
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1999

Intelligent QoS Support for an Adaptive Video Service Intelligent QoS Support for an Adaptive Video Service

Kyungkoo Jun

Ladislau Boloni

David K.Y. Yau
Purdue University, yau@cs.purdue.edu

Dan C. Marinescu

Report Number:
99-033

Jun, Kyungkoo; Boloni, Ladislau; Yau, David K.Y.; and Marinescu, Dan C., "Intelligent QoS Support for an
Adaptive Video Service" (1999). Department of Computer Science Technical Reports. Paper 1463.
https://docs.lib.purdue.edu/cstech/1463

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

INTELLIGENT QoS SUPPORT FOR
AN ADAPTIVE VIDEO SERVICE

Kyung-Koo Jun
Ladislau Boloni
David K. Y. Yau

Dan C. Marinescu

Department of Computer Sciences
Purdue University

West Lafayctte, IN 47907

CSD TR #99·033
October 1999

Intelligent QoS Support for an Adaptive Video Service

Kyungkoo Jun, Ladislo.u Boloni, David K.Y. Yau, and Dan C. Marinescu
Computer Sciences Departmem, Purdue University

West Lafayette, lN, 47907, USA
Email: [junkk, boloni, yau, dcm]@cs.purdue.edu

October 14,1999

Abstracl
In this paper we present an adaptive video service architecture. Software
agents provide feedback regarding the desired and the attained quality of
service at the client side. Server agems respond by rcconfiguring the server
and reserving communication bandwidth and/or CPU cycles according to a
sel of rules. The adaptation mechanism is conlrollcd by an inference engine
running as one of the strategies of the server agent. The agents are assembled
dynamically from reusable components using the Bond Agent Framework.
QoS reservation is supported by two native resource managers in Solaris
2.5.1, for network bandwidth and CPU cycles respectively.

1 Introduction

Data streaming requires that enough communication bandwidth and CPU cycles be dedicated to an audio or video
application and there is a consensus that QoS for mulLimedia applications cannoL be guaranLeed without reservation of
resources. QoS guarantees require: (a) the characterization of an application in terms of overall resource consumption
for various levels of service, (b) a mechanism to negotiate !.he level of service between the provider and the consumer,
(c) a mechanism LO reserve resources, and (d) a mechanism to enforce reservations.

In this paper we propose an architecture supporting server reconfiguration and resource reservations for a video
application. Software agents provide feedback regarding the desircd and the attained quality of service at the client side.
Server agents respond by reconfiguring the server and reserving communication bandwidth andlor CPU cycles
according to a set of rules. The adaptation mechanism is controlled by an inference engine running as one of the
strategies of the server agent. The agents are assembled dynamically from reusable components using the Bond Agent
Framework. QoS reservation is supported by a native bandwid!.h scheduler and a CPU scheduler in Solaris 2.5.1.

Adaptation using active networks [1], and other methods, [3], have been proposed in the past. Yetlhe agent approach
discussed in this paper is more convenient, it docs not require that the software be reinstalled every time a change of
resource allocation policy takes place and it is capable of handling complex negotiations between the panics involved.

The contributions of this paper are an agent-based architecture for QoS adaptation and a set of rules for reconfiguring
an MPEG server based upon the information about resources and needs of a video service application. We also report
measurements performed on our test bed system.

This paper is organized as follows. Section 2 introduces our resource managers for network bandwidth and CPU cycles.
Section 3 provides an overview of the Bond Agent Framework. Section 4 introduces the multimedia agents, the data
streaming modes the inference strategy and the rules for server reconfiguration and for resource reservations.
Measurements are reported in Section 5 and conclusions are presented in Section 6.

2 Operating System Support for QoS

Middleware mullimcdia agents interface with native OS resource managers 10 secure resources for an assured level of
service. This section describes our implementation of two resource managers in Solaris 2.5.1 for network bandwidth
and CPU cycles, respectively.

2.1 Bandwidlh scheduling

The bandwidth manager in our system is called Tempo. Tempo allows application flows to reserve for guaranteed
network bandwidth. IL~ software architecture consists of a stream driver for conLrol operations and a sucam module for
flow classification and scheduling 17J. Standard Solaris applications can benefit From Tempo services withaUl any
modifications.

Tempo supports very flexible resource sharing according 10 Internet "now specifications". An Intemetflow is defined
by the five-tuple:

i.e. as source IF address, destination IP address, transport protocol (usually TCP or UDP), protocol source port number,
and protocol destination port number. Aflow specificatioll then gives a set of flows by allowing any number of fields in
the five tuple (0 be partially specified: IP addresses can be wildcarded to different degress (e.g. * or 128.*), port
numbers can specify a range (e.g. "don't care" or 1050--1100), etc. When all fields of the five tuple are completely
unspecified, we have a defalllt flow specification, Le. one that matches all network packets.

The default flow specification is at the root of each (per-interface) Tempo sharing hierarchy. This root specification can
be partitioned inlo a number of c1/ild flow specifications that are all disjoint. Each of these children can then be funher
paniLioned in a recursive manner. To ensure that sharing relationships arc well fanned, we furLher require that if C is a
child flow specification of its parem P, lhen the set of flows that match C must be a subset of the flows that match P.

For real-time perfonnance, each flow specification in the sharing hierarchy can be given a resol/rce specification. This
resource specification is in the form of a service cllrve [8J, which defines a monotonically non-decreasing function of
time S(.). Intuitively, Set) (in bits) specifies the minimum amount of service that a flow specification with the
reservation should receive by time t (in jlS), provided that the set of flows matching the low specification has
"sufficient" aggregate demand. Notice that S(.) for the defaull flow specification of an interface wiLh bandwidth B (in
Mbps) should be linear wiLh slope B. To guarantee service curves, we need to prevent resource over-subscription. This
can be achieved by ensuring that for each non-leaf flow specification P, the sum of S(.) for all of P's children does not
exceed S(.) of P itself. Figure I illustrates an example Tempo sharing hierarchy.

/ •••• * "
(< .. ,,;> 'I

\ 10Mbps ;'

/

T
-"" ..--- ..

,
I' ,',".'.'2I."'f<:I'::. "" ,~ /i

"2"-'0,0.0, \.
12"-'''..."

TCI'.':.,,-

./ '.

(' ...··'i·~...-'·:,:
,

,
I .""':.Ta'.'''''''''
, "-
" . -"- -_.-- .

Figure I: Example Tempo sharing hierarchy by flow specification.

While S(.) is generally defined to be a monotonically non-decreasing funclion of lime, in practice we represent it as a
sequence of linear segments. Each segmenl is of the form <cl,m.c2>, meaning lhat S(.) has slope 111 during time
ICl.C2>. It can be secn thal service curve generalizes lhe widely used notion of service rare (in that a rate defines a
linear service curve). By doing so, it allows delay and rate performance to be decoupled [8] [10]. This benefits an
importanl class of flows. such as interaclive audio, which havc low long lerm rale but nevertheless desire low delay
guarantees.

Software architecture. Each network interface configured to use Tempo will have a Tempo module "pushed"between
the device driver for the interface and a common IP multiplexor module (see Figure 2). Packets sent by standard
Internet applicalions are rouled by IF to go out of a certain network interface. If the inlerface is Tempo.enabled, these
packets will be processed by the cOlTesponding Tempo module. Each of them will be classified lo a most specific flow
specification. For the sharing hierarchy in Figure I, for example, packet
<128.211.1.10,128.180.3.10, TCP, 7500,15000> will be classified to <128. *,128. * ,TCP, *, *> and
packet <128.10.8.9,128.15.9.25,TCP,10000,60000> will be classified lo
<128.10.8.9,128.15.9.25,TCP,,o,,,o,>. which is a marc specific match than the altcrnative
<128. * , 128. * ,TCP, * , *>. Given the classified flow specifications, Tempo implements lhe fair service curve
earliest deadline first scheduling algorithm in [10). The algorithm guarantees the servicc curve of each flow
speeificalion while minimizing progress unfairness between flows.

D

Link device
driverIP module

Tempo module

tJ)""",,P"k~"'R' - D I, I',_ -----1-'1 a....;fi", ScIl~I., ~~__~I"

=-=--== '"""'"~ ~==:IJ
! I control operations

1

~/--' --------,

(
! Tempo driver

Figure 2: Tempo module/drivcr sonware archilecture.

Bandwidth scheduling interface. Applicalions manage resource reservations for a send interface by opening the
Tempo device driver for that interface. An open returns a standard rile descriptor which serves as a handle for various
ioctl calls to conlrol the interface. In particular, the following conlrol operations are supported:

I. Create a now specificalion with a given resource reservation. The create requesl will fail if il will resull in a
sharing hierarchy lhat is not wcll formed. or if !here is insufficienl available bandwidth. Otherwise, the call
will return a handle that can be used by subsequent operations on lhe flow specificalion.

2. Delcte a now spccificalion given its handle.

3. For the now specification identified by a given handlc, modify its resource specificalion.

4. List lhe current sharing hierarchy.

Notice thllt the sharing hierarchy of a Tempo-enabled interface is global to all applications. As a result, resource
reservations used by an application need not be managed by lhe application itself. Instead, a ,hird-parly control
program can be used to manage reservations on behalf of diverse user applicalions. This allows resource management
functions lo be localized in "specialist" modules such as our middleware mulLimedia agents. These agents can then
export resource management services lo a wide range of real-lime applications such as video servers, Web based media
streaming, leleconferencing, etc.

2.2 CPU scheduling

Our CPU manager allows Solaris applications to reserve for guaranteed CPU lime. II defines a CPU sharing hierarchy
lhat is very similar lO thal used by Tempo. Similar to Tempo, for example, it allows CPU capacity lo be recursively
partitioned inlo configured service classes -wilh specified resource speci fications. Threads can then be admitted to any
configured service class with sufficient capacity, and we view them as feaf service classes (which of course cannot
admit other threads). A resource specification for a (configured or leaf) service class is in the form of a service curve
S(.). In this case, Set) (in llS) gives the minimum amount of CPU time thal a service class with lhe resource specificalion
should receive by time I (in llS), provided that the service class has sufficient demand.

Unlike Tempo, however, the sharing hierarchy cannot be defined by way of flow specification relationships. Instead,
any scrvice class created to join a sharing hierarchy is given a system wide integer identifier. A class with id P Clln lhen
be configured explicilly as a child of another class wilh id q using the call

join_node(p, q);

Threads arc likewise created to be children of specified configured service classes. A created thread can later change its
resource specification, including leaving ilS original service class and joining a new one. This is provided by the SVR4
priocntl (2) API call discussed below.

CPU scheduling interface. Sol<lris comes from the lineage of Unix SVR4. As such, it supports different scheduling
classes. Our syslem retains the use of the SYS class for interrupt processing (in Solaris, interrupts have thread conlext).
Our service curve based CPU scheduling is implemented as a new scheduling class called SC. At syslem startup time,
we partition CPU capacity into three default service classes: SC_CO, SC_SI, and SC_S2, thal arc allocated 70%, 20%
and 10% of the CPU respeclively. Once the system is booted up, a privileged user can repartilion the CPU into other
configurations.

We change the Solaris kernel to run the ini t process (process number I and an ancestor of all Unix user processes) in
SC_CO with the linear service curve of slope 0.001. In Unix SVR4, children processes forked by a parem process
inherit the scheduling class and parameters of the parent by defaull; therefore, all user processes (and lheir associaled
threads) also run in SC_CO with the linear service curve of slope 0.001 by default.

We provide twO principal ways lo change the defauh scheduling paramelers of an SC thread. First, we SUpp0rl the
priocntl (l) command for SC scheduling. Using this command, any standard Solaris applicalion can be started
with specified parameters from a Unix shell, as follows:

priocntl -e -0 SC -rl <ml> -x <d> -r2 <m2> -n <class> <program>

where <program> is the name orlhe application 10 run, <class> identifies the service class (e.g. SC_CO) thm
is to be the parent of the application, and the service curve for <program> is specified to have slope <ml> (in unit
of 0.1%) during time [O,d> «d> is in J.IS) and slope <m2> during time [d,oo> (i.e. we restrict the specification to only
two piecewise linear service curves).

Second, application threads once slarted can change their scheduling parameters using the SVR4 priocntl (2)
syslem call. For the PC_SETPARMS entry poinl orpriocntl, which sets the scheduling paramlers of a specified set
of Ihreads (e.g. all threads belonging lo a given process, the lhread for the currenl LWP, alllhreads belonging to a given
user, etc), the SC class specific parameter slruclure is defined as follows:

struct (

int ml; /' in 0.1 • '/
int rn2; /' in 0.1 • '/
int d; /' in microseconds '/
int class; /' id of parent service class '/

) ;

3 Bond Agent Framework

Bond [4] is a Java-bascd distribuled objecl system and agcnl framework, with an emphasis on flexibility and
performance. It is composed of (a) a core conlaining lhe object model and message oriented middleware, (b) a service
layer conlaining distributcd scrvices like direclory and persistcnt storage services, and (c) lhc agent framework,
providing the basic lools for crealing autonomous network agents logelher with a dalabase of commonly used strategies
which allow devclopcrs to assemble agents wilh no or minimal amounl of programming.

3.1 Bond Core

At the heart of the Bond systcm there is a Java Bean-compatible component architecture. Bond objects extend Java
Beans by allowing users to attach new properties to the objecl during runtime, and offer a unifonn API for accessing
regular fields, dynamic propcrties and JavaBeans style setField/getField-defined virtual fields. This allows
programmers the same flexibility like languages like Lisp or Scheme, while mainlaining the familiar Java
programming syntax.

Bond objecL..; are network objeclS by default: they can be both senders and receivers of messages. No posl-processing of
lhe objecl code as in RMI or CORBA-Iike stub generation. is needed. Bond uses message passing while RMI or
CORBA-based component architectures use remote method iI/vocation.

The syslem is largely independenl from the message transport mechanism and several communication engines can be
used imerchangeably. We currenlly provide TCP-based, UDP-based, Infospheres-based, and, separately, a multicast
engine. Other communication engines will be implemenled as needed. The API of the communication engine allows
Bond objeclS to use any communication engines withoUl the necd 10 changc or recompile the codc. On the other hand,
the properties of lhe communication engine are reflected in lhe propertics of lhe implemented applicalion as a whole.
For example lhe UDP based engine offers higher performance but does nOl guarantee reliable delivery.

All Bond objeclS communicale using an agent communication language, KQML [9]. Bond defines the concept" of
:5ilbprotocols, highly specialized, closed sci of commands. Subprolocols generally contain the messages needed 10
perfonn a specific task. Examples of generic Bond subprotocols are property access subprotocol, age1!f C01!frol
subprotocol or security subprotocol. An alternative formulalion would be that subprOlocols inlroduce a structllre ill lhe
semantic space ofthe messages.

Subprotocols group the same funclionalilY of messages which in a remote method invocation system would be grouped
in an interface. But the larger flexibility of the messaging system allows for several new lechniques which arc difficult
to implemenl in the remote melhod call system:

• The subprolocols implemented by objects are properties of lhe object, so two objects can use the property
access subprotocol implemented by every Bond object. 10 find lhe common sel of subprotocols lhey can
use to communicate.

• An objecl is able to controllhe path of a message and to delegate the processing of the message to sub
components called regular probes. Regular probes can be auached dynamically to an object as needed.

• Messages can be interceptcd before they are delivered to the objecl, thus providing a convenient way 10
implement security by means of a firewall, accounting, logging, monitoring, fillering or preprocessing
messages. These operations are performed by sub-componenls called preemptive probes which are
activated before the object in the message delivery chain.

• Subprotocols, like interfaces, are grouping some functionality of the object, which mayor may not be
used during its lifetime. A subcomponent called autoprobe allows the object to instanLiate a new probe, to
handle an incoming message which can not be understood by the existing sub-components attached to an
object

• Objects can be addressed by their unique identifier, or by their alias. Aliases specify the services provided
by the object or its probes. An object can have multiple aliases and multiple objects can be registered
under the same alias. The latter enables the architecture to support food balancing services.

These techniques can be implemented through different means in languages which treat methods as messages, e.g.
Smalltalk. In Java and C++ they can be implemented at compile time, not at runtime, e.g. using the delegation design
pattern. Techniques from the recent CORBA specifications e.g. the simultaneous usc of DII, POA, trading service and
others, also allow to implement a similar functionality, but with a larger overhead, and significantly more complex
code.

3.2 Bond Services

Bond provides a number of services commonly used found in distributed object systems, like directory, persistent
storage, monitoring and security. Event, notification, and messaging services, which provide message passing services
in remote method invocation based systems are not needed in Bond, due to the message-oriented architecture of the
system.

Some of Bond services perform differently than their counterparts in other middleware systems, like CORBA. For
example, Bond never requires explicit registration of a new objecL with a service. Finding out the properties of a remote
object, i.e. the set of subprotocols implemented by the object, is done by direct negotiation amongst the objects. The
directory service in Bond combines the functionality of the naming and trading services of other systems and it is
implemented in a distributed fashion. Objects arc located by a search process which propagates from local directory to
local dirccLory. The directories are linked into a virlual network by a lfansparent distrib"ted awareness mechanism,
which transfers directory information by piggybacking on existing messages.

Compared with the naming service implementations in systems like CORBA or RMI, which are based on the existence
of a name server, this approach has the advantage that there is no single point of failure, and the disLributed awareness
mechanism reconstitutes the network of directories even after cataslfophic failures. However, a disLributed search can
be slower than lookup on a server, especially for large neLworks of Bond programs. For these cases, Bond objects can
be registered to external directorics, either to a COREA naming service through a gateway objecL, or to external
directory services using LOAP access.

3,3 Bond Agents

The Bond agetll framework is an application of the facilities provided by the Bond core layer to implement
collaborative network agents. Agents are assembled dynamically from components in a slfUcture described by a multi
plane state machine [5]. This sLrucLure is described by a specialized language called blueprint. The active components
(srraregies) are loaded locally or remotely, or can be specified in interpretive programming languages embedded in the
blueprint scrip!. The state information and knowledge base of the agents arc collected in a single object called //lodel of
the world which allows for easy checkpointing and migration of agents. The multi-plane state machine describing the
behavior of agents can be modified dynamically, thus allowing for agellt surgery.

The behavior of the agent is described by the actions the agent is performing. The actions are performed by the
strategies either as reactions to external events, or autonomously in order to pursue the agenda of the agent. The current
state of the multi-plane staLe machine (described by a state vector) is specifying the strategies active at a certain
moment. The multiple planes arc a way of expressing parallelism in Bond agents. A good technique is to use them to
express the various facets of the agents behavior: sensing, reasoning, communication/negotiation, acting upon the
environment and so on. The transitions in the agent are modifying the behavior of the agent by changing the current set
of active slfategies. The transitions can be triggered by internal events or from external messages - these external
messages form the comrof mbprotocol of the agent

Strategies, having limited interface requiremenLs arc a good way to provide code reuse. The Bond agent framework
provides a strategy database, for the most commonly used tasks, like starting and controlling external agents or legacy
applications. A number of base strategies for common tasks like dialog boxes or message handlers are also provided,
which can be sub-classed by developers to implement specific functionality. External algorithms, especially if written
in Java are usually easily ponable to the strategy interface.

4 Adaptive MPEG Video Server Architecture

In this section we describe the basic architecture of a video streaming system using agents to adapt the level of service
beLween an MPEG video server and a community of video clients.

The Moving Picture Experts Group, MPEG, is a set of standards used for coding digital audio-visual infonnation in a
compressed format [2]. MPEG-I was developed for storing video data and its associated audio data on digital storage
media and intended for data rates on the order of 1.5 Mbitlsec. MPEG-l specifics an algoriLhm for compressing video
pictures and audio and then provides the facility to synchronize multiple audio and mUltiple video bit sLreams in an
MPEG-I system.

The MPEG-I video sLream consists of a series of I-frames, P-frames, and B-frames, which differ in the coding scheme
providing three levels of compression by exploiting similarities within the picture or with neighboring pictures. I·
frames are the most complete, P-frames contain difference from fonner I or P-frames, and B-frames are encoded with
differences from both preceding and following I or P-frames, thus contain the least amount ofdata.

4.1 Multimedia Agents and Data Streaming Modes

We present an adaptive MPEG system where multiple video clients connecl to a video-server and negotiate the level of
service using Bond agents a" shown in Figure 3. The MPEG video diem is a process responsible to display a video
stream. This process is started by means of a diell/ agem that monitors the reception of the video stream. Whenever an
MPEG client agent requests a video stream, the MPEG video server spawns an MPEG server processes to deliver the
video stream and an MPEG server agent to control the streaming modes. There are control channel between thc server
agent and the client agem for feedback and command, and video streaming channel between the MPEG server and the
MPEG video client.

Figure 3: The MPEG system consists of a server and a set of server agents and cliem agents. The server agents and
the c1iem agents arc for video streaming and display respectively, and the server agents are created by the server at
the request of the client

The MPEG server agent can adapt with different sLream modes. Initially the MPEG server agent i:; configured to
deliver a compressed video stream. However as !.he resource state:; changes, the agent can select other streaming
modes. The affecting resources are network bandwidth and the CPU loads on the server and client sides. The server
agent currently supports four strcaming modes:

Compressed Video Stream The MPEG server rcads the video stream from the Video Data Base or from a
local file and transmits it to a client. The MPEG client decodes the video stream and displays the frames.
Decoding the video stream is a CPU inLensive operation.

Drop B,P Frame. The MPEG server partially decodes the video sLream La identify the frame types and drops
certain lype of frames. The sever selecLs the frames of which type affeeL~ the video quality less than other
types, for example, B-type and P-type. This mode is suitable for low bandwidth.

Server Decode. The MPEG server transmits the decoded frames to a client. It allows the client to usc less
CPU cycle by avoiding decoding process, whereas the transmission bandwidth increases because of the frames
size. for example, in some cases the frame size increases ten times after decoding. Thus this mode is useful to
the clients on highly-loaded systems with CPU intensive programs, but connected with high-bandwidth
network.

Server Decode and Drop. This mode as the combination of the Server Decode and the Drop B.P Frame
modes is suitable for overloaded clients connected with moderate bandwidLh.

Figure 4 shows the streaming modes and the possible transilions among them. The transitions between some modes arc
bi-directional, thus the server agents are able to changes modes repeatedly, for example, after changing into the drop
mode, the server agent might change back lo the compressed mode after reserving the bandwidth. When the server
agent is inilialized, it can rejecL the service if the service capacity reaches the limit, for example, the video server limits
the lolal number of current clients.

Aeject
DropB,P
Frames

Figure 4: The server streaming modes. Initially the video server is configured La deliver a compressed video stream.
The server may by reconfigured to decode frames and send uncompressed frames, to drop Band/or P frames but
send compressed frames, or to decode

Figure 5 shows the structure of the server agent with two planes: an MPEG plane with a set of Slrategies corresponding
to the streaming modes, and a control plane with the reasoning capability for deciding a streaming mode. The reasoning
is performed by the inference strategy, which will be discussed in the next section. Using the parallelism supponed by
the mulliplane structure, the MPEG plane is dedicaLed La the video streaming, while the control plane is continuously

reasoning to decide whether to change modes. Figure 5 shows an example of reconfigurmion by changing from the
compressed mode to the decoding mode. To trigger the state change of the MPEG plane, the control plane invokes the
extemaltransition specified in the blueprint. The server agent has the clear separation between the functional parts and
decision parts, thus resulting in easy modification, maintenance, and improved reusability.

4.2 The Inference Strategy and the Rules for Server Rcconfiguration

The inference strategy using Java Expert System Shell, JESS, inference engine [6] is one of the generic strategies
available with the Bond system. The most significant benefit of the inference strategy is that the reconfiguration
algorithms can be modified withoUl recompiling Ihe whole agent whereas, in other applications. even small changes in
the adaptive algorithms end up with causing large modifications and even re-programming in other parts. Once
installed, the inference strategy creates a Bond inference engine which wraps the JESS inference engine and the
inference engine is capable of communicating with other objects.

Table 1: Video profile of the frame rates wilh the required transmit ratelbandwidlh

Frames Rate (frames/sec.) Data RatelBandwidth (bytes/sec.)
5 4000
10 7000
15 10000
20 13000
25 16000
30 20000

In this application, the inference engine uses facts and TIlles to reconfigure the video-server. The facts are Ihe
perfonnance data of the server, the feedback infonnation of the client, and other state information, e.g. desired frame
rate, current streaming mode, current video file name. A set of facts fonns the knowledge base inside the inference
engine. Since the inference engine is lhe network object like any. Bond objects, the engine can gather the feedback
information using the KQML messages from the clients. The inference engine exports a set of APIs to inserl, delete,
modify, and list the facl". The perfonnance and feedback facts are:

Transmit rate. The server logs the transmit rate as bytes/sec. This rale can be affected by the system load on
the server side. Each video file has its own profile giving an estimate of the data rate corresponding to a given
frame rate. Table I shows a sample profile of one of the video files we used for testing. The profile is obtained
by summing up each frame size.

Paeket loss rate. The current video streaming implementation is based upon UDP and the video quality is
affected by lost packets. Each UDP packet contains one frame, thus it is easy for the client to re-synchronize
the stream. By comparing the unique frame numbers of the arriving frames, we can detect lost packets.
Although each UDP packet contains one frame, the packet loss rate is not the same as the frame loss rate,
because P-frames and B-frames arc dependent on I-frames. If an I-frame is lost, the depending frames are
considered to be lost. The packets arriving out of order are rearranged.

Inter-frame time. The client needs to decode the frame in compressed mode. The inler-frame time shows the
lime between two displayed frames. This time shows reflects the CPU cycles used for decoding for differenl
Iypes of frames. Since I and P frames are larger than B frames. the time to decode them is larger. If the
system on the client side is overloaded, Ihe inter-frame time increases.

Receiving rate. The client logs the arriving packet sizes as bytes/sec. The receiving rale is affected by a
congested network or high system load on the c1ienl side. To distinguish two cases, we reserve a bandwidth as
specified in the profile. If the rale is still low, it means the client is overloaded.

;" Inn; .._ ~I~l~..n..... ..

Figure 5: The server agenl consists of two planes: the MPEG plane and Ihc con!rol plane. Each plane consists of a
state machine. each state has a Sll'alegy associated with it. After reasoning, thc control plane decides to reconfigure
lhe server.

Rules are sets of condilional statements 10 control Lhe system configurmion and resource reservation. The inference
engine load the rules and apply them to the knowledge base. The rules has the following form:

Rule:
[Condition_I]
(Condition_2]
(Condition_3]
=>
[Action]

As mentioned, thc semantics of a rule is: if [Condition_I] AND [Condition_2] AND AND
[Conditio~N] then [Action) statement of a procedural language, bUl il is noL intendcd to be used in a
procedural way. Rmhcr than being executed in a specific order by which the rules are listed, any rules with all lhe
conditions satisfied arc cxccuted. The condilions of the rules arc pattern-malched againsl the knowledge base and lhey
are activated when all the condilions are met. Thejin·IIK of the activated rule is delayed until we invokc a run melhod
on the inference enginc. Besides the run melhod, the inference engine exports APls to load the rules, clear or save the
current rules, lislthe activaLed rulcs. Since the JESS is the interpreter-based, the rules can be loaded or modificd in run
time. In lhis applicalion, the actions of the rules can be the external transition or resource reservation. As shown in
Figure 3, the control plane has a Trigger-Transition Slale for invoking eXlcmallransitions. and a Negotiare state for the
negOlialion with Ihe resource managers aboullhe reservalion.

We presenL the rules for thc resource reservalion and reconfiguration:

Bandwidth Reservation Rule. The objeclive of Lhis rule is 10 reduce the packet loss rate by reserving bandwidth when
the nelwork is congcstcd. The profile also has the maximum packclloss rate allowed to maintain a l;crtain frame raLe.
By comparing lhc packet loss rate with lbe maximum Tale. we can find oUl the network is congested. The rule is

(packet-lass-rate ?lr)
(desired-frame-rate ?fr)
(maximum-loss-rate ?mr)
(test (> ?lr ?mr))
=>
(reserve-bandwidth ?fr)

After this rule is fired, the Slralegy of thc negotiate state looks up the profile to check [he required bandwidlh to achieve
Jr. and reserve lhat amount of bandwidlh using the bandwidth reservalion interface.

CPU Reservation Rule. This rule is fired when a CPU-inlensive program running on eiLher the server or the clienl
side affects the lransmil rale of the server or the inter-frame lime of the client. The transmission raLe of Ihe server is
compared with lhe profile and the inler-frame time is compared to lhe desired inter-frame time, which can be easily
calculaled from the desired frame rale. The video profile does not include a CPU component because the CPU
requirements are system dependent Thus this rule is repeatedly fired, and raises lhe reservalion level gradually, unlil
the desired rate is achieved. The rules are:

(transmit-rate ?tr)
(required-transmmit-rate ?rtr)
(test « ?tr ?rtr)
~>

(increase-cpu-reservation)

(inter-frame-time ?ft)
(required-inter-frame-time ?rifr)
(test « ?rifr ?ft)
~>

(increase-cpu-reservation)

Dropping Rule. This rule is fired when eilher the bandwidth or CPU reservalion fails due to the lack of resource. As
an action, the drop mode is selecled to avoid more congeslion or avoid sending more frames Ihan the client can handle
in lime. Iflhe reservalion fails, lhe new facts aboullhe failure, (bandwidth-reservation-failed)
(cpu-reservation-failed) and arc added 10 lhe knowledge base. The rules are:

(bandwidth-reservation-failed)
~>

(trigger-drop-mode)

(cpu-reservation-failed)
~>

(trigger-drop-mode)

5 Experimental Results

In lhis seclion we present measurements characterizing the MPEG applicalion with and without resource reservalion.
As the lestbed for our sysLem, the server is an Ultra Sparc-l machine wilh 128 MBYles memory running Solaris 2.5.1,
the client is a Pemium II 300 MHz, with 128 MBytes memory machine running Solaris 2.5.1. To simulate increased
traffic load a communication-inlensive program generates a burst of UDP packets. To simulate the CPU load, a
"greeedy" CPU intensive program is used.

The firSI experiment shows the effecl of bandwidth reservation. On lhe server side in addition to the MPEG application
we start lhe UDP-bursl program. The traffic generated by this applicalion interferes with the video traffic and we study
lhe effect of this imerference. The results are shown in Figure 6. In 6(a) the video application does nol reserve
communicaLion bandwidth. The graph shows the inler-frame limes measured at the client sile, wilh frame number on
lhe horizontal axis and lime in milliseconds on lhe vertical axis. The inler-frame time for lost frames is set to lhe
maximum value, 60000 milliseconds, lhus lost frames appear as verlicallines in the graph. Wilhoul reservation a large
percentage of video packets are lost. Once sufficient bandwidth to suppon the desired frame rale is reserved, the
number of losl packets is noticeably reduced, even under the heavy network traffic as shown in Figure 6(b).

<a)

Figure 6: The bandwidth reservation experimcnl.

(b)

The: second experiment shows the effect of CPU reservation. We run three processes of the greedy program 10 compete
for CPU time with the MPEG process. The experiment is repealed two limes: the first time without CPU reservation.
and the second with sufficient CPU reservation for the MPEG application (0 achieve its intended frame rate. Figure 7
shows the effect of the CPU reservation on the inter-frame lime. To make more visible the effect of the CPU-intensive
program, we start it in the middle of client execution at about frame 120 and then slop it at about frame 230. A" shown
in Figure 7 (a), the greedy program causes an increase in the inter-frame lime. With CPU reservalion, the CPU·
intensive program docs nOl affect the inter-frame time as shown in Figure 7(b).

,~

,~

,-

-
-
-
-
•• • ,.

(aJ

-

(b)

Figure 7: The CPU reservation experiment. The graphs show the inter-frame time measured al Ihe client side with
the CPU intensive greedy program. On the left, the CPU-intensive program is staned while the client is running and
then stopped. On the right, the CPU-intensive program could nOl affect the client because of CPU reservation. .

6 Conclusions

In Ihis paper we presenl an agent-based adaptation scheme supporting QoS guarantees. The muilimedia agents are
assembled dynamically out of reusable eomponenLs and inLeract with the client process, with the servers process and
with our native as resource managers for network bandwidth and CPU cycles.

The experiments we conducted show the effect of bandwidth and CPU reservation. Figure 6 shows Ihat the number of
losl video packets decreases significantly when sufficient bandwidth is reserved lo accommodate the desired frame rate.
A similar effect for CPU reservation is observed in Figure 7. In this case the variancc of the inler-frame time is
reduced when the CPU scheduler provides enough cycles Lo the video application.

The advantage of the technique described in this paper is grealer flexibility and system reconfigurabi1ity. The rules
governing the behavior of the agents can be modified dynamically. Moreover, the agents themselves can be assembled
modified by agent surgery while running.

The Bond systems is available under an open source license from http://bond. cs .purdue _edu

Acknowledgments

The work reported in this paper was partially supported by grants from Lhe National Science Foundation. MCB
9527131, EIA-9806741 and CCR·9875742, by the Scalable 110 Iniliative, and by a grant from Ihe Intel Corporation.

References

[I] M. Hemy, U. Hcngartner. P. Sleenkiste, and T. Gross. MPEG System Streams in Best-Effort Networks. In
Proceedings ofPacket Video '99, April 1999, New York

[2] ISOJIEC ITC IISC 29/N 071. Codillg ofmoving pictllres Gild associated audio -for digital storage media at upto
about 1.5 Mbits/s· PartI:Syslems, Pan2: Video, 1992. COllin

[3] 1. Walpole, R. KOSier, S. Cen, C. Cowan, O. Maier. D. McNamee, C. Pu, D. Steere. A player for adaptive MPEG
video streaming over Lhe Internet. In Proceedings 26th Applied Imagery Paltem Recognition Workshop AIPR-97,
SP1E, Washington DC, OClober 15-17,1997.

[41 L. Boloni and D.C. Marinescu An Object-Oriented Framework for Building Collaborative Network Agents in
lme/ligell/ Systems alld Interfaces, (A. Kandel, K. Hoffmann, D. Mlynek, and N.H. Teodorescu, eds). Kluewer
Publising House, (1999), (in press).

[5] L. Boloni and D.C. Marinescu. A Multi·Plane State Agent Model. Computer Sciences Department, Purdue
University, CSD-TR #99-027, see also hup:flbond/cs.purdue.edulpapcrslindcx.hlml
[6] E. Friedman-Hill. Jess, The Java Expert System Shell. Dislributed Computing Systems, Sandia National

Laboralories, SAND98-8206, 1999.
[7] S. Floyd and V. Jacobson. Link-sllOring and resource managemellt models for packet nenvorks. IEEEfACM

Transactions on NClworking, 3(4),1995.
[8J H. Sariowan, R. Cruz, and G. Polyzos. Scheduling for Qualily of Service Guarantees via Service Curves. In

Proceedings ofImematiolla{ Conferellce on Compl/ter Communications and Networks, September, 1995.
[9J T. Finin, et al. Specificatio1l of the KQMLAgellt-Comlllll1licatioll Language, DARPA Knowledge Sharing initialive

draft, June 1993
[10J I. Sloica and H. Zhang. A Hierarchical Fair Service Curve Algorithm for Link-Sharing, Rcal-time and Priority

Services. 111 Proceedings ofACM SIGCOMM 97, September, 1997.

	Intelligent QoS Support for an Adaptive Video Service
	Report Number:
	

	tmp.1307986960.pdf.CqU4h

