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Robust and Distributed Computation of

Aggregates in Wireless Sensor Networks
Jen-Yeu Chen, Gopal Pandurangan, Dongyan Xu

Abstract

A wireless sensor network consists of a large number of small, resource-constrained devices and usually operates

in hostile environments that are prone to link and node failures. Computing aggregates such as average, minimum,

maximum and sum is fundamental to various primitive functions of a sensor network like system monitoring, data

querying, and collaborative information processing. In this paper we present and analyze a suite of randomized

distributed algorithms to efficiently and robustly compute aggregates. Our Distributed Random Grouping (DRG)

algorithm is simple and natural and uses probabilistic grouping to progressively converge to the aggregate value.

DRG is local and randomized and is naturally robust against dynamic topology changes from link/node failures.

Although our algorithm is natural and simple, it is nontrivial to show that it converges to the correct aggregate value

and to bound the time needed for convergence. Our analysis uses the eigen-structure of the underlying graph in a

novel way to show convergence and to bound the running time of our algorithms. We also present simulation results

of our algorithm and compare its performance to various other known distributed algorithms. Simulations show that

DRG needs much less transmissions than other distributed localized schemes.

Index Terms

Probabilistic algorithms, Randomized algorithms, Distributed algorithms, Sensor networks, Fault tolerance, Graph

theory, Aggregate, Data query, Stochastic processes.

I. INTRODUCTION

Sensor nodes are usually deployed in hostile environments. As a result, nodes and communication links are prone

to failure. This makes centralized algorithms undesirable in sensor networks with resource limited sensor nodes[2],

[7], [27]. In contrast, localized distributed algorithms are simple, scalable, and robust to network topology changes

as nodes only communicate with their neighbors[2], [4].

For cooperative processing in a sensor network, the information of interest is not the data at an individual sensor

node, but the aggregate statistics (aggregates) amid a group of sensor nodes[19], [12], [18]. Possible applications

using aggregates are the average temperature, the average gas concentration of a hazardous gas in an area, the

average or minimum remaining battery life of sensor nodes, the count of some endangered animal in an area,

The authors are in the alphabetical order of last names and with Department of Computer Science, Purdue University, USA. E-mail:

jenyeu@ieee.org.; {gopal,dxu}@cs.purdue.edu



and the maximal noise level in a group of acoustic sensors, to name a few. The operations for computing basic

aggregates like average, maximin, sum, and count could be further adapted to more sophisticated data query or

information processing operations[8], [22], [20], [21]. For instance, the function f (v) = L Cdi (Vi) is the sum

aggregate of values Cdi(Vi) which are pre-processed from Vi on all nodes.

In this paper, we present and analyze a simple, distributed, localized, and randomized algorithm called as

Distributed Random Grouping (DRG) to compute aggregate information in wireless sensor networks. DRG is

more efficient than another randomized distributed algorithm, Uniform Gossip[7], because DRG takes advantage of

the broadcast nature of wireless transmissions. All nodes within the radio coverage can hear and receive a wireless

transmission. Although broadcast-based Flooding[7] also exploits the broadcast nature of wireless transmission, on

some network topologies like grid, it is possible that the aggregate computing will not correctly converge. We

suggest a modified broadcast-based Flooding, Flooding-m, to mitigate this pitfall and compare it with DRG by

simulations.

Deterministic tree-based in-network approaches have been successfully developed to compute aggregates[19],

[20], [21]. In [7], [11], it is shown that tree based algorithms face challenges in efficiently maintaining resilience

to topology changes. The authors of [19] have addressed the importance and advantage of in-network aggregation.

They build an optimal aggregation tree to efficiently computed the aggregates. Their centralized approaches are

heuristic since building an optimal aggregation tree in a network is the Minimum Steiner Tree problem, known

to be NP-Hard[19]. Although a distributed heuristic tree approach [54] could save the cost of coordination at the

tree construction stage, the aggregation tree will need to be reconstructed whenever the topology changes, before

aggregate computation can resume or re-start. The more often the topology changes, the more overhead that will be

incurred by the tree reconstruction. On the other hand, distributed localized algorithms such as our proposed DRG,

Uniform Gossip [7], and Flooding [7] are free from the global data structure maintenance. Aggregate computation

can continue without being interrupted by topology changes. In contrast to tree-based approaches that obtain the

aggregates at a single (or a few) sink node, these algorithms converge with all nodes knowing the aggregate

computation results. In this way, the computed results become robust to node failures, especially the failure of sink

node or near-sink nodes. In tree based approaches the single failure of sink node will cause loss of all computed

aggregates. Also, it is convenient to retrieve the aggregate results, since all nodes have them. In mobile-agent-based

sensor networks[28], [29], [30], this can be especially helpful when the mobile agents need to stroll about the

hostile environment to collect aggregates.

Although our algorithm is natural and simple, it is nontrivial to show that it converges to the correct aggregate

value and to bound the time needed for convergence. Our analysis uses the eigen-structure of the underlying graph

in a novel way to show convergence and to bound the running time of our algorithms. We use the algebraic

connectivity of the underlying graph, the second smallest eigenvalue of the Laplacian matrix of the graph, to bound

the running time and total number of transmissions. The performance analysis of the average aggregate computation

by DRG Ave algorithm is our main analysis result. We also extend it to the analysis of global maximum or minimum

computation. We also provide analytical bounds for convergence assuming wireless link failures. Other aggregates



such as sum and count can be computed by running an adapted version of DRG Ave.

II. RELATED WORK

The Uniform Gossip algorithm, Push-Sum, [7] is a distributed algorithm to compute the average on sensor and

P2P networks. Under the assumption of a complete graph, their analysis shows that with high probability the

values at all nodes converges exponentially fast to the true (global) average.! The authors of [7] point out that

the point-to-point Uniform Gossip protocol is not suitable for wireless sensor or P2P networks. They propose an

alternative distributed broadcast-based algorithm, Flooding, and analyze its convergence by using the mixing time

of the random walk on the underlying graph. Their analysis assumes that the underlying graph is ergodic and

reversible (and hence their algorithms may not converge on many natural topologies such as Grid - see Fig.6 for

a simple example). However, the algorithm runs very fast (logarithmic in the size) in certain graphs, e.g., on an

expander, which is however, not a suitable graph to model sensor networks. Also, their analysis of Uniform Gossip

and Flooding did not consider possible collisions among wireless transmissions.

The authors of [31] discuss distributed algorithms for computations in ad-hoc networks. They have a deterministic

and distributed uniform diffusion algorithm for computing the average. They set up the convergence condition for

their uniform diffusion algorithm. However, they do not give a bound on running time. They also find the optimal

diffusion parameter for each node. However, the execution of their algorithm needs global information such as

maximum degree or the eigenvalue of a topology matrix. Our DRG algorithms are purely local and do not need

any global information, although some global information is used (only) in our analysis.

Randomized gossiping in [56] can be used to compute the aggregates in arbitrary graph since at the end of

gossiping, all the nodes will know all others' initial values. Every node can post-process all the information it

received to get the aggregates. The bound of running time is O(nlog3 n) in arbitrary directed graphs. However,

this approach is not suitable for resource-constrained sensor networks, since the number of transmission messages

grows exponentially.

Finally, we mention that there have been some works on flocking theory (e.g., [57]) in control systems literature;

however, the assumptions, details, and methodologies are very different from the problem we address here.

III. OVERVIEW

A sensor network is abstracted as a connected undirected graph G(V, t:) with all the sensor nodes as the set of

vertices V and all the bi-directional wireless communication links as the set of edges t:. This underlying graph can

be arbitrary depending on the deployment of sensor nodes.

Let each sensor node i be associated with an initial observation or measurement value denoted as v~O) (v~O) E 1R).

The assigned values over all vertices is a vector v(O). Let v~k) represent the value of node i after running our

algorithms for k rounds. For simplicity of notation, we omit the superscript when the specific round number k

doesn't matter.

1The unit of running time is the synchronous round among all the nodes.



The goal is to compute (aggregate) functions such as average, sum, max, min etc. on the vector of values v(O).

In this paper, we present and analyze simple and efficient, robust, local, distributed algorithms for the computation

of these aggregates.

The main idea in our algorithm, random grouping is as follows. In each "round" of the algorithm, every node

independently becomes a group leader with probability Pg and then invites its neighbors to join the group. Then

all members in a group update their values with the locally derived aggregate (average, maximum, minimum, etc)

of the group. Through this randomized process, we show that all values will progressively converge to the correct

aggregate value (the average, maximum, minimum, etc.). Our algorithm is distributed, randomized, and only uses

local communication. Each node makes decisions independently while all the nodes in the network progressively

move toward a consensus.

To measure the performance, we assume that nodes run DRG in synchronous time slots, i.e., rounds, so that we

can quantify the running time. The synchronization among sensor nodes can be achieved by applying the method

in [14], for example. However, we note that synchronization is not crucial to our approach and our algorithms will

still work in an asynchronous setting, although the analysis will be somewhat more involved.

Our main technical result gives an upper bound on the expected number of rounds needed for all nodes running

DRG Ave to converge to the global average. The upper bound is

1 rPo
O(-loge2"))', c

where the parameter, directly relates to the properties of the graph, and the grouping probability used by our

randomized algorithm; and c is the desired accuracy (all nodes' values need to be within c from the global average).

The parameter rPo represents the grand variance of the initial value distribution.

The upper bound on the expected number of rounds for computing the global maximum or minimum is

O(-!.log( (1 - p)n)),
, p

where p is the accuracy requirement for MaxIMin problem (p is the ratio of nodes which do not have the global

MaxIMin value to all nodes in the network). A bound for the expected number of necessary transmissions can be

derived by using the result of the bound on the expected running time.

The rest of this paper is organized as follows. In section IV, we detail our distributed random grouping algorithm.

In section V we analyze the performance of the algorithm while computing various aggregates such as average,

max, and min. In section VI, we discuss practical issues in implementing the algorithm. The extensive simulation

results of our algorithm and the comparison to other distributed approaches of aggregates computation in sensor

network are presented in section VII. Finally, we conclude in section VIII.

IV. ALGORITHMS

Fig. 1 is a high-level description of DRG Ave for global average computation. The description in Fig. 1 does not

assume the synchronization among nodes whereas for analysis we assume nodes work in synchronous rounds. A

round contains all the steps in Fig. 1.
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Alg: DRG Ave: Distributed Random Grouping for Average

1.1 Each node in idle mode independently originates to form a group and
become the gTOUp leader with probability Pg.

1.2 A node i which decides to be the gTOUp leader enters the leader mode
and broadcasts a group call message, GCM == (grouPid = i), to all its
neighbors.

1.3 The group leader i waits for responses message, J ACK from its
neighbors.

2.1 A neighboring node j, at the idle mode that succe~sfully received the
GCA1, responds to the group leader i an joining acknowledgement,
JACK == (grouPid = i,vj,join(j) = 1), with its value Vj.

2.2 The node j enters member mode and waits for the group assigrunent
message GAM from its leader.

3.1 The group leader, node i, gathers the received JACKs from its
neighbors to compnte the number of group members,
J = "L- jE9; join(j), and the average value of the group,

Ave(i) = Le;' Vk .

3.2 The gTOUp leader, node i, broadcasts the group assignment message
GAM == (grouPid = i, Ave(i)) to its group members and then returns
to idle mode.

3.3 A neighboring node j, at member mode of the group i which receives
GAM, updates its value Vj = Ave(i) and then returns to idle mode.

Fig. 1. DRG Ave algorithm

Each sensor node can work in three different modes, namely, idle mode, leader mode, and member mode. A

node in idle mode becomes a group leader with probability Pg, or remains idle with probability (1- Pg). Choosing

a proper Pg will be discussed in Section V.

A group leader announces the Group Call Message (GCM) by a wireless broadcast transmission. The Group Call

Message includes the leader's identification as the group's identification. An idle neighboring node who successfully

receives a GCM then responds to the leader with a Joining Acknowledgement (JACK) and becomes a member of

the group. The JACK contains the sender's value for computing aggregates. After sending JACK, a node enters

member mode and will not response to any other GCMs until it returns to idle mode again. A member node

waits for the local aggregate from the leader to update its value. The leader gathers the group members' values

from JACKs, computes the local aggregate (average of its group) and then broadcasts it in the Group Assignment

Message (GAM) by a wireless transmission. Member nodes then update their values by the assigned value in the

received GAM. Member nodes can tell if the GAM is their desired one by the group identification in GAM.

The DRG MaxIMin algorithms to compute the maximum or minimum value of the network is only a slight

modification of the DRG Ave algorithm. Instead of broadcasting the local average of the group, in the step 3, the

group leader broadcasts the local maximum or minimum of the group.



V. ANALYSIS

In this section we analyze the DRG algorithms by two performance measurement metrics: expected running time

and expected total number of transmissions. The number of total transmissions is a measurement of energy cost of

the algorithm. The running time will be measured in the unit of a "round" which contains the three main steps in

Fig. 1.

Our analysis builds on the technique of [6] which analyzes a problem of dynamic load balancing by random

matchings. In the load balancing problem, they deal with discrete values (integer), but we deal with continuous

values (real) which makes our analysis different. Our algorithm uses random groupings instead of random matchings.

This has two advantages. The first we show that the convergence is faster and hence faster running time and more

importantly, it is well-suited to the ad hoc wireless network setting because it is able to exploit the broadcast nature

of wireless communication. Our random grouping algorithm is adapted to the ad hoc wireless setting and is mindful

of problems such as collisions (due to interference of messages between nearby nodes).

The main result of this section is the following theorem.

Theorem 1: Given a connected undirected graph G(V, e), IVI = n and an arbitrary initial value distribution

v(O) with the initial potential <Po, then with high probability, the average problem can be solved by the DRG Ave

algorithm with a E > 0 accuracy, i.e., IVi - vi :S E , Vi in

o dlog(')
(pgPs(1 + a)a(G))

rounds, where a(G) is the algebraic connectivity (second smallest eigenvalue of the Laplacian Matrix of graph

G[39], [40]); d = max (di ) + 1 ~ max (di ) ( the maximum degree); Pg is the grouping probability; and Ps is the

probability of no collision of a group leader's group call message, GCM.
(0) (0)

The constant a > 1. The <Po = O(n) when all Vi are bounded (Vi < c). Table I shows the algebraic

connectivity a(G) and d/a(G) on several typical graphs.

The Ps is related to Pg and the graph's topology. Given a graph, an increasing Pg results in a decreasing Ps, and

vice versa. However, there does exist a maximum value of P = Pg .Ps so that we could have the best performance

of DRG by a wise choice of Pg. We will discuss later about how to appropriately choose Pg to maximize PgPs after

proving the theorem.

The proof and the discussions of Theorem 1 are presented in the following paragraphs. To analyze our algorithm

we need the concept of a potential function as defined below.

Definition 2: Consider an undirected connected graph G(V, £) with IVI = n nodes. Given a value distribution

v = (Vl, ... ,vn)T, Vi is the value on node i, the potential of the graph <p is defined as

<p = Ilv - vull~ = 2:(Vi - v)2 = (2: v;) - nv2

iEV iEV

where v is the mean (global average) value over the network.

<p is a measurement of the grand variance of the value distribution. Note that <p = 0 if and only if v = VU, where

U = (1, 1, ... , l)T is the unit vector. We will use the notation <Pk to denote the potential in round k and use <p in
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TABLE I

THE ALGEBRAIC CONNECTIVITY a(G) AND d/a(G),[6]

Graph a(G) d/a(G)

Clique n 0(1)

d-regular expander 8(d) 0(1)

grid 8(*) O(n)

linear array 8(~) 0(n2 )

general when specific round number doesn't maUer.

Let the potential decrement from a group gi led by node i after one round of the algorithm be O¢19i == 0<Pi,

i: . _ '" ~ _ (~jE9i Vj)2 _ ~ '" ( . _ )2
U<p, - L..J VJ J - J L..J VJ Vk ,

jE~ ~kE~

where J = Igi I is the number of members joining group i (including the leader i). The property 0<Pi 2': 0 indicates

that the value distribution v will eventually converge to the average vector tiu by invoking our algorithm repeatedly.

For analysis, we assume that every node independently but simultaneously decides whether to be a group leader

at the beginning of a round. Those who decided to be leaders then send out their GCMs at the same time.

It is possible that a collision2 happens between two GCMs so that some nodes within the overlap area of the two

GCMs will not respond and join any groups. In the analysis below, we only consider complete groups which include

all neighbors of the group leaders. This is a worst situation analysis which gives an upper bound. A tighter bound

on Poisson random geometric graphs[50] by including both partial and complete groups is presented in subsection

E of this section.

A. Proof of Theorem 1

The main thrust of the proof is to suitably bound the expected rate of decrement of the potential function ¢.

We need a few definitions for the proof. We define the set Na(i), including all members of a complete group,

as Na(i) = 'Na(i) U {i} where the Na(i) = {jl(i,j) E £(G)} is the set of neighboring nodes of leader i. Since

we consider complete groups only, the set of nodes within a group gi =Na(i) is J = Igil = di + 1, where di is

the degree of leader i. Let Ci =G(Na(i)) =K di +1 , be the IN(i)l-clique on the set of nodes of Na(i).

Define an auxiliary graph H = UiEV(a) Ci and the set of all auxiliary edges l = £(H) - £(G). The Figure 2

shows a connected graph G, the groups led by each node of G as well as their associated cliques, and the auxiliary

graph H. A real edge (x,y) of solid line in these graphs indicates that two end nodes. x and y can communicate

21t is also possible that a perfect MAC layer protocol can avoid collisions amid GCMs so that a node successfully received several GCMs

can randomly choose one group to join. Since there is no standard MAC or PHY layer protocols in sensor networks. to analyze our algorithm

in a general way, only complete groups are considered.
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Fig. 2. graph G, the group Cliques of each node and the auxiliary graph H

with each other by the wireless link. The auxiliary edges are shown in dashed lines. These auxiliary edges are not

real wireless links in the sensor network but will be helpful in the following analysis.

Lemma 3: The convergence ratio

E[J:] > (1 + a)a(G)Pg:s

where a 2: 1 is a constant.

Proof" Let Xi = (Vi - v), x = (Xl, ...xn)T, ¢ = xTx, and Laplacian Matrix [, = 'D - A. The 'D is the

diagonal matrix with 'D(V, v) = dv , the degree of node V; and the A is the adjacent matrix of the graph. [,a and

[,H are the Laplacian Matrices of graph G and H respectively.

Let 6. jk = (Vj - Vk)2 = (Xj - Xk)2; Ps be the probability for a node to announce the GeM without collision,

(e.g. in Poisson random geometric graph[50] Ps = e-ps ·)'·47rr
2

); and d = max (di ) + 1, where di is the degree of

node i. The expected decrement of the potential in the whole network is

E[J¢] E[ L J<pi ] = PgPs L J<pi

iEV iEV

1
PgPs L d. + 1 L 6. jk

iEV' (j,k) Ef.(G;)

1
> pgPs"d L L 6. jk

iEV (j,k) Ef.(G;)

pgPS~L L (Xj - Xk)2

iEV (j,k) Ef.(G;)

> pgps~( L 2(xj - Xk)2 + L (Xj - Xk)2))

(j,k)Ef.(a) (j,k)Ee

1" 2"PgPs"d( L.J (Xj - Xk) + L.J (Xj - Xk)2)

(j,k)Ec.(a) (j,k)Ec.(H)

1 T T
PgPs"d(x [,ax + x [,HX).

(1)

(2)



9

The equation (2) follows from the fact that for each edge (i,j) E G, Aij appears at least twice in the sum E[6<p].

Also each auxiliary edge (j, k) E l contributes at least once.

E[6<p] l(x
T

£"cx +xT£"Hx)
<p > pgPs d xTx

1 . xT£.,cx XT£"HX
> PgpS-d(mm( T Ix...Lu, x i=0) +min( T Ix...Lu, x i= 0))

x xx x xx

1 )~~= pgpsd(a(G) + a(H)) = (1 + a)a(G d

In the above, we exploit the Courant-Fischer Minimax Theorem[40]:

. xT£"c x
a(G) = >'2 = mm( T Ix...Lu, x i= 0)

x x x

. Since H is always denser than G, according to Courant-Weyl Inequalities, a 2: 1[40].

For convenience, we denote the
a(G)

"( = n(pgps(l +a)-d-)'

•

Since groups are randomly formed in the network, every round may have various possible group distribution.

Lemma 4: Let the conditional expectation value of <Pk computed over all possible group distributions in round

k given an group distribution with the potential <Pk-l in the previous round k - 1 is Et:Jk [<pk]' Here we denote

the [)l, ()2, , [) k as the independent random variables representing the possible group distributions happening at

rounds 1,2, , k, respectively. Then, the E[<Pk] = Et:Jl,t:J2, ... ,t:Jk[<Pk] :::; (1- ,,()k<po.

Proof From the Theorem 3, the

and by the definition,

E[<Pk] Et:Jl,t:J2, ... ,t:Jk [<Pk]

Et:Jl [Et:J2 [... Et:Jk_l [Et:Jk [<Pk]] ... ]]

< (1 - "()Et:Jl [Et:J2 [... Et:Jk_l [<Pk-l] ... ]]

•
The next proposition relates the potential to the accuracy criterion.

Proposition 5: Let <PT be the potential right after the r-th round of the DRG Ave algorithm, if <PT :::; e2, then

the consensus has been reach at or before the r-th round.

(the potential of the r-th round <PT :::; e2 ---t IvrJ
- vi :::; e, Vi)
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Proof' The Vi and v in the following are the value on node i and the average value over the network

respectively, right after round T.

cPT = L (Vi - V)2 ::; 10
2

iEV(G)

=> (Vi - v) 2 ::; 10
2

{:} IVi - vi::; 10, Vi E V(G))

•
The proof of Theorem 1: Now we finish the proof of our main theorem.

Proof' By Lemma 4 and Proposition 5,

Taking logarithm on the two right terms,

T >

1
Tlog(--) > log cPo -logc2

1-,

log(~)

log( 1~'Y)

.!. log( cPo)
, 10 2

W.l.o.g, we can assume cPo » 102 , otherwise the accuracy criterion is trivially satisfied. By Markov inequality

(3)

Fr(cPT > 102 ) < E[~TJ ::; (1- ~YcPo
10 10

Choose T = ~ log(~) where the K, ~ 2. Then because (1,:) « 1 and (K, - 1) ~ 1,

(1 _,)~log(~)cPo
Fr(cPT > 10

2
) <

10 2

-Iog(~)" cPoe • -
102

2(:0 )(1<-1) ----t 0 .

Since with high probability cPT ::; 102 when T = O(~ log ~), by proposition 5 the accuracy criterion must have

been reached at or before the T-th round. •

B. Discussion of the upper bound in Theorem 1

As mentioned earlier, Ps is related to Pg and the topology of the underlying graph. For example, in a Poisson

random geometric graph[50], in which the location of each sensor node can be modeled by a 2-D homogeneous

Poisson point process with intensity oX, Ps = e->"pg'41Tr
2

, where r is the transmission range. We can simply assume

that sensor nodes are deployed in an unit area, so that oX is equal to n. To maintain the connectivity, we set
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0.015,-------r-~-----~--_____,

0.05

Fig. 3. The P = pgps vs pg on the Poisson random geometric graph

- n-100
- - n..3oo
.... ","500
_.- n-700

- n..900

0.2

41lT2 =~ = 410g(n)+I~g(IOg(n» [36]. Let P = PgPs. The maximum of P = pge-pg·z(n), denoted as P, happens

t ~ - 1 - 1 h d'J' - 0 Th . P~ 1 -1a Pg - zcny - 4(log(n)+log(Iog(n))) were dpg -. e maxImum - 4d e .

Fig.3 shows the curves of PgPs on Poisson random geometric graphs with different n from 100 to 900. It is easy

to find the pg in these graphs. For instance, given a Poisson random geometric graph with n = 500, we can choose

the pg == 0.03 so that DRG will expectedly converge fastest, for a given set of other parameters.

In general, for an arbitrary graph P = pg(l - pg)X; where X = O(d2
) is the expected number of nodes within

two hops of the group leader. Then the P== x-Ie-I, happens when pg = X-I. For instance, a d-regular expander,

h ~ 1 d m 1-1
t e Pg = IF an .r == IFe .

1 O(d
2

)

Fixing the Pg = Ib, we get P = IFe-~ < lb· Hence, we get a ultimate upper bound of the expected

running time of DRG for any connected graph:

If we specify a graph and know its X, by carefully choosing Pg to maximize P = PgPs, we can get a tighter

bound for the graph than the bound above. Thus, we want to emphasize the bound in Theorem 1 because it can be

much tighter according to the given topology and reflects the topology's characteristic.

C. The upper bound of the expected number of total transmissions

Lemma 6: For DRG algorithm, the expected total number of transmissions in a round is E[Tr ] = O(pgpsdn),

where d =max(di ) + 1.

Proof' Since the necessary transmissions for a group gi to locally compute aggregate is di + 2, bounded by

d + 1 ~ d, the expected total number of transmissions in a round is O(pgpsdn). •

Theorem 7: Given a connected undirected graph G with the initial potential ¢Yo, the total expected number of

necessary transmissions for the value distribution to reach the consensus in an accuracy requirement c: 2 is

E[T] = O( nd
2

10g(~) )
(1 + a)a(G)



Proof"

D. DRG MaxIMin Algorithms

E[T]
dlog(4)

E[Tr ]O(pgPs(1 + ~)a(G))

dlog(4)
O(pgpsn(d+I) (1 0) (G))PgPs + a a

nrPlog(4 )
O( (1 + a)a(G))

•

Instead of announcing the local average of a group, the group leader in the DRG MaxIMin algorithm announces

the local MaxIMin of a group. Then all the members of a group update their values to the local MaxIMin. Since

the global MaxIMin is also the local MaxIMin, the global MaxIMin value will progressively replace all the other

values in the network.

In this subsection, we analyze the running time of DRG MaxIMin algorithms by using the analytical results of

the DRG Ave algorithm. However, for the MaxIMin we need a different accuracy criterion: p = n-;.m, where n,m is

the total number of nodes and the number of nodes of the global MaxIMin, respectively. p indicates the proportion

of nodes that have not yet changed to the global MaxIMin. When a small enough p is satisfied after running DRG

MaxIMin, with high probability (1 - p), a randomly chosen node is of the global MaxIMin.

We only need to consider Max problem since Min problem is symmetric to the Max problem. Moreover, we

assume there is only one global Max value Vmax in the network. This is the worst situation. If there is more than

one node with the same Vmax in the network then the network will reach consensus faster because there is more

than one "diffusion" source.

Theorem 8: Given a connected undirected graph G(V, e), IVI = n and an arbitrary initial value distribution

yeo) , then with high probability the MaxIMin problem can be solved under the desired accuracy criterion p, after

invoking the DRG MaxIMin Algorithm

O( .!.log( (1 - p)n))
I p

times, where the I = 0((1 + a)a(G)pgt)·

Proof' The proof is based on two facts: (1) The expected running time of the DRG MaxIMin algorithm on an

arbitrary initial value distribution v ~O) = (VI, ... , Vi-I, Vi = Vmax , Vi+l •.. , Vn ) T will be exactly the same as that

on the binary initial distribution v~O) = (0, ... ,0, Vi = 1, 0, ... O)T under the same accuracy criterion p. The Vmax

in v~O) will progressively replace all the other values no matter what the replaced values are. We can map the Vmax

to "I" and all the others to "0". Therefore, we only need to consider the special binary initial distribution v~O) in

the following analysis. (2) Suppose the DRG Ave and DRG Max algorithms are running on the same binary initial

distribution v~O) and going through the same grouping scenario which means that the two algorithms encounter the

same group distribution in every round. Under the same grouping scenario, in each round, those nodes of value

"0" in DRG Ave are also of value "0" in DRG Max.
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<Pn
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&1+2

Rm+l

Rm

Fig. 4. The minimum potential

Based on these two facts, a relationship between two algorithms' accuracy criteria: C;2 = ~, can be exploited

to obtain the upper bound of expected running time of DRG Max algorithm from that of DRG Ave algorithm. Now

we present our analysis in detail.

We run two algorithms on the same initial value distribution v~O) and go through the same scenario. To distinguish

their value distributions after, say ( rounds, we denote the value distribution for DRG Ave as v(O == v~o IDRG Ave

(0 (0
and that for DRG Max as W == vb IDRG Max.

Without loss of generality, suppose w(O = (WI = 1, ... , W m = 1, wm +! = 0, ... , W n = O)T. There are m "1"s

and (n - m) "O"s. Then the corresponding v(O = (VI,V2," .Vm'Vm +! = 0, ... ,Vn = O)T. Apparently Wi = fVil.
Although the values from Vm +! to Vn are still "O"s, the values from VI to Vm could be any value E (0,1). To

bound the running time, we need to know the potential1>r;, which now is a random variable at the (-th round. We

now calculate a bound on the minimum value for the potential 1>r;.

The minimum value of the potential 1>r; at the (- round with exactly m non-zero values is a simple optimization

problem formulated as follows:

min L (Vi - V)2
iEV(G)

m

subject to LVi -1 = 0
i=1

1 2: Vi 2: 0; 1::; i ::; m,

Vi = 0; m < i ::; n.

where n = IV(G)I and v = ~.

By the Lagrange Multiplier Theorem, the minimum happens at

vi ~ { ~
and the minimum potential is 1>2 = ~ - ~.

1 ::; i ::; m.

otherwise.
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Each round ( is associated with a value distribution Y«(). We define a set Rm as the set of rounds which are of

m non-zero values in their value distributions. R m = {(I y «() is of m non-zero value} and the minimum potential

<Pm = min(¢d = 2. -~, V( E Rmm n

The possible scenarios A, Band C are shown in Fig.4. The y-axis is the time episode in the unit of a round,

we group those rounds by Rm as defined earlier. The x-axis is the potential of each round. Note that the value of

each round are not continuous. The scenario curves A, B, and C just show the decreasing trend of potentials. The

scenario A reaches the minimum potential of Rm at its last round in Rm . For scenario A, the diffusion process is

slower, while the value distribution is more balanced over nodes.

Proposition 9: A round ( of DRG Ave algorithm with distribution Y«() and potential ¢(, if ¢( S <Pm then there

are at least m non-zero value within Y«().

(¢( S <Pm -+ lSI 2: m, S = {vilv~() > OJ)

Proof" A round ( is with ¢( S <Pm but has less than m non-zero value tuples in Y«(). WLGN, suppose there

are m - 1 nonzero values in Y«(), then ¢( 2: <P m-1. But <Pm < <Pm-1. A contradiction. •

By the fact that there are m non-zero values in Y«() if and only if there are m "l"s in w«() and by proposition

9, we can set

<P m = c2 = 2. - ~ = p
m n (1- p)n'

Substituting (1!p)n for c2 in Theorem 1, we get the upper bound of the expected running time of DRG Max

algorithm to reach a desired accuracy criterion p = n--;.m, which is

O(~ log( (1 - p)n)).
'Y p

The 'Y follows the rules mentioned before.

The upper bound of the expected number of the total necessary transmissions for DRG Ave is

nd2 Iog((1-p )n)
E[T] - O( p)

- (1 + a)a(G)

by the same deriving process of Theorem 7.

E. Bounds for Poisson random geometric graph

The analysis results presented are for arbitrary graphs. Also, the assumption of complete groups in analysis is

a worst situation setting for deriving an ultimate upper bound. If we specify a graph and know the distribution

of nodes, besides complete groups, we can further count the partial groups to get a tighter upper bound for the

expected running time.

In a variety of applications on sensor network, sensor nodes are randomly scattered in a field. The sensor nodes are

then uniformly distributed in the field, which means that the location of a sensor node follows a 2D Homogeneous

Poisson Point Process. The underlying graph of this kind of sensor network is called Poisson random geometric



but Ps needs to be modified as Ps:
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graph. Since we know the nodes' distribution of a Poisson random geometric graph, we develop a tighter bound

from relaxing the complete group assumption.

For a Poisson r.andom geometric graph with intensity A, every node independently announces to be a group leader

in a probability Pg, so that the distribution of leader nodes is also a 2D Homogeneous Poisson point process with

intensity Al = A . Pg. Further, to keep the connectivity of the underlying graph, the radius of the radio coverage, r,

is a function of A and can be denoted as r(A). The probability Ps, is the probability that a GCM from a leader node

i encounters no collisions. This means that no nodes other than i within an area 7f(2r(A))2 centered at i become

group leaders. Hence, the probability Ps = e->'/·471"r(>.)2 = e-Pg ·>'·471"r(>.)2 is a function of the Pg and the intensity

A.

As in Fig.5, if two nodes announce to be leaders simultaneously, a GCM collision happens in the overlap area

of their radio coverage. Both their GCMs are destroyed due to the radio interference. All nodes within the overlap

area can not correctly receive their GCMs. However, those nodes not in the overlap area can still correctly receive

and response to a GCM from one of the two leader nodes.

In the following we relax the consideration in the previous subsection that only those complete groups are counted

in the computation of 8¢. A group gi may only contain part of the neighboring nodes of node i. We name this

kind of groups as partial groups. Since nodes are distributed by uniform distribution over the field, the number of

members in a group led by leader node i is Igil = $ .NG(i) + I, where Ai, as shown in Fig 5, is the area in

which GCM from leader node i can be successfully received. When node i becomes a group leader, in average

there will be pg A7f(2r)2 other group leaders announcing their GCMs simultaneously causing GCM collisions with

d . S' h h . d 2 log >.+c(>.) [36] L O( 1 ) h' h'no e~. mce t e grap IS connecte ,7fr = >. . et Pg = 4{Iog >.+c(>.» , t en m average t ere IS

only one group leader other than i to cause GCM collision with node i. Below, we derive a tighter upper bound for

the running time of DRG Ave algorithm. This upper bound of the running time is of the same form as Theoreml

r2r

Ps = Ps + 1
0

fy(y)Qi(y)2dy,

where Qi(Y) is the ratio of non-overlapping area (Ai(Y) in Figure 5(c)) 3 to the radio coverage 7fr2 . The upper

bound in Theorem 1 becomes
o log(~)

(PgPs(1 + a)a(G))'

We detail the deriving process in the following paragraphs.

Let the random variable y be the distance between a group leader i, the origin, and the first another group leader,

both announcing group call messages at the same time. When y ::; 2r, see Fig.5 (a)(b), the area of the group

3rt may be too pessimistic to assume that the collision will totally destroy the group call messages. If FM is used, nodes always can extract the

stronger signal, known as the Capture Effect[51). The group coverage then becomes Fig. 5(d). However, since there is not standards established

for the PHY and MAC layers in sensor networks yet, we would like to analyze our algorithm in a more general way. We assume the shaded

area in Fig. 5(c) to be the coverage of a group facing group call massage collision.



(3)

(b)

Fig. 5. The overlapping of two groups

Ai (c)

(d)

coverage is Ai(y), the shaded area in Fig. 5(c). Let Qi(Y) be the ratio of group coverage Ai to the radio coverage

nr2:Qi(Y) = A;ft), 0::; Qi(Y) ::; 1, where 0 ::; Y ::; 2r.

The PDF of Y is fy(y) = 2nA/ye-trAly2.

The expected decrement of potential in the group gi, is

The first item in the R.H.S. involves GeM collisions while the second does not. Obviously,

(4)

If node i becomes a group leader, the conditional probability that a neighboring node j joins its group is

Qi(Y)' Thus the i:lij will contribute to the potential decrement b<Pi in a conditional probability Qi(Y)' Also, if two

neighboring nodes j and k both join i's group, then the i:l jk will contribute to the the potential decrement b<Pi, no

matter (j, k) is the true edge or the auxiliary edge. The conditional probability that both j and k join i's group is

Qi(y)2.

Let r = I:(i,j)E£(Ci ) i:lij and l' = I:(j,k)Ek~}Gi) i:l jk . Then
J. ,1

L i:l jk
(j,k)E£(Ci)

L i:lij + L i:l jk
(i,j)E£(Ci ) (j.kJ,~~~C;l

r + 1'.
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We thus obtain the first term of R.H.S. of equation (4) as follows.

Therefore, the

Let

and d = max(dd + 1, so that

and

E[8¢>] L E[8ipi]
iEV(G)

1
> PgPs dL L D.jk

iEV (j,k)Ec(Ci)

which is exactly of the same form of the equation (1) but with a modification of replacing Ps with Ps. The same

analyzing procedures in the previous subsection can be repeated. The coverage ratio becomes

'Y = n((l + Ci)a(G)Pg:S)

and the upper bound of expected running time is

O(~ log(¢>o)).
I rJ

Since Ps :::: Ps, this bound is tighter than the general bound in Theorem 1.

F Random grouping with link failures

Wireless links amid sensor nodes, which are edges in the underlying graph, may fail due to natural or adversary

interferences and obstacles. With a modification on the potential convergence ratio we obtain modified upper bounds

for the expected performance of DRG while involving possible link failures.

We assume that the failure of a wireless link happens only between grouping time slots. Let Gbe a subgraph of

G, obtained by removing the failed edges from G at the end of the algorithm and fI be the auxiliary graph of G.
Lemma 3 can be modified as the following:
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Lemma 10: Given a connected undirected graph G, The potential convergence ratio involving edge failures is

E('t J 2: pg:s (1 + a)a(C)

where the C is a subgraph of G, obtained by removing the failed edges from G at the end of the algorithm, and

, - a(If)
a - a(G).

Proof Let d k
) be the underlying graph of sensor network after running DRG for k rounds but not yet

reaching the convergence. d k
) is a subgraph of G excluding those failed edges from G. By the facts:

1) the maximum degree d = d(G) 2: d(d
k

») 2: d(C),
(k)' (k)'

2) a(G) 2: a(G ) 2: a(G) and a(H) 2: a(H ) 2: a(H),

we have

•
By Lemma 10, we obtain the modified convergence ratio l' = Pgl" (1 + a)a(C). Replacing I by l' we have the

modified upper bounds of performance of DRG in case of edge failures.

VI. EXTENSIONS AND PRACTICAL CONSIDERATIONS

We can easily compute some other aggregates like Count and Sum using DRG Ave as described in the following

subsection. Moreover, if nodes can pre-process their values then we can compute much more complex functions

over the network. For example, to compute the function f(v) = L Cdi(Vi), each node i can first process its original

value Vi to a desired local function Cdi(Vi). Then by applying our DRG Sum algorithm, we can get the grand sum

L Cdi (vd over the network.

A. Algorithms for Other Aggregates

1) DRG Count: We can solve the count problem using the DRG Ave algorithm. First, the network should run a

health check in the background by DRG Ave periodically to know the current number of alive nodes, n. The sink

node sets its initial value to "I" and all the other nodes set their initial value as "0". After applying the DRG Ave

algorithm, all the nodes' values will converge to a value ~. Thus we get n. When n is less than some threshold,

we will need to replenish the sensor nodes by adding more sensor nodes to the field.

Secondly, to count the number of nodes with a certain property (e.g. battery voltage lower than a threshold or

temperature higher than an alert threshold), all nodes of the property will set their initial values as "I", while the

others set their initial values as "0". Running the DRG Ave, progressively, all the nodes will reach the average

value ~, where the m is the number of nodes of the inquired property. Any node can know the count = m by

multiplying this converged value Ave = ~ by the number of alive nodes n, which is known from regular network

health checking.
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2) DRG Sum: The Sum problem can also be solved by applying DRG Ave. When every node knows the average

value Ave, they can just multiply it by the number of alive nodes n to get the Sum = n . Ave. If we want to

sum the values of some nodes of a certain property, first we count the number of these nodes by the DRG Count

algorithm and then apply the DRG Ave. However, during the DRG Ave, the nodes which are not of the property

set their initial value as "0". Then multiplying the convergent average value Ave by the Count m, all the nodes

can know the sum of the values of some certain property.

B. Practical Considerations

A practical issue is deciding when nodes should stop the DRG iterations of a particular aggregate computation.

An easy way to stop, as in [7], is to let the node which initiates the aggregate query disseminate a stop message

to cease the computation. The querying node samples and compares the values from different nodes located at

different locations. If the sampled values are all the same or within some satisfiable accuracy range, the querying

node disseminates the stop messages. This method incurs a delay overhead on the dissemination. To analyze the

accuracy of final values and the probability of getting a false stop in this manner is left for future work.

A purely distributed local stop mechanism on each node is also desirable. The related distributed works [6], [7],

[31] all fail to have such a local stop mechanism. However, nodes running our DRG algorithms could stop the

computation locally. The purely local stop mechanism is to adapt the grouping probability Pg to the value change.

If in consecutive rounds, the value of a node remains the same or just changes within a very small range, the node

reduces its own grouping probability Pg accordingly. When all the nodes meet the accuracy criterion, they will just

virtually stop their computation. However, being passive due to low Pg' a node will still join a group called by

his neighbor. If the value changes again by an GAM, Group Assignment Message, from one of its neighbors, its

grouping probability increases accordingly to actively re-join the aggregate computing process. We leave the detail

of this implementation for future work.

VII. SIMULATION RESULTS

A. Experiment Setup

We performed simulations to investigate DRG's performance and numerically compare it with two other proposed

distributed algorithms on grids and four instances of Poisson random geometric graph shown in Fig.6. Our simu

lations focus on the Average problem. We assume that the value Vi on each node follows an uniform distribution

in an interval J = [0,1]. (DRG's performance on a case of J = [O,I],e = 0.01 is the same as on a case of

J = [0,100], e = 1 and so on. Thus, we only need to consider an interval J = [0,1].) On each graph, each algorithm

is executed 50 times to obtain the average performance metrics. We run all simulation algorithms until all the nodes

meet the absolute accuracy criterion IVi - vi ::; e in three cases: e = 0.01,0.05,0.1

B. Performance of DRG

For grid, the topology is fixed and so the running time and the total number of transmissions grow as the grid size

increases. Note that in Fig.7(a) and Fig.7(b), the axis of the grid size is not linear. Also, more stringent accuracy
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Fig. 6. The instances of Poisson random geometric graph used for simulations

requirement requires more running time and transmissions.

For Poisson random geometric graph, we observe that the topology significantly affects the performance. We have

tried two different topologies each with 100 nodes. The 100 node topology I is less connected, implying that nodes

in topology I have fewer options to spread their information. Thus, it is not surprising that both the total number

of rounds and the total number of transmissions under topology I are much higher than those under topology n.

In fact, the rounds and transmissions needed on 100-node topology I are even higher than on the instances of 150

nodes and 200 nodes in Fig.6. The two instances of 150 and 200 nodes are well connected and similar to the 100

nodes topology n. These results match our analysis where the parameters in the upper bound include not only

the number of nodes n and grouping probability Pg, but also the parameters characterizing the topology - the

maximum degree d and the algebraic connectivity a(G).

C. Comparison with Other Distributed Localized Algorithms

We briefly compare the performance of DRG with two other distributed localized algorithms for computing

aggregates, namely, Flooding and Uniform Gossip[7]. In Flooding, each node divides its value and weight by di , its

degree, and then broadcasts the quotient to all its neighbors (see Fig.IO). In Uniform Gossip, each node randomly
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Fig. 7. The Performance of DRG Ave on grid and Poisson random geometric graph.

picks one of its neighbors to send half of the value and weight and keeps the other half to itself. We numerically

compare these two algorithms with DRG by simulations on grid and Poisson random geometric graphs.

We point out that the Flooding algorithm may never converge correctly to the desired aggregate on some

topologies, e.g., a grid graph (since the graph is bipartite and hence the underlying Markov chain is not ergodic).

Fig.8 is simple example to illustrate this pitfall. To solve this pitfall we propose a modified Flooding named

Flooding-m in which each node i divides its value and weight by di + 1 and then send the quotient to "itself' and

all its neighbors by broadcast. This modification incurs a more thorough and even mixing of values and weights

on nodes, avoiding possible faulty convergence and expediting the running time.

Since different algorithms have their own definitions of "round", comparing running times by the number of

rounds taken is not quite correct. In one round of Flooding-m or Uniform Gossip, there are n transmissions in

which each node contributes one transmission. In a round of DRG, only those nodes in groups need to transmit

data. The time duration of a round of DRG could be much shorter. Therefore, we compare DRG with Flooding

m and Uniform Gossip in terms of total number of transmissions. If three algorithms used the same underlying

communication techniques (protocols), their expected energy and time costs for a transmission would be the same.

Thus the total number of transmissions can be a measure of the actual running time and energy consumption.
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Fig. 8. An example that Flooding[71 can never converge to true average.

Uniform Gossip needs a much larger number of transmissions than DRG or Flooding-m. In grid, the topology

is fixed, so the number of nodes is the only factor in the performance. The differences among the three algorithms

increase while the grid size grows. On a grid of 400 nodes and £ = 0.05, DRG can save up to 25% of total number

of transmissions than Flooding-m. In a random geometric graph, DRG can save up to 20% of total number of

transmissions from Flooding-m on 100 nodes topology I under £ = 0.01. The trend is the same in the case when

£ = 0.1.
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Fig. 9. The comparison of the total number of transmissions of 3 distributed algorithms

VIII. CONCLUSION

In this paper, we have presented distributed algorithms for computing aggregates through a novel technique of

random grouping. Both the computation process and the computed results of our algorithms are naturally robust to

possible node/link failures. The algorithms are simple and efficient because of their local and randomized nature,

and thus can be potentially easy to implement on resource constrained sensor nodes.

We analytically show that the upper bound on the expected running times of our algorithms is related to the

grouping probability, the accuracy criterion, and the underlying graph's spectral characteristics. Our simulation
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Alg: Flooding

1 Initial: each node, e.g. node i sends (so,; = Vi, 1J!O,i = 1) to itself.

2 Let {(s,., U!,.)} be all pairs sent to i in round t - 1.

4 broadcast the pair (',;;', W~;') to all neighboring nodes.

5 :;:;.: is the estimate of the average at node i of rOlUld t

Fig. 10. The broadcast-based Flooding algorithm [7]

results show that DRG Ave outperforms two representative distributed algorithms, Uniform Gossip and Flooding,

in terms of total number of transmissions on both grid and Poisson random geometric graphs. The total number

of transmission is a measure of energy consumption and actual running time. With fewer number of transmissions,

DRG algorithms can be more resource efficient than Flooding and Uniform Gossip.
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ApPENDIX I

UN-CONVERGENCE OF FLOODING[7]

Authors of [7] provided and analyzed a deterministic Flooding algorithm in Fig.lO to compute aggregates in

sensor networks. They map the graph of a network to a Markov chain and Flooding's broadcast transmissions to

random walks on the Markov chain. When the steady state is reached, the total values and weights on a node j are

St,j = 1rj . LiEV Vi and Wt,j = 1rj . LiEV 1 = 1rj . n respectively, where the 1rj is the stationary state probability

of each state (node). Thus, all nodes can have the global average v = ~t'. = 2:i;17 Vi 0 However, the random walk
,]

can never reach steady state on a non-ergodic Markov chain, implying that by Flooding algorithm nodes can never

reach the desired global average on the Markov chain's corresponding graph. For example, given a bipartite graph

G = (V, £) in which VI C V, V2 C V and an edge (Vi, Vj) E £ iff Vi E VI and Vj E V2 , the Flooding will not

Of " ...,t. " B h d ° V '11 2:iE174 Vi k 1 2 FO 8' . 1converge 1 uiEVl Vi -r UjEV2 Vj. ut eac no e III k WI converge to IVkl ; = or . Ig. IS a SImp e

illustration of the un-convergence of Flooding algorithm.

ApPENDIX II

OPTIMIZATION

Here we prove that the minimum potential is .!. - .!. in the condition that there are exactly m nodes of non-zero
m n

values out of the n nodes after running the Slotted DRG Algorithm on a Binary Initial value problem for a while.

Since we here only consider those nodes of non-zero values. Thus we restrict the v E Rm
° The object function

f : Rm -+ R and the constraint function h : Rm -+ R There is only one constraint function, so >. E RI . The



min

Optimization Problem then be formulated as the following:

m 1
f(v) = LV;-:;;

i=l

m

2/f

subject to h(v) = LVi - 1 = 0
i=l

1 > Vi = v(i) > 0; for 1 ~ i ~ m

The Lagrangian function
m 1 m

l(v,.-\) = L v;- - + .-\(L Vi -1)
n

i=l i=l

For a local minimizer v*, there exist a .-\*, s.t.

Dl(v*,.-\*) = OT,

or

V'l(v*,.-\*) = 0

where Dl(v,.-\) is the first order derivative of Lagrangian function. Thus we have

2Vi + .-\* = 0, \:j i

and
m

Thus
m.-\*

--=1
2

1 .
Vi = -, \:j z

m

Therefore,v* = 1..u = (1..,1.."" ,1..)T , .-\* = -2 and the Minimum f(v*) = 1.. - .1, which is the minimumm mm m m m n

potential i1>m of our analysis in MaxIMin algorithm.

Further we check the Second-Order condition:

L(v,.-\) = F(v) + .-\H(v)

where L(v, .-\), F(v), and H(v) are the Hessian Matrices of l(v, .-\), f(v), and h(v) respectively.

Both f(v) and h(v) are twice continuously differentiable, i.e., f(v) E ,&,2 and h(v) E ,&,2.

F(v) = 2Imxm and H(v) = Omxm' Then L(v*, .-\*) = 2Imxm is positive definite.
m

vTL(v*,.-\*)v = 2Lv; > 0
1

for all v ¥- 0, which satisfies the Second-Order Sufficient Conditions. Thus the v* = ~u is the strict local

minimizer. Actually it is the global minimizer within the definition range of v : 0 < Vi < 1 for all 1 ~ i ~ m.
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