View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1999

Intelligent QoS Support for an Adaptive Video Service

Kyungkoo Jun
Ladislau Boloni

David K.Y. Yau
Purdue University, yau@cs.purdue.edu

Dan C. Marinescu

Report Number:
99-033

Jun, Kyungkoo; Boloni, Ladislay; Yau, David K.Y.; and Marinescu, Dan C., "Intelligent QoS Support for an
Adaptive Video Service" (1999). Department of Computer Science Technical Reports. Paper 1463.
https://docs.lib.purdue.edu/cstech/1463

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4971698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

INTELLIGENT QoS SUPPORT FOR
AN ADAPTIVE VIDEO SERVICE

Kyung-Koo Jun

Ladislau Boloni
David K. Y. Yau
Dan C. Marinescu

Department of Computer Sciences
Purdue University
Waest Lafayctte, IN 47907

CSD TR #99-033
October 1999

Intelligent QoS Support for an Adaptive Video Service

Kyungkoo Jun, Ladislau Boloni, David K.Y. Yau, and Dan C. Marinescu
Computer Sciences Department, Purdue University
Wesl Lafayette, IN, 47907, USA
Email: { junkk, beloni, yau, dem]@cs.purdue.edu

October 14, 1999

Abstract

In this paper we present an adaptive video service architecture. Software
agenis provide feedback regarding the desired and the attained quality of
service at the client side. Server agents respond by reconfiguring the server
and reserving communication bandwidth and/or CPU cycles according to a
set of mles. The adaptation mechanism is controlled by an inference engine
running as onc of the strategies of the server agent. The agents are assembled
dynamically [rom reusable components using the Bond Agent Framework.
QoS reservation is supporied by two native resource managers in Solaris
2.3.1, for network bandwidth and CPU cycles respectively.

1 Introduction

Data streaming requires that enough communication bandwidth and CPU cycles be dedicated to an audio or video
application and there is a consensus that QoS for multimedia applications cannot be guaranteed without reservation of
resources. QoS guarantees require: (a) the characterizalion of an application in terms of overall resource consumption
for various levels of service, (b} a mechanism 1o negotiate the level of service between the provider and the consumer,
(c) a mechanism Lo reserve resources, and {d) a mechanism to enforce reservations.

In this paper we propose an architecture supporling scrver reconfiguration and resource reservations for a video
application. Software agents provide [eedback regarding the desired and the aitained quality of service at the client side.
Server agents respond by reconfliguring the server and reserving communication bandwidlh andlor CPU cycles
according to a set of rules. The adaptation mechanism is controlled by an inference engine running as one of the
strategies of the server agent. The agents are assembled dynamically from reusable components using the Bond Agent
Framework. QoS reservation is supported by a native bandwidih scheduler and a CPU scheduler in Solaris 2.5.1.

Adaplation using aclive networks {1], and other methods, [3], have been proposed in the past. Yet the agent approach
discussed in this paper is more convenient, it docs not require that the software be reinstalled every time a change of
resource allocation policy takes place and it is capable of handling complex negotiations between the parties involved.

The contributions of this paper are an agent-based architecture for QoS adaptation and a set of rules for reconfiguring
an MPEG server based upon the information about resources and needs of a video service application. We also report
measurements performed on our test bed system.

This paper is organized as follows. Section 2 introduces our resource managers for network bandwidth and CPU cycles.
Section 3 provides an overview of the Bond Agent Framework. Section 4 introduces the multimedia agents, the data
streaming modes the inference strategy and the rules for server reconfiguration and for resource reservations.
Measurements are reporied in Section 5 and conclusions are presented in Section 6.

2 Operating System Support for QoS

Middleware multimedia agents interface with native OS resource managers Lo secure resources for an assured level of
service. This section describes our implementation of 1wo resource managers in Solaris 2.5.1 for network bandwidth
and CPU cycles, respectively.

2.1 Bandwidth scheduling

The bandwidth manager in our sysiem is called Tempo. Tempo allows application flows to reserve for guaranteed
network bandwidth. Tts software architecture consists of a stream driver for conlrol operations and a stream modude for
flow classification and scheduling [7]. Standard Solaris applications can benefit from Tempo services without any
modifications,

Tempo supports very flexible resource sharing according to Internet *‘flow specifications™. An Internet flow is defined
by the lve-tuple:

<ip_src, ip_dst, proto, src_port, dst_port>

1.e. as source IP address, destination IP address, transport protocol (usually TCP or UDP), protocol source port number,
and protocol destination port number. A flow specification then gives a set of flows by allowing any number of fields in
the five tuple to be parrially specified: IP addresses can be wildcarded to different degress (e.g. * or 128.%), port
numbers can specify a range (e.g. *‘dont care” or 1050--1100), etc. When all ficlds of the five tuple are completely
unspecified, we have a defanit flow specification, i.e. one that matches all network packets.

The default flow specification is atl the root of each (per-interface) Tempo sharing hierarchy. This root specification can
be partitioned into a number of chife flow specifications that are all disjoint, Each of these children can then be further
partilioned in a recursive manner. To ensure that sharing relationships arc well formed, we furlher require that if C is a
child flow specification of its parent £, then the set of flows that match C must be a subset of the flows that match P.

For real-time performance, each flow specification in the sharing hierarchy can be given a resource specification. This
resource specification is in the form of a service curve [8], which defines a monotonically non-decreasing function of
time S(.). Intuitively, S(t) (in bits) specifies the minimum amount of service that a flow specificalion with the
reservation should receive by time ¢ (in ps), provided that the sct of flows maiching the low specification has
**sufficient” aggregate demand. Notice that S(.) for the default flow specification of an interface with bandwidth B (in
Mbps) should be linear wilh slope B. To guarantee service curves, we need 1o prevent resource over-subscription. This
can be achicved by ensuring that for each non-leaf flow specification P, the sum of §{.} for all of P’ children does not
exceed S{.} of P iiself. Figure 1 illustrates an example Tempo sharing hierarchy.

,/'-- T .
s

4
P

’
[e |
. 10 Mbps
'\ i
N o
e o
| - 1
A . .
N
~
I" '\I : |] .
S EITER ELPTAY ERS, - XE -2 SN | - . '
| ey |! (| \ I ..m.i_lrcp,m |
\ ; B !
K . s i s
o -
T
. N
Doctanione,
12815025 |
l\ TCP."»
12 kg i

Figure |: Example Tempo sharing hicrarchy by flow specification.

While S{.) is gencrally defined to be a monotonically non-decreasing function of lime, in practice we represent it as a
sequence of linear segments. Each segment is of the form <i_f m,t_2>, meaning that S(.) has slope m during time
{11t 2>_Tt can be seen that service curve generalizes the widely used notion of service rafe (in that a rate defines a
lincar service curve). By doing so, H allows delay and rate performance 1o be decoupled [8] [10]. This benefits an
important class of flows, such as interactive audio, which have low long term rate but nevertheless desire low delay
guaraniees.

Software architecture. Each network interface configured 1o use Tempo will have a Tempo module “*pushed” between
the device driver for the interface and a common IP multiplexor module (see Figure 2). Packels scnt by standard
Internet applications are routed by IP to go out of a certain network interface. If the interface is Tempo-enabled, these
packets will be processed by the corresponding Tempo moedule. Each of them will be classilicd (o a mosr specific flow

specification. For the sharing hierarchy in Figure 1, for example, packet
«<128.211.1.10,128.180.3.10,TCP,7500,15000> will be classified to <128 _*,128_*,TCP, *, *> and
packet <128.10.8.9,128.15.9.25,TCP, 10000, 60000> will be classificd o

<128.10.8.9,128.15.9.25,TCP,*,*>, which is a more specific match than the aliernative
<128.%,128.%,TCP, *, *>. Given the classified flow specifications, Tempo implements the fair service curve
earliest deadline first scheduling algorithm in [10]. The algorithm guaranices the service curve of each flow
specification while minimizing progress unfairness between flows.,

O
Tempo modula
] Iernatpackalsl I . .
- "y - Link d
IP module | Clasifior | Schechtor | e
- r
d — i :

|
|
I control oparations
1

- T

]
{ Tempo driver |
..‘ ;

Figure 2: Tempo module/driver sofliware architecture,

Bandwidth scheduling interface. Applications manage resource reservations for a send interface by opening the
Tempo device driver for that interface. An open returns a standard file descriptor which serves as a handle for various
ioctl calls to control the interface. In particular, the following control operations are supported:

I. Creale a llow specification wilth a given resource reservation. The create request will fail if it will result in a
sharing hierarchy that is not well lormed, or if there is insufficient available bandwidth. Otherwise, the call
will return a handle that can be used by subsequent operations on the flow specification.

2. Delete a flow specification given its handle.

3. For the low specification identified by a given handle, modify its resource specification.

4, List the current sharing hierarchy.

Notice that the sharing hierarchy of a Tempo-enabled interface is global 1o all applications. As a result, resource
reservations used by an application need not be managed by the application itself, Instead, a rhird-party control
program can be used to manage rescrvations on behalf of diverse user applications. This allows resource management
functions to be localized in ‘‘specialist™ modules such as our middleware mullimedia agents. These agenis can then
exporl resource management services Lo a wide range of real-lime applications such as video servers, Web based media
streaming, teleconferencing, clc.

2.2 CPU scheduling

Our CPU manager allows Solaris applications 1o reserve for guaraniced CPU time. It defines a CPU sharing hicrarchy
that is very similar (o that used by Tempo. Similar to Tempo, for example, it allows CPU capacily lo be recursively
partitioned inlo configured service classes -with specified resource specifications. Threads can then be admitted to any
configured service class with sufficient capacity, and we view them as leqf service classes {which of course cannot
admit other threads). A resource specification for a (configured or [eaf) service class is in the form of a service curve
S(.)- In this casc, S{t) (in ps) gives the minimum amount of CPU time that a service class with the resource specification
should receive by time ¢ (in ps), provided that the service class has sufficient demand.

Unlike Tempo, however, the sharing hierarchy cannot be defined by way of flow specification relationships, Instead,
any scrvice class created to join a sharing hierarchy is given a system wide integer identifier. A class with id p can then
be configured explicitly as a child of another class with id g using the cail

join_node(p, q);

Threads arc likewise created to be children of specified configured service classes. A created thread can later change its
resource specilication, including leaving its original service class and joining a new one. This is provided by the SVR4
priocntl {2} API call discussed below.

CPU scheduling interface. Solaris comes from the lineage of Unix SVR4. As such, it supports different scheduling
classes. Our system retains the use of the SYS class for interrupt processing (in Solaris, interrupts have thread context).
Our scrvice curve based CPU scheduling is implemented as a new scheduling class called SC. At sysiem startup time,
we partition CPU capacity into three defaull service classes: SC_C0, SC_SI, and SC_S82, that arc allocated 70%, 20%
and 10% of the CPU respectively. Once Lhe system is booted up, a privileged user can repartition the CPU into other
configurations.

We change the Solaris kernel to run the init process (process number 1 and an ancestor of all Unix user processes) in
SC_CO with the linear service curve of slope 0.001. In Unix SVR4, children processes forked by a parent process
inherit the scheduling class and paramcters of the parent by default; therefore, all user processes (and their associated
threads) also run in 8C_CO with the linear service curve of stope 0.001 by default.

We provide wwo principal ways (o change the default scheduling parameters of an SC thread. First, we support the
priocntl {1} command for SC scheduling. Using this command, any standard Solaris application can be started
with specified paramelters from a Unix shell, as follows:

prioccntl -e -¢ SC -rl <ml> -x <d» -xr2 <m2> -n <clase> <program>

where <programe> is the name of the application Lo run, <class> identifics the service class (e.g. SC_CO) that

is to be the parent of the application, and the service curve for <program> is specified to have slope <ml> (in unit
of 0.1%) during time [0,d> (<d> is in ts) and slope <m2> during time {d, e=> (i.e. we resiricl the specification to only
two piecewise linear scrvice curves).

Sccond, application threads once staried can change their scheduling parameters using the SVR4 priocntl (2)
system call. For the PC_SETPARMS entry point of priocntl, which sets the scheduling paramters of a specified set
of threads (e.g. all threads belonging to a given process, the thread for the current LWP, all threads belonging to a given
user, etc), the SC class specific parameter structure is defined as follows:

strucc {

int mi; /% in 0.1 % */
int m2 ; /* in 0.1 % */
int d; /* in microseconds */
int class; /* id of parent service class */
};
3 Bond Agent Framework

Bond [4] is a Java-bascd distributed object system and agent framework, with an emphasis on flexibility and
performance. It is composed of (a) a core containing the ohject model and message oriented middleware, (b) a service
layer containing disiributed services like direclory and persistent storage services, and (c) the agent framework,
providing the basic tools for creating autonomous network agents logether with a database of commonly used sirategies
which allow developers to assemble agents with no or minimal amount of programming,.

3.1 Bond Core

Al the heart of the Bond system there is a Java Bean-compatible component architecture. Bond objects extend Java
Beans by allowing users (o attach new properties 1o the object during runtime, and offer a uniform API for accessing
regular fields, dynamic properties and JavaBeans siyle setField/getField-defined virtual ficlds. This allows
programmers the same {lexibility like languages like Lisp or Scheme, while maintaining the familiar Java
Programming syntax.

Bond objects are network objects by default: they can be both senders and receivers of messages. No post-processing of
the object code as in RMI or CORBA-like stub gencration, is needed. Bond uses message passing while RMI or
CORBA-based component architectures use remate method invocarion.

The system is largely independent from the message transport mechanism and several communication engines can be
used interchangeably. We currently provide TCP-based, UDP-based, Infospheres-based, and, separately, a multicast
engine. Other communication engines will be implemented as nceded. The API of the communication engine allows
Bond objects to use any communication engines without the need Lo change or recompile the code. On the other hand,
the properties of the communication engine are reflected in the properltics of the implemented application as a whole.
For example the UDP based engine offers higher performance but does not guarantee reliable delivery.

All Bond objects communicate using an agent communication language, KQML [9). Bond defines the concept of
subprotocols, highly specialized, closed set of commands. Subprotocols gencrally contain the messages nceded to
perform a specific task. Examples of generic Bond subprotocols are property access subprotocol, agenr conrrol
subprotacol or security subprotocol. An alternative formulation would be that subprotocols introduce a structure in the
semantic space af the messages.

Subprotocols group the same funclionalily of messages which in a remote method invocation system would be grouped
in an interface. But the larger fiexibility of the messaging system allows for several new techniques which are difficult
to implement in the remote method call system:

» The subprotocols implemented by objects are properties of the object, so two objects can use the property
access subprotocol implemented by every Bond object, to find the common set of subprotocols they can
use Lo communicale.

® An object is able to control the path of a message and to delegate the processing of the message to sub-
components called regular probes. Regular probes can be awtached dynamically to an object as needed.

¢ Messages can be intercepted hefore they are delivered to the object, thus providing a convenient way (o
implement security by means of a firewall, accounting, logging, monitoring, fillering or preprocessing
messages. These operations are performed by sub-components called preemprive probes which are
activated before the ohject in the message delivery chain.

» Subprotocols, like interfaces, are gronping some functionality of the object, which may or may not be
used during its lifctime. A subcomponent called autoprobe allows the object 1o instantiate a new probe, Lo
handle an incoming message which can not be undersiood by the existing sub-components attached to an
object.

* Objects can be addressed by their unique identifier, or by their alias. Aliases specify the services provided
by the object or its probes. An object can have multiple aliases and multiple objects can be registered
under the same alias. The lauter enables the architecture Lo support lead balancing services.

These techniques can be implemented through different means in languages which treat methods as messages, e.g.
Smallialk. In Java and C++ they can be implemented at compile time, not at runtime, ¢.g. using the delegation design
pattern. Techniques from the recent CORBA specifications e.g. the simullaneous use of DII, PQA, trading service and
others, also allow 1o implement a similar functionality, but with a larger overhead, and significantly more complex
code.

3.2 Bond Scrvices

Bond provides a number of services commonly used found in distributed object systems, like directory, persistent
storage, moniloring and security. Event, notification, and messaging services, which provide message passing services
in remote method invocation based systemns are not needed in Bond, due lo the message-criented architecture of the
system.

Some of Bond services perform differently than their counterparts in other middleware sysiems, like CORBA. For
example, Bond never requires explicil registration of a new object with a service. Finding out the properties of a remote
abject, i.c. the set of subprotocols implemented by the object, is done by direct negotiation amongst the objects. The
directory service in Bond combines the functionality of the naming and trading services of other systems and it is
implemented in a distributed fashion. Objects are located by a search process which propagates from local directory (o
local direclory. The directories are linked into a viral network by a wansparent distributed awareness mechanism,
which translers directory information by piggybacking on existing messages.

Compared with the naming service implementations in sysiems like CORBA or RMI, which are based on the existence
of a name server, this approach has the advantage that there is no single point of failure, and the distributed awareness
mechanism reconstitutes the network of directories even afier catastrophic fatlures. However, a distributed search can
be slower than lookup on a server, especially for large nelworks of Bond programs. For these cases, Bond objects can
be registered o external directorics, either to a CORBA naming service through a gateway object, or to external
dircctory services using LDAP access.

3.3 Bond Agents

The Bond agent framework is an application of the facilities provided by the Bond core layer to implement
collaborative network agents. Agents are assembled dynamically from components in a structure described by a multi-
plane state machine [5]. This structure is described by a specialized language called blueprint. The aclive components
(srraregies) are loaded locally or remotely, or can be specified in interpretive programming languages embedded in the
blueprint script. The state information and knowledge base of the agents are collected in a single object called model of
the world which allows for casy checkpointing and migration of agents. The multi-plane state machine describing the
behavior of agents can be modified dynamically, thus allowing for agent surgery.

The behavior of the agent is described by the actions the agent is performing. The aclions are performed by the
strategies either as reactions Lo external cvents, or autonomously in order Lo pursue the agenda of the agent. The current
state of the multi-plane stale machine (described by a srare vector) is specifying the strategies active at a certain
moment. The multiple planes are a way of expressing parailclism in Bond agents. A good technique is to use them to
express Lhe various facets of the agents behavior: sensing, reasoning, communication/ncgotiation, acting upon the
environment and so on. The transitions in the agent are modifying the behavior of the agent by changing the current set
of active strategics. The transitions can be triggered by internal events or from external messages - these external
messages form the conrrol subprotocol of the agent.

Strategies, having limited interface requirements are a good way to provide code reuse. The Bond agent framework
provides a stralegy database, for the most commonly used tasks, like starling and controlling external agents or legacy
applications. A number of base strategies for common tasks like dialog boxes or message handlers are also provided,
which can be sub-classed by developers to implement specific functionality. External algorithms, especially if wriuen
in Java are usually easily portable 1o the strategy interface.

4 Adaptive MPEG Video Server Architecture

In this section we describe the basic architecture of a video stireaming system using agents to adapt the level of service
belween an MPEG video server and a community of video clients.

The Moving Picture Experis Group, MPEG, is a set of standards used for coding digital audio-visual information in a
compressed format [2]. MPEG-1 was developed for storing video data and iis associated audio data on digital storage
media and intended for data rates on the order of 1.5 Mbit/sec. MPEG-1 specifies an algorithm for compressing video
pictures and audio and then provides the facility 1o synchronize multiple audio and multiple video bit streams in an
MPEG-1 sysiem.

The MPEG-1 video stream consists of a series of T-frames, P-frames, and B-frames, which differ in the coding scheme
providing three levels of compression by exploiting similarities within the picture or with neighboring pictures. I
frames are the most complele, P-frames contain dilference from former 1 or P-frames, and B-frames are encoded with
differences from both preceding and following I or P-frames, thus contain the least amount of data.

4.1 Multimedia Agents and Data Streaming Modes

We present an adaptive MPEG system where multiple video clients conneet to a video-server and negotiate the level of
service using Bond agents as shown in Figure 3. The MPEG video client is a process responsible 1o display a video
stream. This process is starled by means of a client agens that monitors the receplion of the video stream. Whenever an
MPEG client agent requests a video stream, the MPEG video server spawns an MPEG server processes o deliver the
video stream and an MPEG server agent 1o control the streaming modes. There are control channel between the server
agent and the clicnt agent for feedback and command, and video streaming channel between the MPEG scrver and the
MPEG video client.

Dopler

Figure 3: The MPEG system consists of a server and a set of server agents and client agents. The server agents and
the client agents are for video streaming and display respectively, and the server agents are created by the server at
the request of the clicnt

The MPEG server agent can adapt with different stream modes. Initially the MPEG server agent is configured to
deliver a compressed vidco strcam. However as the resource stales changes, the agent can select other streaming
modes. The affecting resources are network bandwidth and the CPU loads on the server and client sides. The server
agent currently supports four streaming modes:

Compressed Video Stream The MPEG scrver reads the video stream from the Video Data Base or from a
local file and transmits il to a client. The MPEG client decodes the video stream and displays the frames.
Decoding the video stream is a CPU inlensive operation,

Drop B,P Frame. The MPEG server partially decodes the video strcam Lo identify the frame types and drops
cerlain type of frames. The scver selecls the frames of which type affects the video quality less than other
types, for example, B-type and P-type. This mode is suitable for low bandwidth.

Server Decode. The MPEG scrver transmits the decoded frames to a client. Tt allows the client (o use less
CPU cycle by avoiding decoeding process, whereas the transmission bandwidth increases because of the frames
size, for example, in some cases the frame size increases ten limes alter decoding. Thus this mode is uselul o
the clients on highly-loaded systems with CPU intensive programs, but connected with high-bandwidth
neiwork.

Server Decode and Drop. This mode as the combination of the Server Decode and \he Drop B,P Frame
modes is suitable for overloaded clicnts connected with moderate bandwidth.

Figure 4 shows the streaming modes and the possible transitions among them. The transitions between some modes are
bi-directional, thus (he server agents are able to changes modes repeatedly, for example, after changing into the drop
maode, the server agent might change back to the compressed mode alter reserving the bandwidth. When the server
agent is initialized, it can reject the service if the service capacity reaches the limit, for example, the video server limits

the total number of current clients.
Server
./

Server Dec.oda//
-~ s
enver
Mormal Siream DecodedDrop
Init mmpm“w 46
\rldeo Stream Dﬁ‘m‘"
Server
| Decoda&Drop
RAelect i
Drop B,P
Frames

Y
Anject Drop BP
Requeat Frama

Figure 4: The server streaming modes. Initially the video server is configured Lo deliver a compressed video stream.
The server may by reconfigured Lo decode frames and send uncompressed frames, to drop B and/or P frames but
send compressed frames, or to decode

Figure 5 shows the structure of the scrver agent with two planes: an MPEG plane with a set of stralegies corresponding
10 the streaming modes, and a control plane with the reasoning capability for deciding a streaming mode. The reasoning
1s performed by the inference straregy, which will be discussed in the next section. Using the parallelism supported by
the multiplane structure, the MPEG plane is dedicaled Lo the video streaming, while the control plane is continuously

reasoning lo decide whether to change modes. Figure 5 shows an example of reconfliguration by changing from the
compressed mode to the decoding mode. To trigger the state change of the MPEG plane, the control plane invokes the
external transition specified in the blueprint. The server agent has the clear separation between the functional parts and
decision parts, thus resulting in easy modification, maintenance, and improved reusability,

4.2 The Inference Strategy and the Rules for Server Reconfiguration

The inference strategy using Java Expert System Shell, JESS, inference engine [6] is one of the generic sirategies
available with the Bond system. The most significant benefit of the inference strategy is that the reconfiguration
algorithms can be modified without recompiling the whole agent whereas, in other applications, even small changes in
the adaptive algorithms end up with causing large meodifications and even re-programming in other parts, Once
installed, the inference stratcgy crealcs a Bond inference engine which wraps the JESS inference engine and the
inference engine is capable of communicating with other cbjects.

Table 1: Video profile of the frame rates with the required transmit rate/bandwidth

Frames Rate (frames/sec.) Dala Rate/Bandwidth (bytes/sec.)
5 4000
10 7000
15 10000
20 13000
25 16000
30 20000

In this application, the inference engine wses facts and rules to reconfigure the video-server. The facts are the
performance data of the server, the feedback information of the client, and other state information, e.g. desired frame
rate, current streaming mode, current video {ile name. A set of facts forms the knowledge base inside the inlerence
engine. Since the inference engine is the network object like any. Bond objects, the engine can gather the feedback
informatien using the KQML messages from the clients. The inference engine exports a set of APIs to inserl, delete,
modily, and list the facts. The performance and feedback facts are:

Transmit rate. The server logs the ransmit rate as bytes/sec. This rate can be affected by the system load on
the server side. Each video file has its own profile giving an estimate of the data rate corresponding to a given
frame rate. Table 1 shows a sample profile of one of the video files we used for testing. The profile is obtained
by summing up cach frame size.

Packet loss rate. The current video streaming implementation is based upon UDP and the video quality is
affected by lost packets. Each UDP packet contains one frame, thus it is easy for the client 1o re-synchronize
the stream. By comparing the unique frame numbers of the arriving frames, we can detect lost packers.
Although each UDP packel contains one frame, the packet loss rate is not the same as the frame loss rate,
because P-frames and B-frames are dependent on I-frames. If an I-frame is lost, the depending frames are
considered o be lost. The packets arriving out of order are rearranged.

Inter-frame time. The client needs to decede the frame in compressed mode. The inter-frame time shows the
time between two displayed frames. This time shows reflects the CPU cycles used lor decoding for different
types of [rames. Since I and P frames are larger than B frames, the time to decode them is larger. If the
system on Lhe client side is overloaded, the inter-frame time increases.

Receiving rate. The client logs the arriving packet sizes as byies/sec. The receiving rate is affected by a
congested network or high system load on the client side. To distinguish two cases, we reserve a bandwidth as
specified in the profile. If the rate is stilt low, it means the client is overloaded.

MPEG plang— MPEG planesavar
v Sorver ‘Dacod
-, D
s !

- prnu_l'& . ; ~Comprass, l'
':";‘-ﬁ_... Video F— " Server Video 4
N Slream ..Drop” - Siream l_. .

{Drop " Drop,
'-\‘F::IIIII Framo
) i
Conlrol Plane Conlrel iPlane
i .lf“‘_l '._.-—'-_\
il e {ntference i Inl :-—fi 1aterence
= ! . i M

e

i - Trigger .-"‘L""-._

& Trigger | Magellate Tm-luﬂ-,_"'wt_j,ﬂ'
» Tramahdon ™" —— —--/
Ol

Figure 5: The server agent consists of two planes: the MPEG plane and the control plane. Each plane consists of a
state machine, each state has a stralegy associated with it. Afier reasoning, the control plane decides to reconfigure
the server.

Rules are scts of conditional statements 1o control the system configuration and resource reservation. The inference
engine foad the rules and apply them to the knowledge base. The rules has the following form:

Rule:
[Condition 1]
{Condition_2]
(Condition_3]
=>
[Actionl

As mentioned, the semantics of a rule is: if [Condition_1] AND [Condition_2] AND ... AND
[Condition_N] then [(Action] stalement of a procedural language, but it is not intended 1o be used in a
procedural way. Rather than being executed in a specific order by which the rules are listed, any rules with all the
conditions satisficd are executed. The conditions of the rules are pattern-matched against the knowledge base and they
are activated when all the conditions are met. The firing of the activated rule is delayed until we invoke a run methed
on the inference engine. Besides the run method, the inference engine exporis APIs to load the rules, clear or save the
current rules, list the activaled rules. Since the JESS is the interpreter-based, the rules can be loaded or modified in run
time. In this application, the actions of the rules can be the exicrnal transition or resource reservation. As shown in
Figure 3, the conirol planc has a Trigger-Transition state for invoking external (ransitions, and a Negotiare state for the
negotiation with the resource managers about Lhe reservation.

We presenl the rules [or the resource reservation and reconliguration:

Bandwidth Reservation Rule. The objective of Lhis rule is to reduce the packet loss rate by reserving bandwidth when
the network is congested. The profile also has the maximum packet loss rate allowed o maintain a certain frame rale.
By comparing the packet loss rate with the maximum rate, we can find out the network is congested, The rule is

{packet-loss-rate ?1r)
(desired-frame-rate ?fr}
(maximum-loss-rate ?mr)
(test (> ?lr 7?mr))

=

(reserve-bandwidth ?fr)

After this rule is fired, the strategy of the negotiate state looks up the profile 10 check the required bandwidth Lo achieve
J7, and reserve thal amount of bandwidth using the bandwidth reservation interface,

CPU Reservation Rule. This rule is fired when a CPU-intensive program running on either the server or the client
side affects the transmit rate of the server or the inter-frame time of the client. The ransmission rale of the server is
compared with the profile and the inter-frame time is compared to the desired inter-frame time, which can be easily
calculated from the desired frame rate. The video profile does not include a CPU component because the CPU
requirements are system dependent. Thus this rule is repeatedly fired, and raises the reservation level gradually, until
the desired rate is achieved. The rules are:

(transmit-rate ?tr)
(required-transmmit-rate ?rtr}
(test (< ?tr ?rtr)}

=2

{increase-cpu-reservation)

{inter-frame-time ?ft)
{required-inter-frame-time ?rifr)
{cest (< ?rifr ?ft)}

=>

{increase-cpu-reservation)

Dropping Rule. This rule is fired when either the bandwidth or CPU reservation fails due to the lack ol resource. As
an action, the drop mode is selected to avoid more congestion or avoid sending more frames than the client can handle
in time, If the reservation fails, the new facts about the failure, (bandwidth-reservation-failed} ,
(cpu-reservation-failed) and are added to the knowledge base. The rules are;

{(bandwidth-reservation-failed)
=>
{trigger-drop-mode)

{cpu-reservation-failed}
=>
{trigger-drop-mode)

5 Experimental Results

In this seclion we present measurements characterizing the MPEG application with and without resource reservation.
As the testbed for our system, the server is an Ultra Sparc-1 machine with 128 MBytes memory running Solaris 2.5.1,
the client is a Pentium II 300 MHz, with 128 MByles memory machine running Solaris 2.5.1. To simulate increased
traffic load a communicalion-intensive program generates a burst of UDP packets. To simulate the CPU load, a
“greeedy” CPU intensive program is used.

The first experiment shows the clfect of bandwidth reservation. On the server side in addition to the MPEG application
we start the UDP-burst program. The traffic generated by this application interferes with the vidco traffic and we study
the effect of this interference. The results are shown in Figure 6, In 6(a) the video application does nol reserve
communicalion bandwidth. The graph shows the inter-[rame times measured at the client site, with frame number on
the horizonlal axis and time in milliseconds on (he vertical axis., The inter-frame time for lost frames is setl o the
maximum value, 60000 milliseconds, thus lost frames appear as vertical lines in the graph. Without reservation a large
percentage of video packets are lost. Once sufficient bandwidth to support the desired frame rate is reserved, the
number of lost packets is noticeably reduced , even under the heavy network tralfic as shown in Figure 6(b).

L

@ Y

Figure 6: The bandwidth reservation experiment.

The second experiment shows the effect of CPU reservation. We run three processes of the greedy program o compele
for CPU time with the MPEG process. The experiment is repealed two times: the first iime without CPU reservation,
and the sccond with sufficient CPU reservation for the MPEG application to achieve its intended frame rate. Figure 7
shows the effect of the CPU reservation on the inter-frame time. To make more visible the effect of the CPU-intensive
program, we start it in the middle of client execution at about frame 120 and then stop it at about frame 230. As shown
in Figure 7 (a), the greedy program causes an increasc in the inter-frame time. With CPU reservation, the CPU-
intensive program docs not affect the inter-frame time as shown in Figure 7(b).

m Wl A L
() (b)

Figure 7: The CPU reservation experimenl. The graphs show the inter-frame time measured at the client side with
the CPU intensive greedy program. On the left, the CPU-intensive program is started while the client is running and
then stopped. On the right, the CPU-intensive program could not affect the client because of CPU reservation.

6 Conclusions

In this paper we present an agent-based adaptation scheme supporting QoS guarantees. The mullimedia agents are
assembled dynamically out of reusable components and interact with the client process, with the servers process and
with our native OS resource managers for netwark bandwidth and CPU cycles.

The experimenis we conducted show the effect of bandwidth and CPU reservation. Figurce 6 shows that the number of
lost video packets decreases significantly when sufficient bandwidth is reserved to accommodate the desired frame rate.
A similar effect for CPU reservation is observed in Figure 7. In this case the variance of the inter-frame lime is
reduced when the CPU scheduler provides enough cycles (o the video application.

The advantage of the technique described in this paper is greater flexibility and system reconfigurability. The rules
governing the behavior of the agents can be modified dynamically. Moreover, the agents themselves can be assembled
medified by agent surgery while running,

The Bond systems is available under an open source license from http: //bond. cs .purdue . edu
Acknowledgments

The work reporied in this paper was partially supporied by grants from the National Science Foundation, MCR-
9527131, EIA-9806741 and CCR-9875742, by the Scalable IO Initiative, and by a grant from the Intel Corporation.

References

[1] M. Hemy, U. Hengartner, P. Steenkiste, and T. Gross. MPEG System Streams in Best-Effort Networks, In
Proceedings of Packet Video99, April 1999, New York

[2] ISO/IEC ITC 1/SC 29/N 071. Coding of moving pictures and associated audio ~for digital storage media at upto
about 1.5 Mbits/s - Partl :Systems, Pan2: Video, 1992, CD11172

[3] 1. Walpole, R. Koster, 8. Cen, C. Cowan, D. Maier, D. McNamee, C. Py, D. Siecre. A player for adaptive MPEG
video streaming over the Internet. In Proceedings 261h Applied Imagery Paitern Recognition Workshop AIPR-97,
SPIE, Washingron DC, Qclober 15-17, 1997.

[4] L. Boloni and D.C. Marinescu An Object-Oriented Framework for Building Collaborative Network Agents in
Intelligent Systems and Imterfaces, (A. Kandel, K. Hoffmann, D. Mlynek, and N.-H. Teodorescu, cds). Kluewer
Publising House, (1999), (in press).

[5] L. Boloni and D.C. Marinescu. A Multi-Plane State Agent Model. Computer Sciences Department, Purdue

Universily, CSD-TR #99-027, sec also http:/bond/cs.purdue.edu/papers/index.huml

(6] E. Fricdman-Hill. Jess, The Java Expert System Shell. Distributed Computing Systems, Sandia National
Laboralorics, SAND98-82086, 1999,

[7] S. Floyd and V. Jacobson. Link-sharing and resource management models for packet nerworks. IEEE/ACM
Transactions on Networking, 3(4), 1995.

[8] H. Sariowan, R. Cruz, and G. Polyzos. Scheduling lor Quality of Service Guarantees via Service Curves. In
Proceedings of International Conference on Computer Communications and Networks, September, 1995,

[9] T. Finin, et al. Specification of the KOQML Agent-Communication Language, DARPA Knowledge Sharing initiative
drafi, June 1993

[10] L. Stoica and H. Zhang. A Hierarchical Fair Service Curve Algorithm for Link-Sharing, Real-time and Priorily
Services. It Proceedings of ACM SIGCOMM 97, September, 1997,

	Intelligent QoS Support for an Adaptive Video Service
	Report Number:
	

	tmp.1307986960.pdf.CqU4h

