
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1995

Complexity of Sequential Pattern Matching Algorithms Complexity of Sequential Pattern Matching Algorithms

Mireille Régnier

Wojciech Szpankowski
Purdue University, spa@cs.purdue.edu

Report Number:
95-071

Régnier, Mireille and Szpankowski, Wojciech, "Complexity of Sequential Pattern Matching Algorithms"
(1995). Department of Computer Science Technical Reports. Paper 1244.
https://docs.lib.purdue.edu/cstech/1244

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COMPLEXITY OF SEQUENTIAL PATIERN
MATCHING ALGORITHI'vfS

MireiUe Regnier
Wojciecb Szpankowski

CSD TR-95-071
November 1995

COMPLEXITY OF SEQUENTIAL PATTERN MATCHING ALGORITHMS·

October 3, 1995

Mireille Regnlert

INRIA
RocquencourL
78153 Le Chcsnay Cedex
France
Mireille.Regmer@imia.fr

Wojciech Szpankowski t

Department of Computer Science
Purdue Universlty
W. Lafayette, IN 47907
U.S.A.
spa@cs.purdue.edu

Abstract

We formally define a class of sequential pattern matching algorithms that includes all
variations of Morris-Pratt algorithm. For last twenty years it was known that complexity
of such algorithms are bounded by a linear function of the text string length. Recenlly,
substantial progress has been made in identifying lower bounds. However, it was not
known whether really there exists asymptotically a linearity constant. We prove this fact
rigorously for the worst case and the average case using Subadditive Ergodic Theorem. We
additionally prove an almost sure cOIlvergence. Our results hold for any given pattern and
text and for stationary ergodic pattern and text providing the length of the pattern is order
of magnitude smaller than the square root of the text length. In the course of the proof, we
also establish some structural property of Morris-Pratt-like algorithms. Namely, we prove
the exlstence of "unavoidable positions" where the algorithm must stop to compare. This
property seems to be uniquely reserved for Morris-Pratt type algorithms since as, we point
out in our concluding remarks, a popular pattern matching algorithm proposed by Boyer
and Moore does not possess this property.

Keywords: String searching, pattern matching, anaLysis of aLgorithms, automata, compLexity,
combinatorics on words convergence oj processes, Subadditive Ergodic Theorem.

·The project was supported by NATO Collaborative Grant CRG.950060.
tThis work was partially supported by the ESPRIT ITI Program No. 7111 ALCOM II.
tPartially supporled by NSF Grants CCR-9201078, NCR-!l206315 and NCR-9415491. The work was partially

done while the author was visiting INRJA, Rocquencourt, France. The author wishes to thank INRIA (projects
ALGO, MEVAL and REFLECS) for a generous support.

2

1 INTRODUCTION

The complexity of string searching algorithms has been discussed in various papers (cr. [1,7,

8,6, 11, 16]). It is well known that most pattern matching algorithms perform linearly in the

worst case as well as "on average". Several attempts have been made to provide tight bounds

on the so-called "linearity constant". Nevertheless, the existence of such a constant has never

been proved. The only exception is the average case of Morris-PraU-like algorithms [16] for

the symmetric Bernoulli model (independent generation of symbols with each symbol occuring

with the same probability) where the constant was also explicitly computed.

In this paper we investigate a fairly general cla.<;s of algorithms, called sequential algorithms,

for which the existence of the linearity constant (in an asymptotic sense) is proved for the worst

and the average case. Sequential algorithms include the naive one and several variants of

Morris-Pratt algorithm [15]. These algorithms never go backward, and are easy to implement.

They perform better than Boyer-Moore like algorithms in numerous cases, e.g., for binary

alphabet [2J, when character distributions are strongly biased, and when the pattern and text

distributions are correlated. Thus, even from practical polnt of vlew these algorithms are worth

studying.

In thls paper we analyze sequential algorithms under a general probabilistic model that

only assumes statlonarity and ergodicity of the text and pattern sequences. Il relies on the

Subadditive Ergodic Theorem [10]. The "average case" analysis is also understood in the

strongest possible sense, that is, we establish asymptotic complexity that is true for all but

finite number of strings (i.e., in almost sure sense).

The literature on worst case as well average case on Knuth-Marris-Pratt type algorithms

is rather scanty. For almost twenty years the upper bound was known (15], and no progress

has been reported on a lower bound or a tight bound. This was partially rectified by Colussi

el al. [8] and Cole el al. [7] who established several lower bounds for the so called "on-line"

sequential algorithms. However, the existence of the linearity constant was not established yet,

at least for the "average complexity" under general probabilistic model as the one assumed in

this paper_ In this paper we prove tills fact rigorously. In the course of proving it, we construct

the so called unavoidable positions where the algorithm must stop to compare. The existence

of these positions is crucial to establish subaddltivity of complexity for the Morris-Pratt type

algorithms, and hence their linearity. Thls property seems to he resl.ricted to Morris-Pratt type

algorithms since we shall present an example of a text and a pattern for which the Boyer-Moore

algorithm does not possess any unavoidable position.

The paper is organized as follows. In the next section we present a general definition of

3

sequential algorithms, and formulate our main results. Section 3 contains all proofs. In con

cluding remarks we discuss possible extensions of our approach to other classes of algorlthms,

notably Boyer-Moore like [5).

2 SEQUENTIAL ALGORITHMS

In this section, we first present a general definition of sequential algorithms (i.e., algorithms that

work like Morris-Pratt). Then, we formulate our main results and discuss some consequences.

2.1 Basic Definitions

Throughout we write p and t for the pattern and the text which are of lengths m and n,

respectively. The ith character of the pattern p (text t) is denoted as p[i] (t[iD, and by

tt we define the substring of t starting at position i and ending at position j, that is tt =

t[i]t[i + 1]'· ·t[j]. We also assume that for a given pattern p its length m does not vary with

the text length n.

Our prime goal is to investigate complexity of string matching algorithms. We define it

formally as follows.

Definition 1 (i) For any string matching algorithm that runs on a given text t and a given

pattern p, let M (I, k) = 1 if the lth symbol t[l] oj the text is compared by the algorithm to the

kth symbol p[k] oj the pattern. We assume in the following that this comparison is perjormed

at most once.

(ii) For a given pattern matching algorithm partial complexity function Cr,n is defined as

C".(t,p) ~ :L M[l,kl
IE[r,s],kE[l,m]

(1)

where 1 ::; r < s ::; n. POI· T = 1 and s = n the junction Cl,n := Cn is simply called the

complexity of the algorithm. If either the pattern or the text is a realization of a ramlom

sequence, then we denote the complexity by a capital letter, that is, we w,ite Cn instead of cn.

Our goal is to find an asymptotic expression for en and Cn for large n under deterministic

and stochastic assumptions regarding the strings p and t. However, for simplicity of notation

we often write en instead of cn(t,p). In order to accomplish this, we need some further

definitions that will lead to a formal description of sequential algorithms.

We start with a definition of an alignment position.

4

Definition 2 Given a st1ing searching algorithm, a text t and a pattern p, a position AP m

the text t satisfying for some k (1 ..-:::: k ::; m)

M[AP + (k - 1), kl = 1

is said to be an alignment position.

Intuitively, at some step of the algorithm, an alignment of pattern p at position AP is

considered, and a comparison made with character p[k] of the pattern.

Finally, we are ready to define sequential algorithms. Sequentiality refers to a special struc

ture of a sequence of positions that pattern and text visit during a string matching algorithm.

Throughout, we shall denote these sequences as (li' ki) where l; refers to a position visited

during the ith comparison by the text while k; refers to a position of the pattern when the

pattern is aligned at position Ii - ki + 1.

Definition 3 A string searching algorithm is said:

(i) semi-sequential if the text is scanned from left to right;

(ii) strongly semi-sequential if the order of text-pattern comparisons actually performed by

the algorithm defines a non-decreasing sequence oj text positions (Ii) and if the sequence

of alignment positions is non-deCl'easing.

(ill) sequential (respectively strongly sequential) if they satisfy, additionally for any k > 1

Mil, kl ~ 1 => t
'
- 1 _ '-1I-(k-l) - PI (2)

In passing, we point out that condition (1) means that the text is read from left to right.

Note that our assumptions on non-decreasing text positions in (ii) implies (i). Furthermore,

non-decreasing alignment positions implies that all occurrences of the pattern before this align

ment position were detected before this choice. Nevertheless, these constraints on the sequence

of text-pattern comparisons (Ii, ki) are not enough to prevent the algorithm to "fool around",

and to guarantee a general tight bound on the complexity. Although (2) is not a logical con

sequence of semi-sequentiality, it represents a natural way of using the available information

for semi-sequential algorithms. In that case, subpattern t:=Ck_1) is known when t[l] is read.

There is no need to compare p[k] with t[l] if t:=Ck-l) is not a prefix of .I' of size k - 1, i.e if

AP = l- (k - 1) has already been disregarded.

We now illustrate our definition on several examples.

Example 1: Naive 01· brute force algorithm

5

The simplest string searching algorithm is the naive one. All text positions are alignment

positions. For a given one, say AP, text is scanned until the pattern Is found or a mlsmatch

occurs. Then, AP + 1 is chosen <l.'> the next alignment position and the process is repeated.

This algorithm Is sequential but not strongly sequential. Condition in (ii) is vlolated aHer

any mismatch on a alignment posltlon l wlth parameter k ~ 3, as comparison (l +1, 1) occurs

afte, (l +1,2) and (l +2,3).

Example 2: Morris-Pratt.like algorithms [15].

It was already noted [15] that after a mismatch occurs when comparing t[l] wlth p[k], some

alignment positions in [l + 1, ... , 1+ k - 1] can be disregarded wlthout further text-pattern

comparisons. Namely, the ones that satisfy t:t7-1=fi p~-i. Or, equlvalently, pt+i =fi pt-i ,

and the set of such i can be known by a preprocessing of p. Other i define the "surviving

candidates", and chosing the next alignment position among the surviving candidates is enough

to ensure that condition (il) in Definition 3 holds. Different choices lead to different variants of

the classic Morrls-Pratt algorithm [15]. They differ by the usc ofthe Information obtained from

the mismatching position. We formally define three main variants, and provide an example.

One defines a shift function S to be used after any mismatch as:

MorriswPratt variant:

S = min{k -1; minis > 0: pt+; = pt-I-.~}}

Knuth-Marris-Pratt variant:

S . {k . { k-l k-t-s d k...J.. k-s}}= mIll "; ffiln s: PI+s = Pt an Pk 1"" Pk-s

Simon variant:

J(

B

S

max{k, M(i,k) ~ I} ;

{s: p{~~t = p{(-t-sand 0:::; s:::; J(- k}

min{d> 0 . pk-t = pk-t-d and (pk-d ..t pK-s s E B)}
. t+d t k-d I](-s'

Figure 1 shows a generic program for all three variants of the algorithm.

Example 3: flluslration to Definition 3.

Let P = abacabacabab and t = abacabacabaaa. The first mlsmatch occurs for M(12,12).

The comparisons performed from that point are:

6

{

}

{

{

]

}

if tli] ~ plk] then

if k#m then M{i+l,k+l)

else

{
. {k k-'}s := mIll s; Pl+s = PI ;

M{i + 1, m - s + 1)

}

else

Compute(S);

if S ~ 0 then M(l + 1,1)

else M(l, k - S)

Figure 1: Morris-Pratt-like Algorithms

7

1. Morris-Pratt variant:

(12,12); (12,8); (12,4); (12, 2); (12, 1); (13, 2); (13, 1)

where the text character is compared in turn with pattern characters (b, C, C, b, a, b, a)

with the alignment positions (1,5,9,11,12,12,13).

2. Knuth-Marris-Pratt variant:

(12,12); (12, 8); (12, 2); (12, 1); (13, 2); (13, 1)

where the texl character is compared 1n turn wlth pattern characters (b,c,b,a,b,a) with

the alignment positions (1,5,11,12,12,13).

3. Simon variant:

(12,12); (12,8); (12, 1); (13, 2); (13, 1) ,

where the text charader is compared in turn wlth pattern characters (b, c, a, b, a) with

lhe alignment positions (1,5,12,12,13).

Some observations are in sequel: Morris-Pratt variant considers one alignment position

at a time, while the optimal sequential algorithm, that of Simon, considers several alignment

positions at the same time, and may disregard several of them simultaneously (e.g., in Example

3 positions 1 and 9 at the first step and 5 and 11 at the second step). It is interesting to observe

that the subset {I, 5, 12} appears in all variants. We will see that they share a common properly

of "unavoidability" explored below.

Qur definition of semi-sequentiality is very close to the definition of sequentiality given in

[12]. We do not use the "on-line" concept of [6]. Their efficient on-line algorithms are very

close to our strongly sequential ones. Also, while condition (2) is a natural optimization for

semi-sequential algorithms, it seems not to be true for other efficient algorithms discussed in

[81·
Finally, in the course of proving our main result we discover an interesting structural

property of sequential algorithms. Namely, that when the algorithm is run on a substring of

the text, say t~, then there are some positions i ;:: T that are unavoidable alignment positions,

that is, the algorithm must align at this positions at some step (e.g., see positions {I, 5, 12}).

More formally:

Definition 4 For a given a pattern p, a position i in the text t'L is an unavoidable align

ment position for an algorithm if for any T, I such that T ::; i and I;:: i +m, the position i is

an alignment position when the algorithm is run on t~.

8

Having in mind the above definitions we can describe our last class of sequential algorithms

for which we formulate our main results.

Definition 5 An algorithm is said to be I-convergent if, for any text t and pattem p, there

exists an increasing sequence {Ui}i=1 of unavoidable alignment positions satisfying Ui+1 -Ui :$ I

where Ua = 0 and n - maXi Ui ~ i.

In passing we note that the naive pattern matclling algorithm (d. Ex. 1) is I-convergent.

We prove below that all strongly sequential algorithms (I.e., all Morris-Pratt-like algorithms)

are m-convergent which will further imply several interesting and useful properties of these

algorithms (e.g., linear complexity).

2.2 Main Results

In this section we formulate our main results. Before, however, we must describe modeling

assumptions concerning the strings (cf. [17]). We adopt one of the following assumptions:

(A) WORST-CASE (DETERMINISTIC) MODEL

Both strings p and t are non random (deterministic) and p is given.

(B) SEMI-RANDOM MODEL

The text string t is a realization of a stationary and ergodic sequence while the pattern

string p is given.

(C) STATIONARY MODEL

Strings t and p are realizations of a stationary and ergodic sequence (cr. [3]). (Roughly

speaking, a sequence, say tr, is stationary if the probability distribution is the same for

all substrings of equal sizes, say t;+k and t1+k for 1 ~ i < j :$ n.)

Formulation of our results depends on the model we work with. So, in the determinis

tic model we interpret the complexity cn(t,p) as the worst case complexity (Le., we maxi

mize the complexity over all texts). Under assumption (D) we consider the strongest possible

convergence of random variable Cn, namely almost sure (a.s.) convergence. More formally,

we write Cn/an -+ 0 (a.s.) where an is a deterministic sequence and 0' is a constant if

limn....."'" Pr{SUPk>n ICn/an - 01 > e} = 0 for any c > 0 (cf. [3]). Finally, in the stationary

model (C) we use standard average case complexity, that is, ECn .

Now we are ready to formulate our main results.

9

Theorem 2.1 Consider an l ~ m convergent sequential string matching algol'i.thm. Let p be

a given pattern of length m.

(i) Under assumption (A) the following holds

I" ma'<tcn(t,p) ()
1m = al P

n_oo n

where al (p) 2:: 1 is a constant.

(ii) Under assumption (B) one finds

(3)

a.s. (4)

where a2(p) 2:: 1 is a constant. If Et denotes the the average cost over all text strings, the

following also holds:

li E,Cn(p) ()
m = a2 P

n-oo n (5)

Theorem 2.2 Consider an i-convergent sequential string matching algorithm. Under assump

tion (C) we have

li E',pCn (6)m = a3
n oo n

provided m = o(yn), where (Y3 ~ 1 i.r; a constant and Et,p denotes the average over all text

strings of size n and patterns oj size m.

It is worth noticing that the average value of Cl:2(P), when p ranges over all patterns of size

m IS Cl:3.

Finally, with respect to our main class of algorithms, namely, Morris-PraLL like (i.e., se

quential) we shall prove in the next section the following results concerning the existence of

unavoidable positions.

Theorem 2.3 Given a pattern p and a text t, all strongly sequential algorithms have the same

set of unavoidable alignment positions U = U~l {Ul}, where

Ur=min{min {t~~p}, l+l}
1:Sk9

and t~. ~ P means that the substring tt is a prefix of the pattern p.

Theorem 2.4 A strongly sequential algorithm is m-convergent and (3)-(6) hold.

10

(7)

In summary, the above says that there exists a constant a such that Cn = an+ o(n) and/or

ECn = an+o(n). All previous results have been able only to show that Cn = 0(n) hut they did

not excluded some hounded fluctuation of the coefficient at n. We should point out that in the

analysis of algorithms on words such a fluctuation can occur in some problems involving suffix

trees (cf. [4,13]). But, in this paper we prove that such a fluctuation cannot take place for

the complexity function of the strongly sequential pattern matching algorithms. For example,

in the worst case we prove here that for any given pattern p, any (" > 0 and any n 2': no one

can find a text t 1such that I~ - Ql(p)1 s (.

3 ANALYSIS

In this section we prove Theorems 2.1- 2.4. The idea of the proof is quite simple. We shall

show that a function of the complexity (Le., c~ = en + J(m) where f(m) is a function of

the length m of the pattern p) is subadditive. In the "average case analysis" we indicate

that under assumption (C) the average complexity Cn is a stationary and ergodic sequence.

Then, direct application of an extension of Kingman's Subadditive Ergodic Theorem due to

Derriennic [9J will do the job of proving our results. In passing, we point out that the most

challenging is establishing the subadditivity property to which most of this section is devoted.

We observe, however, that subadditivity of the Morris-Pratt type algorlthms is a consequence

of the existence of unavoidable positions.

For the reader's convenience we start this section with a brief review of the subaddltlve

ergodic theorem (cf. [10,14].

Theorem 3.1 (Subaddltive Sequence). (i) Let for a (deterministic) nonnegative sequence

{xn}~=o the following property, called subadditivity, holds

Then

for some constanta.

li Xn . f X mm-=ln-=a
n~oo n m~l m

(9)

(H) (Subadditive Ergodic Theorem [14]). Let X m,11 (m < n) be a sequence oj nonnegative

random variables satisfying the following three prope1'ties

(a) XO,n ::; XO,m +Xm,n (subadditivity);

11

(b) Xm,n is stationary (i.e., the joint distributions of Xm,n are the same as XmH,nH) and

"godi, (ef. [3J);

(e) EXo" < 00.

Then,

for some constant "f.

lim EXo,n = J
n-+o:> n

and I- "'YO,n
1m --="1

n-.o:> n
(10)

(iii) (Almost Subadditive Ergodic Theorem (9]). If the subadditivity inequality is 1'eplaced by

XO,n ~ XO,m + Xm,n + An

such lhatlimn-+oo EAn/n = 0, then (10) holds, too.

(11)

Thus, to prove our main results we need to establish the subadditivHy property for the

complexity cn(t,p) (for all texts t and patterns p). The next lemma proves such a result for

i-convergent sequential algorithms.

Lemma 3.1 An i-convergent semi-sequential (or strongly semi-sequential) algorithm satisfies

the basic inequality for all r such that 1 ~ r ~ n:

(12)

provided any comparison is done only once.

Proof: Let UT be the smallest unavoidable position greater than r. We evaluate in turn

cI,n - (Cl,T + CU~,n) and cT,n - CU~,n (cf. Figure 2).

We start our analysis with considering cI,n - (Cl,T +CUT,n) (see dotted part in Figure 3(a))_

This contribution consists of two parts. First, we must include those comparisons that are

performed after position r for alignment positions before r. Observe that those comparisons

contribute to CI,n but not to CI,T- To avoid counting the last character r twice, we must subtract

one comparison. Thus, this contribution, which we call Sl, can be computed as follows (cf.

Fig",e 3(a))

5,= L LM(i,i-AP+l)-I.
AP<T i~T

The second part of the contribution CI,n -(CI,T+CU~,n)accounts [or alignments AP satisfying

r ~ AP ~ UT that only contribute to cI,n' It is easy to see that this part adds the following

Ur-I

5,= L LM(AP+(i-l),i).
AP=T iSm

12

€(;)ooJ====="?

patterns ====='?
?

?

?

nDrr

~I----.......---K.--...;..... n n* 0-----------i
1

text

C I,r Cu ,r
r

€@:.j====oII?

?
text ?

n1
f---------- n*....*....... 0----------1

r Dr

Figure 2: nlustration to the proof of Lemma 3.1: Contribution 8 1 (ef. Figure 3(a», and

contribution 53 (cf. Figure 32(b».

Observe now that the alignment positions after Ur on the text tUr and tr are the same. Thus,

the only difference in contribution comes from the amount of information saved from previous

comparisons done on t~. This is clearly bound by

Now, we evaluate cr,n - CUc,n (see Figure 3(b». We assume that the algorithm runs on t~

and let AP be any alignment position satisfying r ~ AP < Ur . Then the cont.ribution 83 :

Ur-l

53 = L LM(AP+(i-I),i)
AP=r i

13

text K Jl K • I I
r AJ U/ y /

?
pa[[ems

n

Figure 3: illustration to the proof of Theorem 2.4.

counts for the number of comparisons associated to these positions. This sum is the same

as 82 but the associated alignment positions and searched text positions AP + k - 1 may be

different. Additionally, at alignment position Ur , no more than m comparisons can be saved

from previous comparisons. Hence, we get:

Finally, it remains to find upper bounds on 81, 82 , and 83 . For l ?: Ur - r we easily see

that 82 and 83 are smaller than lm. So 1s their difference. With respect to 51, for a given

alignment position AP we have Ii - API ~ m. This implies that)1' - API ~ m, and for any

AP the index i has at most m different values. Thus, 8 1 ::; m 2
. This completes the proof. •

Now we arc ready to prove l-convergence for strongly sequential algorithms, i.e. Theorem

2.4. It relies on Theorem 2.3 which we prove first. Let I be a text position such that 1 ~ I ~ n,

and l' be any text position satisfying l' ~ VI. Let {Ai} be the set of alignment positions defined

by a strongly sequential algorithm that runs on t;. As it contains 1', we may define (cf. Figure

3).

AJ = max{Ai: Ai < U,j

Hence, we have AJ+! ?: UI. Using an adversary argument, we shall prove that AJ+! > UI

cannot be true, thus showing that AJ+l = UI. Let y = max{k : M(AJ + (k - 1), k) = I},

that is, y is the rightest point we can go starting from AJ. We observe that we have y ~ l.

Otherwise, according to condition (2), we would have t~J ~ p, which contradicts the definition

of VI_ Also, semi-sequentiality implies that AJ+! ~ y +1 ~ I +1. Hence UI = I +1 contradlcls

the assumption AJ+l > UI and we may assume UI ~ l. In that case, Pbl :5 p and an occurrence

of p at position UI is consistent with the available information. Let the adversary chose that

p does occur. As sequence (Ai) is non-decreasing and AJ+! has been chosen greater than VI,

this occurrence will not be detected by the algorithm: thus a contradiction. Thls completes

the proof. _

Finally, we turn to the proof of Theorem 2.4. Let AP be an alignment position and define

14

1= AP +m. As Ipl = m, one has 1- (m - 1) :::; U/ s 1. Hence, VI - AP S m which establishes

the m-convergence.

Remark: We used the strong monotonicity assumption only in establishing of unavoidable

positions. This property may not be satisfied by other algorithms such as efficient "on-line"

algorithms in [6J that stm one may intuitively call sequential. Nevertheless, it is easy to extend

our proof of subadditivity when we remove this condition.

We now apply Theorem 3.1 to derive Theorems 2.1 and 2.2. After substituting Xt,n =

cI,n +1.5m2 +lm, we get subadditivity for any given p and deterministic t by Theorem 3.I(iii).

Worst case complexity results follow since

maxcIn<maxcrn + max Crn
Itl=n ' - Itl=r' Itl=n-r'

We have a subadditive sequence and we apply (9). Now, let t 1 range over the set of texts of

size n, t l and t~ range over the sels of texts of size T and n - T. Then, as the text distribution

is stationary, the subadditivity holds in case (B). Also, the cost cr,n is stationary when the text

distribution is_ Applying Subadditive Ergodic Theorem yields (4) and (5).

We turn now to the average complexity. The uniform bound [15] on the linearity constant,

allows to define Ep(Et(cr,n))' when p ranges over a random (possibly infinite) set of patterns.

The subadditivity property transfers to Et,p(Cn) and (6) follows. This completes the proof. _

4 CONCLUDING REMARKS

We consider here sequential algorithms that are variants of classical Morris-Pratt algorithms.

In order to speed up the search, Boyer and Moore introduced in [5] a quite different algorithm.

Given an alignment position AP, matching against p are checked from right to left; i.e. k

is decreasing. Several variants have been proposed that differ by the amount of information

saved to compute the next alignment position.

We point out here that Boyer-Moore like algorithms do not satisfy unavoidability property.

We provide an example for the Horspool variant: given an alignment position AP, the next

alignment position is computed by aligning the text character trAP +mJ with trAP +j] where

m - j = min {max{k : p[k] = trAP +mJ), m}

Let us now consider as an example p = x"ax 2bx 2a, x f: a,b. When trAP + mJ is a

(resp. b or x) the next alignment position is chosen to be AP +6 (resp. AP +3 or AP + 1).

When trAP + m] ¢ {a,b,:z:}, one shifts the alignment position by m. Assume now that

15

t = ylOaz"'(bazbz2)n with y f:. x and natural n. If the Boyer-Moore-Horspool algorithm starts

with AP = 1, a mismatch occurs on the second comparison between t(10] and p[10] with AP

shlfted by 6. The same event occurS then and we eventually get the sequence APi = 1 + 6i.

Assume now that we split the text at r = 6. As t[16] is b, one shifts by 3 and b is found again.

Finally, one gets sequence AP[= 6 + 3i. As gcd(G, 3) does not divide 5, these two sequences

are disjoint and there is no unavoidable position.

In summary, we conclude that subadditivity and unavoidability cannot be used to prove lin

earity of Boyer-Moore algorithms. Nevertheless, another tool from stochastic analysis, namely

renewal theory, should provide a solution. We plan to investigate it in a future paper.

References

[1] A. Apostolico and R. Giancarlo, The Boyer-Moore-Galil String Searching Strategies Re

visited, SIAM J. Compt., 15, 98-105, 1986.

[2] R. Baeza-Yates and M. Regnier, Average Running Time of Boyer-Moore-Horspool Algo

rithm, Theoretical Computer Science, 92,19-31,1992.

[3] P. Billingsley, Convergence of Pmbability Measures, John Wiley & Sons, New York, 1968.

[4J A. Blumer, A. Ehrenfeucht and D. Haussler, Average Size of Suffix Trees and DAWGS,

Discrete Applied Mathematics, 24, 37-45 (1989).

[5] R. Boyer and J. Moore, A fast String Searching Algorithm, Comm. of the A CM, 20,

762-772, 19n

[6] D. Breslauer, L. Colussi, and L. Toniolo, Tight Comparison Bounds for the String Prefix

Matching Problem, Pmc. -I-tli Symposium on Combinatorial Pattern Matching, Padova,

Italy, 11-19. Springer-Verlag, 1993.

[7J R. Cole, R. Hariharan, M. Paterson, and U. Zwick, Tighter Lower Bounds on the Exact

Complexity of String Matching, SIAM J. Camp., 24, 30-45, 1995.

[8] 1. Colussi, Z. Galil, and R. Giancarlo, On the Exact Complexity of String Matching, Pmc.

31-st Annual IEEE Symposium on the Foundations of Computer Science, 135-143. IEEE,

1990.

[9] Y. DerriemJ..ic, Une Theoreme Ergodlque Presque Sous Additif, Ann. Probab., 11, 669-677,

1983.

16

(10] R. DUffett, Probability: Theory and Examples, Wadsworth & Brooks/Cole Books, Pacific

Grove, California, 1991.

[l1J L. Guibas and A. Odlyzko, A New Proof of the Linearity of the Boycr-Moore String

Matching Algorithm, SIAM J. Compt., 9, 672-682, 1980.

[12J C. HanGut, Analyse Exade et en Moyenne d'Algorithmes de Recherche d'un Motif dans

un Texte, These, l'Universite Paris 7, 1993.

[13] P. Jacquet and W_ Szpankowski, Autocorrelation on Words and Its Applications. Analysis

of sumx Tree by String-Ruler Approach, J. Combinatorial Theory. Ser. A, 66, 237-269,

1994.

[14] .l.F.C. Kingman, Subadditive Processes, in Ecole d'Ete de Probabilites de Saint-Flour

V-1975, Lecture Notes in Mathematics, 539, Springer-Verlag, Berlin 1976.

[15J D.E. Knuth, J. Morris and V. Pratt, Fast Pattern Matching in Strings, SIAM J. Compt.,

6,189-195,1977.

[IG] M. Regnier, Knuth-Marris-Pratt Algorithm: An Analysis, Proc_ Mathematical Founda

tions for Computer Science S9, Porubka, Poland, Ledure Notes in Computer Science, vol.

379,431-444. Springer-Verlag, 1989.

[17J W. Szpankowski, On The Height of Digital Trees and Related Problems, AlfJ01'ithmica, 6,

256-277,1991.

17

	Complexity of Sequential Pattern Matching Algorithms
	Report Number:
	

	tmp.1307986960.pdf.bekqc

