View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1999

Limit Laws for Heights in Generalized Tries and PATRICIA Tries

Charles Knessl

Wojciech Szpankowski
Purdue University, spa@cs.purdue.edu

Report Number:
99-011

Knessl, Charles and Szpankowski, Wojciech, "Limit Laws for Heights in Generalized Tries and PATRICIA
Tries" (1999). Department of Computer Science Technical Reports. Paper 1442.
https://docs.lib.purdue.edu/cstech/1442

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://core.ac.uk/display/4971732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

LIMIT LAWS FOR HEIGHTS IN GENERALIZED
TRIES AND PATRICIA TRIES

Charles Knessl
Wajcicch Szpankowski

CSD-TR #99-011
April 1999




Limit Laws for Heights in Generalized Tries and
PATRICIA Tries

April 7, 1999

Charles Knessl* Wojciech Szpankowskil
Dept. Mathematics, Statistics & Computer Science Department of Computer Science
University of Illinois at Chicago Purdue University
Chicago, Illinois 60607-7045 W. Lafayette, IN 47907
U.5.A U.S.A.
knessl@uic.edu spa@cs.purdue.edu
Abstract

We consider digital trees such as (gencralized) tries and PATRICIA tries, built from n
random strings generated by an unbiased memoryless source (i.e., all symbols are cqually
likely). We study limit laws of the height which is defined as the longest path in such trees.
It turns out that this height also represents the number of random questions required to
recognize n distinct objects. We shall identily three natural regions of the height distri-
butions. For tries, in the region where most of the probability mass is concentrated, the
asymptotic distribution is of extreme value type (i.e., double exponential distribution). Sur-
prisingly enough, the height of the PATRICIA trie behaves quite differently in this region:
It exhibits an cxponcntial of a Gaussian distribution (with an oscillating term) around the
most probable value &y = [logyn + \/2logy n — 3 |+1. In fact, the asymptotic distribution
of PATRICIA height concentrates on one or two points. For most n all the mass is con-
centrated at ki, however, there exist subsequences of = such that the mass is on the two
points k; —1 and &, or &) and &, + 1. We derive these results by a combination of analytic
methods such as gencrating functions, Mellin transform, the saddle point method and ideas
of applied mathematics such as linearization, asymptotic matching and the WKB method.
We present also some numerical verification of our results.

Key Words: digital trees, b-tries, PATRICIA trie, height distribution, Mellin transform,
saddle point method, matched asymptotics, WKB method.
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1 Introduction

Data structures and algorithms on words have expericnced a new wave of interest due to
a number of novel applications in computer science, communications, and biology. Thesc
include dynamic hashing, partial match retrieval of multidimensional data, searching and
sorting, pattern matching, conflict resolution algorithms for broadcast communications,
data compression, coding, security, genes searching, DNA sequencing, genome maps, and
so forth. To satisfy these diversified demands various data structures were proposed for
these algorithms. Undoubtly, the most popular data structures for algorithms on words
are digital trees [18, 21] (e.g., tries, PATRICIA trics, digital search trees), and suffix trees
[14, 30]. The importance of digital trees stem from their applications in sorting and searching
[5, 10, 15, 18, 21, 23, 26, 28, 29, 31], data compression [16, 30, 32, 33] pattern matching [14],
the shortest common superstring problem [12], searching for a leader [9], estimating the
number of questions necessary to identify many distinct objects [25], prediction [8], and so
forth. These problems recently became very important due to the need for efficient storage
and transmission of multimedia, and applications to DNA sequencing (cf. [14]).

The most basic digital tree is known as a irie (the name comes from reirieval). The
primary purpose of a trie is to storc a set S of strings (words, keys), say S = {Xy,..., X, }.
Each word X = zyzz3... is a finite or infinite string of symbols taken from a finite
alphabet. Throughout the paper, we deal only with the binary alphabet {0,1}, but all our
results should be extendable to a general finite alphabet. A string will be stored in a leaf
of the trie. The trie over S is built recursively as follows: For |§| = 0, the trie is, of course,
empty. For |§] = 1, trie(S) is a single node. If |S| > 1, § is split into two subsets Sp and
S1 so that a string is in §; if its first symbol is 7 € {0,1}. The tiries trie(Sp) and trie(S)
are constructed in the same way except that at the &-th step, the splitting of scts is based
on the k-th symbol of the underlying strings. Figure 1 illustrates such a construction.

There are many possible variations of the trie. One such variation is the &-trie, in which
a leaf is allowed to hold as many as b strings (cf. [21, 30]). A second variation of the trie,
the PATRICIA lrie, eliminates the waste of space caused by nodes having only one branch.
This is done by collapsing one-way branches into a single node. In a digital search tree (in
short DST) strings are directly stored in nodes, and hence external nodes are eliminated.
The branching policy is the same as in tries. These digital trees are also shown in Figure 1.
The reader is referred to [14, 18, 21] for a detailed description of digital trees.

In this paper, we consider tries and PATRICIA tries built over n randomly generated

strings of binary symbols. We assume that every symbol is equally likely, thus we are within




trig Patricia DST

Figure 1: A trie, PATRICIA tric and a digital search tree (DST) built from the following
four strings X3 = 11100... , X = 1011%... , X3 = 00110... , and X, = 00001.. ..

the framework of the so called symmetric Bernoulli model. In other words, the strings are
emitted by an unbiased memoryless source. Our interest lies in establishing asymptotic
distributions of the heights for random tries and PATRICIA tries. The height is the longest
path in such trees, and its distribution is of considerable interest for several applications.

Let us further motivate our study by describing a generalization of Rényi’s problem [27]
analyzed by Pittel and Rubin [25]. The problem is to identify » distinct objects by asking
random questions. More formally, let & : X — 4 be a bijective mapping from set A into
set A, both sets having the same cardinality n. The goal is to identify all elements of &’
by asking questions like: for a given B € A what is &~ 1(B). If B is chosen uniformly at
random, how many questions must one ask to recognize X? What happens if we do not
allow B to be empty, or to be the same as in the previous attempt? Pittel and Rubin [25]
proved that the former problem is equivalent to estimating the height in a trie, while the
latter can be reduced to the height in a PATRICIA tric.

We now summarize our main results. As mentioned before, we are aiming at cstablishing
asymptotic distributions for the b-trie height HZ and the PATRICIA height ;. We obtain
asymptotic expansions of the distributions Pr{#] < k} and Pr{#H < k} for three ranges
of n and k. For b-tries we consider: (i) the “right—tail region” k& — o0 and = = O(1); (ii)
the “central region” n,k — oo with £ =n27% and 0 < £ < b; and (iii) the “left-tail region”
k,n = oo with n — 42¥ = O(1). We prove that most probability mass is concentrated in
between the right tail and the central region. In particular, for real

b 1
logy + z} ~ €Xp (— b+ 1),2"5”"(%1032 n+=>) )

Pr{?{ZSH

1

where (r}) = 7 — |r] is the fractional part of 7.! In words, the asymptotic distribution

The fractional part (r} is often denoted as {r}, but in order to avoid confusion we adopt the above




of b-tries height around its most likely value %Ioggn resembles a double exponential

(extreme value) distribution. In fact, due to the oscillating term (1—‘39 log, n+z) the limiting
distribution does nof cxist, but one can find liminf and limsup of the distribution {cf.
Corollary 1 and Figure 2 in the next section).

The height of PATRICIA trics behaves differently in the central region (i.e., where most
of the probability mass is concentrated). It is concentrated at or near the most likely
value k) = logyn + /2logyn — 3| + 1. We shall prove that the asymptotic distribution
around k) resembles an exponential of a Gaussian distribution, with an oscillating term (cF.
Theorem 3). In fact, there exist subsequences of n such that the asymptotic distribution
of PATRICIA height concentrates only on ky, or on k; and one of the two points &; — 1 or
k) + 1. Later, we characterize precisely these subsequences.

With respect to previous results, Devroye [5] and Pittel [24] established the asymptotic
distribution in the central regime for tries and b-tries, respectively, using probabilistic tools.
Jacquet and Régnier [15] obtained similar results by analytic methods. The most probable
value, logyn, of the height for PATRICIA was first proved by Pittel [23]. This was then
improved to logyn + \/2logy n(l + o(1)) by Pittel and Rubin [25], and independently by
Devroye [6]. No results concerning the asymptotic distribution for PATRICIA height were
reported.

Finally, we say a few words about our method of derivation, and put our results in a
larger perspective. From a mathematical view point, we study two non-lincar recurrence
equations. The distribution kX = Pr{#HI < k} of the height of b-trics satisfies

n
REtl =95 (’:) RERE_., k>0
s

with the initial condition 23 =1 forn = 0,1,2,...,b and 28 = 0 for » > b. For PATRICIA
tries the distribution AX = Pr{H. < k} satisfies

RETL = g mlpkdl 4 9on nzl (’:’) hiRE_,, k>0
i=1
with the initial conditions A = A = 1 and A2 = 0 for n > 2. More importantly, the
PATRICIA recurrence satisfies an additional boundary condition, namely, h.,'L; =1fork >
n — 1, which does not hold for tries. This boundary condition seems to have an enormous
impact on the final solution, as shown by our results {¢c[. Theorem 2 and Theorem 3).
We use two different methodologies to solve these recurrences. The trie recurrence

is first analyzed by analytic methods (i.e., gencrating functions, Mellin transform, saddle

notation,




point method). We then re-derive the results by methods of applicd mathematics such
as matched asymptotics and the WKB method. These are also analytic methods and are
especially suitable for problems that cannot be solved cxactly by transform methods, such
as the PATRICIA model. The approach we suggest works also for other problems (e.g.,
height of digital search trees and quicksort [19]).

The paper is organized as follows. In the next section, we present and discuss our
main results for tries (cf. Theorem 1), b-trics (cf. Theorem 2), and PATRICIA trics (cf.
Theorem 3). In Section 3 we derive the results for tries and b-tries, while in Section 4 we

deal with the PATRICIA trie. Finally, the last section presents some numerical results.

2 Summary of Results

As before, we let HI and HFP denote, respectively, the height of a b-trie and a PATRICIA
n (L] g

trie. Their probability distributions are
RE=Pr{HT <k} and AE=Pr{Hl <K (2.1)

We note that for tries 25 = 0 for n > b2* (corresponding to a balanced tree), while for
PATRICIA tries kX = 0 for n > 2*. In addition, for PATRICIA we have the following
boundary condition: A% = 1 for ¥ > n. It asserts that the height in a PATRICIA trie
cannot be bigger than n {due to the elimination of all one-way branches).

The distribution of b-tries satisfies the recurrence relation
REH 2 pmn S (?) MERE L k20 (2.2)
i=0
with the initial condition({s)
R =1, n=0,12,...,5 and R =0, n>0b (2.3)

This follows from ’H.':: = ma.x{’Hf‘T, ’Hff ;} + 1, where ’Hf’T and ’Hff,— denote, respectively,

the left subtree and the right subtree of sizes ¢ and n — ¢, which happens with probability
27"(%). Similarly, for PATRICIA tries we have

i=1 \?

n—-1
hytt = 27nHipk+t 4 gn 5 (”) hERE . k>0 (2.4)
with the initial conditions

Ry =m=1 and N2 =0, n>2 (2.5)




Unlike b-tries, in a PATRICIA trie the left and the right subtrees cannot be empty (which
occurs with probability 2-7+1).

We shall analyze these problems asymptotically, in the limit » — co. Despite the simi-
larity between (2.2) and (2.4), we will show that even asymptotically the two distributions
behave very differentiy.

We first consider ordinary tries (i.c., 1-tries). It is relatively easy to solve (2.2) and (2.3)

explicitly and obtain the integral representation (cf. Scction 3)

. ! '
RE = if(1+z2-*)2*z-“-1dz (2.6)

r 27t
n > 2k

= 2531 k
2—";'.1(5,;%)!, 0Sﬂ.52.

Here the loop integral is for any closed circle surrounding z = 0.
Using asymptotic methods for evaluating integrals, or applying Stirling’s formula to the

sccond part of (2.6), we obtain the following.

Theorem 1 The distribution of the height of iries has the following asympiotic ezpansions:
{1} RIGHT-TAIL REGION: k = oo, n = O(1)
Pr{HL <k} =hE =1-n(n-1)27%" +0(27%).
(ii) CENTRAL REGION: k,n oo with £ =n27% 0 < £ <1
S ~ A(E)em,

where

1
86 = (I—E)Iog(l—c*)—l,
Alg) = (1-¢7~

(iii) LEFT-TAIL REGION: k,n — co with 2 —n = § = O(1)

This shows that there are threc ranges of k and n where the asymplotic form of At is
different.




We next consider the “asymptotic matching” (see [20]) between the three expansions.
If we expand (i) for n large, we obtain 1 — A% ~ n227%-1 For £ — 0 we have A{¢) ~ 1 and
$(€) ~ —£€/2 so that the result in (1i) becomes

A()e™ ) . g /2 = exp (ﬂ%n22'k) ~1— %n22_k (2.7)

where the last approximation assumes that n,k — oc in such a way that n?2=% — (.
Since (2.7) agrees precisely with the expansion of (i) as n — oo, we say that (i) and (ii)
asymptotically match. To be precisc, we say they match the leading order; higher order
matchings can be verified by computing higher order terms in the asymptotic series in (i)
and (ii). We can easily show that the expansion of (ii) as £ & 1~ agrees with the expansion
of (iii} as 7 = oo, so that (ii) and (iii) also asymptotically match. The matching verifications
imply that, at least to leading order, there are no “gaps” in the asymptotics. In other words,
one of the results in (i}-(iii) applies for any asymptotic limit which has k and/or n large.
We recall that 25 = 0 for » > 2* so we need only consider k > log, n.

The asymptotic limits where (i)-(iii) apply are the three “natural scales” for this prob-
lem. We can certainly consider other limits (such as k,n — co with k/n fixed), but the
expansions that apply in these limits would necessarily be limiting cases of one of the three
results in Theorem 1. In particular, if we let &, — oo with k& — 2log, n = O(1), we are led
to

-k 1 .
RE ~ exp (— §n22_’”) = ¢Xp (—% exp(—klog2 + 2log n)) . (2.8)

This result is well-known (see [5, 15]) and corresponds to a limiting double exponential {or
extreme valuc) distribution. However, according to our discussion, & = 2logyn + O(1) is
not a natural scale for this problem. The scale & = logyn + O(1) (where (ii) applies) is a
natural scale, and the result in (2.8) may be obtained as a limiting case of (ii), by expanding
(ii) for € — 0.

To obtain Theorem 1, we have identified the natural scales from the representations of
kX in (2.6), and made no usc of asymptotic matching. However, for problems such as (2.4)
(with (2.5)), which have not been solved exactly, we shall show that asymptotic matching is
a very useful tool for analyzing the model as k,n — oo. For such problems we must identify
the natural scales using only the recursion equation, such as (2.4). We discuss this in more
depth in Sections 3 and 4.

We next generalize Theorem 1 to arbitrary &, and obtain the following. The proof can

be found in Section 3.




Theorem 2 The distribulion of the height of b-iries has the following asymplolic ezpan-
stons for fized b:

(i} RIGHT-TAIL REGION: k = o0, nn = O(1):

7!

T+ D) (n-b— 1)!2_kb'

Pr{H: <k} =hE ~1

(i) CENTRAL REGIME: k, — oo with £ =n27%, 0 < £ < b:
Bl ~ A(g ),
where

#es) = —1—logun + 7 (blog(uog) ~ logtt —log (1- -} ),

o
1
AGE = e o

In the above, wy = wo{&;b) is the solution to

L (wot)® _
b1(1+uu§+5§fi+---+"’—§f—b)

i)

(iti) LEFT-TAIL REGION: k,n = oo with § = b2¥ —n

_ i

X~ \2mm j—lb“ exp (~(n+7) (1+ 57 logh!) )
where j = O(1).

‘We note that when b =1 or 2, we can obtain wy explicitly:

wol§; 1) = 1—i€", (2.9)
2

wo(é2) = i AT & (2.10)

For arbitrary b, we have wg — oo as &€ = b~ and wg —* 1 as £ = 01. More precisely,

/]
wo = 1 % +0(eb, £50 (2.11)
1 b1
g = m'l‘T'l'O[b—f), f—}b (212)

When & = 1 we can easily show (using (2.9)) that Theorem 2 reduces to Theorem 1.
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Figure 2: Asymptotic distributions for the height and their corresponding lower and upper
bound lor trics with b = 2 (left} and b = 10 (right).

Using (2.11) we can also show that the three parts of Theorem 2 asymptotically match.

In particular, by expanding part (ii) as £ — 0 we obtain

(b+ 1)
14+bo—kb
exp (—Tz;-_{-—i)]) . (2.13)
This yields the well-known (see [15, 24]) asymptotic distribution of b-tries. We note that,
for k,n — oo, (2.13) is O(1) for k£ — (1 + 1/b) logo n = O(1). More precisely, let us estimate
the probability mass of #Z around (1 + 1/b) loggn + = where z is a real fixed value. We
observe from (2.13) that

PrinT nd(€) ( ng’ )
r{#H, <k} ~ A" ~exp| - £—0

Pr{iHl < (1 +1/b)logon+2} = Pr{HT < |(1+1/b)logyn+z]}

_ 1 —b:c+b{[l+b),’b-log2n+:c))
exp( (1—|-b)!2 , (2.14)

where (z) is the fractional part of z, that is, {z) = z — |z]. Since {logy n) is dense in [0, 1]

but not uniformly dense, the limit of (2.14) does not exit as n» = oo. We can, however,

conclude the following.

Corollary 1 While the limiting distribution of the height for b-iries does not ezist, the

follounng lower and upper envelopes can be established

- T — L —b(z—1
l]&r_hlngr{?{n5(1+1/b)log2n+x} = exp(—(1+b)!2 (==1)} |

9




1
Iiﬂsolép Pr{H: < (1+1/b)logyn+2z} = exp (— AT 2‘*”’)

for fized real .

In Figure 2 we plot the asymptotic distribution (2.14) (the stair-wise function) together
with the lower and the upper envelopes for b = 2 and b = 10. We observe that for large b
the asymptotic distribution becomes more concentrated on one or two points.

We next turn our attention to PATRICIA tries. Using ideas of applied mathematics,
such as linearization and asymptotic matching, we obtain the following. The derivation of
this result is presented in Section 4 where we make certain assumptions about the forms of

the asymptotic expansions, as well as the asymptotic matching between the various scales.

Theorem 3 The distribution of PATRICIA tries has the following asymptolic ezpansions:
(i) RIGHT-TAIL REGIME: k,n b cowithn—k=3j=0(1),7 > 2

Pr{HE <n—j}=h27 ~1— poK; - nt. 272 [24=3/2n

where
L o-i21293i2 5
K; = ﬁz P O {2.15)
4t y{zl‘jez = {1 —exp(—22~™"1)
% = om 2 ,}_:[0 z2—m—1 dz (2.16)

and py = [[2,(1 — 275~ = 1.73137. ..

(ii) CENTRAL REGIME: k,n — co with £ =n27%, 0 < £ < 1

B ~ 14 260(0) + 23 ()e ™.

We know ©(£) analylically only for € = 0 and £ = 1. In particular, for € = 0

1 log? £
~ —pne?lloB2€)g3/2 _ log +
() ~ p0c 3 EXP( 210g2) . £—0t, (2.17)
with
o0 — _nx—¥£ oo
ple) = 102g2m($+ 1)+ log (1 cx;(_f )) + Y log(1 — exp(—27))
t=0 £=1
— 1032 1 '72 11-2
= Uo)-—]+ g2 ( 5+ -5 ) (2.18)
3 L 2mil 2mif izt
o) = Em it (1 - logz) ¢ (1 " log 2) ¢ (2.19)
#5#0

10




In the above, T'(-) is the Gamma function, {(-) is the Riemann zele function, v = —I"{1)
is the Euler constent, and (1) is defined by the Laurent series ((s) = 1/(s — 1)+ —
(1)(s — 1) + O((s — 1)%). The function ¥(z) is periodic with e¢ very small amplitude, i.c.,
|¥(z)| < 1073, Moreover, for £ = 1 the function ®(£) becomes

D) ~ D1+ (1 - &) log(1l — &) — (1 - £)(1 +log D), £ 17

where Dy =1+ log(Kg) and Dy = K] K{ /e with

oo . o=t
K5 = [[(1-22*) = .6s321974...,
=1
o _gt+l -1 _nttm 12"
Kt = [ITI (1-22"")" [1-272""*]" " =1.2506283...
=1 m=1

(ili) LEFT-TAIL REGIME: k,n — oo with 2fF —n = M = O(1)

. Var . _
hf; ~ o Dé‘Uan+1;’2e Din

where [}, and Do are defined above.

The expressions for A in parts (i) and (iii) are completely determined. However, the
expression in part (ii) involves the function ®(£). We have not been able to determine
this function analytically, except for its behaviors as € approaches 0 or 1. In Scction 5,
we discuss the numerical computation of ®(-) and sketch this function in Figure 5. The
behavior of ®{£) as £ —+ 1~ implies the asymptotic matching of parts (it) and (iii), while the
behavior as £ —+ 07 implies the matching of {i) and (ii). As & — 0, this behavior involves
the periodic function (z), which satisfies p(z +1) = @(z). In part (ii) we give two different
representations for ¢(z); the latter (which involves ¥(z)) is a Fourier series. In Appendix
A we show the equivalence of these two representations.

Since ®(£) > 0, we see that in (ii} and (iii}, the distribution is exponentially small in =,
while in (i), 1 — A is super-exponentially small (the dominant term in 1 — A% is 2"‘2f2).
Thus, (i) applies in the right tail of the distribution while (ii) and (iii) apply in the left
tail. We wish to compute the range of k¥ where A% undergoes the transition from A% =~ 0 to
ht 21, as n — oo. This must be in the asymptotic matching region between (i} and (ii).

We shall show in Section 4 that Cj, defined in Theorem 3(i), becomes as j — oo

5/2 1 log? 4
o I gpla) _-98 J
C; 5" exp ( 5 Tog2 ) , (2.20)

11




where a = (logs 7} is the fractional part. With (2.20), we can verify the matching between
parts (i) and (ii), and the limiting form of (ii) as £ — 0% is

: log 2 3 2 9
hE ~ exp (_ -'02—06”(]%2 ") exp (—0—5— ((k t3- log, n) —2logyn — Z)))

log 2
= exp (—pge”(hg? M2 85 exp (—Eg—— (k+1.5 —log, n)z)) {(2.21)
log2
= exp (ﬁpu -0 - exp (—-% (k4 1.5 — logy n)? + 6 + T(log, n))) (2.22)

where pg is defined in Theorem 3(i) and

1 2 n? log2

while |¥(logyn)| < 107°. We have written (2.21) in terms of & and n, recalling that
£ =n27% We also have used /1 + 2E®°(€) + £207 () ~ L as £ = 0.

We now set, for an integer £,

ke = [10g2n+ y/2logyn — gJ + 2 (2.23)
3
= 10g2n+\/2log2n—§+€—ﬁm

Br = <10g2n +4/2logan — g) € [0,1). (2.24)

In terms of £ and By, (2.22) becomes

Pr{HE < |logan + /2logo n — 1.5] + £} ~ exp (—puea"'q'("’g? )g={E=Fn)*{2~(E~Fn)\/210g; “) ;
(2.25)
For 0 < 3, < 1 and n — oo the above is small for £ < 0, and it is close to one for £ > 1.

where

This shows that asymptotically, as n — oo, all the mass accumulates when k = & is given
by (2.23) with £ = 1. Now suppose 3, = 0 for some n, or more gencrally that we can find a
sequence 7; such that n; — 0o as ¢ — oo but /2log, n; (log2 ni + /2logy ni — %) remains
bounded. Then, the expression in (2.25) would be O(1} for £ = 0 (since 8y +/2logyan = O(1)}.
For £ = 1, (2.25) would then be asymptotically close to 1. Thus, now the mass would
accumulate at two points, namely, kg = k1 — 1 and k;. Finally, if 8, = 1 — o(1) such that
(1 — B8.)\/2log, n = O(1), then the probability mass is concentrated on k; and k; + 1.

In order to verify the latter assertions, we must either show that £, = 0 for an integer
n or that there is a subsequence n; such that \/2logy nifn, = O(1). The former is false,

12
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200 200 600 800 1000
Figure 3: The function R(n) = \/2log; n{logy n + /2logy n — 3} versus n.

while the latter is true. To prove that 8, = 0 is impossible for integer n, let us assume the

contrary. If there exists an integer ¥V such that

logsn+ y/2logyn — g =N,

then
n = 9N+5/2-VAF2N

But this is impossible since this would require that 4 + 2N is odd.

To see that there exists a subsequence such that R(n;) = B, /2log, n: = O(1), we first
refer to Figure 3 which indicates that the function R(n) fluctuates from zero to \/Zlog, n.
In Section 5, we show that if n; = [2545/2-VZH] £ 1 then R(n;) = 0 as i — co. Note that
this subsequence corresponds to the minima of (n) in Figure 3.

We summarize our findings in the following corollary.

Corollary 2 The asymptotic disiribution of PATRICIA height is concentrated among the
three points ki — 1, k1 and ki + 1 where £y = [logon + /2logyn — %J + 1, that is,

P{HE =k —1lorkyork +1} =1—0(l)

as n — 0o. More precisely: (i) there are subsequences n; for whick Pr{HE =k} =1-0(1)
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x

1
Figure 4: Asymptotic distributions for the height and their corresponding lower and upper
bound for PATRICIA trics with n = 6.2 - 10® (one-point distribution) and n = 5- 108

(two-points distribution).

provided that
3
R(n) = 1/210g2n<10g2n+ v 2logen — 5) - ™

as i = 0o; (i) there are subsequences n; for which Pr{?{,’:._ =k —1or b} =1-o0(1)
provided that R(n;) = O(1); (#i) finelly, there are subsequences n; for which Pr{H} =
ki or k1 + 1} =1 — o(1) provided that \/2logy n; — R(n;) = O(1).

As in the case of b-trics, we can study the asymptotic distribution of Pr{#? < log,n -+
V2logsn— 1.5 +z} for = real. We plot the asymptotic distribution of % in Figure 4 and
its lower and upper envelopes. The figure illustrates the concentration at one point or two
points (cf. also Table 4 and Table 5). We also obscrve that the asymptotic distribution for
the PATRICIA height qualitatively resembles the asymptotic distribution for b-tries with
large b (cf. Figurc 2 and Figure 4).

To summarize the PATRICIA results, we have obtained an explicit formula (i.e., (2.21)
or (2.25)) that can be used to compute the distribution 28 where there is appreciable mass,
while Theorem 3 also describes in detail the left and right tails of the distribution. In
Section 5 we give detailed numerical comparisons between our asymptotic results and the

exact values of k¥, obtained by numerically iterating the recursion (2.4).
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3 Asymptotics of Tries and b-Tries

We analyze (2.2) and (2.3) for & and/or n = oo by two independent approaches. First, we
solve the recurrence exactly and then evaluate the result asymptotically. Second, we Ery
to obtain asymptotic information using only the recurrence (2.2). The latter method will
form the basis for analyzing the PATRICIA model.

3.1 Transform Method

To solve (2.2), let us define H¥(z) = 2on>0 fak;—r: Then, (2.2) implies that
2':
H*(z) = (H%(227%))

with H%(z) =14z + --- + 2%/b!. By Cauchy’s formula, we obtain

2k
ik _ N A L —bk ~n—1 .
h’n_% (1+22 +“2—'2 ++F2 z" dz (31)
where the contour integral is a loop around the origin in the z-plane. When & = 1, (3.1}
reduces to (2.6) and then the integral may be explicitly evaluated.
Let us define

Py =1+t4 ot oo ‘fm ¥ (3.2)
= 21 YIRS Y R ‘

and we note that F(¢) — F/(t) = ¢°/bl. From (3.2) it follows that

! wb tb"'l
log[F ()] — t = log (1 “/o e_‘”ﬁdw) =—G7D) + 0", t-0. (3.3)

We first consider the limit n,k — oo, with n27% = £ fixed and 0 < £ < b. Scaling

z = nw, (3.1) becomes

- n! 1 e“f(wi'f)
ht = 5 }{ - duw (3.4)
where
]_ w2 2 wb b
f(w;§)=—1ogw+glog l+w§+ﬁ§ +---+EE . {(3.5)

We cvaluate (3.4) by the saddle point method (cf. [3, 22]). We can casily show that the

cquation %f(w; £) =0, Le,,

1 14wf+---+ (W l/e-1) 1 (wo)t 1 B
ot T ittt @b =l=0"u 1+w§+---+(w§)b/b!‘0’(3‘6)
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has a unique solution on the real w-axis. We call it wy = wg(£; ). It satisfics

gb

wg 1———}1 E—}U,

1
Wy ~ ——— — 00 £E— b

b—¢
Using Stirling’s formula to simplify n! in (3.4} and evaluating the integral by the standard
saddle point method (cf. (3]) yields

11 2 )
—n_~ > f_ e nf{wa;f)
21 wo | F(wei E)n” ' (31)

Also, by (3.4) and (3.5) we can show that

Pt = g+ (1-2) (- 2) - (1-2) = S+ - -11>0 68)

(U}

RE ~ V2rne

with which (3.7) becomes the same as Theorem 2, part (it).

Next we consider the limit n = O(1) with £ — co. In view of (2.3) we have hX =1 for
0 <n <band any £ > 0. We return to (3.1) and note that for k — oo

HE(z) = exp(2* log[F(z2"")]) (3.9)

k| o-k © ¥
exp | 2% |227" + log f2_ke Fdw

Py )
s exp | — 9—kb + O(zb+22—k{b+1))

Il

(G +1)!

Zb_'-l . 3
= & (1 _ (b+ 1)12—Lb+o(zb+22—k(b+1))

where we have used (3.3). Using the last expression of (3.9) in (3.1) and evaluating explicitly
the resulting integral(s) leads to Theorem 2, part (i).

Finally, we consider the limit k,72 — oo with 2¥ —n fixed. Setting 2¥ —n = § and scaling
z=(n+j}r/b=2F7/bin (3.1) leads to

ntj
=k +5\" 1 171 1 1 1 1\%
h*:!-“_) _fsl(_ I . _) NES
" 'n.( b o J T ATt +(b—l)!T+b! ar (3.10)
We furthermore expand the integrand for = large (to be precise, for r = O{n)) to get
. +3\™" 1 i ntj 1 1 -
h’“:l(L) _5{31 (— [ 02)d
! n ) s P exel— log +(b i 7 + { T
- bt /|
~ nl (RTT'?) exp [ ntj log(bY) ] f’r’ ( ) dr (3.11)
b \" n-+j
~ | —— “2 T 1o
AN SESY
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Theorem 2 part (iii) follows from (3.11} and Stirling’s formula. In summary, to obtain (ii}

from (3.1) the appropriate scaling was z = O(n), the scaling for (iii) was z = O(n?).

3.2 Direct Method

What part of Thcorem 2 can be obtained directly from the recurrence (2.2)7 We first
consider the limit n = O(1), £ — oo, and gradually increase the relative size of n to k. We
note that (2.3) implies that 2% = 1 for 0 < n < b, for all & > 0, and we set hX = 1 — GE.
Then G¥ satisfies

Gkl = 2(%)ni (?)Gﬁ_i— (%)nz": (’:)GfGﬁ_g (3.12)

i=0 [E]
1 nn—=b-1 n " 1 an—=b-1 n bk
=26 (e G (eren

Here we have used the fact that Gﬁ =0for0<n<b Forb+1 < n < 2b+1, the non-linear
term in (3.12) vanishes and we are left with a linear recurrence. We can solve (3.12) exactly
by first solving the linear problem for n € [b+1,2b+1]. Then, using this solution to compute
explicitly the nonlinear term in (3.12) for n € [2b+ 2,3b + 2], we obtain an inhomogencous
lincar problem. Thus we can solve the nonlinear problem (2.2) by solving a sequence of
linear problems involving the n-intervals [0,0), [b+ 1,26+ 1], [20+ 2,3b + 2],.... However,
the resulting expressions become complicated and may not be preferable to solving (2.2) by
the transform method.

Our focus is on the asymptotics of GX (hence k). For ranges of k,n where Af is

asymplotically close to 1, we can replace (3.12) by the asympiotic relation
n—b-1 n
Ghtt ~ 2t 3 ( ) GE_.. (3.13)
i=0 i
This is “constant-cocfficient” in k so we seek solutions of the form G¥ = a* f(n). Replacing

~ by = in (3.13) we obtain

. Z
i=b+1
Setting n = b+ 1 determines ¢ as @ = 27° and then (3.14) becomes
f(n) = 2b+1-n Z (ﬂ) f(@)y, n>b+1 (3.15)
i=b1 \?

whose solution is
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n nl
= = . 3.16
fin) (b+1) 6+ 1)(n—b— 1) (3.16)
Here we have used f(b+ 1) = 1, which follows from (2.3). We have thus obtained Theorem

2(1) using only the recurrence relation. We also note that for b+ 1 < n < 2b+ 1, the exact

answer is
n| n—b-1 (_1)2 2—k{ﬂ+b)

B! g On—b—1-01¢+1+0

which certainly satisfies GE ~ 2% f(n) as k — co.

Gy =

Next we consider & and n simultaneously large. We argue that the asymptotic relation
h% ~ 1 — 27% f(n) becomes invalid when = is sufficiently large so to make 2% f(n) =
O(1). From (3.16) we see that f(n) = O(n®*1) as n — oo and thus 27**f(n) = O(1) for
b2k — (1), or k = (1 + 1/b) logy n + O(1). Let us set

L b+l

logpn+8, B=0(1) (3.17)

and re-examine (2.2) on the f-scale. Here we expect that it will no longer be permissible
to neglect the non-linear term in (3.12) (and thus to linearize (2.2)).
We set
Lt = F(B;n) = F(k — (1 + 1/b) log, n;n) (3.18)

and obtain from (2.2)
F(ﬁ+1-n)—(1)" - (™) F(o-(1+3)0n (5)i) (3.19)
) - 2 p ; b B2 n 1 -
1 ) .
F(ﬁ— (1+3)10g2 (1—;); n—z).
Now we postulate that F(f;n) assumes an expansion of the form
1
F(Bn) = Fo(B) + = (8) + O(n™?). (3.20)
Then (3.19) yields the following equation for the leading term in (3.20}
Fp(B+1) = [Fo(B+1+1/b)°. (3.21)

Here we have used the fact that 27(7) ~ 8(4,17/2) as n — oo {cf. (3.27) for a more precise
estimate), where § is the Kronecker delta function. Note that in order to obtain (3.21), the
assumption (3.20) can be weakened to F(3;n) — Fy(8) as n — co.

On the B-scale, we have thus approximated the non-linear problem (2.2) by another

non-linear problem (3.21), which is much easier to solve. By using (3.20) and refining the
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approximation 27" (%) ~ §(i,n/2), as in (3.27), we can obtain equations for the correction
terms Fy(3), £ > 1, in (3.20). These will be linear cquations and the linear operator that
will appear will be the linearization of {(3.21).

The general solution of (3.21) is

Fo(B) = exp(—c27%) = exp(—ce 2 182) (3.22)

where ¢ is a constant. To determine this constant we require that (3.20), which applies
for § = O(1), asymptotically matches to 2 ~ 1 — 2% f(n), which applies for k — oo
and n = O(1). Here, we use the principle of matched asymplotic ezpansions {(cf. {20]).

Symbolically, we write this condition as

Fﬂ(ﬁ)'ﬁ—roo ~1-— 2_kbf(n)|n—+oo- (3.23)

The left side of (3.23) is, using (3.17), 1 —c27% = 1 —cn®127%, Since f(n) ~ n®+1/(b+1)!
as n —+ oo, the matching is accomplished with

1

The matching condition was necessary to uniquely determine the expansion on the §-scale.
We also comment that the most general solution to (3.21) is Fo(8) = exp(—c(B)27%)
where ¢(f3) is a periodic function with period 1/b (i.e., (8 + 1/b} = ¢(3)). However, the
matching condition implies that ¢(f) is in fact a constant. In summary, our analysis of
the S-scale yiclded the asymptotic distribution in (2.8) and (2.13), with no recourse to the
exact solution.

We next consider k,n — co with £ = n2~% fixed. We set
B: = G(&in) = G(n2 %)

and note that A1 = G(2i¢/n; 1) and fzﬁ:} = G(24(1 — i/n};n — i}. From (2.2) we obtain

G&;n) = (%)nzi; (’:) G (%5;1') G (2 (1 - %) £ — 'r.) . (3.25)

Note that the initial condition (2.3) does not apply on the £-scale, since % is assumed large.
We analyze (3.25) by the WKB method [2, 13]. That is, we seek an asymptotic solution

of the form
Ggsm) ~ &0 [A(€) + 24V + AP + - (3.26)
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The ansatz (3.26) may be viewed as a generalized saddle point approximation. By symmetry,
the major contribution to the sum will come from ¢ = n/2. We also note that Stirling’s

formula yields, forz = zn (0 < z < 1),

2" (’:) = i;: z(‘f:) [1 + T;Z (1 — % - ﬁ) O(n‘z)] ; (3.27)

where fo(z) = —log 2—z log z—(1—z) log{1—=z). For z = 1/2+y//n (i.c., i = n/2+0{/n)),
(3.27) simplifies to the Gaussian form

2" (n 1 :y \/ﬁ) = \/%e—zﬂz [1 + % (—% + 24 — %yd) + O(n_g)] : (3.28)

Using (3.28) and (3.26) in (3.25)} and retaining only leading order terms, we are led to

A(E)e™O  ~ Z\/— -2y A(Z‘ ) ( (n =), ) (3.29)
« ol (2 0-m(3(1- D)9

Now we set 1z} = z¢(2z€) + (1 — £)¢(2(1 — £)€) and expand this function about z = 1/2.

We have $(1/2) = ¢(€), $(1/2) = 0 and v"(1/2) = BE¢'(€) + 462¢"(€). Approximating
the sum in {3.29) by an integral and using the Laplace method to evaluate the integral for

n — o0, we obtain
2 % [
e"04(¢) = \/;e““’“)flz(fi) / _oxp (-2 + 7O + 287" @)y (3:30)
In (3.30) the exponential factors €*® cancel and we have

2 T
t= \/;A“)\/ TP E) 2 ) (331

We have thus determined the function A(€) in terms of ¢{£), though we have not deter-
mined the latter. By continuing the expansion of (3.25) (using (3.26) and (3.28}) to higher

orders we can express A in terms of A and ¢, then A® in terms of A1}, A and ¢, etc.
Thus, the asymptotic series (3.26) is known, up to the function ¢(€). It does not seem to
be possible to determine ¢ using only the recursion (2.2). This function is apparently very
sensitive to the initial condition(s) (2.3). By comparing Theorems 1 and 2, we see that ¢
depends on the parameter b, which enters the problem only through the initial condition
(2.3).

We verify that A(€) = /1 —26¢/(£) — £2¢7(€) is consistent with Theorem 2(ii}. By
differentiating ¢(¢;b) in Theorem 2(ii) we obtain

P - by L Y
(€8 = -1 -loguo+ g + (b -6~ = ) 22 (3.32)
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By differentiating equation (3.6) we obtain, after some simplification,
b
oh = (3~ 1) (wn = Do + €6 (3.3
From (3.32) and (3.33) it follows that

(€d) = —loguwy (3.34)

so that (€¢)" = 2¢' + &¢" = —w(/wp and thus

1-264 — €27 =1 +§f§g = [1+ (wp — 1)(¢ = B)] 7,

which agrees with A(&;b) of Theorem 2(ii) and verifics the relation between A(£) and ¢(£)
in (3.31).

Finally, we comment that it is possible to obtain the (complete) result in Theorem 2(iii)
using only the recurrence (2.2). We omit that analysis since it is completely analogous to
that presented for PATRICIA tries (for 28 — n = O(1)) in Section 4. By using this result
and asymptotic matching, we can infer the behavior of ¢(£) as £ — b. By matching {3.26)
to either the expansion on the #-scale, or the result for & — oo, n = O(1), we can obtain
the behavior of ¢(£) as £ — 0.

To summarize, we have obtained a fair amount of asymptotic information for 2% using
only (2.2) and (2.3), along with some mild assumptions about the forms of the cxpansions
in the various regions of (n, %) space. The main deficiency in this method is the failure to
determine the function ¢, except for its behaviors as £ — 0 and £ — . However, for ranges
of k and n where appreciable mass accumulates (i.e., where 2% undergoes the transition
from O to 1), we have been able, using asymptotic matching, to completely determine the
asymptotic solution {(cf. (3.22) and (3.24)}.

4 Asymptotics of PATRICIA Tries

We analyze the PATRICIA model asymptotically for n — oo, and also give some exact
results when 7 is close to k or 2*. Since we do not have an exact expression for A, we
use the ideas developed in the previous section and analyze the recurrence {2.4). We first

discuss the right tail asymptotics and then deal with the left tail approximation.

4.1 Right Tail Asymptotics

From the definition of the PATRICIA model, it follows that Pr{#? = k} = hf =1 for
k>n—1and hf =0forn > 2%, It thus suffices to consider the range k + 2 < n < 2F,
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We analyze here the “right tail” {we think of plotting &% as a function of k for a fixed n),
where h% is asymptotically close to 1. We set

Hy =1-hi, (4.1)
and then HY = L, _(n) = L;j(n) for j = n — k. Using (4.1) in (2.4) we obtain

izig. iz2 g
(2-2%)Lja(n) +2) (z.)Lj_.-(n—e')= > (i)Lm_n('&)Lj_i(n—i)- (4.2)
i=1

i=n—j-+2

The above holds for n > 7 and we have used the fact that Lij(n) = Lo(n} = L_;(n) =
L_2(n) = --- = 0. The boundary condition (2.5} implies that HS = 0 for » = 0,1 and
HY =1 for n > 2. Hence, the boundary condition for L;(n) is

Lpfn) = 0, n=01 (4.3)
Ln(n) = 1, =n>2 (4.4)

We first compute L;(n) exactly for j = 2,3 and 4. We set § = 3 in (4.2} and obtain
(2—2")La(n) +2nLl{n -1} =0, =n>3. (4.5)

Since Ly(2) = 1, we can easily solve this linear recurrence and thus obtain

Ly(n) = n12~ " /29n/2 H (T—-%"') ) n 2 2. (4.6)
m=3

If the upper limit in any product cxcceds the lower limit, we define the product to be 1.
Setting 7 = 4 in (4.2) we see that the sum in the right-hand side is void for = > 5, which
yields

(2 —-2")L3(n) +2nLla(n - 1) +2 (;) Lo{in—2)=0, =n>5 (4.7)
and when n = j = 4 we obtain (using Lo(2) = L3(3) = 1)
(2 —21)L3(4) +20 = 6.

It follows that L3(4) =1 and then (4.7) is readily solved, using (4.6), to give

1 n2 ™ 1 n 1
La(n) = nig~"*/293/2 (- -—- -2-“) 11 (—_m) , n24 (4.8)
4 2 4 oy \1—21

Next we set j = 5 in (4.2) and note that the sum is void for n > 7. By examining (4.2)
with 7 = 5 and » = 5,6 we find that L4{5) = L4(6) = 1. For n > 7 we solve (4.2) and
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obtain, after some calculation,

n 2 n
_ ig-mi2gsnf2 | D 1‘_”(1) S (l)
Lq{n) = ni2 2 {288+ 5 5 + 5 13 8-{-72 1 (4.9)
n 1 )
H —m 4! n 26
m'.=3(]'_21

Using this method we can solve for L;j(n) for any fixed j, but the calculations become

tedious as 7 become large. For n > 27 — 3 the recurrence (4.2) becomes linear:

)
(2 — 2H)Lj_1 (n) + 232 (T:) Lj_,-(n -1} =0, n > 25— 3. (410)

i=1
We can (in theory) use (4.10) to express Lj(n} in terms of L;(2j — 2), but the latter is

unknown.

Now consider arbitrary j and the limit n — oo0. From (4.6), (4.8) and (4.9) it is easy to

see that
Li{n) ~ poKml2~"'1220-3/2m 4 fixeq, (4.11)
(s =]
po = J[1—27H7"
=2

To compute the constants K, we use (4.11) in {(4.10) and obtain, to leading order in n,

(1= 92— J) — Z (f _i_]_e 92+€(e+3)/2—(&+1)7 (4.12)

for 7 > 3 with Ky = 1, in view of (4.6). The recurrence {4.12) may be somewhat simplified

by setting
1 2o s
K;= i P29%/2 ¢, (4.13)
which leads to _
=43 (1) . ino 414
i mz=2 m 3—1_n,+1 ms 3= (4.14)
with Cy = 1.
To solve (4.14) we introduce the exponential generating function
oD Zj
=3 5¢; (4.15)
e~ 4l
j=0
to obtain
C(z) = 4C (Z) e/ -1 (4.16)
(&) =4C\3) 2z '
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Setting C(z) = e~2C(z) (so that C(z) is the Poisson transform of C;), (4.16) becomes
Clz) = 2(1 — e NG (g) (4.17)

where C(z) ~ 22/2 as z — 0. The latter follows from C; = 1 and we define Cp = €} = 0.
Next we set C(z) = 22(3(2)/2 and replace z by 2z in (4.17), which gives

G(2z) = G(2) (1 ‘;_ ) (4.18)
with G(0) = 1. Taking the logarithm of (4.18) with F(z) = log G(z), we obtain
1—e*
F(22) - P(z) = log ( : ) , (4.19)

with F(0} = 0.

Functional equations of the type (4.19) are olten encountered in the analysis for algo-
rithms and they are usually handled by the Mellin transform [11]. The interested reader
can find more on Mellin transform in a recent survey [11]. The Mellin transform F*(s) of

a real valued function F(2) is defined as
F*(s} = / F(2)z°"ldz = M[F;s]
0

and its inverse is

1 cttoo
F(z) = 2P (s)ds = M7 [F*; 2]
2 c—ioo
where ¢ belongs to the so called fundamental strép where the Mecllin transform is analytic
{cf. [11]).
Taking the Mellin transform of {4.19)} yields
23 o0 L4
F*(s) = / = llog (1 ¢ ) dz (4.20)
— 25 W] Z

for R(s) € (—1,0). We now evaluate the inverse Mellin transform of F*(s) by two methods.

First, we observe that

M‘l[ ] sz“a — oty (4.21)

m=0

—2s’

where &(-) is the Dirac delta function. The convolution theorem for Mellin transforms f(s)
and g~ (s} of functions f(z)} and g(z) is

Mg = [T a0 (422)
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We apply (4.22) with f given by the integral in (4.20) and g = 25/(1 — 2°). Using {4.21)
then yields

Flz) = [ Eog( : )szﬂa( 2m+1)dg (4.23)

re={

_ 1— e/ m+1 m+1
- /0 —mg (—Z/u—) 3 2 g(u — 2™ gy

m=0
o0 —_T—
1 — exp{—22"""1)
S Ees =)
m=0

With (4.23), we can easily compute C(z) = ¢*2%¢/(?)/2 and then invert the gencrating
function in (4.15) by Cauchy’s theorem to get

1 hoand — _0—m-—1
Cj == -J-lze 11 (1 oxp(=z2 )) dz, (4.24)

2mi z2~-m~1
m=0

which establishes (2.16) of Theorem 3(i).

An alternate cxpression for C; can be established by evaluating the integral in (4.20) in

a different way. Integrating by parts, we find

M llog (1 ‘z" )] = /u 2" log (1 _ze )dz {4.25)
=—l/m,z“;_1 ( £ —1) dz,
5 Jo et —1

where the last integral converges for —1 < R(5) < 0. We now use

M ( 2 ) ST+ 1)¢(s+1),  0<R(s) < oo (4.26)

ef —1
where I'(-} and ¢(-} are the Gamma and Riemann zeta functions, respectively. Shifting the
fundamental strip to R(s) € (—1,0) we obtain (cf. [11])

M5 -1 =T+ e+, —1<R() <0 (.27
We use (4.27) to cvaluate the right side of {4.25) and then (4.20) becomes
ern . Lls+1)(s+1)
Fis) ===~ -1

for R(s) € (—1,0). It follows that an alternatc representation for the Poisson transform
C(z) of C; is

C(z) = —2 exp ( = /:_-Hm 7T+ 1)¢(s +1) ds) . (4.28)

271'2 qum 3(1 _2_5)
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In Appendix A we prove that (4.28) and (4.24) are equivalent.

In view of (4.11) we see that 1 — 2% = 1 — k27 is exponentially small (roughly of order
0(2“"212)) for n — oo and j fixed. We next study the asymptotics of C; (and hence K;
and L;(n)) for j — co. If j is sufficiently large so as to make k37 = O(1), then this will
give us a rough cstimate of the range of k where k¥ changes from hX = 0 to A% ~ 1.

To accomplish the above goal, we apply the “principle of matched asymptotics” and
assume that {4.24) holds also for 5 — co. The Poisson transform C(z) of Cj is given in
(4.28). Our goal is to “depoissonize” it, that is, to extract C; for 7 — co from the behavior
of é[z) as z —+ 0o in a cone around real axis. We expect that, under some mild growth
assumptions of C(z), C; ~ C(j) since the Poisson process is well concentrated around its
mean z = j. To be more precise, we appeal to recent depoissonization results of Jacquet

and Szpankowski [17], applying the following.

Theorem 4 ( Jacquet and Szpankowski 1998) Let g, be a seguence whose Poisson
transform is G(z) = e * 20 gu% where z is complex. Consider a linear cone &9 =
{z: arg(z) <8, |8| < w/2}. Assume for z — oo that:
(I) For z € Sp

[G(2)] < Aexp(Bl2|f) (4.29)

where 0 < 8 < 1/2, and A, B > 0 are constants.
(O) For z ¢ Sp
IG(2)e”] < Ar explwlz]) (4.30)

forw <1 and Ay > 0. Then
g =G(n)+0 (nqtl"zm exp(Bnﬁ)) (4.31)
for n— oo.

We apply Theorem 4 to find C; for large j. We present two alternate derivations. Let
us start with (4.28). Using (4.14) and the mcthod of “incrcasing domains” proposed in
[17] we can easily show that condition (4.30) of Theorem 4 is satisfied. To verify condition
(4.29), let us evaluate C(z) asymptotically for z —» oo in the cone Sp. We first compute

asymptotically the exponent of (4.28), that is,

1 /-%Hw 25T (s + 1)¢(s + 1)

Flz) = —
(=) = 7 Sloiw | S(L—279)

ds (4.32)
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as z — 00. We note that the integrand in (4.32) has a triple pole at s = 0 and simple
poles along the imaginary axis, at s = —2=ik/log(2) = s, k = £1,%2,.... A lengthy

computation shows that the negative of the residue at s =0 is

log?(z) 1 1 1 1., =2
8 ) 4 Clog(z) — —log(2) + —— (y(1) + 742 — — ] .
2log2 2 08~ ploe@ + s LU+ 37— 5

and the residues at 5 = sy, are
1
Resszsk[F(z)] = —mr(l + .S‘k)C(l + Sk).

It follows that

explF(2)] ~ V72~ 2 exp (7(1) +%/2 7%/ 12) ex l_llog2(2)

(1
log 2 2 log2 | (ngz)]

where o omid omid
K] i :
(1 — Tl1—- 1— 2witlogy =
(log; 2) E_Zm 27l ( log2) ¢ ( log 2) €
0
Thus, C(z) = O(2%/? exp(log® 2)) in the cone Sj (by analytic continuation). In view of this,
we can apply Theorem 4 to get

1 cm 1) +42/2 — 72/12 1log2(4
C; ~ 5_75!22 112 exp (7( ) 10{52 / )exp luﬁ_—lig(g) + lI’(a:)] (4.33)

where a = {logy j) with {-) denoting the fractional part.

An alternate representation for the above can be obtained by using {4.24). Following
the footsteps of the depoissonization verification above, we can show that (I) and (O) of
Theorem 4 hold, and hence

2 o0 ‘o—m
3 1 — exp(—527") :
Cj ~ T exp Z log ( 2 y 4§ —oo. (4.34)

m=1

We can further simplify the above by setting
m = logs(j) —a+ £, {(4.35)
where a = {log, 7). Using (4.35) in (4.34) we have

i log (1 — e};;;(__egme)) = ilog (1 — C);I:,(__gzu_t)) (4.36)
£=0

¢=1-log,(3))

o0
+ Zlog[l - exp(—2‘:'+£)]
i=1

lloga(5)] -1 _
- > (N +a)log(2) + O(p)

N=1
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for some p < 1. The last sum in the right-hand side of (4.36) is

~alog2(|loga(j)] — 1) ~ 5 log 2([logy(s)] — 1) lloga(s)] (4.37)
2 -
= —%% + %log(j) + %101;2&((1 +1).

Using (4.36) and (4.37) in (4.34) we find that

1, log?(j a . .
Cj ~ i exp (_%) ), = (logy(5)) (4.38)

where p{a + 1) = p(a) is given by

+ i log [1 - exp(—2°+£]] . (4.39)

1—- exp(—2"‘e))
=1

1 oo
wla) = ia(a +1)log2 + Zlog ( 5t
=0
By comparing (4.38) and (4.33), it follows that ¢{a) and ¥{a} are related as in Theo-
rem 3(ii).
We are now in position to continue our analysis and extend the validity of (4.11) to
j — o0o. Using (4.38) and (4.13), we sce that the right side of (4.11) becomes for j — oo

nl_ 32 ; 5 log?(4)
(n) = —g-(—n)*/293Gi-n)/2 ;5/2 _08 /) PO ()
L;(n) 7 2 2 §°/“ exp ( 2108 2 ) 5 (4.40)

We set j = n — k& and find for what range of & is (4.40) O(1} as n — oo. Taking the

logarithm of (4.40), this condition is the same as

1 o ) 3 . 1 .
nlogn—n+ s logn —jlogg+7+2logs + §UOg2)(j —n)— E(log 2)(j — n)?

3Tog2 log™(5) = O(1).

Using jlogj = (n — k) log(n — k) = (n — k)[logn — k/n + O(k?n—2)], the above becomes

log2 ., 3 log?n 5
klogn — —=k% — —(log 2)k — Zlogn =

and this implics that
k=logon+/2logan — % + o(1).

Thus, we expect that if k satisfies the above condition, then the asymptotic expression for A%
in Theorem 3(i) breaks down, as the second term becomes comparable in magnitude to the
first term. This completes our discussion of the right tail of hﬁ, where hﬁ is asymptotically

close to 1.
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4.2 Left Tail Asymptotics

We next consider the left tail. Here 2% will be asymptotically small. We first consider the
limit where k,n — oo with 28 —n = M = O(1) and M > 0. This corresponds to the
“left-most” tail of the distribution, since kX = 0 for 2¢ < n. We shall derive exact results
for kX if M = 0 or 1 and then establish part(iii) of Theorem 3, which applics for arbitrary
M = 0(1).

Let us define the exponential generating function H*(2) of AL as

oS N
ke oy 2 .k
H:(z) = nZ:% —ha (4.41)
with which (2.4) becomes
3 k z x (2Y]? kfZ
H Y (2) = 2/%HL (5) + [H (5)] —2H (5) k>0 {4.42)
and H%(z) =1+ z by (2.5). We can simplify (4.42) by setting H*(z) = 1 + H*(2) to get
= =~ z ~ . {Z 2
A (z) — 285+ (E) = [H" (E)] , k>0 (4.43)

and H%(z) = 2.
From our previous discussion, we can truncate the sum in (4.41) at n = 2¥ so that
H*(z) (and thus ﬁk(z)) will be a polynomial of degree 2*. We will identify the two leading

coefficients in this polynomial by writing

B (z) = a(k)2? +b(k)z" '+ + 2 (4.44)
where
1
.k
G(k) = }321_- W,
hk
N — 2% —1
WE) = GEoty
From (4.44) it follows that
- (2\1%  a%(k) o 4a(k)b(k) ox+1_ 22
[ (5)] = e+ e s T (4.45)
and
=k =5 2
H**1(z) — 2%+ (g) = (1 - 22,7) a(k + 1) (4.46)

N (1 - —zzil ) bk +1)22 1+ 02T ).
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By comparing (4.45) to (4.46) we obtain the recurrences

alk +1) [1 i (%)2 ] = a2(k)27i+—, (4.47)
and 2k+l
bk + 1) [1 —4 (%) } = 22;Lﬁa(;ra)b(k). (4.48)
Solving (4.47) subject to ¢(0) =1 yields
X poy, 24
k) = 27k (1 _o(1 ) ) 4.49
o) =2 1T (1-2(3) (4.49)

It follows that

K Ey1o—k2* b ot 1\*
B, = (2F)127%%" exp l—z > 27tlog (1—2(5) )] {4.50)

=1

Evaluating (4.50) as £ — oo yields

hk, ~ V2rV2% exp[2¥(—1 — log K3)], k — oo, (4.51)
where
oo 1 o 2~
K;=T[|1-2 (-)
i=[1-2(3)']

and the numerical value of Kj is given in Theorem 3.
Having computed a(k) we can easily solve the linear recurrence (4.48} for b(k}, subject
to b(1) = 1. This yields
k—1
4 a(f)

The expression (4.49) may be rewritten as
k

o 1\F 2 12T
a(k) = 272 (K_u) H1 (1—2(5) )

m=

with which (4.52) becomes

’\'—1 _62‘ * _2! oo 2£+m 2—m
4.27825(gH 1
a ) N 4.5
o) = I Tt 1 (1-2(3) ) 459)
B k-1 4_2—(£+2)2£ ¢ 1
N H1—4-2~2‘+' 1__1, (1—2-2-2’")

2f—rll
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As k — oo we obtain from (4.53)

bk) ~ 2% 22 (E2 YK |5 oo (4.54)
where
(1— 2. g-2my2 (1—2. 2-2”)1 -2'-F
H H 4 .92t = H 42"

=1 m=1 =2

Using (4.54) and approximating (2¥ — 1)! by Stirling’s formula we are led to
R~ VIR VR KT (K  exp[2F (-1 — log K3)), Kk — oo (4.55)
We next consider (2.4) for values of n that are close to 2. We set M = 2¥ — n, with
=W{2* —n;n) = W(M;n) {4.56)

and note that
. M n M n
k=1 _ Mooon .. k-1 _ . r wy 4
h; —W(2+2 z,a) and ;| W(2 2+z,n z)
Replacing & by &£ — 1 in (2.4) and dropping the first term in the right-hand side (which is

clearly negligible as n — oo} we obtain

n—1
W(M;n) ~ Z (:L) 27"W (M;—n -1 z) W (M; L G — z) (4.57)
i=l
(n+-M)/2 B
-3 (7_‘)2-“14/ (M;” —i;z’) W (M2 n +i;n—i) .
i=(n—M)/2 \*

Here we have used the fact that W(M;n) = 0 for M < 0 (since hf = 0 for 2* < n) to

truncate the limits on the summation in (4.57). For ¢ = n/2 + O(1} we have

mYon 2
1 wn
so that {4.57) can be rewritten as

W(M;n) ~ \/712“0 (nzM—E)W(M—E;n;M+E). (4.58)

Setting M = 0, (4.58) becomes

W(0;n) ~ \/g [W (0; %)]2
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that admits an asymptotic solution in the form
W(0;n) ~ V2xne 21n (4.59)

where Dy is at this point undetermined. By considering M = 1 and proceeding inductively,

we find that (4.58) admits an asymptotic solution

W(M;n) ~ P Y2 A(M)e P17 (4.60)
where A(M) satisfies
1 M
AM)= —27MN " ADAM -8, M >0 4.61
(M) Ton g (B)A( ) > (4.61)
The solution to (4.61) is
A(M) = __‘;jf(pz)*’ . M>0 (4.62)
where D3 is also undetermined. Combining (4.59) ~ (4.62) yields
hE ~ —ﬁ:r(Dg)""‘rn""H'lﬁe_D‘“, M=2"_n=0(1). (4.63)

It remains only to determine D; and I,.

These constants are fixed by comparing (4.63) for M = 0 and M = 1 to (4.51) and
(4.55). Setting M = 0 in (4.63) and noting that 2* = n, we see that (4.51) agrees with
{4.63) provided that

Dy =1+ log(K3). (4.64)

Setting M =1 in (4.63), noting that 2¥ = n+ 1 and comparing to (4.55) determines D» as
Dy = K1 K /e (4.65)

This complete the analysis of the scale M = O(1).

We have thus obtained the asymptotics of kX for § = n—k = O(1) (the right tail) and for
M = 2% —n = O(1) (the left tail). However, these expansions do not asymptotically match,
which indicates there must be at least one additional natural scale in the problem, as was the
case for tries. The recurrences (2.2) and (2.4} differ only slightly. Furthermore, as n — oo,
the term 2! ~"hE+] in (2.4) is exponentially small compared to the left side (= &5+!) of the
equation. The two boundary terms in the sum in (2.4) (i.e., : = 0 and i = n) arc absent,
but our analysis of the scale M = O(1) shows that they are asymptotically negligible (and

in some cases ezactly equal to zero).
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As in the analysis of tries, we consider the scale n.k — co with ¢ = n2~* fixed and

0 < &< 1. Weset hf = F(é;n) = F(n27%;n) and assume an asymptotic solution of (2.4)
in the WKB form

F(gsn) ~ 0 [49) + ZA0(E) + -+ | (4.66)

The calculation is essentially identical to that in Section 3, and we find that

AE) = /1+ 26/ (8) + €28(¢), (4.67)

which expresses A in terms of &. Once again it seems that @ is very sensitive to the initial
conditions(s} (2.5), and we cannot analytically determine this function. However, in Section
5 we discuss the numerical calculation of this function; the numerical results also provide
partial justification of the “ansatz” (4.66}.

We next show that (4.66) can asymptotically match to the expansions on the 5 and M
scales. This will also yield the local behavior of ®(£) as £ = 0% and € = 1™,

The matching of the M and £ scales requires that

\/_(D )M -Din J\J+l/2

—nd{f
v ~ A(g)e ™)

(4.68)

M—=o0 E—1—

The left side of (4.68) is easily evaluated. We simply expand M! by Stirling’s formula and
note that n/M = £/(1 — £), which yields

1 E ; exp (n [% log (—:}) + % + % log(D2} — DlD

so that the matching condition implies that

(&) ~ D1+ (1 -8 log(1 - ) — (1 - EH1 +1og(Dy)), ¢ —1 (4.69)

and

A@) ~Q-€72 £l (4.70)

Given (4.69), we can also use (4.67) to infer the behavior of A(€) as £ — 1. We have
®'(€) ~ —log(l — &) and D”(€) ~ 1/(1 — &) with which (4.67) implies {4.70). It follows
that @ is finite at £ = 1 {with ®(1) = D,), but its derivate has a logarithmic singularity at
£ =1.

Now consider the matching of the 7 and £ scales. This requires that the large j asymp-

nb

totics of hk =1 — Lj(n) agrees with the expansion of Ae™% as £ - 0%. We must have

A—1land & — 0 as £ — 0%. The asymptotic matching region between the j and ¢ scales
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will be where the probability mass accumulates as n — oo. If we let £ — 0% in such a way
that n®(£) — 0, then Ae ™% ~ 1 — n® and the matching is satisfied provided that
n®(&)[e—s0+ ~ Lj{n)]j-00- (4.71)

We have already computed the right side of {(4.71) {cE (4.11), (4.13) and (4.38)). In {(4.71)
L;(n) is understood to be replaced by its large n expansion {cf. (4.11)), which is then

evaluated for 7 = o0o. The matching condition thus becomes

nB(lgor ~ Sy 2 IO ool 2 e [— ',jf:g] e
To evaluate {4.72) we recall that £ = n — 7 and logé = logn — klog2. For n — co with
k = o(n) we can replace a = (log,(5)}) = (loga(n — k)) by {logyn) + o(1), since p{a) is
periodic with period one. Also, by periodicity @{{log,n}} = w(logan) = w(k + logy &) =
w(logs £). By cxpanding n! and 5! in (4.72) by Stirling’s formula and rewriting the result in

terms £, we see that the matching condition is satisfied provided that

AB(E) ~ = poe o8 ngd/? oxp (— log” E) , £ 0t (4.73)

2 2log2
This yiclds the behavior of ®(£) as £ — 0 in Theorem 3, whose derivation is now complete.
It follows that ®(¢} and all its derivatives vanish as € - 0F. Also, (4.73) shows that
the structure of ¢ for the PATRICIA model is more complicated than the corresponding
function (= —¢) for b-trics, as the latter did not have the oscillatory behavior of the former.
The behavior as £ —+ 17 is similar to that of b-tries, except that the constants Iy and Dy

differ for the two models.

5 Numerical Results

In this section we discuss some numerical calculations. They will give an idea of the accuracy
of the asymptotic formulas for A% for the PATRICIA model, and also will verify some of
the assumptions we made in our analysis.

We define, for some integer ¢,

irc$={]og2n if n=2¢

llogon] +1 if n 3 2° (5-1)

and

k= I}og2 n+4/2log, n — %J +1, (5.2)
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Table 1: Right-Tail Comparison

nli=n—k 1 — Y (Numerical) | 1 — &% (Theorem 3(i))

10 | 2 1.782(1077) 1.786(10~7)
3 4.469(10-%) 4.571(10~%)
4 3.040(1073) 3.251(107%)
5{(=n—Fk) |7.071(1073%) 8.322(1072)

20 | 2 2.684(1073%) 2.684(10737)
5 1.343(10~2%) 1.343(10~2%)
10 3.463(10-%) 3.517(10~8)
14 (= n— k1) | 0.2040 0.2676

30 |2 5.176(10~99) 5.176(107%9)
5 2.781(10~7%) 2.781(10~7%)
10 8.200(10~4) 8.200(10~%)
15 5.411(10~2") 5.417(10~%)
20 2.050(10-%) 2.108(10-6)
23 (= n—k{) | 0.1288 0.1616

as in Section 2. For a fixed n, hX will satisly 0 < e < 1 for k* € k < n—2, and our
analysis predicts that

it k2> ki, (5.3)
if k<k -1, (5.4)

hE 21 as n—o oo

hE 50 as no

i.e., all the mass concentrates at k = k; if /2logy n{logy, n + /2logan — 1.5} — oco. If
V2 logs nilogy nt+/2logy n~1.5) = ({1) or /2logy n—+/2log, n{logy n+/2log, n—1.5) =

©(1), then the probability mass is concentrated on two points: cither k; — 1 and &, or k|

and k; + 1, as discussed in Corollary 2.

We first consider the right tail of the distribution, where Theorem 3(i} applies. In
Table 1 we compare the exact (numerical) values of 1 — ~F to the asymptotic formula in
Theorem 3(i). To evaluate the latter we computed C; recursively using (4.14). We consider
n = 10,20 and 30. For each value of n, we start with j = n — k = 2 and increase j to
n—k;. For § > n—k;, 1 — k% may become negative, as then we are clearly out off the range

of validity of this asymptotic result. Table 1 shows good agreement between asymptotic
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Table 2: Left-Tail Comparison

n | k| M | hE (Numerical) | A% (Theorem 3(iii))
3| 0 | 5.062(1072%) 5.010(1072)
16 4] 0 | 5.032(101) 5.006(10~1)
15 (4| 1 | 4.734(107%) 4.275(1073)
32|5| 0 [3.544(1078) 3.534(1078)
31|5| 1 |6.667(1077) 6.341(10°7)
30{5| 2 |6.197(107%) 5.324(1075)
64 16| 0 |1.248(1071%) 1.246(10~16)
6316 | 1 |4.694(1071%) 4.579(1071%)
62 6| 2 |8.780(20711) 8.148(10~14)
61 (6| 3 | 1.089(10°12) 9.353(1071%)

and exact results. As expected, the further we get into the tail, the more accurate is the
asymptotic formula.

Next, we test the left tail approximation from Theorem 3(iii). For a fixed large n, the
condition 2 — = O(1) cannot be satisfied unless n is close to a power of 2. However, for
a fixed large &, this condition can be satisfied. It is thus convenicnt to do the comparisons
when 7 is a power of 2, and then decrease n. In Table 2 we consider k € [3, 6] and various
values of M = 28 — n, For a fixed M we see that the accuracy of the asymptotic result
increases with n. Also, as n becomes larger, we can allow for larger values of M and still
get good agreement.

The formula that applies for k =« k1, which is where there is significant mass, is given by
(2.21), which corresponds to A(€)e "2, with ®(£) replaced by its small £ expansion and
A(€) ~ 1. We can refine this by using A(£) = /1 + 26@7(€) + £2@7(€) with ®{£) computed
from (4.73). In Table 3 we compare the exact values of A% to the expression in (2.21) and
also the refinement Ae—™* discussed above, for n = 10, 20, 30, 50, 100, 150, 250 and 500. We
also tabulated ¢ = n2~* since (2.21) assumes that ¢ is small. For cach n we consider
k=Fk -1,k and & + 1. When n = 10 the probability mass at k; is about .49, and

this increases to .71 when n = 150. QOur asymptotic result predicts the values .53 and .73

when n = 10 and 150, respectively. Table 3 is consistent with our prediction that the mass

accumulates at k;, but the agreement between the exact and asymptotic result (2.21) is not
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Table 3: Central Regime Comparison

) k £ hﬁ hﬁ h,ﬁ
(=7n27%) | (Numerical) | (2.21) | ((2.17), £ = 0)
10 | 4 .63 43975 .30024 .37067
5 31 92929 .82862 87673
6 16 .99696 .98542 .99145
20415 .63 12641 .09015 11129
6 31 79599 .G8661 .72648
7 .16 .98564 97105 97699
30 [ 6 A7 24414 16249 18627
7 23 87115 .80820 82855
8 A2 .99283 .98760 .98948
50 | 7 .39 .23770 -15836 17423
8 .20 87927 .83529 .84681
9 10 99401 99125 .99210
100 | 8 .39 .04845 .02508 .02759
9 .20 .75483 69772 70733
10 10 98623 98259 .98342
150 | 9 .29 15798 10126 .10619
10 15 87248 .84558 .84961
11 .07 99491 .99388 99409
250 | 10 24 18706 12842 13209
11 12 .89950 .88226 .88426
12 .06 99668 89618 99627
500 | 11 24 03336 01649 .01696
12 12 .80512 77838 78014
13 06 99313 09238 99247
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Table 4: Probability mass at kg and k.

n | £ Rk
(Numerical)
14 |0 .6507
1 9675
23 |0 .6432
1 9674
39 (0 .6162
1 9665
66 |0 .6095
1 .9692
113 | 0 .6016
1 9719

particularly good. However, the refined results are better as long as £ is reascnable small.
Also, in order to see the importance of the left tail approximation in parts (ii} and (iii) of
Theorem 3, we nced for k) — &* to be fairly large. However, when n = 150, & = 10 and
k* = 8 so that the “left tail” really consists of the two points £ = 8,9. In order to have
ky — k= as large as, say, 10, n would have to be about 10%° {cf. (5.1) and (5.2))!

To better see the convergence of mass to one or two points, it is useful to consider
subsequences n; of n that correspond to 3, nearly constant. To optimize the mass at
kg = k1 — 1 we want to minimize B,. From Figure 3 we see that the local minima of R(n)

{(and §,) occur at
n; = [2"+5f2-~/2*+“J +1. (5.5)

The first few integers in this subsequence are: 3,4,6,9,14, 23,39, 66,113 and 195. By using
{5.5) in (2.23) and evaluating the result asymptotically, we obtain

1__[1 2- 4. —i=5 3 —_
Rn) = yf2logmifn, = L EX LA 0 (5

where

I = (2i+5,"2—- m) .

It follows that along n;, R(n;) is not only bounded, but approaches zero, roughly like
O(n;™).
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Thus along this subsequence (2.25) becomes, for £ =0 and n = oo

Pr{#H? < |logyn + 1/2logyn — 1.5]} ~ exp (—pueg""p{l"g? “)) . {(5.7)

While the above does not approach a limt as n — co, the numerically small value of ¥(-)

allows us to approximate (5.7) by

PH{HE < [logan + /2logan — 1.5)} =~ 0.536426...

which is obtained by neglecting ¥(-). This yields the optimal mass at &y = k1 — 1 and
the remaining mass (=2 0.464) will be at k). In Table 4 we compare the exact valucs of A%
along this subsequence, for k = kg and k;. We sec that h%0 is slowly “converging” to the
theoretical value.

By choosing the subsequence n; — 1, we achieve local maxima of 8, and R(n). We can
similarly show that 8,,_; ~ 1~ and furthermore +/2log,{(n: — 1) — R(n; — 1) — 0. Now, we
will have about .536 of the mass at k; and the remaining .464 at &y = k) + 1. By choosing
other subsequences we can achicve any value of mass at kg in the range [0,0.536...] and
any value of mass at ky in the range [0,0.463...].

For most n; the mass will be at a single point ;. To optimize the convergence we
choose n; so that By, = 0.5. This simultaneously avoids the mass at &) — 1 and &; + 1. We

accomplish this by selecting {n]}#2, such that

nl = |-2i+3—fz‘:‘ﬁj )

In Table 5 we consider a few values of n! and show the exact k% for k = kp and & = k.
When n = 10(= n}) the mass at &; is about 0.49 and it gradually increases to 0.76 when
n = 446(= nj,). We also note that if 8, = 0.5 and £ = 0, then {2.25) becomes

Pr{#? <logyn+y/2logamn—2} ~ cxp (_poeaw{logz n)o—1/89\/Zlog, n,fz) (5.8)
2 exp (—0.571 . 2V2logs “a'?)

where in the approximation we have ncglected the oscillatory term. To make (5.8) less than
0.01 requites n > 288000! The last two entries in Table 5 are computed according to the
approximate formula (5.8). These results confirm our prediction that all mass concentrates
at the one point ky.
Finally, we discuss the numerical computation of the function ®(€). We define ®pyar
by
Sxum (k) = Enur(na k) = — log(hk). (5.9
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Table 5: Probability mass at %y only.

) £ hﬁ
(Numerical)

10 0 4397
1 9293
17 0 .3559
1 .9049
29 0 .2946
1 8904
49 0 2674
1 .8904
85 0 .2169
1 .8839
147 0 1847
1 8847
256 0 1546
1 8863
446 0 1340
1 8916
80226 0 .0161
1 9839
1571598 | O .0051
1 .9948
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Figure 5: The functions ®nyar(€; k) versus € for £ = 4,5 and 6,

According to our analysis, as £ — co for cach fixed 0 < £ < 1, we should have ®ypar(E; k) —

®(£). We have also analytically computed
B(1) = 1 + log(KZ) = .61906125... . (5.10)

In Table 6 we evaluate @ ypar(1; k) for k = 4,5,6 and 7. This sequence certainly appears to
be converging to the theoretical value in (5.10). Except for £ = 1 we do not have the exact
values of $(£), however, it is clear from Figure 5 that the sequence of functions ® yyas(€; k)
is indeed converging to a limit. To give an approximation to ®(£) we plot ®yyas{€, k) in
Figure 5 for £ = 4,5 and 6.

A Proof of the equivalence of {(4.24) and (4.28)

In this Appendix we prove the equivalence of the two representations (4.24) and (4.28) for
Cj.

The expression in {4.28) may be simplified by closing the contour of integration in the
left half-plane and noting that the integrand has simple poles at s = ~1,—2,.... Denoting
the integral by F(z), we have

Pl = L /—%+='°° 2T +1K(s+1) i Z7¢(1 —m) (-1)m*! (A1)

T 2mi o1 s(1 —2-9) m(2m —1) (m— 1!’

m=1
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Table 6: Numerical Evaluation of &(1).

n | k| exum(LE) | 2(1)
16 | 4 | .47466 61906
32 | 5} .53611 61906
64 | 6 [ .57219 .61906
128 | 7 | .59292 .61906

for z sufficiently small. But, ({0} = —1/2 and

((—2n)=0, n=1,2,...; ¢((1—2n) =—%,n=1,2,...

where B, are the Bornoulli numbers (cf. [1]}. Thus, (A.1) becomes

_ (9+1)C(9+1 ] O 2% By 1
Flz) = M [ sA—-2-% |~ Z:(2@'22228—1
To show the equivalence of (4.24) and (4.28), we represent the Bernoulli numbers as inte-
grals:
B 1 1 1

Using the above, expanding 1/(2%¢ —1) = 3.8 , 2~ 24%+1)_ and noting that B3 = Bs = --- =

0, we obtain

F(z) = Z Z 2_m(k+1] |:2711 f ei__ml dt]

._.0 m-—-

_ - log(l - z2'* l/t)
T 2m Z){

Setting ¢ = 227%~1£ and integrating by parts yields

1 — exp(—z£27%"1)
F(z) = 2711 f E(€ — ( z£2—+-1 ) d (4.2)

where |£| > 1 on the loop of the integration. For any & the integrand in (A.2) is analytic

at £ = 0 and has a simple pole at £ = 1. By cvaluating the rcsiduc at € = 1, we sce
that exp[F(z)] becomes the same as the infinite product in (4.24). This establishes the
equivalence of (4.24) and (4.28).
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