
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

2004 

Worm Meets Beehive Worm Meets Beehive 

Xuxian Jiang 

Dongyan Xu 
Purdue University, dxu@cs.purdue.edu 

Shan Lei 

Paul Ruth 

Jianzhong Sun 

Report Number: 
04-025 

Jiang, Xuxian; Xu, Dongyan; Lei, Shan; Ruth, Paul; and Sun, Jianzhong, "Worm Meets Beehive" (2004). 
Department of Computer Science Technical Reports. Paper 1608. 
https://docs.lib.purdue.edu/cstech/1608 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


WORM MEETS BEEHIVE

Xuxian Jiang
Dongyan Xu

Shan Lei
Paul Ruth

Jianzhong Sun

CSD TR #04-025
May 2004



Worm Meets Beehive
Xuxian Jiang, Dongyan Xu, Shan Lei, Paul Ruth

Depanmcnl of Computer Sciences
Purdue University

West Lafayette, IN 47907
{jillllgX, dXIf. lei.~Jlllll, ruthJ@cs.purdue.edu

Jianzhong Sun
Dcpartment of Mathematics

Purdue University
WcsL Lafayettc, IN 47907

sl/nj@ics.purduc.cdu

Ab.~lracl-llIlcrnetworms continue 10 plague the Inler
lIet infrasll"UciuTc with will~r and deeper impacl since the
Morris Worm in carly 1988. It has been further shoWJl
lhal beller-engineered worms like Warhol WOTms amI Flash
worms cuuld spread across the Internet in minutes or ('YCIl
lens of seconds rather limn huun;. Snch \'irulenl spread
ing ilwalidflles ~my manual counter-measures find poses an
extreme))" serious threat 10 the safely of the Internet.

To address this challenge, this paper proposes a nowl
worm-curl ailing scheme, i.e., beehive, which is able tojiglll
hack worm propagation by acth-ely immunizing lilly en
countered worm-infected node. 1\·lore specificall)', by own
ing a pori ion of the unused bnt routllble IP space that is
open tu infcclion attempts of different worms, II beehh'e not
only allracts and lraps these allelllpts, but lliso defellsh'ely
~h'es a ~-ecflr;ty .~llOt 10 each attempting worm-infected node.
The security shot will immunize the infected nude so IIlat
the node will not be lIble 10 infect others. Our formal anal
ysis shows that eyen one beehh'e network with a reasonable
IP address .~J)ace can elTectivcly mitigate i1cth'e spreading
of worms amOIl~ a million nodes. This paper presenls both
anab·sis and simulation results of beehh'e enlluation. Par
ticularly, our resullsshow lhat for a Cllndom-prohing worm,
II jl 3 beehi\'e network or 8 class n networks fire llble tu re
duce the maximum wurm infection cm·crage 10 as low a.~

1:1;1(.. To Ihe best of our knowledge, no such worm fight
back mechanism has been propo.~ed and mmlJ7;ed before.
Finall)', 1I beehive prototype is presented to demomlrale its
praclic,J1it r·

Index Terms-security, wonn, modeling, simulalion, s)'s,
tern design

I, INTRODUCTION

Sillce the Morris Worm of early 1988. Ihe persistenl
e.xistence and desLrUCLive spreading of worms have posed
signific<J1l1 threals to Ihe shared Internet infraslmcture.
Recent worm ineidenls like Code Red worms [I J,lIld MS
Bl:lsler worms [8] have jusL warned us how fragile our
networks are and how fast a virulent worm Can spre:ld.
Even worse. bellcr-engineered worms like Warhol worms
:md FllI.\·h worms could spread across the InLernel in min-

utes or even tens of' seconds rathcr than hours [ I 5]. Also.
with current computer system.s becoming more and more
complicaLed. iL is more diffieull lhan before to eliminate
soflware bugs. In fac!. new more security vulnerabili
Lies have been discovered on a daily basis <Ind exploiLing
worms have been observed more frequently Lhan bcfore:
Code Rcd worms [I J and Nimda worms f61 in 200 I. SQL
Slammer worms [7J in 2002. MSBJaster wonns [81 and
SoBig worms [IOJ in 2003. and MyDoom wonns [111.
Willy Worms [12J. and Sasser worms [131 in 2004. This
serious situation poses great ch:lllenges for the effective
containmenL or rast-spreading worms.

There <Ire few answers. either proactive or reaclive.
to the worm IhreaL. Proaclive approach puts the com
puter systems 'llways on 'llert for pOLenLi:l1 vulnerabili
lies and tries Lo seal vulncmbility holes before Lhey are
exploited. For example. the Windows Update Service
checks the availability of security palches and applies
them Lo eliminate sccurity defects [6](7J[81 in a Limely
fashion. However. experience [27J has shown Lhat cnd
users or even network adminislraLors ol'len do noL inslall
securiLy palches even long after they arc made available
because of the following concerns 129]:

• Service disruption: Applying:l patch typically in
volves resLarLing affectcd hOsl service or cven resLart
ing the entire host sysLem. which may nOi be accepl
able for critiC:l1 services.

• Patch unrcliabilily and irreversibility; Security
patches arc released as <Iuick responsCs for identified
vulnerabilities and may nol have been fully verillcd.
Moreover. installing a security paLch is a commonly
irreversible operation: Ollce a paLch is applied. there
is no easy way to un-inslallthe paLch.

Olher worm conLainmenl schemes are also proposed:
Moore er al. [221 proposed Addre.\'.\· black/islillS and COI1

rellf filrerillEf to isolale worms: Willi.lmson el af. 1141 sug
gested modifying the network stack Lo throttle the worm
propagation rate: Chen el {II. [23J described a distributed
anLi-worm architecture (DAW) to slow down worm prop-



agation.

This paper presents a novel amI complementing worm
repressing scheme called beehil'e. Residing in an un
used bm routable network which would be. either ran
domly or preferably. illlacked by different worms, a bee
hive nm only allracts and traps these auempLs. bUl defen
sively gives a security SllOl to each infected node that is
auempling 10 infect an IP belonging to the beehive. The
security shot will then inoculate the infected node. As we
will show, a beehive with a reasonably large IP space can
effectively mitigate active spreading of worms among a
million vulnemble nodes. The contributions of lhis paper
are threefold:

• First. a new mechanism is proposed to suppress
worm propagation by aClively fighling back and im
munizing attempting worm instances. To the best of
our knowledge, no such worm light-b<lck mechanism
has been proposed previously.

• Second. this paper conducts a formal study of bee
hive and presents associated models based on two
worm models, i.e.. the classic epillemic model and
lhe fll'()-[tlclor worm model [20]. Holh numerical and
simulation results show promise.

• Third. a sigmllure-based beehive prototype has been
buill to demonsLrale its practicalily and effectiveness.

The rest of lhis p:lper is organized as follows: Seclion II
presents background on worms and describes how beehive
can be used to cont:lin worm propagalion. The follow
ing seclion analyzes beehive using the classic epidemic
wonn model and shows analytical expressions. numeri
cal solulions, and simulation resulls. Furthermore, bee
hive is modeled based on a recently proposed lW()-j'lIctor

worm model [201 to demonslrale its generality. In Section
IV. beehive deployment issues arc discussed. Our bee
hive prototype is presented in Section V. Finally, Section
VI examines relmed work and Section VII concludes this
paper.

II. THE BEEHIVE ApPROACH

This paper focuses on worms replicaling themselves
without human interacLions by remotely exploiting know/l

vulnerabilities in operating systems or application ser
vices. If we brenk down the actions of these worms [I J
[81 [131. the following common behaviors or stages will
be exposed:

• Tclrgef Selecliol/ This stage picks up :I t<lrget either
randomly r11 or wilh certain locnl subnet preference
[8]. A simple ICMP orTeP syn network probe could

,
~..

Target Selcction

AWoml Exploitation A Victim

Replication

Fig. I. StagciJ Vic\\' or Worm Inrcction

be used to locale a node running a vulnerable service.
The vulnerability can be remotely ex pI oiled by this
worm. Once such a node is identified. :In ensuing
exploitalion allempt will be observcd.

• Efploirariol/ Successful exploital ion relies on the dis
covery of a particular vulnembility in (he viclim
node. It is often true thnL worms take advamage of
well-knowJI vulnerabiliLies and pllbJi.\·hed exploits to
compromise (heir vicLims.

• Replicmion A worm infeclion is nOl complcted [In
til a replica is successfully transferred from the in
fecter lo the vicLim. However.lhe boundary bel ween
this slage and the exploitation stage is often blurred:
some wonn could comnin a copy of itself :IS the pay
load during the exploitalion: and others may have
an expliciL process downloading :l worm replica. A
completed replication converls the victim to a wonn
node. which is able to begin infecting others.

Based on the staged view of worm infection. lhere exist
initially two c1usses of nodes: infectious nodes and ml
Ilemhle nodes. However. once a security patch is applied
to either a l'ulnemble node or an infeclious node. the node
will be turned imo <In illoculated node. Virulenl worms
allempt to more more nodes from vulnerable stalUS to in
fectious staLUs. while wonn conlninment strategies strive
to either slow down such movement or inoculate more
nodcs from either vulnernb1c stale or infeclious s1:lte. Un
fortunately, the exislence of worm olllbreaks sbows f:lster
worm infeclion rates lban inoculmioll rales.

However, if Ihe victim in Hgure I is able to fight back
the allempted infection, a significant difference can be
made. This paper explores such n "fight-b:1Ck" scbeme
and proposes n specinl "defensive" victim - the beehive.
A beebive can be thought of as an immunization service
guarding an unused bUl mUlable IP subspace. An unused
IP space hus the advanlages of caHecling and monitor
ing highly concentrmed suspicious lraffic. and meanwhile
avoiding possible dislurbance to production nelworks.

The beehive has knowledge aboul currently knoll'lI \'ul
IIembililies. Witb the IP space "allracting" the worms,
the beehive is able to monitor and identify the worms' ex-
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fig. 2. [nlcracliollS Belween Bet'hivc amI Worms

ploit<ltion behavior associaLed with the known vulnerabili
ties. The beehive will then identify the infecting node, and
defensively inject a m/llerabiliry-speeijic securiLy shot La
immunize the node. We note th<ll due to the associmcd
risks and responsibililies, a bcehive must be managed-by
<I trusted authorilY.

Figure 2 shows a typic<ll interaction beLween a beehive
and wonn insLances. Residing in a rOlllable and unused
network spacc. a beehive will detect various worm infec
tion aLLempLs. For simpliciLy. Ihe figure only shows the
beehive and four vulnerable nodes.

I) Al first. node B. Ihe only infecLious node, will
spawn several threads La simultaneously probe and
infect other nodes: A, C, D. and the beehive (more
specifically. an IP belonging 10 the beehive).

2) Since nodes A, C. and D <Ire vulnerable, Ihe infec
tion allemp!S resul! in successful replication of Ihe
worm from B La A. C, und D. The nodes A. C, and
D will Ihen be inslructed 10 <lctivate Lhe worm and
thus becomc infectious nodes anempLing to pass the
worm La mhers. However, when node B is infecting
the beehive, Lhe latter is able to discem such infec
tion anempt and 11 security shot is injec!cd to immu
nize B.

3) Nodes A, C, and D, which are now infectious. will
also aClivcly seek to infect other nodes. If the bee-

hive's IP address space is reasonably large. it m<lY
receive somc or the infeclion allempLs. Ir anllcked.
beehive will Ilght-b<lck by injecLing sccurity shots
to the infectors.

4) Suppose the security shots are nble to successfully
immunize Lhe infecting nodes. some (ir not <III) pre
viously vulnerable nodes will become inocul:lted
and thus the worm propagation will be miLigclleu or
even slopped.

The scheme of beehive are based on Ihe following two
assumptions:

• The /l"IIsled awllOri/y /1U1//aging beehh'e shollld he
allowed /0 il/jee/ .l"ecllri/y sho/s /0 Ihose lI'orm
inJeered /lodes rlwr lire actively illjee/ill8 olhers.
This assumption is justifiable from the following ob
servmions: (I) Wonns inlecting nodes noL only cause
uisturbance in Ihe inrecteu nodes. bUI also generate
lots of lraffic afrecting other normal nodes <lnu the
whole InterneL. The V<!st detrimental impacts. includ
ing networked service disruption and business slow
down. demand an immediate sLoppage of infecting
nodes. (2) The defensive-only security shot, whieh
is .I'iglled and udministrated by a tru ..acd authority. is
a !echnically h<lrmless responsc with the benign in
tenLion or immunizing infected nodes [29].
Although this Clssumptioll may nOl be universally nc-
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Ill. EVALUATION OF BEEHIVE

A. Clas.~ic Epidemic Model

Suppose the infecLion rate of a certain worm is a con
stant n. the classic epidemic worm propagmion model
r33j with a flnile population is defined by ;

In the following section. we eV:lluate the effectiveness
of the beehive approach and anempt to answer the follow
ing questions: How elTective can a beehive be? What is
the reasonable size of Ihe associated IP space?

( I)
>'(t)

di(t) = a x -. x i(t) x dt
J\i

need a more powerful technique. Security patches
are able 10 seal vulnerability holes independent of
worm signatures. but it may inlroduce service dis
mption. Nelwork filters can minimize such distur
bance by examining incoming and omgoing lramc
and drop traffic that exploits vulnerabilities. How
evcr. regular filters either coarsely block certain porI
number or require known worm signatures. Fortu
nately. in:l recent worm-blocking project .l"hield [29J,
a vulnerability-driven network filter is developed for
the prevention or known vulnerability exploits with
OUI knowing worm signatures. By applying their fil
tering technique. beehive security shots can be de
veloped once a vulnerability is idcntified. before ex
ploiting worms come into being.

This paper uses i(l). v(f). and r(t) to represent the
number of infectious nodes. the number of vulnerable
nodes. and the number of inoculated nodes at time f.. re
spectively. Also we denote Ihe total number of nodes in
volved in a worm outbreak as N (N = i(t) + v(l.) +T(t)).
The not:lIions used throughout this paper are collected in
table I.

where v(t) = ,V i(t). (\' x 'Xl x 111, represents the
number of new worm nodes contributed by a single worm
source within cIl, period and di(t) is the number of new
worm nodes during the time period [L.I, + (Uj with current
worm population i(t).

In this section. we first introduce the notations uscd
in our analysis :md describe Ihe classic worm epidemic
model. We thcn (lerive a beehive modcl :md present its
analYlical and numeric:ll solutions. Simulation results
are also presented to confirm beehivc's effectiveness. Fi
nally. we amdyze beehive under a more realistic IWo

factor worm model.

" "'0'.'"
• '''·''ch U." ",plcit ".""" th~ '",0",,1 "',.""" ",,,,_,,,
• 'hen nO''''" cc-.-"Jo lc' ,",ily te._ "'" .... ,,,,.
I"" Iccol'I._",",c,·,,: """"." dc,~ _,j ~l " ,:::,,, '.'J
".. ,..,,1: r - .-,l'"", .•'x" "
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ech,' ;":n,j, ",' """""Y ~J"o, ·.·~"l".·, ce, . , '.'t:,,, ~_,

_cho- IJL""'. ';";,L_~',,,",""" '''''''-'hle.le' Fe " ".::"" 'C C'." c<., ':"""." ,,,,":
" , ','cled"e"_"""'"".'o.
eCJ-.o ·',,'r.1--.-- ,',," "J,lc" 'k"--~ ,,-'bl,-.,,· , ,,,,'.'_-'''0>'.'.'
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""' '" Icle'o""'J~U"""",,
,J,elJC",," ., _, "
.,,; l

rig. 3. RcmOlcly Clenllillg n MSBta~lcr-lllreelcd Node

ceptable in the Internet. il will become more realis
tic and acceptable, when differenl administflltion do
m:lins. like ISPs, deploy their own beehives (0 pro
tecl their imernal hosts ,md cooperate wilh each other
in tracking down worms propagaling across different
domains. If a beehive delects a wonll infeclion from
its own internal domain. it can directly inject the se
curity shoL to immunize the node: if the infection is
from another domain, Ihe bcchive could collect the
el'idel1ce of the infection, and send a si.~/Ied copy of
this evidence to the bcchive responsible for thc other
domain. The laller beehive could then lake appro
priate aClions based on the evidence. /\lso within a
large ISP network, a hierarchy of beehives may be
deployed. each being authoritalive over its own sub
network.

• It is recllllically fea.\·ible 10 inject a securily .\·!Jor to
{I Il'orm-infecled /lode {lml rhe shot is able 10 pm

ferr the lIode from bolh iI/coming alld OII11-:oillg ex
ploitatiol/. Considering current network security re·
ality and the way worms infecl hosts using remotely
exploitable vulnerabilities. we argue thai a security
shot clIn be injected in a way similar to wonn infec
tions I. Here we cite one real-world example justi
fying this :lssumption: during the MSBlaster worm
outbreak in August. 2003. Oudot Laurent. a security
expert, wrote a seripL [301 (Figure 3) which is nble to
remotely clean a MSBl:lster-infected node. Once an
infectious node is identified, Ihe scripl is able to kill
the MSBlaster process in that node and also remove
:lffected registry entries.
However-the script itself in Figure 3 docs not prevent
the node from being affected again and lhus it is slill
not enough for beehive purpose. More import:llllly,
it requires Ihe worm's signature. To further immu
nize the node withoUl specific worm signatures. we

1In some e:o;lremc c~scs. wonns could download securily pmeh~s 10
prevenl vulnerubitilies rrom being c.,ploited. til the~e e~~es. beehive is
nOl able 10 remotely inoculJle inrCelCd nodes ;md lleed other mecha
nisms 10 block or filler trJflic from infcclcil nodes.
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TABLE I

NOTATION USU) IN THE PAl'lOR

Dew-rip/io/l.
v(t) the number of vulnerable machines at Lime i during the spread of worm
i(l ) the number of infectious ITInchines at Lime i during the spread of worm
,'(1 ) the number of machines which were infected bm later inoculated before time t
N Ihe lOla I number of machines involved in a specific worm outbreak: N-v(L)+i(L)+r(t)

a/a(t) the infeclion nile of a (sclf-replicaling) worm at time I-

Bo the size of IP address space associated with a beehive, the average number of machines SC<JIlIlCU by an infected machine per unit lime

I 5"'''&01 I

vcncd into infeclious nodes during If., I, I-r/t.] iso(t) xv(t).
In other words,

The minus sign shows Ihe decreasing number ofvulner
able nodes and thus the increasing number of infectious
nodes due 10 current in rcclion nUempts.

Similarly. when a beehive guarding an unused IP ad

dress space of flo is deployed, the probability of a worm
source hilling Ihis IP space during time period It, t -I- dtl
is /3 - 1 - (1 - -¥& )sdt :::::: C l dl, where the conslant

C j C7" * ::-:: BoCa. Therefore, the number of infec
tious machines that are inoculated during the lime period
[t.1 -I- rll] is:

7···········
,,,..
I,
, 00

j

Fig. 4. Example Worm Propagalion wilh Difrerent Infection Rale~:

U.6. 0.9, and 1.2

Eq (I) is also known as the logi.wic eqllariol1 [361 and
has the following solution:

dv(t) = -Cni(t)nU)rlt. (3)

N
i(t) = N - ~j-+--'r_Cl.c(~'~"I~ol (2) (4)

where T is some constant depcndent on the initial worm
population. Based on eq (2). example worm propagations
with three differenl infection rates are drawn in figure 4.
The curves are known as the logis!ic curves [361 and ex
hibit the "sigmoid'· shape.

By A = I.'(f) t i(t) -1- I"(t). eC] (4) can be rewrillen as:

Summing eq (3) and eq (5), we achieve beehive model
based on the classic epidemic worm propag:ltion:

C. NUlI/edclIl alld AnalYTicaf Resufrs

where io is the initial infected nodes or "hit-Jis'" [15J size,
and 1.'0 is the inilial number of vulnerable nodes.

JThe numher / IGis {hc nel\\'ork mnsk lcnglh. which corresponds 10
a c1~ss B nelwork wilh nelmask 255,255.0.0. Similarly. the nlllllher
/12 corresponds 10 ~ nc!wnrk wilh nClnmsk 255.240.0.0.

Numerical solutions of eC] (6) are presented in rigure 5
with varying beehive network (i.e. size of associated IP
address space) rrom /16to /12 J, where the inilial values

(6):, [;.] [-~' ~~;i][ ,. ]
i(O) = in, v(O) = L'O

B. BeehiFe Under Classic t.pillemic Mode!

~Thc ~ppm:'(im~lion is ~chicvcd by 'I:lylor expansion basel.! on lhe
r~Cllha!lii(l)rit is much smaller lh~1I 2J2.

Let s be the average scanning rate of one worm source

probing for victims, !hen during the lime period It, t+dI.J,
the number of scan attempts from one worm source is
,<; x ril, and there are s x dt x i(t) scans in Imal for all
i(t) wonn sources. Assuming the scans are uniformly dis
tribuled over all IPv4 address space (2:~2), the probabililY
ofa mnehine being sc:mned is a.(t) = 1-(1-~ ri(l)dl ~

Coi(l)tlt 2, where the constanl Co = 21:.
With Ihe tOlal number of currenl scan auempls, the ex

pected number of vulnerable machines thaI will be sub-
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and <lverage scanning mte are:

The v<llue of lOIi is a reasonable estimate fur initially vul
nerable nodes. For example. il is eslim<lled thallhe num
ber of nodes vulnerable 10 MSDl:lster is 3GO, 000 [8]. The
X-axis is in infectio/l time 1II1;IS; each time unit is the du
ration of one successrul worm infection session (usually
several seconds Lo Lens of seconds). The cases of differellt
beehives are compared wiLh the c1:lssic epidemic model
with no beehive ("Bechive Network 0" case in Figure 5)
:md random scanning strategy is :lssumed. Figure 5(01).
5(b), and 5(c) show the number of infeclious nodes. vul
nemble nodes. and inoculaled nodes (immunized by bee
hive), respectively. 1L is obvious that bOlh the worm cover
age and intensity havc been funher mitigaled with larger
beehive network. A /13 beehive neLwork is <lble LO ef
fectively mitigate Lhc worm propagation by reducing the
maximum number of infection nodes lo as low as 1;Jl){ of
potential maximum vulnef<lble nodes. while a /12 neLwork
is able to 101a11y prevent the \\"orm oULbreak. Speciully.
Figure 5 exposes two interesting results:

• Figure 5('1) shows lhat after lhe IOOOOth Lime unit.
Lhe worm outbreak under a smaller bechive network
(/14) has fewer infectious nodcs (aclive worm in
sLanees) Ihan the worm OlILllreak under u larger bee
hive network (j13).

• Figure 5(c) shows thal a sm<lller beehive nelwork
(/1'1) inoculates more worm insl:mces lh:l1l a lmger
beehive network (/1:3).

These seemingly unexpected resulls can be explained
:IS follows: Based on Figure 5(b). during the time pe
riod when (he first rcsulL :lbo\'e comes up, there exisl a

larger number of remaining vulnerable nodes (which arc
IlI1fOliChed during (he oULbreuk) in the larger beehive case
lh:ll1 in (he smaller beehive case. The reason for this is tlwt
lhe ombreak is pUL under coli/raJ fasler hy a larger beehive
network and thus fewer nodes are infected. The second re
sul! above can be explained using the same argument: A
larger beehive is able to contain Lhe wonn outbreak earlier
- more speci ficully - during ils sloll' .HQrt phase [19J.

The effecLiveness of Ileehive can be beller character
ized by the aCl/lel/ess (1\.) and maximulII cOl'emge (II» of
a worm oUlbreak. The aCUleness of an olHbreak is defined
as the first-order differentiation of i(t). i.e.. A = d~,t),

while the maximum worm coverage (1l) can be modeled
as lJlax{ ig.l : /. ~ OJ.

~~~~~c·-.·O~=.,,,_ •."..........~,_."'" ~._,".., '"_.;,,
_.''''-'1''
.....~.,~_. 0.,

.. t

""

Fig. 6. The AcU!cncss or Wonn OllllJrc;lk

Figure 6 shows the acuLeness of worm outbreaks us
ing different beehive neLworks. WiLh a larger IP :lddress
space, beehive will be more capable of slowing down
worm propagation. Figure 7 shows the effectivcness of
beehive in reducing Lhe ma,ximum worm coverage. The
l:lrger the associ OiLed IP space, the more powerfullhc bee
hive in reducing the worm coverage.
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(8)

,., ...,;-

",,,.:, ,

dv
~~-~"----C~~~ <II
u(Cnv - C z ill V - COOl)

where C 2 = N - Eo hI '{'o,

According to Theorem I. i(t) re:lches iLs maximum
value at 11 -----: Bo, If we dc!ine the corresponding time
point as I' and integrate the len-hand side or eq (8) from
v(O) = 1,'0 to Do. the result is the same as integrating the
right-hand side from 0 La I':

Fig. 7. The J\'laximulll Wonn COI'crage

Imegrating on bOlh sides, we have:

Based on eq (3). the previous equation can he re-written
as:

d(i+e) ---=-Cti.
<II

To verify our numerical and anulytieal results. we have
developed a beehive simulator based on a uniroml-scan
worm simulator developed by Zou HOI to confirm the ef
fectiveness of beehive.

In the simulaLion. the propagation of uniform-scan
worms is modeled in discrete time and the simulaled sys
tcm consists of N (N ----' lOG) hasLs that e:m reach each
other direcLly. A host could sLay in one of three sLates :11
:my time: infecriolls, VI/II/crable. or illoclIlated. However.
:l host is in the illocl/latcd slale only when it is attempt
ing to infect beehive :md is thus immunized. The oLher
simulation parameters are: s = 10. -io = 10.

D, Simulalio1/ Re,mlIs

Do (Iv
~

'I' dt

<e(/). "(1)
1'0 + Do In -- = i\' -1- Do In--

Vo L'n

flU -1- 1:)

dl

itt) + l'(t) = io I

To compleLe our anulysis, we further obtain the analyL
ical form or maximum worm coverage II> and the corre
sponding Lime instance,

We add up the Lwo equal ions in (6) and derive the fol
lowing equmion:

Thus.

Whenlhe wonn propag:lIion re.,c1J(~s its maximum cov

erage. *reaches 0, From the equal ion of d:I(,1) in (6), we
have '.

, ".

"
,.

J .'.-

'I I

I '" .....::..
• .~.~,,--., .:'1;=:::•.•.;;;;~o •• ~H":!·,·' ".' ._ ____
o,~ = ~ =_.

------:- .......::.;""', .. "
!: =:::::=: ::~

[
. ,~-,,~- ",
,~-,,,-,,,

...... N"...,' ,
(7)

"(I)itt) = N - '11(1.) 1- Do 1n
Vo

Hence

Fig. S. Simul~lion: Number of InrCClinus Nodes

Finally. we obtain

iI> = i(t) = 1 _ Do + Eo In Bo
N N N l,'n

71u!orem I: Assume that (i(l.), v(t)) is the unique so
lution of eq (6). then i reaches its rna:.;imum value ii' x N
ifand only if v(t) = B o. where II> = 1 - ~~ + ~ III*

If we further sulJSlilUte i(t) in eq (7) to eq (3), we ob
Lain

We run Ihe simulation 100 limes in a Dell PowerEdge
server with a 2,6GHz Intel Xeon processor and 2GB
RAM. Figure 8 shows the average number of infectious
nodes with varying beehive network from /16 to /12.
The time unit of X-axis is mil1l1/c. which is used in Ihis
discrele-lime-based simulator and thus is different from
lhe infection time uniL uscd in the numerical results. The
simulaLion results malch well with the numerical resulls
in Figure 5(<1), We furlher calculate two envelop curves
for these 100 runs based on the maximum <lnd minimum
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values for the numbcr of infectious hosts al each time I
and find thaL the maximum difference beLween these two
curves is only OAo/c, to the population size N (l06).

E. Beeltil'e Under "Ji1'()-FaCfOr Worm Modef

The e1assic epidcmic model is simple and does nOL con·
sider other f<lctors like network congestions and human
counter-measures whieh could also affcet the worm prop
agation. The t\l'o-faclor worm modeL shown in eq (9). is
proposed 10 capture these factors and exhibi!s more real
istic results. This subsection applies beehive to the fWO

faclOr modcl. However. beehivc can be generally applied
to any other worm models such as the AAWP model £25].

< •

':'.~-

0', '. • -·~x<,~,_<~

" -f.'J::··;"::;',,.-~~-o~;::~··:::;;~.\;'·"··:""l

di(t.)
dI ~ 0(1) x IN - ",(1) ;(1) -q,(t)] x ;(1.)

dr,(!)
dl

(9)

Fig, 9. Simulatiun: Load or Bcchi\'c

Figure 9 shows the number of security shOls injected
per mil/life during the wonn propagation. which is imer
eSling for understanding the possible load on beehive. The
maximum number is 8200 per minute or 1:37 per second
in the case of a /1-1 beehive network. Interestingly, the
beehive workload is 110/ in a linear relation with the bee
hive IP space size. In the Figure. the ranking of beehive
peak load is /12 < /16 < /1;~ < /15 < /14. The reason
is similar to Ihal for the results in SecLion II1-C: A beehive
with a larger IP space leads 10 a higher worm Iti/ rale and
therefore quenches the worm outbreak earlier. resuhing in
lower worm immunizution workload.

Additionully, we examine the impOlct of immunization
time (i.e .. the time to immunize one node) on the dlcc·
tiveness of beehive. Figure 10 shows worm propagation
under a /14 beehive network wiLh varying immunization
Lime. As expected, longer immunization lime makes bee
hive less efficient in suppressing worm propagation. bUI
the impact is not significant.

,,"~

In the fll'o}aclOrworm model equation, q=(t) and 1'=(1.)
accommodate the effect of human counLer-measures dur
ing worm propagation: q,,(l) represents the number of
nodes converLed from the l'lIfnerable slOlte to Ihe inocu
lated state, while the r=(t) is the number of nodes con
verted from Ihe il/fec/iou.I· staLe to the illm:lI/med state.
The infec!ion rme a(l). which is now a variable instead
of a constant. considers the impact of network conges
tions caused by worm propagation itself. Other notations
:lre cOllsislent with those in table I. This Iwo-facTOr worm
model enhances the e1assie epidemic model particul:lrly
during the l:lsL S1:lge 01" worm propagation, i.e., the sfow
fini.l"h stage [19].

J7rum f201- 1',,(1), CJ=(t). and nU) can be represenLed as
I'ollows:

"';(1)

''''(1);(1)
8(1 - i(t)/N)"

where constanLs It' :md 1/ are used to adjust the rate of con
verting nodes into inoculaLed state. and the consU:mt 11 is
lIsed to adjust the infecLion rate so thOlt it will be sensi
tive to !he number of infectious hosls. When Il.' = O. 'U =
O.1l = O. the t\Vo f:lctors worm model falls back LO the
classic model.

Finally. we derive bcehive model based on eq (9):

Fig. to. Simulation: En·Cel ur a 11<1 Beehi\'c Nctwurk wilh VaryiJl)!
Inullunlzatiun Time

.'.
. :',:.

'.

n(lW', - ,'(I.) - i(l)I;(I)dl. - drA!)
-C1i(l.)lU
-o(l.)"(I.)i(t)d(l) - dq,(I)
C1i(I}/t. -I- dr=(t) + dq,,(t.)
,(I.) + ;(1.) I- r(t)

di(t)

dl'(I)
dr(l)

N
(10)

The term C1 i(t)dl capLures the worm·immunization ef
fect of beehive: :md the r(L) here combines beehive and hu
man counter-measures in two-factor model Logether and is
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Fig. II. The Elre-cll"cness of Beehive Based on TIm· Far/Of Worm Model

more gener:.!! than the nUI:llion of r(l) in Table I.

With the following paral11c!crs: II - 3. IV - , .5c 
ri.1/ = 210-12, i(O) = io = 10. dO) - {,'O - lOG. Ii = 10.
we derive numerical solutions in Figures I I. The <lcutc
ness of worm ouLl>reak is shown in Figure 12. These re
sulLs confiml the generality and clTcctivcncss of beehive
approach.

~I---- -, _c;""."..........~~'""".....~.~ ... ",,~..~- ,"'" __,'k__ ."

. t' -_. ,,~~- 0

1,~
i
•
~ ~

Do •••__,':'::~:::••" ••• :::::: __ ::.:::~::::,.,; ...J ",.,~~,;;,,?

,

Fig. 12. The Acuteness of Worm OUlbre~k UI111crTwo-F~elor Wonn
Mollcl

IV, DISCUSSIONS

Unused IP space The previous section has shown the
effecliveness or beehive in suppressing worm propaga
lioll. From Ihe beehive models. Ihe effectiveness largely
depends on the prohabilily of worm instances hilling the
bechive. Assuming random-prubing strmegy during worm
propagalion. II high prob:lbility of hilling the beehive re
quires a large unused IP :ludress space. Fortllnmely. bee
hive's IP space size requirement (e.g.. a /13 network)
seems reasonable and affordable. For example, CAIDA
LIJhas used a /8 network at UCSD :md two / Hi networks

a! Lawrence Berkeley Laboratory (LBL) 10 collect real
data measuring the spread or the Code Red v2 worm. Four
class B networks (a /1-'1 network) h:lve also been used as
Inlemet sinks L24J for network :lbuse monitoring.

Avoiding beehive The fight-hack nature or beehive
mOlY disclose its associated IP space. IL is possible for
a worm developer to sequentially or selectively pre-scan
the Imernet space for hims !O locate beehive IP addresses.
Once the fight-back activity is detected, the worm devel
oper could presumahly identify beehive and hard-code the
corresponding network space into woon code so thm it
can avoid beeh ive.

There are several solutions: one way is to propose a
roaming heehive whose nelwork space is nOi fixed. How
ever. this roaming approach may require more IP address
space for beehive purpose. A more interesting and effec
tive approach is to create a beehive with sC{l/lerell rather
than continuous IP addresses, which will be helpful in
fighting smart topology-aware worms: each network do
main "dol1afes" unused IP addresses and re-direcis traffic
towards these addresses to a few beehive sites. Several
recent works. including Collapsar ll7J and honeyd l18j.
have developed techniques for the re-direclion or traffic
towards non-existent hosts in different domains to a ccn
tralized facility, run by a trusted authority. Furthermore.
with the emergence of .I·ink hole networks [3 [], traffic re
direction overhead will be significantly reduced. All these
techniques will make a beehive with scattered IP spllce
feasible.

Fooling heehive Spoofing is a potential way 10 at
tack beehive: one worm could initiate an infection with
spoofed source :lddress. When sllch infection is detected
by beehive. the ignorant beehive may inject a security shot



to the spoofed node. Such abusing attempts necd to be de
tected and avoided, ;llthough the shot is not cxpected 10

do any haoo to the spoofed node. Several schemes h:lve
been proposed to uetect and prevent such spooling attacks,
like router-assisted source address checking and various
authenticated methods to ensure the identity of communi
cating peers. However, extensive study on the problem is
heyond the scope of this paper.

Proaclive beehive The beehive presenteu in this paper
is reactive. However. a pJVacrive beehive C<ln :llso be de
veloped. when a vulnerability is identillcu and the exploit
ing wonns have 1101 yet emerged. Such pmGeth'e beehive
can be safely deployed in each network domain, and it
will actively probe and detect machines with this vulnera
bility withill its own dom<lin. Once a vulnerahle machine
is found, a security shot ean be injected 10 prevent it from
being exploited in the future. In this case, the first assump
lion in Section II will liar be necessary.

V. A I3EEIlIvE PROTOTYPE

In this seclion. we present a sigmllure-b:lsed prototype
to demonstrate the feasibility of beehive nppronch.

Figure 13 shows a generic components of a beehive:
:1 sellsor component and :l sllOl illjectrJT component. The
sensor component would either passively wait for worm
probings or actively monitor real-time traffic to identify
vulnerability-specific exploitations. Once an exploit is
identified. the g1caneu informations such as the IP :lddress
of the worm source :lnd the vulnerabilities exploited by
the worm will be given to the shot injector, which then in
jects an associmed shot to the worm source. In the follow
ing example, we describe one beehive prototype against
the Linux Adore worm [91. The system is implemented
llsing RedHm 7.0 Linux operating systems.

Pig. 13. Generic Componems or n Beehive

The Linux Adore worm :lllempts to propagate itself via
exploiting different un-patched services in the default in
stallation ofLinux Red Hat 6.2 :md 7.0 operating systems:
rpc.slard [21. lI'lIflpd[4J. BIND[31. and LPRng l5J. If there
is :1 node running any listed vulnerable service and it is
sllccessfully probed, the Adore worm will try to exploit it

10

and execute the shell commanus (shown in Figure 14) au
tomatically rcgmdless of which vulnemble service is ex
ploited.

'd.." "inu~'
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Fig. 1-1. Shell Commamls Propagming The Linux Allure Worm

In the current prototype, beehive 1cvcmges an open
source IDS sys!Cm, i.e.. S/lort [34J. as the sensor compo
nenl. The particular rules detecting incoming Adore worm
infection attempts are lisled in Figure 15:

.In' ""C ""Tn"n.~ >C., • ",,",W,,,," .e.y 're" "C"" 01<"""''''''
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Fig. 15. Snort Rule Sels For D~lel:ling The InkcliOl1 or Allore WOnTlS

Once the Adore sensor reports the exploitation attempt.
il notifies the shot injector component with the IP address
of intruding node. The injector will exploit the same vul
nerabilities used by the Adore worm and inject adore

bee.o. a load:lble kernel module containing a set or adore
wooo signatures. The signatures are s!lOwn in Figurc 16.
Though the same signatures are used, lldore-bee.o mod
ule is able to drop both incoming :lnd outgoing exploitll
tion tmffic matching the signatures. while the rule sets in
Figure 15 are only used to uctect incoming allemplS.
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Fig. 16. SignJlures in adore·bee.o Mollule

Once planted, the ndore-bee.o module will be inserted
into the kernel and scrutinize every incoming and outgo
ing packets for potential vulnerability-exploiting tmffic.
Once a packet matches a signature in the signature set. the
packet is marked as worm-related traffic and thus dropped.
The performance overhead is marginal [16] since there are
only one or two signatures related to a worm in general.
The reason why the Linux Adore worm requires five sig
natures is that il is a multi-vector worm and has the ability
to propagate itself through various channels.



Due Lo the associ:lled risks and lack of a scale worm
testbed. the system hilS just been deploycd in a spccific:llly
configured local network with two nodes. However, iL has
shown hOlh practicality and effecLiveness by successfully
injecting a security shm from one node running beehive 10
immunize :mother node running the Linux Adore worm.
To fully validate beehive, a scale worm testbed with tens
of thousands of nodes is needed. The DETER f381 projecL
is proposed to address this need, and beehive experimems
can be performed on lOp of it once it is available. In the
meantime, we plan to cxtend our beehive prototypc to :Jd
dress the following issues:

Hetero~eneily Different sysLem platforms and differ
em operming systems impose different requiremenLs in
designing and implementing security shots. Though rc
cem aCLive worms will usu:llly propagate on one particu
lar platform or one type of operating system, there are cer
Lain worms which are able to propagate on multiple plat
forms. Developing techniques to cope with helerogeneity
is a challcnging problem.

Signature independence We note thm the need for
worm signaLures in our current beehive prototype is
only for implemenlation convenience. The signaLure
independent technique proposed in shiehl [291 will be ap
plied Lo bcchive security shot concoction. As soon as a
vulnerability is identified, a shield-style security shot will
be installed in the bechive to fight back any exploiting
worm in the future.

VI. RELATED WORK

Proac/;l'e or IIltlllllally reaclil'e approaches are among
Lhe most common pracLices in preventing or mitigating
spreauing of worms. As shown in section I, although
proac/i1'e approaches like Windows Update Service are
effective. it has shown reluctance in acceptance due to the
concern of unreliability and potential service disruption.
Also, any manual counter-mC:lsures will be invalidated by
virulent spreading of worms.

From section II, effective worm containment mecha
nisms should be :lble to either decrease the lIow from the
l'lIll/erahie state to the in!ec/ioll.\· slate. termed as flow IN.
or increase the flow from the i/lfecrious node to the i/lOCIl
lared S!:lte, represenLed as now OUT. or the combination.
The now from the I'Illl/ert/hle state 10 the illoclIlared state
is able to decrease the number of vulnerable nodes and
thus indirectly reduce the flow I tV. We classify related
work based on their impacL on these Lwo flows:

DccreflSing the flow INMost of current counter
measures fall in this category. Moore e/ al. [22] explores

"
the effect ofdynamic <Iuarantine in confining worm propa
gation. In particulur. two defense stralegies urc examined:
blackli.l'tillg known infec/ed J/ode.l· and fillering cOI/Ilec
lionl' ex!Ji/}iring 1I'0rll/ SigIlOflIl"C.\-. HOlVever. they require
Lhe exisLence of an efficient evenl notificaLion system for
Lhe awareness of detected infecled nodes :llld worm sig
nawres. Williamson e/ al. [14J suggests modifying Lhe
network stuck so lhm the spreading rate of worms could
be slowed down. Such an approach requires the modi
ficalion of commodiLy opcrating systems to be crfecLive.
Chen e/ al. [23J proposes two rate-limiting algorithms. ei
ther temporal or spa/inl. to mitig<lte the wonn prop:lgalion
at the ISP level. The algorithms are based on the behav
ioral difference bctween normal hosts and worm-infected
hosts. P:Jrticularly. a wonn-infecLcd host has a much
higher connection-failure rate when it scans lhe InLcmct
with randomly selected addresses. bBrea [35J is <I tool
Lhilt is able to creale virtual presences on behalf of those
unused IP addresses on a nelwork. The virtual presences
is able 10 reply the probing attempts in such a W<lY that
makes the wonn inst<lnces "stuck". Beehive appro<lch is
different from, and complement. these approaches. since
it can reduce the number of infectious nodes by ac/il'ely
immunizing them.

Increasing the flow OUT This eaLegory requires effi
cient worm idemijicario/l and i.wla/iOll/imlllllnizario/l. Re
cent work [28][221 mostly focuses on the issues of worm
idcntific:ltion 'Inc!. isolaLion. and has not addressed the im
muniz<ltion.

Darknet 4 is anolher interesting research Lopic. Moni
toring and characterizing background /raffie for darknets
have shown promise in understanding network abuse [311
[241, sensing IntcmeL motions r37l. and inferring eert:lin
remote network events [26). There exisLs lillie or no le
gitimale traffic in the darknet and any anom:lly will not
be obscured by voluminous producLion Lraffie. Additional
{(clive responders C<ln be further deployed to discriminate
between different types of activities, including intrusion
or attack attempts. However, they have nOL :lddressed how
to contain or suppress worms using Lhese darknets. In an
other interesting direction. IlOlleypo/ [391 h:lS been pro
posed as an effective way to capture worms in the wild.
Furthermore, honeypot has also been leveraged for early
worm detection [191, global worm detenLion f17], or au
tomatic worm signature extraction [321. The concepl of
ellil hOl/eypor [30], which parallels beehive effort, is pro
posed to poison or bile back aggressive worms. However.
no form:ll model and analysis h:lve been seen so far.

_I A uJrknet is J ponioll of routable IP spJce in which no JClivc ser·
I'ices or servers reside,



VII. CONCl.USION

Destructive spreading of worms exposes the fragility of
current Internet infrastructure .md invalidates any manu,,1
counter-measures. This paper proposes beehive to SllP
press worm propagmion by directly righting back and im
munizing worm-infecting hosts. Beehive leverages the
unused and routable IP space for wonn infection cap
ture: nnd beehive security shots arc capable of shielding
known vulnerabilities. The effectiveness of beehive has
been evaluated and demonstrated with analysis and simu
]ation results. rurthcrmure. " beehive prototype has been
developed to demonstrate its feasibility.

REFERENCES

II] Code Red Wonm. CIIIDe\ /l1t(/lysi~' of Code·Red,
http://www.cnilln.oropnnal).sislsccurit)./code·redl

(2) Rpc.statll Vulner.:Jhility Cl':HT ilrMsory CA-2000-17 Il/pw Va!
ir/mioll Pruvlem ill rpc.slllld hll[l:!lwWIV.cert.orglallvisurieslCA
2000-17.html

f)l BIND 8.2.ll Vulnerdhilit)' CERT IIrMJor,I' CA-2001-02 MIIlliple
V/l/lwmbililies ill BIND hllp:!lwww.cen.orglndvlsoricslCA-2001
02.html

['I] Wu-rlpd 2.6.0 Vulnerdhility cua IIdvisory CA-
2000-!3 711"0 II/plll Validation Problems III FTPD
hup:!lwlVw,cen.orglad~'isurieslCA-2()(){)-1 ], IlIml

[5] LPRng Vnlnernbilit)' CERT Advisory C;\·2000-22 IlIpul Vali
daliOl/ Problems ill LPRllg. hllp:!lwww.ccn.orgladvjsorieslCA.
2000-22.html

[6] Nimdn Wonns. CERT Adviml)· CA-200/-26 Nimda Worm.
hllp:!lwww.cerl.orglallvisuricslCA-2001-26.1111111

[7] SI31l11l1er Wonns. CERT Adl'i.wry C/I·2OO3-04 MS-SQL Sen'eT
lVarm. hnp:!lwww.cerl.orgJallvisorieslCA-200]·Q..\.Iuml

[8] BI3stcr Worms. CERT Adl'isDI)' CII-2003·20 1V321JJfrlSler 1I"0rm.
http;llwww.cert.orgJallvisoricslCA-200]·20.html

[9] Linux Adore Wonns hllp:!lsccurit)'res[lonsc.symmllec.comlavcenter
/venddmall inull.allorc.wunn.hun I

flO) Sol3ig Wunns, hup:!lwww.cert.orgllnctllenLJluteslIN-200]-
OJ.hllnl

rII) MyDoom Wunns. hUp:!lus,mcafee.com/vlruslnfu/llefnult,3sp?
id::mylloom

lJ 2J Willy Wonns, hup:!lsccllrilyresponse.symamec.com/3vccnler
I~'enc/data!w]2.witty.worm, hun!

[l3J Sasser \Vorms, IV/1m lOll Sllllll!d K,wlI'
Aboll/ 1111' Sasse,- \Vorm alld lis Variants.
hllp:!lwww.miclUsor(,com!SCCllrily/incidentlsasser.asp

[14J lnmie Twycross 3nd Manhew M. Williamson llllplememiltg (II/{I
Tesling a Virll-f Thrall/,'. Proc. or the 12th USENIX Securily Sym·
posiulll (Security '(3), Snn Francisco. CA Aug. 200]

[15J Stunn Stanirord, Vcm Pallson. Nichulas Weaver Hmr 10 0"'11 lilt'
IlI/erlH!1 ill Yllllr Spar" Time. Proe. ur the 11th USENIX Security
Symposium (Security '(2), San Francisco. CA Aug. 2(Xl2

[16j XUllian Jinng. Dongyan Xu, nnd Rullulf Eigenmnnn PrO//,c/ion
MI'dllll/isms for Applielllion S/'n'ic/' 1I0slin,~ PI(/rform.~. Proc. or
lEEE'JACM Int'l Symposium on Cluster Computing nnllthe Grid
(CCGrid 20CJ.4). Chicngo. IL. Apr. 2QO.l

"
[17] Xu.\ian Ji;lllg. anll Dongynn Xu Collal'mr: 11 I'M·UrlJedAr

C"ill'CIII,.,· for Nenmrk AI/ad 1),<1/'I/liOlI Cemer, Proc. of Ihc
13th USI]'..IIX Sel·urity Symposiulll ISecuril)' ·O·l}, S3n Dicgo. CA
Aug. 2004

[IS] Niels Pro\'os ;\ Virllllll HOlleYPIll Frrl11/l"lI"ork. Prm:, or the
13th USENIX Sccurily Symposium (Sccurity '0-1). S<1n Diegu. CA
Aug.2(XI-I

(19) ('Iiff C. Zou. Weiho Gong. Don Tuwsley. anll l.ixin Gao Mall
ilOrillg l/lld Early DI'II'Clion for III/erne! \~brtlls. I'roc. of the
10th l\eM Cunference on Computer ,mil Cummunication Sceu
rily (C('S·OJ). Washington DC 200]

[20] Cljfr c. ZOll, Weibu Gung, Don Towsley. Cade Red lVarll/ Prop·
lIg(l/io1/ 'Hode/illg fllld AI/aly,fis. Proc. of the 9th ACM Conference
on CompUler and Communication Security «('CS'02). Washington
DC Nov. 2002

[2t] Davill Moore. Colleen Shannon, and K Clnffy. Code-Red: 1I

case smdy on Ihl' spremf alld ~'iclim.~ of WI IlIIemn ,,·arm, ACM
Illlernel Mcnsurement Wurksho[l. No\'. 2002

[22J David Moore. Colleen Shannun. Gcofrrey M. Voelker, nnll Stefan
Savage, IlI/aJ!l'I Qurmmline: Reqllin.'I1I/'Il/sfor Conwilling Self·
Propagmillg Cade, INFOCO!l.'1 200]. San Francisco. CA Mnr.
200]

[23J Shil!,mg Chen. Yong Tang. Slowing DOIm IlI/aJ!1'! Worm~'. I'rul·.
of 24th Imernminnal Conrerence un Distritmtcd Computing Sys
lcms \I('D('S'{).I). Tokyo. hpan, Mar.2{)()..\

[2-1] Vinod Yegneswaran, Paul Barrord. anll Dnl'e Plonka OJ! Ihl' Dt·
sigll amf U:it" of III/erner Sillh for Nt'llI"ork Abllse MOllirnring.
Proc, or 7lh Intenlntlunnl SymposiUllt on Recent Allvanc('s in In·
trusion Dctcction Sep.2Q().j

[25] Zcsheng Chen. l.ixin Gno. nnd Kevin Kwim. MOilelillg Ihe
Spread ofACli\'e Warms, INFOCOM 2003, S3n Francisco, CA.
Mar. 2oo3

[261 David Moore. Nenmrk Tefesco/ws: Obsen'illg Smallar DiJ/mll
S,'curi,-I' /;"1·eIlIS. I'roc. uf the It th USENIX Securit), S)'m[losium
(Security '02). San francisl"U. CA, Aug. 2002

127] Eric Rcscorla. .'i1'Cllri/y Holes . .. \VIm CUft's? I'roc. uf the 12th
USENIX Securit), Symposium (Security 'OJ), San Franciscu. CA.
Aug. 2oo]

[211] Nicholns Weaver. SlUnn Stanirord. nnll Vern Pallsoll \'t'ry NISI
COJ/willmelll of SCUllIIillg \VDfIIIS. I'roc. uf the I]th USENIX Se
curity Symposium (Securit)' '04). S3n Francisco. CA. Aug. 2(0)

[29] Helen J, Wang. ChunJUiung Guo. Daniel R. Simun. Alf Zugen
mnier. Shield: Vull/",IIbifily-Dril'en Nel\1"Ork Fillers'for I'rel'elJ/
illg Klllllrll VulnerabililY Exploils. SIGCOMM 2(}().j. Sep. 20CJ.4

(30) Laurent Oullm Tmrards l~'~'i1 HanenJllIS.o! LVhl'n 1111'.1' bill'
vack 5th Annual C3nSccWcsllcore04 Cunference. Vancouver Apr.
20CJ.4

[311 DallllY McPhersun. nnd Paul Quinn Sillk Hale Nelll'orks 5th
Annual CanSecWesllcurcW Conrercncc. Vancuuver Apr. 200l

[321 Christian Kreibich :lnll Jun CrowcrOrl. lJolleycomb - Creming 11/'
IrlIsioll DeleeliOIl Sigml/ures Using HalleYflO/S. Seconll Wurkshop
un ]-Jut Topics in Networks. Camhridge, MA USA Nov.2oo]

(33J ti. W. ltethc01C. rhe Mmhemmic.r of Illfl'Cliolls Diseases. SIA1\I
Review. vul. 42. no. 'I, PI', 599·65]. 2000

[)4j SnOrl. hllp:!lwww.sllort,org
[)S] T. Liston. u/Bren, hllp:l!www.hackbusters.netlLaBreaJ
[36] Eric W. Weisstein, Logistic l'qull/ioJ!.

hllp:flmmhworld.~~'olfram.comlLogisticEquntion.html

(37) Imeml'l MOliol/ SClIsor. hup:!lims,eecs.umich.cllul
[]8j The DETER Projecl. hllp:llwlI'w.isLeduldctcr/
[]9j The HOlley/!/'1 Pmjl'cl. hllp:llwww.honcyncl.org
(40) Clirf C. Zou lnl/'mel \Vorm Pmpagmiol/ Simulator.

hllp:lltennis.ecs.umass,cdul c7.oufresenrchlwormS imulnt ion.hlml


	Worm Meets Beehive
	Report Number:
	

	tmp.1307986960.pdf.FuzrW

