
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2006

Enabling Autonomic Adaption of Virtual Computational Enabling Autonomic Adaption of Virtual Computational

Environments in a Shared Distributed Infrastructure Environments in a Shared Distributed Infrastructure

Paul Ruth

Junghwan Rhee

Dongyan Xu
Purdue University, dxu@cs.purdue.edu

Rick Kennell

Sebastien Goasguen

Report Number:
06-004

Ruth, Paul; Rhee, Junghwan; Xu, Dongyan; Kennell, Rick; and Goasguen, Sebastien, "Enabling Autonomic
Adaption of Virtual Computational Environments in a Shared Distributed Infrastructure" (2006).
Department of Computer Science Technical Reports. Paper 1647.
https://docs.lib.purdue.edu/cstech/1647

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4971701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ENABLING AUTONOMIC ADAPTION OF
VIRTUAL COMPUTATIONAL ENVIRONMENTS

IN A SHARED DISTRIBUTED INFRASTRUCTURE

Paul Ruth
Junghwan Rhee

Dongyan Xu
Rick Kennel1

Sebastien Goasguen

CSD TR #06-004
January 2006

ENABLING AUTONOMIC ADAPTION OF
VIRTUAL COMPUTATIONAL ENVIRONMENTS

IN A SHARED DISTRIBUTED INFRASTRUCTURE

Paul Ruth
Junghwan Rhee

Dongyan Xu
Rick Kennell

Sebastien Goasguen

CSD TR #06-004
January 2006

Enabling Autonomic Adaptation of Virtual Computational Environments in a
Shared Distributed Infrastructure

Paul Ruth, Junghwan Rhee, Dongyan Xu, Rick Kennell, Sebastien Goasguen
Department of Computer Science and ITaP

Purdue University
West Lafayette, IN 47907, USA

{ruth, rhee, dxu) @cs.purdue.edu, {linux, sebgoa) @purdue.edu

1 Abstract

A shared distributed infrastructure is formed by federating
computation resources from multiple domains. Such a shared
infrastructure provides aggregated computation resources to
a large number of users. Meanwhile, virtualization tech-
nologies, at machine and network levels, are maturing and
enabling mutually isolated virtual computation environments
for executing arbitrary parallel/distributed applications on
top of such a shared physical infrastructure. In this paper,
we take one step further by supporting autonomic adaptation
of virtual computation environments as active. integrated
entities. More specifically, driven by both dynamic avail-
ability of infrastructure resources and dynamic application
resource demand, a virtual computation environment is able
to automatically re-locate itself across the infrastructure and
scale its share of infrastructural resources. Such autonomic
adaptation is transparent to both users of virtual environ-
ments and administrators of infrastructures, maintaining the
look-and-feel of a stable, dedicated environment for the user.
We present the design, implementation, and evaluation of
a middleware system that enables autonomic adaptation of
virtual computation environments in a shared multi-domain
infrastructure. A autonomic adaptive virtual computation
environment, called a VIOLIN, is composed of a virtual
network of virtual machines capable of live migration across
a r?zulti-dornain plz)x'cal infrastructure. To the best of our
knowledge, this is the first demonstration of such capability
using real-world parallel applications. Experimental results
based on our real-world system deployment show improved
performance of off-the-shelf scientific applications running
inside autonomic adaptive VIOLINS.

of users. Meanwhile, virtual machine technology [I , 5, 2 11
has been increasingly adopted on top of such a shared
physical infrastructures [6] achieving an elevated level of
customizability, mutual isolation, and administrator privilege
for users running their applications inside individual virtual
machines.

Going beyond individual virtual machines, we, in our pre-
vious work, proposed techniques for the creation of virtual
distributed computation environments [I 0, 15, 161 on top of a
shared distributed infrastructure. A virtual computation envi-
ronment, called a VIOLIN, is composed of virtual machines
connected by a virtual network, providing a layer separating
the ownership, configuration, and administration of the VI-
OLIN from those of the underlying infrastructure. Mutually
isolated VIOLINS can be created for different users as "their
own" private distributed computation environments bearing
the same look-and-feel of customized physical environments
with administrative privilege (e.g., their own private cluster).
Within the VIOLINI the user is able to execute and interact
with unmodified parallel/distributed application: with strong
confinement of negative impacts by, possibly, untrusted
applications. . .

The all-software virtualization of distributed computation
environments brings the following unique opportunity to
advance the possibilities enabled by autonomic systems [14,
22: 191: it is possible to realize virtual computation envi-
ronments as integrated, autonomic entities that dynamically
adapt and re-locate themselves for better performance of the
applications running inside. Note that such "on the fly"
autonomic adaptation is not possible in a purely physical
system. The autonomic adaptation of virtual computation
environment is driven by two main factors: (I) dynamic:
heterogeneous availability of infrastructure resources and (2)

2 Introduction dynamic resource needs of the applications running inside
the VIOLINS. Dynamic resource availability may cause a

We have seen the emergence of shared distributed infras- VIOLIN to re-locate its virtual machines to more resource-
tructures that federate, allocate, and manage heterogeneous sufficient (e.g., CPU and memory) physical hosts when
resources across multiple network domains, the most notable the current physical hosts experience increased workload,
examples being PlanetLab [2] and the Grid [8, 9, 71. The while dynamic applications may require different amounts
growth of these infrastructures has led to the availability of of resources during its execution causing the VIOLIN dy-
unprecedented computational power to a large community namically adjusts its resource capacity to "catch up with"

Enabling Autonomic Adaptation of Virtual Computational Environments in a
Shared Distributed Infrastructure

Paul Ruth, Junghwan Rhee, Dongyan Xu, Rick Kennell, Sebastien Goasguen
Department of Computer Science and ITaP

Purdue University
West Lafayette, IN 47907, USA

{ruth, rhee, dxu}@cs.purdue.edu, {linux, sebgoa}@purdue.edu

1 Abstract

A shared distributed infrastructure is formed by federating
computation resources from multiple domains. Such a shared
infrastructure provides aggregated computation resources to
a large number of users. Meanwhile, virtualization tech­
nologies, at machine and network levels, are maturing and
enabling mutually isolated virtual computation environments
for executing arbitrary parallel/distributed applications on
top of such a shared physical infrastructure. In this paper,
we take one step further by supporting autonomic adaptatioll
of virtual computation environments as active. integrated
entities. More specifically, driven by both dynamic avail­
ability of infrastructure resources and dynamic application
resource demand, a virtual computation environment is able
to automatically re-Iocate itself across the infrastructure and
scale its share of infrastructural resources. Such autonomic
adaptation is transparent to both users of virtual environ­
ments and administrators of infrastructures, maintaining the
look-and-feel of a stable, dedicated environment for the user.
We present the design, implementation, and evaluation of
a middleware system that enables autonomic adaptation of
virtual computation environments in a shared multi-domain
infrastructure. A autonomic adaptive virtual computation
environment, called a VIOLIN, is composed of a virtual
network of virtual machines capable of live migration across
a multi-domain physical infrastructure. To the best of our
knowledge, this is the first demonstration of such capability
using real-world parallel applications. Experimental results
based on our real-world system deployment show improved
performance of off-the-shelf scientific applications running
inside autonomic adaptive VIOLINs.

2 Introduction

We have seen the emergence of shared distributed infras­
tructures that federate, allocate, and manage heterogeneous
resources across multiple network domains, the most notable
examples being PlanetLab [2] and the Grid [8, 9, 7]. The
growth of these infrastructures has led to the availability of
unprecedented computational power to a large community

of users. Meanwhile, virtual machine technology [I, 5, 21]
has been increasingly adopted on top of such a shared
physical infrastructures [6] achieving an elevated level of
customizability, mutual isolation, and administrator privilege
for users running their applications inside individual virtual
machines.

Going beyond individual virtual machines, we, in our pre­
vious work, proposed techniques for the creation of vil1ual
distributed computation environments [10, 15, 16] on top of a
shared distributed infrastructure. A virtual computation envi­
ronment, called a VIOLIN, is composed of virtual machines
connected by a virtual network, providing a layer separating
the ownership, configuration, and administration of the VI­
OLIN from those of the underlying infrastructure. Mutually
isolated VIOLINs can be created for different users as "their
own" private distributed computation environments bearing
the same look-and-feel of customized physical environments
with administrative privilege (e.g., their own private cluster).
Within the VIOLIN, the user is able to execute and interact
with unmodified parallel/distributed application, with strong
confinement of negative impacts by, possibly, untrusted
applications.

The all-software virtualization of distributed computation
environments brings the following unique opportunity to
advance the possibilities enabled by autonomic systems [14,
22, 19]: it is possible to realize virtual computation envi­
ronments as integrated, autonomic entities that dynamically
adapt and re-Iocate themselves for better performance of the
applications running inside. Note that such "on the fly"
autonomic adaptation is not possible in a purely physical
system. The autonomic adaptation of virtual computation
environment is driven by two main factors: (I) dynamic,
heterogeneous availability of infrastructure resources and (2)
dynamic resource needs of the applications running inside
the VIOLINs. Dynamic resource availability may cause a
VIOLIN to re-locate its virtual machines to more resource­
sufficient (e.g., CPU and memory) physical hosts when
the current physical hosts experience increased workload,
while dynamic applications may require different amounts
of resources during its execution causing the VIOLIN dy­
namically adjusts its resource capacity to "catch up with"

the needs of the dynamic application. Furthermore, the
autonomic adaptation (including re-location) of the virtual
computation environment is traizspareiit to the application
and the user, giving the latter the illusion of a stable, well-
provisioned, private, networked runtime environment.

To realize the vision of autonomic adaptive virtual compu-
tation environments in a multi-domain physical infrastructure
we address the following challenges:

The first challenge is to provide the mechanisms for
application-transparent virtual environment adaptation. In
order to provide a consistent environment, adaptation must
occur without effecting the application or the user. Work
has be done to enable resource reallocation and migration
within a local-area network [4] and many migration features
are provided by the most current machine virtualization
platforms. We still need to answer the question: how can we
migrate virtual machines across a wide-area network without
effecting the application? The solution must keep the virtual
machine alive throughout the migration. Computation must
continue and network connections must remain open. The
necessary wide-area migration facility requires two feature
not yet provided by current virtualization techniques. First,
virtual machines need to retain the same IP address and re-
main accessible though the network despite physical routers
not knowing where they were migrated. Second, wide-area
migration cannot rely on NFS to maintain a consistent view
of the large virtual machine images file. These files must
be quickly be transfered across the relatively slow wide-area
network. Current solutions, clearly, are not be adequate for
wide-area use.

The second challenge is defining allocatioil policies: The
ideal static allocation of shared resources considers the avail-
able resources and requested resources to finds the optimal
allocation. However, autonomic environments must have
the intelligence to scale resource allocations without user
intervention. How do we know when a virtual machine needs
more CPU? Which virtual machine should be migrated. if
a host can no longer support the memory demands of its
guests? If a virtual machine must be migrated where should
it go? We must consider that the best destination could either
be the one to which we can quickly migrate or one with a
long migration time but more adequate resources.

The main contribution of this paper is VIOLIN [15]
enabled autonomic virtual coinputatioii eizvironmei~ts that
can be deployed over a wide-area shared infrastructures.
These environments retain the customization and isolation
properties of existing statically deployed VIOLINs, however,
they have the added ability to autonomically adapt resource
allocation driven by the dynamic needs of their applications
without the application's knowledge. The environment, as
well as the applications within the environment, will appear
to be unchanged, except for its performance, even though
it may have been migrated to distant host domain. In this
way we can make efficient use of the available resources
while giving the appearance of more powerful machines than
actually exist. A autonomic adaptive virtual computation
environment is composed of a virtual network of virtual

machines capable of live migration across a multi-domain
physical infrastructure.

We have built a prototype system using Xen [l] vir-
tual machines and have deployed it over the NanoHub
(www.nanohub.org) infrastructure. The performance evalua-
tion shows that we are able to provide increased performance
to several concurrently running virtual environments. To
the best of our knowledge, this is the first demonstration
of a autonomic adaptive virtual computation environment,
using live application transparent migration with real-world
parallel applications.

The remainder of the paper is organized as follows:
Section 2 describes the design of VIOLIN autonomic virtual
environments, Section 3 presents the real-world deployment:
Section 4 describes the experiments and presents perfor-
mance results: Section 5 compares shows related works, and
Section 6 presents the paper's conclusions.

3 Autonomic Virtual Environments

We have designed VIOLIN autonomic virtual eiiviron-
inents to address the dynamic needs of multi-domain shared
infrastructures and their users. As in any multi-domain
shared infrastructure, host domains participate by contribut-
ing varying numbers of heterogenous machines. However,
unlike traditional shared infrastructures, the user's applica-
tions do not directly run on the host machines. Instead,
each user is presented with an isolated autonomic virtual
computation environment of virtual machines connected to
an isolated virtual network overlay. A-om the user's point
of view, the virtual computation environments are a static
private subnet of machines dedicated to that user and are
unaware of which hosts their virtual machines reside on.
On the other hand, the infrastructure sees the environments
as dynamic entities that can flow through the infrastructure
being assigned as much or as little resources as needed.

Figure 1 shows an example shared infrastructure support-
ing multiple VIOLIN environments. The figure depicts two
VIOLINs sharing a small wide-area infrastructure composed
of machines from three independent domains. The users
of VIOLINs A and B are unaware of each other or that
they may be using the same physical hosts. The example
depicts actions taken to counter the user of B initiating a
CPU intensive executable on a virtual machine being shared
with a virtual machine from VIOLIN A. If there were
enough resources available: the virtual machine's local CPU
allocation could be increased. However, in this case there
is another virtual machine sharing the host and there isn't
enough available CPU. One of the two machines on the host
must be moved. In this case: VIOLIN A's virtual machine is
migrated to a suitable host in another domain remedying the
situation.

The key feature of VIOLIN autonomic vit-tual eilviroii-
inents is dynamic live resource scaling and migration dur-
ing application runtime. Over time, the properties of the
virtual environments and the underlying infrastructure will
change. Host machines may be added or removed. Virtual

the needs of the dynamic application. Furthermore, the
autonomic adaptation (including re-location) of the virtual
computation environment is transparent to the application
and the user, giving the latter the illusion of a stable, well­
provisioned, private, networked runtime environment.

To realize the vision of autonomic adaptive virtual compu­
tation environments in a multi-domain physical infrastructure
we address the following challenges:

The first challenge is to provide the mechanisms for
application-transparent virtual environment adaptation. In
order to provide a consistent environment, adaptation must
occur without effecting the application or the user. Work
has be done to enable resource reallocation and migration
within a local-area network [4] and many migration features
are provided by the most current machine virtualization
platforms. We still need to answer the question: how can we
migrate virtual machines across a wide-area network without
effecting the application? The solution must keep the virtual
machine alive throughout the migration. Computation must
continue and network connections must remain open. The
necessary wide-area migration facility requires two feature
not yet provided by current virtualization techniques. First,
virtual machines need to retain the same IF address and re­
main accessible though the network despite physical routers
not knowing where they were migrated. Second, wide-area
migration cannot rely on NFS to maintain a consistent view
of the large virtual machine images file. These files must
be quickly be transfered across the relatively slow wide-area
network. Current solutions, clearly, are not be adequate for
wide-area use.

The second challenge is defining allocation policies: The
ideal static allocation of shared resources considers the avail­
able resources and requested resources to finds the optimal
allocation. However, autonomic environments must have
the intelligence to scale resource allocations without user
intervention. How do we know when a virtual machine needs
more CPU? Which virtual machine should be migrated, if
a host can no longer support the memory demands of its
guests? If a virtual machine must be migrated where should
it go? We must consider that the best destination could either
be the one to which we can quickly migrate or one with a
long migration time but more adequate resources.

The main contribution of this paper is VIOLIN [15]
enabled autonomic virtual computation environments that
can be deployed over a wide-area shared infrastructures.
These environments retain the customization and isolation
properties of existing statically deployed VIOLINs, however,
they have the added ability to autonomically adapt resource
allocation driven by the dynamic needs of their applications
without the application's knowledge. The environment, as
well as the applications within the environment, will appear
to be unchanged, except for its performance, even though
it may have been migrated to distant host domain. In this
way we can make efficient use of the available resources
while giving the appearance of more powerful machines than
actually exist. A autonomic adaptive virtual computation
environment is composed of a virtual network of virtual

2

machines capable of live migration across a multi-domain
physical infrastructure.

We have built a prototype system using Xen [I] vir­
tual machines and have deployed it over the NanoHub
(www.nanohub.org) infrastructure. The performance evalua­
tion shows that we are able to provide increased performance
to several concurrently running virtual environments. To
the best of our knowledge, this is the first demonstration
of a autonomic adaptive virtual computation environment,
using live application transparent migration with real-world
parallel applications.

The remainder of the paper is organized as follows:
Section 2 describes the design of VIOLIN autonomic virtual
environments, Section 3 presents the real-world deployment,
Section 4 describes the experiments and presents perfor­
mance results, Section 5 compares shows related works, and
Section 6 presents the paper's conclusions.

3 Autonomic Virtual Environments

We have designed VIOLIN autonomic virtual environ­
ments to address the dynamic needs of multi-domain shared
infrastructures and their users. As in any multi-domain
shared infrastructure, host domains participate by contribut­
ing varying numbers of heterogenous machines. However,
unlike traditional shared infrastructures, the user's applica­
tions do not directly run on the host machines. Instead,
each user is presented with an isolated autonomic virtual
computation environment of virtual machines connected to
an isolated virtual network overlay. From the user's point
of view, the virtual computation environments are a static
private subnet of machines dedicated to that user and are
unaware of which hosts their virtual machines reside on.
On the other hand, the infrastructure sees the environments
as dynamic entities that can flow through the infrastructure
being assigned as much or as little resources as needed.

Figure I shows an example shared infrastructure support­
ing multiple VIOLIN environments. The figure depicts two
VIOLINs sharing a small wide-area infrastructure composed
of machines from three independent domains. The users
of VIOLINs A and B are unaware of each other or that
they may be using the same physical hosts. The example
depicts actions taken to counter the user of B initiating a
CPU intensive executable on a virtual machine being shared
with a virtual machine from VIOLIN A. If there were
enough resources available, the virtual machine's local CPU
allocation could be increased. However, in this case there
is another virtual machine sharing the host and there isn't
enough available CPU. One of the two machines on the host
must be moved. In this case, VIOLIN A's virtual machine is
migrated to a suitable host in another domain remedying the
situation.

The key feature of VIOLIN autonomic virtual environ­
ments is dynamic live resource scaling and migration dur­
ing application runtime. Over time, the properties of the
virtual environments and the underlying infrastructure will
change. Host machines may be added or removed. Virtual

Figure 1. VIOLIN environments sharing a multi-domain infrastructure. Virtual machines can migrate
between domains to maintain sufficient resources for their changing applications.

environments may be created, destroyed, or left idle; and the environments use both memory ballooning and weighted
applications that they host may experiencedrastic changes in CPU scheduling to achieve fine-grain control over per node
resource needs. resource multiplexing. While a virtual machine is running,

The components of the VIOLIN autonomic virtual com- the adaptation manager, through the monitor daemon, can
putation environment system are: modify the memory footprint and percentage of CPU allo-

Enabling Mechanisms: The enabling virtualization-
based mechanisms include the VIOLIN virtual environ-
ments as well as the monitor daemon running on the
host infrastructure. The VIOLIN environments provide
an interface to the user and applications, while the
monitor daemons know the CPU power and memory
available on each node and have the ability to query
the local virtual machine rnonitor (VMM) for resource
availability and utilization levels. In addition. the
monitors can manipulate the allocation of resource to
local guest machines.

Adaptation Manager: The adaptation manager uses
the mor~itordaernons to form a global system-view of all
host resources available as well as the utilization level
of any allocated resources. With this information the
adaptation manager can dictate resource re-allocation
including fine-grain per-node CPU and memory ad-
justments as well as coarse-grain migration of virtual
machines or whole virtual environments without any
user or administrator involvement.

The remainder of this section describes these components.

3.1 Enabling Mechanisms

The enabling mechanism for autonomic virtual compu-
tation domain is the daemon residing on each host that
have the capabilities to monitor local resource availability
and utilization, as well ast manipulate the portion of local
resource allocated to each hosted virtual machine.

Local Adaptation Mechanism. The inorzitor daemons
act as an intermediate through which the adaptation man-
ager can control all virtual machines. VIOLIN autonomic

cated.

Both VMware [21] and Xen [I] allow for memory bal-
looning which allows for dynamic reallocation of memory
to virtual machines. In effect, the VMM can change the
amount of memory allocated to each virtual machine while
the machine is running. Additionally, modern machine
virtualization platforms allow for the weighted CPU schedul-
ing. The use of these advanced schedulers allows for the
adaptation manager assign arbitrary amounts of CPU power
to each individual virtual machine.

Wide-area Adaptation Mechanism The key contriby-
tion of VIOLIN to autonomic environments is the ability to
re-allocate resources to live virtual machines by migrating
them across wide-area networks. Live virtual machine
migration is the transfer of a virtual machine from one host
to another without pausing the virtual machine or check-
pointing the applications running within the virtual machine.
One of the major challenges of live migration is maintaining
any network connections the virtual machine may have
open. Modern machine virtualization mechanisms provide
live virtual machine migration within layer-2 networks [4].
Migration is limited to a layer-2 network because IP packet
routing is not designed to handled mobile IP addresses.
VIOLIN [I51 solves this problem by creating a virtual layer-
2 network that tunnels network traffic end-to-end between
remote virtual machines. The overlay appears to these
machines to be an isolated physical Ethernet LAN though
which migration is possible.

In our autonomic system, each virtual computation envi-
ronment has its own VIOLIN network overlay. As the virtual
machines flow through the infrastructure they will remain
connected to their original virtual network. We are among
the first to provide a system that allows for live wide-area

Two mutually
Isolated VIOLIN
Environments

Physical
infrastructure

Domain

VIOLIN A
VM

Physical
host

Figure 1. VIOLIN environments sharing a multi-domain infrastructure. Virtual machines can migrate
between domains to maintain sufficient resources for their changing applications.

environments may be created, destroyed, or left idle; and the
applications that they host may experience drastic changes in
resource needs.

The components of the VIOLIN autonomic virtual com­
putation environment system are:

• Enabling Mechanisms: The enabling virtualization­
based mechanisms include the VIOLIN virtual environ­
ments as well as the monitor daemon running on the
host infrastructure. The VIOLIN environments provide
an interface to the user and applications, while the
monitor daemons know the CPU power and memory
available on each node and have the ability to query
the local virtual machine monitor (VMM) for resource
availability and utilization levels. In addition. the
monitors can manipulate the allocation of resource to
local guest machines.

• Adaptation Manager: The adaptation manager uses
the monitor daemons to form a global system-view of all
host resources available as well as the utilization level
of any allocated resources. With this information the
adaptation manager can dictate resource re-allocation
including fine-grain per-node CPU and memory ad­
justments as well as coarse-grain migration of virtual
machines or whole virtual environments without any
user or administrator involvement.

The remainder of this section describes these components.

3.1 Enabling Mechanisms

The enabling mechanism for autonomic virtual compu­
tation domain is the daemon residing on each host that
have the capabilities to monitor local resource availability
and utilization, as well as, manipulate the portion of local
resource allocated to each hosted virtual machine.

Local Adaptation Mechanism. The monitor daemons
act as an intermediate through which the adaptation man­
ager can control all virtual machines. VIOLIN autonomic

3

environments use both memory ballooning and weighted
CPU scheduling to achieve fine-grain control over per node
resource multiplexing. While a virtual machine is running,
the adaptation manager, through the monitor daemon, can
modify the memory footprint and percentage of CPU allo­
cated .

Both VMware [21J and Xen [IJ allow for memory bal­
looning which allows for dynamic reallocation of memory
to virtual machines. In effect, the VMM can change the
amount of memory allocated to each virtual machine while
the machine is running. Additionally, modern machine
virtualization platforms allow for the weighted CPU schedul­
ing. The use of these advanced schedulers allows for the
adaptation manager assign arbitrary amounts of CPU power
to each individual virtual machine.

Wide-area Adaptation Mechanism The key contrib.u­
tion of VIOLIN to autonomic environments is the ability to
re-allocate resources to live virtual machines by migrating
them across wide-area networks. Live virtual machine
migration is the transfer of a virtual machine from one host
to another without pausing the virtual machine or check­
pointing the applications running within the virtual machine.
One of the major challenges of live migration is maintaining
any network connections the virtual machine may have
open. Modern machine virtualization mechanisms provide
live virtual machine migration within layer-2 networks [4].
Migration is limited to a layer-2 network because IP packet
routing is not designed to handled mobile IP addresses.
VIOLIN [15J solves this problem by creating a virtual layer­
2 network that tunnels network traffic end-to-end between
remote virtual machines. The overlay appears to these
machines to be an isolated physical Ethernet LAN though
which migration is possible.

In our autonomic system, each virtual computation envi­
ronment has its own VIOLIN network overlay. As the virtual
machines flow through the infrastructure they will remain
connected to their original virtual network. We are among
the first to provide a system that allows for live wide-area

migration of virtual machines without the need to modify
network addresses or use proxies.

3.2 Adaptation Manager

The second major component of dynamic VIOLIN en-
vironments is the adaptatiorz marrager. The adaptatiorz
manager is the intelligent agent, or "puppeteer", acting on
behalf of the users and administrators, making autonomic
reallocation decisions. It is appointed two tasks: to compile
a global system-view of the available resources from the data
collected by the resource monitoring daemons and to use
this data to transparently adapt the assignment resources to
virtual environments without the knowledge of the environ-
ment's application or users.

3.2.1 Infrastructure Resource Monitoring

The adaptatiorz rnanager monitors the complete system
through querying the monitor daemons on each host. Using
the monitors it maintains knowledge of all available nodes
in addition to the demands of applications running within
the VIOLINs. Overtime both the resources available to
the shared infrastructure and the VIOLIN'S utilization of
resources will change. Hosts may be added or removed
and VIOLINs can be created, destroyed, or enter periods of
very high or low CPU. memory, or network usage. In order
for the adaptatiorz nzanager to successfully allocate dynamic
resources to virtual machines it must monitor the availability
and utilization of the allocated resources.

3.2.2 Resource Reallocation Mchanism

Although system monitoring is a responsibility of the
adaptation manager, its key function is to decide how to
allocate and re-allocate resources to best serve the VIOLINs.
Once it has collected the data from the monitors and has
created the global system-view, it knows the resource avail-
ability of each host, the current resource usage of each envi-
ronment, and the current allocation of resources. With this
information the adaptation manager locates environments
with an over or under allocation of resources and can adapt
the allocation to provide better performance or reduce the
allocation to more efficiently use the infrastructure.

3.2.3 Resource Reallocation Policy

The adaptatiorz nzar7ager's re-allocation policy is based
on observed host resource availability and virtual machine
resource utilization. It uses a heuristic that aims to dynam-
ically balance load between all domains within the system,
them between hosts within each domain. We do not attempt
to find the ideal allocation of resources to virtual machines,
but to incrementally increase the performance of the system
while minimizing the number of virtual machine migrations
and the resulting overhead.

Intuitively, the policy assigns a desired resource level for
each virtual machine and attempts to assign that amount of

resources to the virtual machine. If adequate resources can-
not be obtained locally the virtual machine may be migrated
to another host or its whole VIOLIN may be migrated to
another domain.

It may be that there are not enough resources in the
entire infrastructure to supply each virtual machine with
its desired resource level. In this case, we would like to
achieve a weighted balance of load on each domain and
host (more powerful hosts/domains will take on more load).
Conveniently, a weighted balance of load on an under-
utilized system will assure that all (or most) virtual machines
will have been allocated their desired resource level. With
this in mind, our reallocation policy is designed to balance
the load between domains and hosts.

The desired resource level assigned to each virtual ma-
chine is derived from the information the the adaptation
rnanager obtains from the host-level monitors. For each
virtual machine the adaptation rnarzager knows the amount
of CPU, in Floating Point Operations Per Second (FLOPS).
and memory allocated, and the percentage of the allocation
the virtual machine is utilizing. We define a utilization
greater than 75% to be high utili?ation and below 25% to
be low utilization. The desired resource level is defined to
be double the current allocation for high utilization, half the
current allocation for low utilizatiorz, equal to the current
allocation otherwise.

If at anytime a virtual machine is under allocated (i.e. its
desired resource level is greater than its allocated resources)
the adaptation rnarmger triggers the global reallocation algo-
rithm.

Intuitively, the algorithm finds the average load on the
whole infrastructure and attempts to migrate VIOLINs be-
tween domains until each domain has the load as the system
average. Then, within each domain, virtual machines are
migrated until each host has the domains average load. We
define the average systern load as the ratio of the total
amount of desired resources for all virtual machine in the
system to the total amount of resource provided by all hosts
in the system. For each domain, we define the average
donzain load is the ratio of the toti1 amount of desired
resources for all virtual machine in the domain to the total
amount of resources provided by all hosts in the domain.
For each host the load is the ratio of desired resources to
provided resources. To handle multiple types of resources . ..

that comprise these totals, the system declares a weight to be
assigned to each type and the total is the weighted sum.

The algorithm is as follows:

I . Find the average systern load

2 . For each domain, find the average donzairi load. We
want to reduce the load on domains whose average load
is greater than that of the system by migrating of whole
virtual environments to under-loaded domains.

3. Find inter-domain environment migration opportunities.
Rank the domains by average domain load and find
the VIOLIN from the most loaded domain that can

migration of virtual machines without the need to modify
network addresses or use proxies.

3.2 Adaptation Manager

The second major component of dynamic VIOLIN en­
vironments is the adapTation manager. The adapTation
manager is the intelligent agent, or "puppeteer", acting on
behalf of the users and administrators, making autonomic
reallocation decisions. It is appointed two tasks: to compile
a global system-view of the available resources from the data
collected by the resource monitoring daemons and to use
this data to transparently adapt the assignment resources to
virtual environments without the knowledge of the environ­
ment's application or users.

3.2.1 Infrastructure Resource Monitoring

The adapTaTion manager monitors the complete system
through querying the monitor daemons on each host. Using
the monitors it maintains knowledge of all available nodes
in addition to the demands of applications running within
the VIOLINs. Overtime both the resources available to
the shared infrastructure and the VIOLIN's utilization of
resources will change. Hosts may be added or removed
and VIOLINs can be created, destroyed, or enter periods of
very high or low CPU, memory, or network usage. In order
for the adapTaTion manager to successfully allocate dynamic
resources to virtual machines it must monitor the availability
and utilization of the allocated resources.

3.2.2 Resource Reallocation Mchanism

Although system monitoring is a responsibility of the
adaptation manager, its key function is to decide how to
allocate and re-allocate resources to best serve the VIOLINs.
Once it has collected the data from the monitors and has
created the global system-view, it knows the resource avail­
ability of each host, the CUITent resource usage of each envi­
ronment, and the CUlTent allocation of resources. With this
information the adapTation manager locates environments
with an over or under allocation of resources and can adapt
the allocation to provide better performance or reduce the
allocation to more efficiently use the infrastructure.

3.2.3 Resource Reallocation Policy

The adaptation manager's re-allocation policy is based
on observed host resource availability and virtual machine
resource utilization. It uses a heuristic that aims to dynam­
ically balance load between all domains within the system,
them between hosts within each domain. We do not attempt
to find the ideal allocation of resources to virtual machines,
but to incrementally increase the performance of the system
while minimizing the number of virtual machine migrations
and the resulting overhead.

Intuitively, the policy assigns a desired resource level for
each virtual machine and attempts to assign that amount of

4

resources to the virtual machine. If adequate resources can­
not be obtained locally the virtual machine may be migrated
to another host or its whole VIOLIN may be migrated to
another domain.

It may be that there are not enough resources in the
entire infrastructure to supply each virtual machine with
its desired resource level. In this case, we would like to
achieve a weighted balance of load on each domain and
host (more powerful hosts/domains will take on more load).
Conveniently, a weighted balance of load on an under­
utilized system will assure that all (or most) virtual machines
will have been allocated their desired resource level. With
this in mind, our reallocation policy is designed to balance
the load between domains and hosts.

The desired resource level assigned to each virtual ma­
chine is derived from the information the the adaptation
manager obtains from the host-level monitors. For each
virtual machine the adaptation manager knows the amount
of CPU, in Floating Point Operations Per Second (ROPS),
and memory allocated, and the percentage of the allocation
the virtual machine is utilizing. We define a utilization
greater than 75% to be high UTilization and below 25% to
be low utilization. The desired resource level is defined to
be double the cunent allocation for high utilization, half the
cunent allocation for low utilization, equal to the CUITent
allocation otherwise.

If at anytime a virtual machine is under allocated (i.e. its
desired resource level is greater than its allocated resources)
the adaptation manager triggers the global reallocation algo­
rithm.

Intuitively, the algorithm finds the average load on the
whole infrastructure and attempts to migrate VIOLINs be­
tween domains until each domain has the load as the system
average. Then, within each domain, virtual machines are
migrated until each host has the domains average load. We
define the average system load as the ratio of the total
amount of desired resources for all virtual machine in the
system to the total amount of resource provided by all hosts
in the system. For each domain, we define the average
domain load is the ratio of the total amount of desired
resources for all virtual machine in the domain to the total
amount of resources provided by all hosts in the domain.
For each host the load is the ratio of desired resources to
provided resources. To handle multiple types of resources
that comprise these totals, the system declares a weight to be
assigned to each type and the total is the weighted sum.

The algorithm is as follows:

I. Find the average system load

2. For each domain, find the average domain load. We
want to reduce the load on domains whose average load
is greater than that of the system by migrating of whole
virtual environments to under-loaded domains.

3. Find inter-domain environment migration opportunities.
Rank the domains by average domain load and find
the VIOLIN from the most loaded domain that can

be migrated to the least domain, such that that both
domains' average load becomes closer to the average
system load.

4. Repeat steps 2 and 3 until step 3 produced no possible
migrations. At this point, each domain has approxi-
mately the same domain load.

5. For each host. find the host load.

6. Find intra-domain virtual machine migration opportuni-
ties. Rank the hosts by average load and find the virtual
machine with the most demand that can be migrated
from the most loaded to the least loaded host, such that
both host's loads become closer to the average domain
load.

7. Repeat steps 5 and 6 until step 6 produces no possible
migrations. At this point, each host within each domain
has approximately the same host load.

4 Implementation

We have implemented a prototype wide-area djrzalnic
virtual e~zvironment system and have deployed the system
on the NanoHub's (www.nanohub.org) infrastructure. The
NanoHub is an e-science infrastructure for running online
and on-demand Nanotechnology applications. and is our
"living lab". Part of the NanoHub allows students and
researchers the ability to use computational Nanotechnology
applications. including distributed and parallel applications,
through either a web-based GUI or a VNC desktop session.
The unique property of the NanoHub is that the back-end
processing is heavily reliant of virtualization. Users of the
NanoHub may. unknowingly, be using VIOLIN environ-
ments that have the ability to adapt resource allocation to the
changing needs of their applications.

4.1 Deployment Details

Toward a full deployment, we have created several proto-
type autonomic VIOLINS on the NanoHub's infrastructure.

Host Infrastructure. The virtual machines are hosted on
two independent clusters on separate subnets on the Purdue
campus. One cluster is composed of 24 Dell 1750s with
2GB of RAM and two hyper-threaded Pentium 4 processors
running at 3.06 GHzl while the other is 22 Dell 1425s with
2GB of RAM and two hyper-threaded Pentium 4 processors
running at 3.00 GHz. Both clusters support Xen 3.0 virtual
machines and VIOLIN virtual networking.

Environment Configuration. Each environments is
composed of several Xen virtual machines connected with
a VIOLIN network overlay. Environments are composed of
one virtual head node and several virtual compute nodes.
The head node provides an access point to the VIOLIN
environment and, as such, must remain statically located
within its original host domain. However, all compute nodes

are free to move throughout the infrastructure as long as stay
connected to the VIOLIN overlay.

User accounts for all machines are managed by a shared
Lightweight Directory Access Protocol (LDAP) server and
users home directories are mounted to the local NFS server
with the head node acting as a NAT router for the isolated
dynamic compute nodes, giving a consistent system view
from all virtual machines regardless of the physical location
of the virtual machine.

In order to migrate a virtual machine three things must
be transfered to the new host: a snapshot of the root file
system image, a snapshot of the current memory, and the
thread of control. Xen's contribution to live migration is
to very efficiently transfer the memory thread of control. It
performs an iterative process that reduces the amount of time
the virtual machine is unavailable to be almost unnoticeable.

However, Xen does not support the migration of the root
file system image. Xen assumes that the root file system is
available on both the source and destination hosts (usually
through NFS). Wide-area shared infrastructures are com-
posed of independently administered domains which cannot
safely share NFS servers. In order. to perform wide-area
migrations, our prototype uses read-only root images that can
be distributed without needing to be updated. We do this
by putting all system file that need to be written to in tmnpfs
filesystems. Since, t~ i~p fs file systems are resident in memory,
Xen will migrate the files with the memory. Initially, we
thought of this solution as a workaround to be fixed later,
however, our experience is demonstrating that tmpfs can be a
very good solution for many applications. In addition to the
using tlnpfs for system files: users home directories are NFS
mounted through the virtual overlay to the NanoHub server
and do not need to be explicitly transfered.

5 Experiments

In this section we present several experiments that show
the feasibility of VIOLIN environments. First we measure
the overhead of live migration of whole VIOLIN environ-
ments, then we measured increased performance due to au-
tonomic adaptation of several examples of VIOLINs sharing
a multi-domain infrastructure.

For all experiments we use the NanoHub VIOLIN de-
ployment, an adaptation manager employing the algorithm
described in section 3.2.3, and the NEM03D [I21 atomic
particle simulation.

5.1 Migration Overhead

Objective. This experiment aims to find the overhead
of migrating an entire VIOLIN that is actively running a
resource intensive application (individual virtual machine
migration overheads have been studied [4]). The overhead
of live VIOLIN migration includes the execution time lost
due to the temporary down-time of the virtual machines
during migration, the time needed to reconfigure the VIOLIN

be migrated to the least domain, such that that both
domains' average load becomes closer to the average
system load.

4. Repeat steps 2 and 3 until step 3 produced no possible
migrations. At this point, each domain has approxi­
mately the same domain load.

5. For each host, find the host load.

6. Find intra-domain virtual machine migration opportuni­
ties. Rank the hosts by average load and find the virtual
machine with the most demand that can be migrated
from the most loaded to the least loaded host, such that
both host's loads become closer to the average domain
load.

7. Repeat steps 5 and 6 until step 6 produces no possible
migrations. At this point, each host within each domain
has approximately the same host load.

4 Implementation

We have implemented a prototype wide-area dynamic
virtual environment system and have deployed the system
on the NanoHub's (www.nanohub.org) infrastructure. The
NanoHub is an e-science infrastructure for running online
and on-demand Nanotechnology applications, and is our
"living lab". Part of the NanoHub allows students and
researchers the ability to use computational Nanotechnology
applications, including distributed and parallel applications,
through either a web-based GUI or a VNC desktop session.
The unique property of the NanoHub is that the back-end
processing is heavily reliant of virtualization. Users of the
NanoHub may, unknowingly, be using VIOLIN environ­
ments that have the ability to adapt resource allocation to the
changing needs of their applications.

4.1 Deployment Details

Toward a full deployment, we have created several proto­
type autonomic VIOLINs on the NanoHub's infrastructure.

Host Infrastructure. The virtual machines are hosted on
two independent clusters on separate subnets on the Purdue
campus. One cluster is composed of 24 Dell 1750s with
2GB of RAM and two hyper-threaded Pentium 4 processors
running at 3.06 GHz, while the other is 22 Dell 1425s with
2GB of RAM and two hyper-threaded Pentium 4 processors
running at 3.00 GHz. Both clusters support Xen 3.0 virtual
machines and VIOLIN virtual networking.

Environment Configuration. Each environments is
composed of several Xen virtual machines connected with
a VIOLIN network overlay. Environments are composed of
one virtual head node and several virtual compute nodes.
The head node provides an access point to the VIOLIN
environment and, as such, must remain statically located
within its original host domain. However, all compute nodes

5

are free to move throughout the infrastructure as long as stay
connected to the VIOLIN overlay.

User accounts for all machines are managed by a shared
Lightweight Directory Access Protocol (LDAP) server and
users home directories are mounted to the local NFS server
with the head node acting as a NAT router for the isolated
dynamic compute nodes, giving a consistent system view
from all virtual machines regardless of the physical location
of the virtual machine.

In order to migrate a virtual machine three things must
be transfered to the new host: a snapshot of the root file
system image, a snapshot of the current memory, and the
thread of control. Xen's contribution to live migration is
to very efficiently transfer the memory thread of control. It
performs an iterative process that reduces the amount of time
the virtual machine is unavailable to be almost unnoticeable.

However, Xen does not support the migration of the root
file system image. Xen assumes that the root file system is
available on both the source and destination hosts (usually
through NFS). Wide-area shared infrastructures are com­
posed of independently administered domains which cannot
safely share NFS servers. In order, to perform wide-area
migrations, our prototype uses read-only root images that can
be distributed without needing to be updated. We do this
by putting all system file that need to be written to in tmpjs
filesystems. Since, tmpjs file systems are resident in memory,
Xen will migrate the files with the memory. Initially, we
thought of this solution as a workaround to be fixed later,
however, our experience is demonstrating that tmpjs can be a
very good solution for many applications. In addition to the
using tmpjs for system files, users home directories are NFS
mounted through the virtual overlay to the NanoHub server
and do not need to be explicitly transfered.

5 Experiments

In this section we present several experiments that show
the feasibility of VIOLIN environments. First we measure
the overhead of live migration of whole VIOLIN environ­
ments, then we measured increased performance due to au­
tonomic adaptation of several examples of VIOLINs sharing
a multi-domain infrastructure.

For all experiments we use the NanoHub VIOLIN de­
ployment, an adaptation manager employing the algorithm
described in section 3.2.3, and the NEM03D [12] atomic
particle simulation.

5.1 Migration Overhead

Objective. This experiment aims to find the overhead
of migrating an entire VIOLIN that is actively running a
resource intensive application (individual virtual machine
migration overheads have been stud ied [4]). The overhead
of live VIOLIN migration includes the execution time lost
due to the temporary down-time of the virtual machines
during migration, the time needed to reconfigure the VIOLIN

Figure 2. Migration overhead caused by live
migration of entire VIOLIN virtual environ-

Wnh Aaapmllm

- omom.,

1. lnltially VIOLIN

1.1.3 m cornpumg.

z Aner VIOLIN 1

belme ?dg)mI~m

aH 3. Aner aaaptaum

m~ ~ ~ 5 m e r v D m

i 3 are rmlshed

ments that are actively executing the parallel
application NEM03D Figure 3. Workload Adaptation Example 1:

Time-line of VIOLIN'S progress.

overlay, and any lingering effects such as network slowdown
caused by packet loss and the resulting TCP back-off.

Configuration. We used a VIOLIN composed of four
virtual machines. We executed NEM03D with several
different problems sizes (1 18 Million Particles, 114 Million
Particles, 112 Million Particles. 1 Million Particles). For
each problem size we recorded the execution time with and
without migrating the VIOLIN. During the no-migration
runs, the application was allowed to run unimpeded. During
each run involving migration. all four virtual machines are
simultaneously migrated live across the network to destina-
tion hosts configured identically to the source hosts. In order
to stress the system and find the worst overhead possible, we
chose the migration to occur at the most resource intensive
period of the application's execution. While the tests where
occurring there was no background load any of the hosts
involved, however the network is shared by many users and
had some amount of unavoidable load. In addition, both CPU
and memory are sufficiently provided to all virtual machines.

Results. Figure 2 shows the results. We found that,
regardless of problem size, the runtime of the application was
increased by approximately 20 seconds (ranging from 17-25)
when the VIOLIN was migrated.

Discussion. One goal of adaptive VIOLIN environments
is that there should be little or no effect on the applications
due to adaptation. We observed approximately a 20 second
penalty imposed on a four node VIOLIN migrating across
a campus while running NEM03D. A 20 second penalty
would seem impossible considering Xen virtual machine
migration requires the transfer of the entire memory footprint
(approximately 800MB per virtual machine for the 1 Million
particle NEM03D). However, Xen's live migration facility
hides the migration latency by continuing to run the virtual
machine on the source host while the bulk of the memory
is transfered. We didn't measure the actual down-time of
our viltual machines, however, Xen migration of a virtual
machine with 800MB of memory was found to have a 165ms
down-time when migrating on a LAN 141. The significant
effects on application performance are not the migration it-

self but the time to re-establish the VIOLIN network overlay
and the additional time the application is running on the
inadequate resources of the original hosts. This experiment
shows that penalty for migrating a VIOLIN environment is
relatively small and does not increase with increased virtual
machine size.

5.2 Workload Adaptation Example 1

Objective. The purpose of this experiment is to demon-
strate the effectiveness of the adaptatioil i?zailager and to
show how small amounts of autonomic adaptation can lead
to better performance of all VIOLIN environments sharing
an infrastructure.

Configuration We created five VIOLIN environments:
each of which is used to run the NEM03D application.
Each VIOLIN initiates its application at a different time
with different input problem sizes (emulating independent
VIOLINs used by different users). The shared infrastructure
is comprised of two host domains. Domain I has 6 physical
nodes while domain 2 has 4 physical nodes. The two
domains are on separate sub-nets within Purdue's campus.
We do not yet have administrative privileges on any machines
outside of Purdue's campus that can be used for these exper-
iments, therefore we cannot experiment with truly wide-area
infrastructures. However, the two domains that we are using
are on separate sub-nets confirming wide-area migration is
possible.

The experiments compares the run-times of the NEM03D
applications within each VIOLIN with and without auto-
nomic resource re-allocation enabled. With re-allocation
enabled some virtual machines of the VIOLINs will be
migrated in accordance with the adaptatioil manager's al-
gorithm in order to balance the load and increase the perfor-
mance of all applications.

Results. Figure 3 is a time-line showing where each
virtual environment was located at key moments. Figure 4
shows recorded runtime comparisons with and without adap-

Figure 3. Workload Adaptation Example 1:
Time-line of VIOLIN's progress.

With Adaptation

[;ij
0oma" , mOom.." ~:::::; OW",,,

1. Initially ViOliN

1,2,3an!'computFtg.

[;ijEEJ
2. An., VIOLIN ,

Isfinls!led,

before adaptalion

Without Adaptation

Domain 1 Doma~ 2

~m
ImEEJ

~ gmjEEJ [g~3An.,a~p~'M

lim. ~a4:n:~::~:'<d

EEEm mam5"~:'~~~:':<d

400 - - - - - - - - - - - - - - - .. - _.

200

J.2(X) ,------,--------.---,-----=::::r=",-----,

800

• Runlimo:
1.000 ... O ..RUDlimc .oliler mi~[iui.on ..

NEM03D pmhlcm Si7_C

Figure 2. Migration overhead caused by live
migration of entire VIOLIN virtual environ­
ments that are actively executing the parallel
application NEM03D

~ 600
i=

overlay, and any lingering effects such as network slowdown
caused by packet loss and the resulting TCP back-off.

Configuration. We used a VIOLIN composed of four
virtual machines. We executed NEM03D with several
different problems sizes (1/8 Million Particles, 1/4 Million
Particles, 1/2 Million Particles, I Million Particles). For
each problem size we recorded the execution time with and
without migrating the VIOLIN. During the no-migration
runs, the application was allowed to run unimpeded. During
each run involving migration, all four virtual machines are
simultaneously migrated live across the network to destina­
tion hosts configured identically to the source hosts. In order
to stress the system and find the worst overhead possible, we
chose the migration to occur at the most resource intensive
period of the application's execution. While the tests where
occurring there was no background load any of the hosts
involved, however the network is shared by many users and
had some amount of unavoidable load. In addition, both CPU
and memory are sufficiently provided to all virtual machines.

Results. Figure 2 shows the results. We found that,
regardless of problem size, the runtime of the application was
increased by approximately 20 seconds (ranging from 17-25)
when the VIOLIN was migrated.

Discussion. One goal of adaptive VIOLIN environments
is that there should be little or no effect on the applications
due to adaptation. We observed approximately a 20 second
penalty imposed on a four node VIOLIN migrating across
a campus while running NEM03D. A 20 second penalty
would seem impossible considering Xen virtual machine
migration requires the transfer of the entire memory footprint
(approximately 800MB per virtual machine for the I Million
particle NEM03D). However, Xen's live migration facility
hides the migration latency by continuing to run the virtual
machine on the source host while the bulk of the memory
is transfered. We didn't measure the actual down-time of
our viItual machines, however, Xen migration of a virtual
machine with 800MB of memory was found to have a 165ms
down-time when migrating on a LAN [4]. The significant
effects on application performance are not the migration it-

self but the time to re-establish the VIOLIN network overlay
and the additional time the application is running on the
inadequate resources of the original hosts. This experiment
shows that penalty for migrating a VIOLIN environment is
relatively small and does not increase with increased virtual
machine size.

5.2 Workload Adaptation Example 1

Objective. The purpose of this experiment is to demon­
strate the effectiveness of the adaptation manager and to
show how small amounts of autonomic adaptation can lead
to better performance of all VIOLIN environments sharing
an infrastructure.

Configuration We created five VIOLIN environments,
each of which is used to run the NEM03D application.
Each VIOLIN initiates its application at a different time
with different input problem sizes (emulating independent
VIOLINs used by different users). The shared infrastructure
is comprised of two host domains. Domain J has 6 physical
nodes while domain 2 has 4 physical nodes. The two
domains are on separate sub-nets within Purdue's campus.
We do not yet have administrative privileges on any machines
outside of Purdue's campus that can be used for these exper­
iments, therefore we cannot experiment with truly wide-area
infrastructures. However, the two domains that we are using
are on separate sub-nets confirming wide-area migration is
possible.

The experiments compares the run-times of the NEM03D
applications within each VIOLIN with and without auto­
nomic resource re-allocation enabled. With re-allocation
enabled some virtual machines of the VIOLINs will be
migrated in accordance with the adaptation manager's al­
gorithm in order to balance the load and increase the perfor­
mance of all applications.

Results. Figure 3 is a time-line showing where each
virtual environment was located at key moments. Figure 4
shows recorded runtime comparisons with and without adap-

6

.r.cnn)

?.Sin)

3.ocn)

2.500 -
8 2.1xx)
F

1.5rn)

I .MX)

SIX)

0

Without Adaptation With Adap

D m a h 1

1. lnlUallyVlOLlN

1,2. 3 ,4 are complting.

2. VIOLIN 3 IS nnls))ed.

VIOLIN 1 runs kn CPU

demanding appllcaum.

3. Aner adaptaum

Figure 5. Workload Example 2: Time-line of

Figure 4. Workload Adaptation Example 1: VIOLIN'S progress.

Runtime of applications running within VIO-
LIN environments with and without adaptation
enabled.

tation enabled.
Initially, for both runs, VIOLINs 1,2, and 3 are executing

their applications and have been allocated significant por-
tions of the host domains. Each virtual machine is using
nearly 100% of its alloted CPU. The adaptatio~l nzaiiager
sees the high CPU utilization and tries to allocated additional
CPU for each virtual machine but the CPU load is balanced.

VIOLIN 2 is executing a smaller problem sized and is
running alone on domain 2 so it finishes quickly. When
VIOLIN 2's application finishes it remains on domain 2 but
has nearly no requirements for resources. The adaptation
manager reacts to the low (less that 25%) utilization and
lowers VIOLIN 2's desired resource level. When VIOLIN
2's desired CPU power drops a load imbalance between the
domains occurs. There are 10 virtual machines on domain 1
that desire increases CPU allocation and no virtual machines
on domain 2 that need any CPU allocation. The imbalance,
triggers the migration of VIOLIN 1 to the unallocated re-
sources of domain 2. This adaptation balances the load and
allows the virtual machines of both VIOLINs 1 and 2 to each
be allocated the full resources of a single host. Although both
VIOLIN 1 and 3 have been allocated additional CPU power
they both remain at 100% CPU utilization but there are no
resources for the adaptation manager to give.

It is important to note here that although both remaining
VIOLINs have increased CPU power, VIOLIN 1 was tem-
porally slowed during the migration. VIOLIN 3 with surely
complete its application sooner, but it remains to be seen if
the increased speed seen by VIOLIN 1 can compensate for
the cost of migration.

After some time, VIOLINs 4 and 5 initiate their appli-
cations and require significant resources (I 00% utilization).
We assume that both of these environments are new and must
be created allowing the non-adaptation case to have some
balance in load. Without this allowance, VIOLINs 4 and 5
would have to remain where they were (potentially within
domain 1 creating an even larger advantage for the adaptation
case). In either case. the creation of 4 and 5 causes both
domains to be overloaded, however, the load is balanced.

Next, 1 and 3 finish their applications and no-longer
require significant resources. From figure 4 we see that the
migration of VIOLIN I allows VIOLIN 3 to finish 30%
sooner than it would have otherwise, while 1 finishes in
approximately the same amount of time due to the additional
cost it paid to migrate. Once I and 3 finish, the remaining
VIOLINs (4 and 5) are already balanced in a adaptation
case, while the non-adaptation case they are not. Although
the adaptation algorithm was lucky to create this state, its
luck was not needed because an unbalanced state could have
been corrected through migration unlike the non-adaptation
case's current situation. Both cases continue to run and
the adaptation case completes 4 and 5's applications much
sooner.

The chart in figure 4 show the run-times for the appli-
cations in each VIOLIN. For each VIOLIN the runtime of
the application is reduced by enabling autonomic adaptation.
The last two data points on the chart show the average
time and overall time performance of the system. The
average time is the average run-time for all VIOLINs. This
gives us a measure of the perfolmance seen by each of the
environments. In this example. adaptation saved on average
39% of execution time, correlating to a 39% average increase
in performance seen by the environments. The overall
time is the time from the execution of the first application
until the completion last application (overall time is much
less than average time because the applications are running
in parallel). The overall time gives us a measure of the
efficiency of resource use. We see a 34% reduction in overall
time with adaptation.

Discussion. Observe that during this experiment nearly
all of the VIOLINs benefit from adaptation even though only
one was migrated. It is important to realize that a small
amount of adaptation can lead to large increases in both
virtual environment performance and system efficiency. In
addition, algorithms, such as ours, that aim to balance load
while minimizing the cost of migration can have great effects
on the performance of the system without needing to find
and implement the ideal allocation of resources to virtual
machines.

Figure 4. Workload Adaptation Example 1:
Runtime of applications running within VIO­
LIN environments with and without adaptation
enabled.

Figure 5. Workload Example 2: Time-line of
VIOLIN's progress.

With Adaptation • VIm '" I 0 VIOLIN]

Domain 1 Domain 2 II VlOll" 1 0 VlOlllU

~~ 1.lnltlallyVIOLIN

~~ 1, 2,3,4are computing.

g;l 2_VIOLlN3ISnn~hed_
VIOLIN 1 runs less CPU

demanding application.

.ol.O()O

3.500

3.(){~)

2.500

2.000
i=

1.500

I.U()()

5{~)

• No AV,lplill;Ol1
·O··At1ill)1:lllon· .

T- l n.-J
--- ---

N '-. " ~- .§Z Z Z Z Z -::; ::; ::; ::; ::;
0 0 0 0 0 ~ "6;;- ;;- ;;- ;;- ;;- E

~ C<:

Without Adaptation

Domain 1 Domain 2

••~g.

gll.~3'Anera~pmtloo

tation enabled.
Initially, for both runs, VIOLINs 1,2, and 3 are executing

their applications and have been allocated significant por­
tions of the host domains. Each virtual machine is using
nearly 100% of its alloted CPU. The adaptation manager
sees the high CPU utilization and tries to allocated additional
CPU for each virtual machine but the CPU load is balanced.

VIOLIN 2 is executing a smaller problem sized and is
running alone on domain 2 so it finishes quickly. When
VIOLIN 2's application finishes it remains on domain 2 but
has nearly no requirements for resources. The adaptation
manager reacts to the low (less that 25%) utilization and
lowers VIOLIN 2's desired resource level. When VIOLIN
2's desired CPU power drops a load imbalance between the
domains occurs. There are 10 virtual machines on domain I
that desire increases CPU allocation and no virtual machines
on domain 2 that need any CPU allocation. The imbalance,
triggers the migration of VIOLIN I to the unallocated re­
sources of domain 2. This adaptation balances the load and
allows the virtual machines of both VIOLINs I and 2 to each
be allocated the full resources of a single host. Although both
VIOLIN I and 3 have been allocated additional CPU power
they both remain at 100% CPU utilization but there are no
resources for the adaptation manager to give.

It is important to note here that although both remaining
VIOLINs have increased CPU power, VIOLIN I was tem­
porally slowed during the migration. VIOLIN 3 with surely
complete its application sooner, but it remains to be seen if
the increased speed seen by VIOLIN I can compensate for
the cost of migration.

After some time, VIOLINs 4 and 5 initiate their appli­
cations and require significant resources (100% utilization).
We assume that both of these environments are new and must
be created allowing the non-adaptation case to have some
balance in load. Without this allowance, VIOLINs 4 and 5
would have to remain where they were (potentially within
domain I creating an even larger advantage for the adaptation
case). In either case, the creation of 4 and 5 causes both
domains to be overloaded, however, the load is balanced.

7

Next, I and 3 finish their applications and no-longer
require significant resources. From figure 4 we see that the
migration of VIOLIN I allows VIOLIN 3 to finish 30%
sooner than it would have otherwise, while I finishes in
approximately the same amount of time due to the additional
cost it paid to migrate. Once land 3 finish, the remaining
VIOLINs (4 and 5) are already balanced in a adaptation
case, while the non-adaptation case they are not. Although
the adaptation algorithm was lucky to create this state, its
luck was not needed because an unbalanced state could have
been corrected through migration unlike the non-adaptation
case's current situation. Both cases continue to run and
the adaptation case completes 4 and 5's applications much
sooner.

The chart in figure 4 show the run-times for the appli­
cations in each VIOLIN. For each VIOLIN the runtime of
the application is reduced by enabling autonomic adaptation.
The last two data points on the chart show the average
time and overall time performance of the system. The
average time is the average run-time for all VIOLINs. This
gives us a measure of the performance seen by each of the
environments. In this example, adaptation saved on average
39% of execution time, correlating to a 39% average increase
in performance seen by the environments. The overall
time is the time from the execution of the first application
until the completion last application (overall time is much
less than average time because the applications are running
in parallel). The overall time gives us a measure of the
efficiency of resource use. We see a 34% reduction in overall
time with adaptation.

Discussion. Observe that during this experiment nearly
all of the VIOLINs benefit from adaptation even though only
one was migrated. It is important to realize that a small
amount of adaptation can lead to large increases in both
virtual environment performance and system efficiency. In
addition, algorithms, such as ours, that aim to balance load
while minimizing the cost of migration can have great effects
on the performance of the system without needing to find
and implement the ideal allocation of resources to virtual
machines.

5.3 Workload Adaptation Example 2

Objective. Whereas the previous example shows the
more typical case where virtual environments are being heav-
ily used or are completely idle, the next example shows how
adaptation can benefit applications that go through periods of
high and low use during a single execution. In this situation,
we create a VIOLIN that initially uses high amounts of CPU
then move to a stage in its application that uses lower but
significant amount of resources.

Configuration. The configuration uses the same host in-
frastructui-e as the previous example, however, the VIOLINS
and their applications have been changed. There are now
4 VIOLINS, all of which execute the NEM03D application
except for VIOLIN I. Environment 1 executes the high
demand NEM03D followed by a less CPU application that
searches the filesystem. VIOLIN 1 simulates a 100% utiliza-
tion followed a lower utilization that stabilizes at or around
50% after the appropriate reduction in CPU allocation.

Results. The time-line in figure 5 and the chart in figure 6
show the resulting run times of the experiment applications
with and without adaptation enabled. Initially, the load is
balanced between the 4 VIOLINS which are running on the
2 domains. After some time, VIOLIN 3 completes its appli-
cation and no longer requires significant resources (its CPU
allocation is slowly reduced to near zero). Next VIOLIN 1
enters its second, less CPU intensive, stage of its execution.
In the new stage VIOLIN 1's demand for resources drops
well below 25% of its allocation. Its drop in CPU allocation
results in load imbalance between the 2 domains forcing the
adaptation manager to migrate VIOLIN 3 to domain 1. The
migration balances the load between domains but causes an
imbalance between the hosts of domain 1. Since it is now
possible for all 6 virtual machines from VIOLIN 1 to be
supported-by only 2 of the available hosts, they are migrated
to the hosts that are not supporting VIOLIN 2.

The results in figure 6 show that environments 1 and 2
execute in approximately the same amount of time while 3
and 4 show significantly decreased runtime. With autonomic
re-allocation enabled, the average tinze and overall tinze show
decreases of 4 1 % and 47% respectively.

Discussion. From this experiment we see that it is
possible to obtain even more performance and efficiency by
combining the fine-grain resource allocating mechanisms of
machine virtualization with the large-grain wide-area migra-
tion mechanism. Here the algorithm was able to identify a
virtual environment that experienced a significant reduction
in resource requirements. By controlling the CPU power
allocated to individual virtual machines of VIOLIN 1, it
was able to open the possibility of migrating VIOLIN 2
increasing the performance seen by all environments.

5.4 Memory Driven Adaptation

Objective. The final adaptation example shows how
the adaptation manager handles multi-stage applications

2.51Kl

2.wn)

.; 1.51Xl -
F- 1.wn1

SIX)

11

Figure 6. Workload Adaptation Example 2:
Runtime of applications running within VIO-
LIN environments with and without adaptation
enabled.

that have dramatically different needs for memory during
different stages of there execution.

Configuration. In this example, the host infrastructure
is limited to 2 domains each of which contain 4 hosts. Wel
again, use NEM03D which has two main stages, the first of
which uses very little memory and the second which uses
a large amount. During the run one of the environments
(VIOLIN 3) doubles its memory usage from 200MB to
400MB when it enters the second phase of its execution.

Results. Figure 7 shows the time-line. Initially, VIOLIN
3 is in the first phase of its application which uses a relatively
low amount of memory (approximately 160MB). At this
point, it has been allocated enough memory (200MB). The
adaptatio~? maizager sees that VIOLIN 3 is using more than
75% of it allocated memory and determines that it should be
increased to 400MB. VIOLIN 3's desire for increased mem-
ory causes an resource allocation to be imbalance forcing the
adaptation nzanager to migrate VIOLIN I to domain 2. This
migration allows for the necessary increase in VIOLIN 3's
memory allocation. When VIOLIN 3's application reaches
its second phase its memory usage increases from 160MB
to 300MB. It has the memory it needs because adaptation
was enabled, without adaptation enabled the application
would have crashed due to lack of available memory. In
addition, when VIOLIN 3's application completes its second
phase it can then return its excess memory allowing a 4th
environment to be created.

Discussion. This example shows how dynamically bal-
ancing load between domains can allow for applications to
allocate memory and run where it is not possible without
adaptation. We recognize that any application can attempt to
allocate an arbitrary amount of memory at any time and that
we cannot predict this without knowledge of the particular
application. For example, if VIOLIN 3's application had
gone from 160MB allocated to IGB we would not have
been able to support its request. The use of virtual memory
and swap partitions would allow any job to continue to run
(although much slower) without enough memory. A current
limitation of our implementation is the lack of migration

5.3 Workload Adaptation Example 2
2.500 ,-----,----,-__..----- -----r--_..------;

Figure 6. Workload Adaptation Example 2:
Runtime of applications running within VIO­
LIN environments with and without adaptation
enabled.

that have dramatically different needs for memory during
different stages of there execution.

Configuration. In this example, the host infrastructure
is limited to 2 domains each of which contain 4 hosts. We,
again, use NEM03D which has two main stages, the first of
which uses very little memory and the second which uses
a large amount. During the run one of the environments
(VIOLIN 3) doubles its memory usage from 200MB to
400MB when it enters the second phase of its execution.

Results. Figure 7 shows the time-line. Initially, VIOLIN
3 is in the first phase of its application which uses a relatively
low amount of memory (approximately 160MB). At this
point, it has been allocated enough memory (200MB). The
adaptation manager sees that VIOLIN 3 is using more than
75% of it allocated memory and determines that it should be
increased to 400MB. VIOLIN 3's desire for increased mem­
ory causes an resource allocation to be imbalance forcing the
adaptation manager to migrate VIOLIN I to domain 2. This
migration allows for the necessary increase in VIOLIN 3's
memory allocation. When VIOLIN 3's application reaches
its second phase its memory usage increases from 160MB
to 300MB. It has the memory it needs because adaptation
was enabled, without adaptation enabled the application
would have crashed due to lack of available memory. In
addition, when VIOLIN 3's application completes its second
phase it can then return its excess memory allowing a 4th
environment to be created.

Discussion. This example shows how dynamically bal­
ancing load between domains can allow for applications to
allocate memory and run where it is not possible without
adaptation. We recognize that any application can attempt to
allocate an arbitrary amount of memory at any time and that
we cannot predict this without knowledge of the particular
application. For example, if VIOLIN 3's application had
gone from j 60MB allocated to j GB we would not have
been able to support its request. The use of virtual memory
and swap partitions would allow any job to continue to run
(although much slower) without enough memory. A current
limitation of our implementation is the lack of migration

... iii' Nl; .~~;II~I;I;i~I~· -- .
o AUOlpl,llion

z
:::;
o;;

z
:::;
o;;

2.0m

SIX)

1.5(Xl

~
f= I.oon

Objective. The final adaptation example shows how
the adaptation manager handles multi-stage applications

5.4 Memory Driven Adaptation

Objective. Whereas the previous example shows the
more typical case where virtual environments are being heav­
ily used or are completely idle, the next example shows how
adaptation can benefit applications that go through periods of
high and low use during a single execution. In this situation,
we create a VIOLIN that initially uses high amounts of CPU
then move to a stage in its application that uses lower but
significant amount of resources.

Configuration. The configuration uses the same host in­
frastructure as the previous example, however, the VIOLINs
and their applications have been changed. There are now
4 VIOLINs, all of which execute the NEM03D application
except for VIOLIN I. Environment I executes the high
demand NEM03D followed by a less CPU application that
searches the filesystem. VIOLIN I simulates a 100% utiliza­
tion followed a lower utilization that stabilizes at or around
50% after the appropriate reduction in CPU allocation.

Results. The time-line in figure 5 and the chart in figure 6
show the resulting run times of the experiment applications
with and without adaptation enabled. Initially, the load is
balanced between the 4 VIOLINs which are running on the
2 domains. After some time, VIOLIN 3 completes its appli­
cation and no longer requires significant resources (its CPU
allocation is slowly reduced to near zero). Next VIOLIN I
enters its second, less CPU intensive, stage of its execution.
In the new stage VIOLIN I's demand for resources drops
well below 25% of its allocation. Its drop in CPU allocation
results in load imbalance between the 2 domains forcing the
adaptation manager to migrate VIOLIN 3 to domain I. The
migration balances the load between domains but causes an
imbalance between the hosts of domain I. Since it is now
possible for all 6 virtual machines from VIOLIN I to be
supported 'by only 2 of the available hosts, they are migrated
to the hosts that are not supporting VIOLIN 2.

The results in figure 6 show that environments I and 2
execute in approximately the same amount of time while 3
and 4 show significantly decreased runtime. With autonomic
re-allocation enabled, the average time and overall time show
decreases of 41 % and 47% respectively.

Discussion. From this experiment we see that it is
possible to obtain even more performance and efficiency by
combining the fine-grain resource allocating mechanisms of
machine virtualization with the large-grain wide-area migra­
tion mechanism. Here the algorithm was able to identify a
virtual environment that experienced a significant reduction
in resource requirements. By controlling the CPU power
allocated to individual virtual machines of VIOLIN I, it
was able to open the possibility of migrating VIOLIN 2
increasing the performance seen by all environments.

8

With Adaptation

Domain 1 Domain 2

1. Initially VlOLlN

1,2, 3 are computing.

2. VlOLlN 1 migrates and

VlOLlN 3 is allocated

additional memory.

3. Nemo3D P phase

started which requires

large memory.

4. VlOLlN 3 finishes Nemo3D

and returns memory.

I 5. hfter VIOLIN 4 is

deployed.

Figure 7. Memory Example: Time-line of VIO-
LIN'S progress.

of updated virtual machine file systems, including swap
partitions. Our future research will include file system mi-
gration which will allow swap partition migration and virtual
memory use allowing us to monitor and adapt memory usage
without any hard limits that can cause application failure.

6 Related Works

Currently, most techniques for federating and managing
wide-area shared computation infrastructures apply meta-
scheduling of dedicated Grid resources like Globus [a],
Condor [20]: and In-Vigo [23]. All of these solutions provide
access to seemingly endless amounts of computational power
without incurring the full cost of ownership. However.
common to all of these systems is that arbitrary jobs cannot
be run unaltered through these systems, jobs are run on nodes
over which the job owner has no control, and allocation of
resources cannot adapt to dynamic changes in application
needs.

In-VIGO is a distributed Grid environment supporting
multiple applications which share resource pools. The In-
VIGO resources are virtual machines. When a job is
submitted, a virtual workspace is created for the job by
assigning existing virtual machines to process it. During the
execution of the job the virtual machines are owned by the
user and the user has access to his or her unique workspace
image through the NFS-based distributed virtual file system.
Provided with In-VIGO is an automatic virtual machine
creation project called VMPlants (131. VMPlants is used
to automatically create custom root file systems to be used
in In-VIGO workspaces. In-Vigo is part of the NanoHub
deployment and can be made to use VIOLIN environments

as a back-end.
Virtual networking is a fundamental part of our work. The

available machine virtualization techniques do not supply
advanced virtual networking facilities. UML, VMware, and
Xen all provide networking services by giving the virtual
machines a real IP address from the host network. Plan-
etLab [2] uses a technique to share a single IP address
among all virtual machines on a host by controlling access
to the ports. These techniques allow virtual machines to
connect to a network but do not create a virtual network.
Among the network virtualization techniques are VIOLIN,
VNET [la] , and SoftUDC [I I] all of which create virtual
network overlays of virtual machines residing on distributed
hosts. The creators of VNET are currently working on
dynamic network resources [I 71.

Cluster-on-Demand (COD) (31 allows dynamic sharing
of resources between multiple clusters. COD reallocates
resources by using remote-boot technologies to reinstall
preconfigured disk images from the network. The disk image
that is installed determines which cluster the nodes will
belong to upon booting. In this way COD can redistribute the
resources of a cluster among several logical clusters sharing
those resources.

7 Conclusion

We have presented the design and implementation of
VIOLIN autonomic virtual computation environments for
multi-domain shared infrastructures. Using VIOLINS, in-
dependently administered virtual computation domains can
flow through the massive amount of computation resources
available through multi-domain shared infrastructures adapt-
ing to the the needs of their applications. We have shown the
design and implementation of the feature of VIOLIN envi-
ronments that allows for wide-area migration of live virtual
machines and the adaptation manager that acts on behalf
of the users and administrators to dynamically control the
allocation of all resources in the shared infrastructure. Our
experiments with our NanoHub deployment of virtual com-
putation environments has shown significant performance
and efficiency increases. With continued advancement of
machine and network virtualization, as well and resource al-
location policies, VIOLIN virtual computation environments
will continue to increase the potential of multi-domain shared
infrastructures.

References

[I] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,
and Andrew Warfield. Xen and the art of virtualization.
In SOSP '03: Proceedings of the Nii~eteeizth ACM
S)~inposiuin on Operating Systems Principles, pages
164-177, New York, NY, USA, 2003. ACM Press.

[2] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Kar-
lin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,

Figure 7. Memory Example: Time-line of VIO­
LIN's progress.

[EBJ.. ~'. 2. VIOLIN 1 migrates and
VIOLIN 3 is allocated

, additional memory.

1. Initially VIOLIN

1, 2, 3 are computing.

as a back-end.
Virtual networking is a fundamental part of our work. The

available machine virtualization techniques do not supply
advanced virtual networking facilities. UML, VMware, and
Xen all provide networking services by giving the virtual
machines a real IF address from the host network. Plan­
etLab [2] uses a technique to share a single IF address
among all virtual machines on a host by controlling access
to the ports. These techniques allow virtual machines to
connect to a network but do not create a virtual network.
Among the network virtualization techniques are VIOLIN,
VNET [18], and SoftUDC [II] all of which create virtual
network overlays of virtual machines residing on distributed
hosts. The creators of VNET are currently working on
dynamic network resources [17].

Cluster-on-Demand (COD) [3] allows dynamic sharing
of resources between multiple clusters. COD reallocates
resources by using remote-boot technologies to reinstall
preconfigured disk images from the network. The disk image
that is installed determines which cluster the nodes will
belong to upon booting. In this way COD can redistribute the
resources of a cluster among several logical clusters sharing
those resources.

o V'OllN3

o VIOLIN'

• V'OllN'

III VIOllH2

4. VIOLIN 3 finishes Nem03D

and returns memory.

3. Nemo3D 2"" phase

started which requires

large memory.

5. After VIOLIN 4 is

deployed.

With Adaptation

Domain 1 Domain 2

of updated virtual machine file systems, including swap
partitions. Our future research will include file system mi­
gration which will allow swap partition migration and virtual
memory use allowing us to monitor and adapt memory usage
without any hard limits that can cause application failure.

6 Related Works

Currently, most techniques for federating and managing
wide-area shared computation infrastructures apply meta­
scheduling of dedicated Grid resources like Globus [8],
Condor [20], and In-Vigo [23]. All of these solutions provide
access to seemingly endless amounts of computational power
without incuning the full cost of ownership. However.
common to all of these systems is that arbitrary jobs cannot
be run unaltered through these systems, jobs are run on nodes
over which the job owner has no control, and allocation of
resources cannot adapt to dynamic changes in application
needs.

In-VIGO is a distributed Grid environment supporting
multiple applications which share resource pools. The In­
VIGO resources are virtual machines. When a job is
submitted, a virtual workspace is created for the job by
assigning existing virtual machines to process it. During the
execution of the job the virtual machines are owned by the
user and the user has access to his or her unique workspace
image through the NFS-based distributed virtual file system.
Provided with In-VIGO is an automatic virtual machine
creation project called VMPlants [13]. VMPlants is used
to automatically create custom root file systems to be used
in In-VIGO workspaces. In-Vigo is part of the NanoHub
deployment and can be made to use VIOLIN environments

7 Conclusion

We have presented the design and implementation of
VIOLIN autonomic virtual computation environments for
multi-domain shared infrastructures. Using VIOLINs, in­
dependently administered virtual computation domains can
flow through the massive amount of computation resources
available through multi-domain shared infrastructures adapt­
ing to the the needs of their applications. We have shown the
design and implementation of the feature of VIOLIN envi­
ronments that allows for wide-area migration of live virtual
machines and the adaptation manager that acts on behalf
of the users and administrators to dynamically control the
allocation of all resources in the shared infrastructure. Our
experiments with our NanoHub deployment of virtual com­
putation environments has shown significant performance
and efficiency increases. With continued advancement of
machine and network virtualization, as well and resource al­
location policies, VIOLIN virtual computation environments
will continue to increase the potential of multi-domain shared
infrastructures.

References

[I] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt,
and Andrew Warfield. Xen and the art of virtualization.
In SOSP '03: Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, pages
164-177, New York, NY, USA, 2003. ACM Press.

[2] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Kar­
lin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,

9

and M. Wawrzoniak. Operating system support for
planetary-scale network services, 2004.

[3] Jeffrey S. Chase, David E. Irwin, Laura E. Grit,
Justin D. Moore, and Sara E. Sprenkle. Dynamic virtual
clusters in a grid site manager. In HPDC '03: Pro-
ceedings of the 12th lEEE lnternatior~al Symposium on
High Pelfonnance Distributed Computing (HPDC'03),
page 90, Washington, DCI USA, 2003. IEEE Computer
Society.

[4] Christopher Clark, Keir Fraser? Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian
Pratt; and Andrew Warfield. Live migration of virtual
machines. In Proceedings of USENlX NSDI, 2005.

[5] Jeff Dike. User-mode port of the linux kernel. In
Proceedings of the USENIX Annual Linux Showcases
and Conference, 2000.

[6] R. Figueiredo, P. Dinda, and J. Fortes. A case for grid
computing on virtual machines, 2003.

[7] I Foster, C Kesselman, J Nick, and S Tuecke. The
physiology of the grid: An open grid services al-chitec-
ture for distributed systems integration. In Open Grid
SenVce lrlfrasrructure WG. Global Grid Forum, 22 June
2002.

[8] I. Foster and C. Kesselmann. Globus: A toolkit-based
grid architecture. The Grid: Blueprints for a New
Con~puring lnfrastrucrure~ pages 259-278, 1999.

[9] Ian Foster, Carl Kesselman, and Steven Tuecke. The
anatomy of the grid: Enabling scalable virtual or-
ganizations. lnternarional Jourrial of Supercomputer
Applications, 15(3), 2001 .

[lo] Xuxian Jiang and Dongyan Xu. Violin: Virtual inter-
networking on overlay infrastructure. Technical report,
Purdue University, 2003.

[I 11 Mahesh Kallahalla, Mustafa Uysal, Ram Swaminathan,
David E. Lowell, Mike Wray, Tom Christian, Nigel
Edwards, Chris I. Dalton, and Frederic Gittler. Softudc:
A software-based data center for utility computing.
lEEE Computer, 37(11):3846,2004.

[I21 Gerhard Klimeck, Fabiano Oyafusot Timothy B.
Boykin: R. Chris Bowen, and Paul von Allmen. Devel-
opment of a nanoelectronic 3-d (nemo 3-d) simulator
for multimillion atom simulations and its application
to alloyed quantum dots. Computer Modeling in En-
gineering and Science (CMES), 3(5):601-642,2002.

[14] H. Liu and M. Parashar. Enabling self-management of
component based high-performance scientific applica-
tions. In Proceedings of the 14th lEEE lnrenzational
Symposium on High Pelfonnance Distributed Compur-
i12g (HPDC 2005).

[I51 Paul Ruth, Xuxian Jiang, Dongyan Xu, and Sebastien
Goasguen. Virtual distributed environments in a shared
infrastructure. lEEE Computer, 38(5):63-69, May
2005.

[I61 Paul Ruth, Phil McGachey, and Dongyan Xu. Vioclus-
ter: Virtualization for dynamic computational domains.
In CLUSTER 2005, September 2005.

[17] A. Sundararaj, A. Gupta, and P. Dinda. Increasing ap-
plication performance in virtual environments through
run-time inference and adaptation. In Proceedings o j
the 14th lEEE Inrernario~zal Symposium on High Per-
fonnance Distributed Computing (HPDC 2005): 2005.

[I81 Ananth I. Sundararaj and Peter A. Dinda. Towards
virtual networks for virtual machine grid computing. In
Virtual Machine Research and Technology Symposium,
pages 177-1 90,2004.

1191 Gerald Tesauroa, David M. Chess, William E. Walsh,
Rajarshi Dasl Alla Segal, Ian Whalley, Jeffrey 0.
Kephart, and Steve R. White. A multi-agent systems
approach to autonomic computing. In Third Inter-
national Joint Conference on Autor~ornous Agents and
Mulriagenr Sysrenzs - Volume 1 (AAMAS'04).

[20] Douglas Thain, Todd Tannenbaum, and Miron Livny.
Distributed computing in practice: The condor expe-
rience. Concurrency arid Computation: Practice and
Experience, 2004.

[21] VMware. http://http://www.vmware.com.

[22] Steve R. White, James E. Hanson, Ian Whalley,
David M. Chess, and Jeffrey 0 . Kephart. An architec-
tural approach to autonomic computing. In lCAC 2004.

[23] Jing Xu, Sumalatha Adabala, and Jose A. B. Fortes.
Towards autonomic virtual applications in the in-vigo
system. In Proceedings of the 2nd IEEE 117terrla-
tional Corlference on Autor7ornic Computing (ICA C-
05), pages 15-26. June 2005.

[13] Ivan Krsul, Arijit Ganguly, Jian Zhang, Jose A. B.
Fortes, and Renato J. Figueiredo. Vmplants: Providing
and managing virtual machine execution environments
for grid computing. In SC '04: Proceeditzgs of the
Proceedings of the ACM/lEEE SC2004 Conference
(SC'04), page 7, Washington, DC, USA, 2004. IEEE
Computer Society.

and M. Wawrzoniak. Operating system support for
planetary-scale network services, 2004.

[3] Jeffrey S. Chase, David E. Irwin, Laura E. Grit,
Justin D. Moore, and Sara E. Sprenkle. Dynamic virtual
clusters in a grid site manager. In HPDC '03: Pro­
ceedings of the 12th IEEE International Symposium on
High Perfonnance Distributed Computing (HPDC'03),
page 90, Washington, DC, USA, 2003. IEEE Computer
Society.

[4] Christopher Clark, Keir Fraser, Steven Hand, Ja­
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian
Pratt and Andrew Warfield. Live migration of virtual
machines. In Proceedings of USENIX NSDI, 2005.

[5] Jeff Dike. User-mode port of the Iinux kernel. In
Proceedings of the USENIX Annual Linux Showcases
and Conference, 2000.

[6] R. Figueiredo, P. Dinda, and J. Fortes. A case for grid
computing on virtual machines, 2003.

[7] I Foster, C Kesselman, J Nick, and S Tuecke. The
physiology of the grid: An open grid services architec­
ture for distributed systems integration. In Open Grid
Service Infrastructure WG. Global Grid Forum, 22 June
2002.

[8] 1. Foster and C, Kesselmann. Globus: A toolkit-based
grid architecture. The Grid: Blueprints for a New
Computing Infrastructure, pages 259-278, 1999.

[9] Ian Foster, Carl Kesselman, and Steven Tuecke. The
anatomy of the grid: Enabling scalable virtual or­
ganizations. International Journal of Supercomputer
Applications, 15(3),2001.

[10] Xuxian Jiang and Dongyan Xu. Violin: Virtual inter­
networking on overlay infrastructure. Technical repOJ1,
Purdue University, 2003.

[II] Mahesh Kallahalla, Mustafa Uysal, Ram Swaminathan,
David E. Lowell, Mike Wray, Tom Christian, Nigel
Edwards, Chris 1. Dalton, and Frederic Gittler. Softudc:
A software-based data center for utility computing.
IEEE Computer, 37(11):38-46,2004.

[12] Gerhard Klimeck, Fabiano Oyafuso, Timothy B.
Boykin, R. Chris Bowen, and Paul von Allmen. Devel­
opment of a nanoelectronic 3-d (nemo 3-d) simulator
for multimillion atom simulations and its application
to alloyed quantum dots. Computer Modeling in En­
gineering and Science (CMES), 3(5):601-642,2002.

[13] Ivan Krsul, Arijit Ganguly, Jian Zhang, Jose A. B.
Fortes, and Renato J. Figueiredo. Vmplants: Providing
and managing virtual machine execution environments
for grid computing. In SC '04: Proceedings of the
Proceedings of the ACM/IEEE SC2004 Conference
(SC'04), page 7, Washington, DC, USA, 2004. IEEE
Computer Society.

10

[14] H. Liu and M. Parashar. Enabling self-management of
component based high-performance scientific applica­
tions. In Proceedings of the 14th IEEE International
Symposium on High Perfonnance Distributed Comput­
ing (HPDC 2005).

l15] Paul Ruth, Xuxian Jiang, Dongyan Xu, and Sebastien
Goasguen. Virtual distributed environments in a shared
infrastructure. IEEE Computer, 38(5):63-69, May
2005.

[16] Paul Ruth, Phil McGachey, and Dongyan Xu. Vioclus­
ter: Virtualization for dynamic computational domains.
In CLUSTER 2005, September 2005.

[17] A. Sundararaj, A. Gupta, and P. Dinda. Increasing ap­
plication performance in virtual environments through
run-time inference and adaptation. In Proceedings of
the 14th IEEE International Symposium on High Per­
fonnance Distributed Computing (HPDC 2005), 2005.

[18] Ananth 1. Sundararaj and Peter A. Dinda. Towards
virtual networks for virtual machine grid computing. In
Virtual Machine Research and Technology Symposium,
pages 177-190,2004.

[19] Gerald Tesamoa, David M. Chess, William E. Walsh,
Rajarshi Das, Alia Segal, Ian Whalley, Jeffrey O.
Kephart, and Steve R. White. A multi-agent systems
approach to autonomic computing. In Third Inter­
national Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 1 (AAMAS'04).

[20] Douglas Thain, Todd Tannenbaum, and Miron Livny.
Distributed computing in practice: The condor expe­
rience. Concurrency and Computation: Practice and
Experience, 2004.

[21] VMware. http://http://www.vmware.com.

[22] Steve R. White, James E. Hanson, Ian Whalley,
David M. Chess, and Jeffrey O. Kephart An architec­
tural approach to autonomic computing. In ICAC 2004.

[23] Jing Xu, Sumalatha Adabala, and Jose A. B. Fortes.
Towards autonomic virtual applications in the in-vigo
system. In Proceedings of the 2nd IEEE Interna­
tional Conference on Autonomic Computing (lCAC­
05), pages 15-26, June 2005.

	Enabling Autonomic Adaption of Virtual Computational Environments in a Shared Distributed Infrastructure
	Report Number:
	

	tmp.1307986960.pdf.MW7HR

