()Sr_l(Z) + --T, z
z

P~H) S,(z)So(z)zm

( )
,-,

1 - z 1
T,(z) = 1 + --So(z)zm --S5(z)zm

z P(H) P(H)

IFor the simplicity of prcscntation, in this section we rather write t~(n) instead of t~.n(H).

7

(18)



(19)

(20)

Finally, by substituting So(z) from (15) we get,

(P(H)Z-' + (z - 1)(AH{z) _ zm-1lr-1

T,(z) = zmP(H) (P{H) + (z _ 1)AH(z)y+l

which proves formula (2) of Theorem l(i).

Now, we can wrestle with part (ii) of Theorem 1, that is, extract an asymptotic behavior

of tr,n from its generating function Tr(z). By Hadamard's theorem (cf. [13]) we conclude that

the asymptotics of the coefficients of Tr(z) depend on the singularities of Tr(z). In our case,

the generating function is a rational function, thus we can only expect poles (which cause

the denomlnator DH(Z) to vanish). The next lemma establishes the existence of at least one

such pole.

Lemma. The equation DH(z) = 0 has at least one solution in Izl < 1. The largest solution

inside the circle Izl < 1 is denoted by PH.

Proof. The proof is based on the Rouche theorem, and it is only a slight modification of

Theorem Hill [8], thus the details are left for the interested reader.•

In view of the above, we can expand the generating function Tr( z) around z = PH in the

following Laurent's series (cf. (13,15]):

'+1
T,(z) = L a_,) +T,{z)

j=1 (z PH]

where Tr(z) is analytical in Izl > PH, thus it contributes only to the lower terms in the

asymptotic expansion of Tr(z). In fact, it is easy to see that for P < PH we have Tr(z) = O(pn)

(cf. [15]). The constants U_j can be computed according to (9) with the leading constant

U-r-l having the explicit formula (8). Finally, the asymptotic expansion of the root PH,

as presented in (5), follows directly from [8], however, a simple substitution of (5) into

DH(PH) = 0 also proves its validity.

We need an asymptotic expansion for the first terms in (20). Tills is a rather standard

computation (cf. [15]), but since we use z-n instead of zn, we present below a short derivation

for the reader's convenience. The following chain of indentities is easy to justify for any P > 0:

r+l r+l_j

~ (z a_~)i f; (1 U_~: l)i

'+1 =( '1)" ." n + J - n -n-jL..J a_] L..J . _ 1 P z
;=1 '1:::0 J

= ,,"n{.+',n} (n _1) .L z-n L a-i J' _ 1 pn-J
.

'1:::1 j=1

8



Thus, the nth coefficient of the first term of (20) finally becomes (n > r)

(21)

The above completes the proof of Theorem l(u) after noting that (i::::~) = nJ- 1 (1 +O(l/n)).

Thus, Theorem 1 has been proved.

Finally, we prove Theorem 2, which concerns the case where both the pattern and the

text are random. Observe that the inequality (12) follows directly from the basic equation

(10). To prove the first asymptotics, namely (13), we proceed as follows. Let q and p < q be

the largest and the smallest probability of symbols occurrence from the alphabet E. Then,

(12) becomes

pm Wea:{tr,n(R)} ::; Tr,n ::; (V q)m Wea:{ tr,n(R)} -

Taking the logarithm of both sides of the above, and noting that min = 0(1) one proves (13).

In a similar fashion we can prove (14), and thls completes the proof of Theorem 2.
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