View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1995

Complexity of Sequential Pattern Matching Algorithms

Mireille Régnier

Wojciech Szpankowski
Purdue University, spa@cs.purdue.edu

Report Number:
95-071

Régnier, Mireille and Szpankowski, Wojciech, "Complexity of Sequential Pattern Matching Algorithms"
(1995). Department of Computer Science Technical Reports. Paper 1244.
https://docs.lib.purdue.edu/cstech/1244

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4971741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COMPLEXITY OF SEQUENTIAL PATTERN
MATCHING ALGORITHMS
Mireille Regnier
Wajciech Szpankowski

CSD TR-95-071
November 1995

COMPLEXITY OF SEQUENTIAL PATTERN MATCHING ALGORITHMS"

QOctober 3, 1995

Mireille Régniert Wojciech Szpankowskit
INRIA Department of Computer Science
Rocquencourt Purdue University
78153 Le Chesnay Cedex W. Lafayette, IN 47907
France U.5.A.
Mireille. Regnier@inria.fr spa@cs.purdue.edu
Abstract

We formally define a class ol sequeniial patlern matching algorithms that includes all
variations of Morris-Pratt algorithm. For last twenty years it was known that complexily
of such algorithms are bounded by a linear function of the text string length. Recenlly,
substantial progress has been made in identifying lower bounds. However, it was not
known whether really there exists asymptotically a lincarity constanl. We prove this fact
rigorously for Lle worsl case and the average case using Subadditive Ergodic Theorem. We
additionally prove an almosl sure convergence. Qur results hold for any given pattern and
text and for stationary ergodic pallern and lext providing the length of the pattern is order
of magnitude smaller than the square rool of Lthe text length. In the course of the proof, we
also eslablish some structural property of Morris-Pratt-like algorithms. Namely, we prove
the exisience of “unavoidable positions” where the algorithm must stop to compare. This
properly seems Lo be uniquely reserved for Morris-Pratt type algorithms since as, we point
oul in our concluding remarks, a popular pattern matching algorithm proposed by Boyer
and Moore does nol possess this property.

Keywords: Siring scarching, pattern matching, analysis of algorithms, aulomala, complezity,
combinatorics on words convergence of processes, Subadditive Ergodic Theorcmn.

*The praojecl was supporied by NATO Collaborative Grant CRG.950060.

'This work was partially supporied by the ESPRIT IIT Program No. 7141 ALCOM IL.

tPartially supported by NSF Grants CCR-9201078, NCR-9206315 and NCR-9415491. The work was partially
done while the author was visiting INRIA, Rocquencourt, France. The anthor wishes to thank INRIA {projects
ALGO, MEVAL and REFLECS) for a generons supporl.

1 INTRODUCTION

The complexity of string searching algorithms has been discussed in various papers (cl. (1, 7,
8, 6, 11, 16]). It is well known that most pattern matching algorithms perform linearly in the
worst case as well as “on average”. Several attempis have been made to provide tight bounds
on the so-called “linearity constant”. Nevertlleless, the existence of such a constant has never
been proved. The only exception is the average case of Morris-Pratl-like algorithms [16] for
the symmetric Bernoulli model (independent generation of symbols with each symbol occuring
with the same probability) where the constant was also explicitly computed.

In this paper we investigate a fairly general class of algorithms, called sequential algorithms,
for which the existence of the linearity constant (in an asymptotic sense) is proved for the worst
and the average case. Sequential algorithms include the naive one and several variants of
Morris-Pratt algorithm [15]. Thesec algorithms never go backward, and are easy to implement.
They perform better than Boyer-Moore like algorithms in numerous cases, e.g., lor binary
alphabet [2], when character distributions are strongly biased, and when the pattern and text
distributions are correlated. Thus, even from practical point of view these algorithms are worth
studying.

In this paper we analyze sequential algorithms under a general probabilistic model that
only assumes stationarily and ergodicity of the text and pattern sequences. Il relies on the
Subadditive Ergodic Theorem [10]. The “average case” analysis is also understood in the
strongest possible sense, that is, we establish asymptolic complexity that is true for all bul
finite number of sitrings (i.e., in almost sure sense).

The literature on worst case as well average case on Knuth-Morris-Pratt type algorithms
is rather scanty. For almost twenty years the upper bound was known [15], and no progress
has been reported on a lower bound or a tight bound. This was partially rectified by Colussi
et al. {8] and Cole el al. [7] who established several lower bounds for the so called “on-line”
sequential algorithms. However, the existence of the linearity constant was not established yet,
at least for the “average complexity” under general probabilistic model as the one assumed in
this paper. In this paper we prove this [act rigorously. In the course of proving il, we construct
the so called unavoidable positions where the algorithm must stop to compare. The exislence
of these positions is crucial to establish subadditivily of complexity for the Morris-Pratt type
algorithms, and hence their linearity. This property scems to be restricted to Morris-Pratt type
algorithms since we shall present an example of a text and a pattern for which the Boyer-Moore
algorithm does not possess any unavoidable position.

The paper is organized as follows. In the next section we present a general definition of

sequential algorithms, and formulate our main results. Section 3 contains all proofs. In con-
cluding remarks we discuss possible extensions of our approach to other classes of algorithms,

notably Boyer-Moore like [5).

2 SEQUENTIAL ALGORITHMS

In this section, we first present a general definition of sequential algorithms (i.e., algorithms that

work like Morris-Pratt). Then, we formulate our main results and discuss some consequences.

2.1 Basic Definitions

Throughout we write p and t for the pattern and the text which are of lengths m and =,
respectively. The zth character of the pattern p (text t) is denoted as p[¢] (t[{]), and by
t;f we define the substring of t starling at position ¢ and ending at position j, that is tf-. =
t[é]t[é + 1] - - - t[j]. We also assume that for 2 given patlern p its length m does not vary with
the text length .

Our prime goal is to investigate complexily of string matching algorithms. We define it

formally as follows.

Definition 1 (i) For any siring matching algorithm that runs on a given text t and a given
puttern p, lel M(1, k) = 1 if the [th symbol t[l] of the tezt is compared by the algorithm to the
kih symbol p(k] of the pattern. We assume in the following that this comparison is performed

al most once.

(ii) For a given pattern matching algorithm partial complezily funciion ¢, is defined as

era(t,P) = Y. M[LA] (1)

lE[r,s],kE[l,m]
where 1 £ 7 < 5 £ n. Forr =1 and s = n the function ¢1, = ¢, is simply called the
complexity of the algorithm. If either the pattern or the lezi is a realization of a random

sequence, then we denote the complezily by a capital letter, that is, we write C,, instead of ¢,.

Qur goal is to find an asymptotic expression [or ¢, and C,, for large n under deterministic
and stochastic assumptions regarding the strings p and t. However, for simplicity of notation
we often write c, instead of ¢,(t,p). In order to accomplish this, we need some further
definitions that will lead to a formal description of sequential algorithms.

We start with a definition of an alignment posilion.

Definition 2 Given a string searching algorithm, a tezt t and a pailern p, a position AP in
the text t satisfying for some & (1 < k < m)

M[AP 4+ (k-1),k]=1
is said to be an alignment position.

Intuitively, at some step of the algorithm, an alignment of pattern p at position AP is
considered, and a comparison made with character p[k] of the pattern.

Finally, we are ready to dcfine sequential algorithms. Sequentiality refers to a special struc-
ture of a sequence of positions that pattern and text visit during a string matching algorithm.
Throughoul, we shall denote these secquences as ({;, ;) where I; refers to a position visited
during the ith comparison by the text while k; refers Lo a position of the pattern when the

pattern is aligned at position {; — &; + 1.

Definition 3 A siring searching algorithm is said:
(i) semi-sequential if the fext is scanned from left to right;

(ii) strongly semi-sequential if the order of tezt-pattern comparisons actually performed by
the algorithm defines a non-decreasing sequence of tect positions (I;) and if the sequence

of alignment positions is non-decreasing.
(iii) sequential (respectively strongly sequential) if they satisfy, additionally for any k > 1

M[Iuk] =1 = t::%k_l) = p‘i:_l (2)

In passing, we point out that condition (i) means that the text is read from left to right.
Note that our assumptions on non-decreasing text positions in (ii) implies (i). Furthermore,
non-decreasing alighment posilions implies that all occurrences of the pattern before this align-
ment position were delected before this choice. Nevertheless, these constraints on Lthe sequence
of text-pattern comparisons ({;, k;) are not enough to prevent the algorithm to “fool around”,
and to guarantee a general tight bound on the complexity. Although (2) is not a logical con-
sequence of semi-sequentiality, it represents a natural way of using the available information
for semi-sequential algorithms. In that case, subpaltern t::h,_l) is known when t[{] is read.
There is no need to compare p[k] with t[!] if t::%k-—l] is not a prefix of p of size & — 1, i.e if
AP =1 —(k — 1) has already been disregarded.

We now illustrate our definition on several examples.

Example 1: Naive or brute force algorithm

The simplest string searching algorithm is the naive one. All text positions are alignment
positions. Ior a given one, say AP, text is scanned until the pattern is found or a mismateh
occurs. Then, AP + 1 is chosen as the next alignment position and the process is repeated.

This algorithm is sequential bul not strongly sequential. Condition in (ii) is violated afler
dny mismatch on a alignment position { with parameter k > 3 , as comparison (! +1,1) occurs
after (14+1,2) and (I + 2,3).

Example 2: Morris-Prati-like algorithms [15].

It was already noted [15] that after 2 mismatch occurs when comparing t[l] with p[], some
alignment positions in [{+1,...,{+ & — 1] can be disregarded without further text-pattern
comparisons. Namely, the ones that satisfy t:i?‘l # p'!l"_". Or, equivalently, p’l"+|- # pi“i,
and the set of such ¢ can be known by a preprocessing of p. Other i define the “surviving
candidates”, and chosing the next alignment position among the surviving candidates is enough
to ensure thal condition (ii} in Definition 3 holds. Different choices lead to different variants of
the classic Morris-Pratt algorithm [15]. They differ by the use of the information oblained [rom
the mismatching position. We formally define three main variants, and provide an example.

One defines a shill [unction 5 to be used after any mismatch as:

Morris-Pratt variant:

S =min{k—1; min{s > 0: pi‘;: = P_f—'_s}} ;

Knuth-Morris-Pratt variant:

§ = min{k; min{s : py s = pi ' "*and p} # p}=}} ;

Simon variant:

K = max{k: M({,k)=1};
B = {s: piit=p""and 0<s< K -k} ;

S = min{d>0: Pi:cli = p’f_l'd and (pi:g # p}rg:j,s € B)}

Figure 1 shows a generic program for all three variants of the algorithm.

Example 3: Hlustration to Definition 3.

Let p = abacabacabab and t = abacabacabaaa. The first mismatch occurs for M(12,12).

The comparisons performed {from that point are:

if t[{] = p[k] then
{
if k#m then M({+1,k+1)
else
{
s:=min{s;p{,, =Py '}
M{I+1l,m—-s+1)
}

alse
Compute(S);

if §=0 then M({+1,1)
else M(I,k— 5)

Figure 1: Morris-Pratt-like Algorithms

1. Morris-Pratt variant:
(12,12);(12,8);(12,4); (12,2); (12,1); (13,2); (13,1) ,

where the text character is compared in turn with pattern characters (b,¢c,¢,b,a,b,a)
with the alignment positions (1,5,9,11,12,12,13).

2. Knuth-Morris-Pratt variant:
(12,12); (12, 8); (12,2); (12,1); (13,2); (13,1) ,

where the text charactler is compared in turn with pattern characters (b, ¢, b,a,b, a) with
the alignment positions (1, 5,11,12,12,13).

3. Simon variant:
(12,12); (12,8); (12, 1): (13,2); (13,1) ,

where the text character is compared in turn with pattern characters (b, ¢, a,b,a) with
the alignment positions (1,5,12,12,13).

Some observations are in sequel: Morris-Pratt variant considers one alignment position
at a time, while the optimal sequential algorithm, that of Simon, considers several alignment
positions at the same lime, and may disregard several of them simultaneously (e.g., in Example
3 positions 1 and 9 at the first step and 5 and 11 at the second step). It is interesling to observe
that the subset {1,5,12} appears in all variants. We will sce that they share a common property
of “unavoidability” explored below.

Our definition of semi-sequentiality is very close Lo the definition of sequentiality given in
[12]. We do not use the “on-line” concept of [6]. Their efficient on-line algorithms are very
close to our strongly sequential ones. Also, while condition (2) is a natural optimization for
semi-sequential algorithms, it seems not to be true for other cfficient algorithms discussed in
[8].

Finally, in the course of proving our main result we discover an interesting struclural
property of sequential algorithms. Namely, that when the algorithm is run on a substring of
the text, say t, then there are some positions ¢ > r that are unavoiduble alignment positions,
that is, the algorithm must align at this positions at some step (e.g., see positions {1,5,12}).

More formally:

Definition 4 For a given a patiern p, a position i in the lezt t7 is an unavoidable align-
ment position for an algorithm if for eny r,{ such that r < ¢ and ! > i+ m, the posilion i is

an alignment position when the algorithm is run on ti,.

8

Having in mind the above definitions we can describe our last class of sequential algorithms

{or which we formulate our main results.

Definition 5 An algorithm is said o be I-convergent if, for any lezt t and pailtern p, there
ezists an increasing sequence {U; Y7o, of unavoidable alignment positions salisfying Uiy, —U; <1

where Uy = 0 and n — max; U; < 1.

In passing we note that the naive pattern matching algorithm (cf. Ex. 1) is 1-convergent.
We prove below that all strongly sequential algorithms (i.e., all Morris-Pratt-like algorithms)
are m-convergent which will {further imply several interesting and useful propertics of these

algorithms (e.g., linear complexity).

2.2 Main Results

In this section we formulate our main results. Before, however, we must describe modeling

assumptions concerning the strings (cf. [17]). We adopt one of the following assumptions:

(A) Wors1-Cask (DETERMINISTIC) MODEL

Both strings p and t are non random (deterministic) and p Is given.

(B} SEMI-RANDOM MODEL

The text string t is a realization of a stationary and ergodic sequence while the pattern

string p is given.

(C) STATIONARY MODEL

Strings t and p are realizations of a siafionary and ergodic sequence (cf. [3]). (Roughly
speaking, a sequence, say t}, is stationary if the probability distribution is the same for

all substrings of equal sizes, say t::'l'k and t§+k forl1<i<j<n)

Tormulation of our results depends on the model we work with. So, in the determinis-
tic model we interpret the complexily c,(t,p) as the worst case complexity (i.e., we maxi-
mize the complexity over all texts). Under assumption (B) we consider the strongest possible
convergence ol random variable Cy, namely almost sure (a.s.) convergence. More formally,
we write Cp /e, — o (2.5.) where 2, is a deterministic sequence and « is a constant if
limy—oo Pr{supis, |Cn/ar — @| > ¢} = 0 for any ¢ > 0 (cf. [3]). Finally, in the stationary
model (C) we usFe standard average case complexity, that is, FC,,.

Now we are ready to formulate our main results.

Theorem 2.1 Consider an | < m convergent sequential siring matching algorithm. Lel p be

a given pattern of length m.
(1) Under assumption (A) the following holds

max ca(t,)

Ji BEEE — (o) ®
where a1(p) 2 1 is a constant.
(ii) Under assumption (B) one finds
Ca
GlP) _oyp) as ()

where ap(p) 2 1 i3 @ constant. If Ey denotes the the average cost over all lexl sirings, the

following also holds:
m Etcn(P)

n—co n

= aa(p) (5)

Theorem 2.2 Consider an l-convergent sequential siring maiching algorithm. Under assump-

tion (C) we have
lim —Et’pcﬂ =

n—oo n

k3 (6)

provided m = o(y/n), where a3 > 1 is a constant and Iy, denotes the average over all lezi

strings of size n and palierns of size m.

It is worth noticing that the average value of az(p), when p ranges over all patterns of size
m s aa.

Finally, with respect to our main class of algorithms, namely, Morris-Pralt like (i.e., se-
quential) we shall prove in the next section the following results concerning the existence of

unavoidable positions,

Theorem 2.3 Given a patiern p and a text t, all strongly sequential algorithms have the same

sel of unavoidable alignment positions U = |Jj_,{U1}, where
= min{ min {t, < p}, 7
U mm{]?}__fs‘,{ <P}, [+1} (7)
and ti_ = p means that the substring ti, is a prefiz of the paltern p.

Theorem 2.4 A strongly sequential algorithm is m-convergent and (3)-(6} hold.

10

In summary, the above says that there exists a constant « such that ¢, = an+o(n) and/or
EC, = anto(n). All previous results have been able only to show that ¢, = @(n) but they did
not excluded some bounded fluctuation of the coefficient at n. We should point out that in the
analysis of algorilthms on words such a Auctuation can occur in some problems involving suffix
trees (cf. [4, 13]). But, in this paper we prove that such a fluctuation cannot take place for
the complexity function of the strongly sequential pattern matching algorithms. For example,
in the worst case we prove here that for any given pattern p, any ¢ > 0 and any n > n., one

can find a text t] such that |2 — oy(p)| < e

3 ANALYSIS

In this section we prove Theorems 2.1- 2.4. The idea of the proof is quite simple. We shall
show that a function of the complexity (i.e., ¢, = en + f(m) where f(m) is a function of
the length m of the pattern p) is subadditive. In the “average case analysis” we indicate
that under assumption (C) the average complexity C,, is a stationary and ergodic sequence.
Then, direct application of an extension of Kingman’s Subadditive Ergodic Theorem due to
Derriennic [9] will do the job of proving our results. In passing, we point out that the most
challenging is cstablishing the subadditivity property to which most of this sectlion is devoted.
We observe, however, that subadditivity of the Morris-Pratt type algorithms is a consequence
ol the existence of unavoidable positions,

For the reader’s convenience we start this section with a brief review of the subadditive

ergodic theorem (cf. {10, 14].

Theorem 3.1 (Subadditive Sequence). (i} Let for a (determinisiic) nonnegalive sequence

{zn)2, the following property, called subaddilivily, holds
i'?‘ll-l-'ﬂ LTZptTym. (8)

Then
lim — = inf —=a (9)
for some constan! o.

(ii) (Subadditive Ergodic Theorem [14]). Let X,,, (m < n) be a sequence of nonnegative

random variables salisfying the following three properiies

(6) Xon £ Xom + X n (subadditivity);

11

(b) X, 18 stationary (i.e., the joint distributions of X, , are the same as Xy y| 0y} and

ergodic (cf. [3]);
(C) EX[)J < 00,

Then,

lim EXon =+ and lim Xon

L—00 n n—oe 7

Jor some constant v.

(iii) (Almost Subadditive Ergodic Theorem (9]). If the subadditivity inequality is replaced by

XO,'n. <X0,m+Xm,n+An (11)

such that limn_,o, FAn/n =0, then (10) holds, too.

Thus, to prove our main results we need to establish the subadditivity properly for the
complexity ¢,(t,p) (for all texts t and patterns p). The nextl lemma proves such a result for

{-convergent sequential algorithms.

Lemma 3.1 An l-convergent semi-sequential (or strongly semi-sequential} algorithm satisfies

the basic inequality for all r such that 1 < r < n:
lern — (1,0 + ern)l < m? +Im (12)
provided any comparison is done only once.

Proof: Let U, be the smallest unavoidable position greater than r. We evaluate in turn
e1q — (€1, + cv.n) and ¢, — ¢y, o (cf. Figure 2).

We start our analysis with considering ¢, , — (e1,» + ¢y, n) (see dotted part in Figure 3(a)).
This contribution consists of two parts. TFirsl, we musl include those comparisons thal are
performed after positior r for alignment positions before r. Observe thal those comparisons
contribute to ¢1 5, but not to ¢; . To avoid counting the last character r twice, we must subtract
one comparison. Thus, this contribution, which we call 5y, can be computed as follows (cf.
Figure 3(a))

Si= >) M@Ei—-AP+1)-1.

AP<r i>r
The second part of the contribution ¢; ,—(e1,,+¢y,) accounts [or alignments AP salislying

r < AP < U; that only conlribute to ¢; ;. It is easy to see that this part adds the following

Ur—1

Se=) Y M(AP+(i-1),9).

AP=ri<m

12

1 92
patterns L !
L 1 ?
L 1 ?
L I | ?
text I ¥ 3 * TS @ ;
. I Uy n
¢ Ir S Cur
I
@ 1 97
1 9
lext . | 9
I T+ SPIYR SPIVPTR @ |
! r U, n
S3

Figure 2: Illustration to the proof of Lemma 3.1: Contribution 51 (cf. Figure 3(a)), and
contribution S5 (cf. Figure 32(b)).

Obscrve now that the alignment positions after U, on the text t; and t7 are the same. Thus,
the only difference in contribution comes [rom the amount of inlormation saved from previous

comparisons done on t]. This is clearly bound by

lein — (et + €U+ S1+ S2)| <

Now, we evaluate ¢, , — ¢y, » (see Figure 3(b)). We assume that the algorithm runs on t7

and let AP be any alignment position satislying r < AP < U,. Then the contribution Sj :

Ue—1
Sa= > > M(AP+(i—1),i)

AP=r

13

e
£ 3
F
o

text

patterns

Figure 3: Illustration 1o the proof of Theorem 2.4.

counts for the number of comparisons associated to these positions. This sum is the same
as Sz but the associated alignment positions and searched text positions AP + k& — 1 may be
different. Additionally, at alignment position U/;, no more than m comparisons can be saved

from previous comparisons. Hence, we get:
|cr,n — Ly SS' <m .

Finally, it remains to find upper bounds on S, 52, and S3. For { > U, — r we easily sec
that 5 and S3 are smaller than Im. So is their difference. With respect to 54, for a given
alignment position AP we have [— AP| < m. This implies that |r — AP| < m, and for any
AP the index i has at most m different values. Thus, 5; < mZ. This completes the prool. m

Now we arc rcady to prove I-convergence for strongly sequential algorithms, i.e. Theorem
2.4. It relies on Theorem 2.3 which we prove first. Let [be a text position such that 1 <{ < n,
and 7 be any text position satisfying r < U;. Let {A4;} be the set of alignment positions defined
by a strongly sequential algorithm that runs on t}. As it contains r, we may define (cf. Figure
3).

Ay =max{4;: A; < U}

Hence, we have Ayy, > U;. Using an adversary argument, we shall prove that Ay > U
cannot be true, thus showing that Ayyy = U;. Let y = max{k : M(As + (k- 1),k) = 1},
that is, g is the rightest point we can go starting from A ;. We observe that we have y < [.
Otherwise, according Lo condition (2), we would have i;_'4Jr = p, which contradicts the definition
of U;. Also, semi-sequentiality implies that Ay41 < y+1 <+ 1. Hence U; = {4+ 1 contradicls
the assumption Ayy; > Ur and we may assume {; < . In that case, p},{ < p and an occurrence
of p al posilion U; is consistent with the available information. Let the adversary chose that
p does occur. As sequence (A;) is non-decreasing and Ay has been chosen greater than U,
this occurrence will not be detected by the algorithm: thus a contradiction. This completes

the proof. m

Finally, we turn to the proof of Theorem 2.4. Let AP be an alignment position and define

14

{=AP+m. As |p|=m,onehas!—(m—1) < U; <. Hence, U; — AP £ m which establishes
the m-convergence.

Remark: We used the strong monotonicity assumption only in establishing of unavoidable
positions. This property may not be satisfied by other algorithms such as efficient “on-line”
algorithms in [6] that still one may intuitively call sequential. Nevertheless, it is easy to extend

our proof of subadditivity when we remove this condition.

We now apply Theorem 3.1 to derive Thecrems 2.1 and 2.2. After substituting z,, =
c1,n+1.5m? +Im, we get subaddilivity for any given p and deterministic t by Theorem 3.1(iii).
Worst case complexity results follow since

maxcy, < MaXc,, + max &r. .
|t]=n |t]=r |t]=n—r

We have a subadditive sequence and we apply (9). Now, let £} range over the set of texts of
size n, t] and t] range over the sels of texts ol size r and n —r. Then, as the text distribution
is stationary, the subadditivity holds in case (B). Also, the cost ¢, ; is stationary when the text
distribution is. Applying Subadditive Ergodic Theorem yields (4) and (3).

We turn now 1o Lhe average complexity. The uniform bound [15] on the linearity constant,
allows to define EL(Et{cr,n)), when p ranges over a random (possibly infinite) set of patierns.

The subadditivity property transfers to Et p(Cy) and (6) follows. This completes the proof. m

4 CONCLUDING REMARKS

We consider here sequential algorithms that are variants of classical Morris-Pratt algorithms.
In order to speed up the search, Boyer and Moore introduced in [5] a quite different algorithm.
Given an alignment position AP, matching against p are checked from right to left; i.e. &
is decreasing. Several variants have been proposed that differ by the amount of information
saved to compute the next alignment position.

We point out here that Boyer-Moore like algorithms do not satis[y unavoidability property.
We provide an example for the Horspool variant: given an alignment position AP, the next

alignment position is computed by aligning the text character t[AP + m) with t[AP + j] where
m — j = min{max{k : p[k] = t[AP + m]}, m}

Let us now consider as an example p = z'az®bz®a, z # a,b. When t[AP 4 m] is a
(resp. & or z) the next alignment position is chosen to be AP 4 6 (resp. AP +3 or AP +1).
When t[AP + m] € {a,b,z}, one shifts the alignment position by m. Assume now that

15

t = y'%2%(bazbz?}* with y # = and natural n. I the Boyer-Moore-Horspool algorithm starts
with AP = 1, a mismatch occurs on the second comparison between t{10] and p[10] with AP
shifted by 6. The same event occurs then and we eventually get the sequence AP; = 1 4 6.
Assume now that we split the text at r = 6. As t[16] is b, one shifts by 3 and b is found again.
Finally, one gets sequence AP/ = 6 + 37. As gcd(6,3) does not divide 5, these two sequences
are disjoint and there is no unavoidable position.

In summary, we conclude that subadditivity and unavoidability cannot be used to prove lin-
earily of Boyer-Moore algorithms. Nevertheless, another tool from stochastic analysis, namely

renewal theory, should provide a solution. We plan to investigate it in a future paper.

References

[1] A. Apostolico and R. Giancarlo, The Boyer-Moore-Galil String Searching Strategies Re-
visited, SIAM J. Compt., 15, 98-105, 1986.

[2] R. Baeza-Yates and M. Régnier, Average Running Time of Boyer-Moore-Horspool Algo-
rithm, Theoreiical Compuler Science, 92, 19-31, 1992.

(3] P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York, 1968.

(4] A. Blumer, A. Ehrenfeucht and D). Haussler, Average Size of Suffix Trces and DAWGS,
Discrete Applied Mathematics, 24, 37-45 (1989).

[5] R. Boyer and J. Moore, A fast String Scarching Algorithm, Comm. of the ACM, 20,
762-772, 1977.

[6] D. Breslauer, L. Colussi, and L. Toniolo, Tight Comparison Bounds for the String Prefix-
Matching Problem, Proc. {-th Symposium on Combinatorial Paitern Mualching, Padova,
Ttaly, 11-19. Springer-Verlag, 1993.

[7] R. Cole, R. Hariharan, M. Paterson, and U. Zwick, Tighter Lower Bounds on the Exact
Complexity of String Matching, SIAM J. Comp., 24, 30-45, 1995.

(8] L. Colussi, Z. Galil, and R. Giancarlo, On the Exact Complexity of String Matching, Proc.
31-st Annual IEEE Symposium on the Foundalions of Computer Science, 135-143. IEEE,
1990.

[9] Y. Derriennic, Une Théoréme Ergodique Presque Sous Additif, Ann. Probab., 11, 669-677,
1983.

16

(10] R. Durrett, Probability: Theory and Ezamples, Wadsworth & Brooks/Cole Books, Pacific
Grove, California, 1991,

[11] L. Guibas and A. Odlyzko, A New Proof of the Linearity of the Boyer-Moore String
Matching Algorithm, STAM J. Compt., 9, 672-682, 1980.

[12] C. Hancartl, Analyse Ezacte et en Moyenne d’Algorithmes de Recherche d’un Motif dans
un Tezie, These, I'Universite Paris 7, 1993.

[13] P. Jacquet and W. Szpankowski, Autocorrelation on Words and Its Applications. Analysis
of Suflix Tree by String-Ruler Approach, J. Combinaterial Theory. Ser. A, 66, 237-269,
1994.

(14] J.F.C. Kingman, Subadditive Processes, in Ecole d’Eté de Probabilités de Saint-Flour
V-1975, Lecture Notes in Mathematics, 539, Springer- Verlag, Berlin 1976.

[15] D.E. Knuth, J. Morris and V. Pratt, Fast Pattern Matching in Strings, SIAM J. Compt.,
6, 189-195, 1977.

[16] M. Régnier, Knuth-Morris-Pratt Algorithm: An Analysis, Proc. Mathematical Founda-
tions for Computer Science 89, Porubka, Poland, Lecture Notes in Computer Science, vol.
379, 431-444. Springer-Verlag, 1989.

[17) W. Szpankowski, On The Height of Digital Trees and Related Problems, Algorithmica, 6,
256-277, 1991.

17

	Complexity of Sequential Pattern Matching Algorithms
	Report Number:
	

	tmp.1307986960.pdf.bekqc

