
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1999

Performance Evaluation of CPU Isolation Miechanisms in a Performance Evaluation of CPU Isolation Miechanisms in a

Multithreaded OS Kernel Multithreaded OS Kernel

David K.Y. Yau
Purdue University, yau@cs.purdue.edu

Report Number:
99-035

Yau, David K.Y., "Performance Evaluation of CPU Isolation Miechanisms in a Multithreaded OS Kernel"
(1999). Department of Computer Science Technical Reports. Paper 1465.
https://docs.lib.purdue.edu/cstech/1465

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PERFORMANCE EVALUATION OF CPU ISOLATION
MECHANISMS IN A MULTITHREADED OS KERNEL

David K. Y. Yau

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #99-035
October 1999

Performance Evaluation of CPU Isolation Mechanisms

III a Multithreaded OS Kernel'

David K.Y. Yau
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-1398

yau@cs.purdue.edu

TR-99-035 October 28, 1999

Abstract 1 Introduction

To allow user applications fine grain control over their
CPU allocatioDS, and to protect these allocations from
each other> thread priorities must have QoS interpreta
tion independent of how other threads make scheduling
requests. To this end, we present a CPU scheduler based
on the well defined resource specification of service curve.
Service curve based sharing generalizes the traditional use
of service rate, and is distinguished by its ability to flexi
bly decouple delay and rate performance. Apart from how
we compute thread priorities, predictable performance is
hard to achieve on a general purpose machine also be
cause threads can interact with each other and contend
for synchronization resources. If not controlled properly,
such interactions contribute to various forms of priority
inversion. ·We discuss iI. new approach of dynamic priority
inheritance in our CPU scheduler that solves priority in
version due to lock contention. To solve priority inversion
arising from incompatible client/server resource specifica
tions, we employ a train abstraction that allows a thread
of control to visit multiple protection domains while car
rying its resource and scheduling state intact. Train has
been applied to rea] applications like a Solaris X window
server. Finally, we present a mechanism for Internet How
specifications to reserve CPU time for network receive in
terrupt processing. Experimental results demonstrate the
performance of our system under various conditions of
lock contention, client/server programming, and network
processing. The reported system has been in production
use at Purdue for some time, supporting daily activities
of our users.

'Rcsearch supported in part by the National Science Foun·
dation under grant number EIA-980G741 and a CAREER grant
number CCR-9875742

It is Widely recognized that to support emerging ap
plications having real-time constraints, operating sys
tems should allow uscr applications fine grain con
trol over their CPU allocations. Moreover, in a mul
tiuser, general purpose machine environment, pro
tecting user allocations from each other and from
other system activities is an important goal. It al
lows admitted CPU reservations to retain their qual
ity of service (QoS) significance (e.g. delay, rate and
progress guarantees) in spite of competing scheduling
demand, thread synchronization, client/server inter
action, interrupt processing, etc. Towards this goal,
we present and evaluate experimentally three com
plementary kernel mechanisms, pertaining to thread
scheduling, inter-process communication and receive
side network processing, respectively.

For thread scheduling, we adopt an approach based
On service curve [3], a monotoni.cally increasing func
tion SO specifying the minimum amount of cumula
tive CPU time a thread should receive as a function
of time, provided the thread has sufficient demand.
A linear service curve corresponds to the traditional
notion of service rate. In addition, a concave service
curve is one that has a decreasing slope. By specify
ing an intially higher service rate, it allows applica
tions to achieve smaller delays without having to raise
their long term ratcs. This property can positivcly
impact applications such as interactive audio, which
requires low delay although it is not CPU intensive.
In contrast, a convex service curve is one that has an
increasing slope. It allows CPU intensive but delay
insensitive applications to relax their CPU require
ments, thereby allowing delay sensitive applications
to meet their timing constraints. Our scheduling al
gorithm is adapted from the hierarchical fair seroice
curoc (HFSC) algorirhm in [11].

1

The scheduling algorithm aside, interesting issues
arise from the implementation and integration of
guaranteed CPU scheduling in a multithreaded OS
kernel. This is important because apart from how we
compute thread priorities, predictable performance
is hard to achieve on a general purpose machine also
because threads can contend for synchronization re
sources. The idea of priority inheritance to combat
resulting phenomena of priority inversion is not new,
and has been applied in the standard Solaris kernel
for different dispatch levels. 1 New performance is
sues appear, however, when thread priorities are dy
namically adjusted and have QoS interpretations, and
when service curve scheduling interacts with existing
kernel dispatch levels.

Another form of priority inversion occurs due to
the paradigm of client/server programming. Since
servers are deployed without advance knowledge of
the timing requirements of their clients, it is almost
impossible to ensure compatible resource specifica
tions between client and server. A more subtle prob
lem can also occur that concerns the synchronous
form of client/server programming. Since server code
in this case does not run until requested by a client
thread, and when it does run, the client thread blocks
until the server finishes, there seems little motivation
for the server to commit a separate CPU reservation.

These considerations motivate our use of a train
abstraction, previously introduced in [13], that ex
tends thread level performance guarantees to local
client/server computations. This is achieved by al
lowing a thread of control to visit multiple protection
domains while carrying its scheduling and reserva
tion state intact. In this way, server code can auto
matically run according to the resource needs of its
clients, and there is no need to acquire a separate
CPU reservation for the interaction. Train has been
applied in real applications. In this paper, we present
a case study of retrofitting an existing Solaris X win
dow server to support train access.

It is hard to use service curves to directly control
interrupt activities, since the necessary service curves
would be hard to determine. In modern computer
systems, a major source of extensive interrupt pro
cessing is packets received from the network. One
possible solution is to redesign the network subsys
tem to minimize the use of interrupts, such as the
user level protocol approach in [14]. However, man
dating such a relatively major change may be difficult
to achieve in all existing systems. Hence, we pro-

1A dispatch level is a simple integer priority order at which
threads are chosen to run. Il hiLS no QoS interpretation in the
sense of rate, delay or fairness guarantees.

2

vide a module called Atempo2 for Internet flows to re
serve CPU capacity for receive side protocol process·
ing. Packets arriving without the necessary reserva
tion are then dropped early by the network interrupt
handler, before too much CPU time is consumed.

Finally, we present system interfaces for users and
legacy Solaris applications to access the underlying
QoS support. This demonstrates practical deploy
ment of our services in a real system environment.
Experimental results demonstrate the delay and rate
perfonnance of our system under various conditions
of lock contention, client/server programming, and
network processing. The reported system has been
in production use at Purdue fOf some time, support
ing daily activities of our users.

1.1 Related work

Our service curve based CPU scheduler generalizes
the widely used notion of progress rate employed by
various other CPU schedulers offering QoS guaran
tees [5, 7]. As discussed, it allows delay and rate
guarantees to be flexibly decoupled. While the ba
sic scheduling algorithm we employ was previously
known for bandwidth sharing in networks [3, 11], we
demonstrate its use in the different context of CPU
scheduling, and discuss the challenges of integrating
it in a multithreaded general purpose as kernel. The
multithreaded kernel environment presents some dis
tinct challenges such as priority inversion, issues of
kernel preemption, and a complex kernel synchroniza
tion structure.

The train abstraction synthesizes the goal for ef·
ficiency in lightweight RPC [2] and Solaris door [6],
and the goal for QoS performance in priority handoff
[12]. It adopts a different mechanism of allowing a
thread of control to traverse multiple protection do
mains without intervening rescheduling actions. Pro
vision of QoS across protection domains distinguishes
our work from some other multimedia as, such as [9].

Atempo reservations for receive side network pro
cessing are motivated by concerns such as receive live
locks [B]. It is an application of the principle of early
packet multiplexing, well articulated in [4] and also
applied elsewhere in user level protocols (e.g. [14]).
The path abstraction in Scout applies the principle
in protection against denial-of-service attacks [10].
The design and mechanism of Atempo are, however,
novel. They allow reservations to be created as sepa
rate objects, independent of socket endpoints that ac
cess the network. Implemented in the buffer manage
ment subsystem used by network protocols, Atempo
requires no change to the protocol implementations

2From the music lerm a tempo - lo the beat.

ified configured service classes_ A created thread can
later change its resource specification, including leav
ing its original service class and joining a new one.

2.1 Algorithm review

We review the hierarchical fair service curve (HFSC)
algorithm for thread scheduling in our system. The
main ideas appear in [11].

HFSC uses service curve as the resource specifica
tion. A thread, say i, is said to be guaranteed its
service curve if for any time t', there exists a time
t < t' when i becomes runnable and for which the
following holds:

where Wi(t, t') is the amount of CPU time received
by i during the interval (t, t']. Notice that the above
condition depends not only on the serivce curve, but
also the points in time at which i becomes runnable.
To handle this dynamic nature of a thread's service
requirements, we define a deadline curve D i (·) which
is initialized to 8,(·), and is updated each time i be
comcs runnable. For each runnable thread i, we also
maintain an estimate of its immediate CPU demand
Ci, which is how long i, if scheduled, will run until the
next rescheduling point occurs. Using D;(-) and C;"
a deadline d, can be computed for runnable thread i,
as follows

d, = D,'(w,(t) + c,)

where Wi(t) is the total amount of CPU time received
by i up to time t. It can then be shown that if threads
are scheduled in increasing order of their deadlines,
thcn their service curves will be met, provided that
CPU time is not overbooked. This gives the service
curve earliest deadline (SCED) policy.

Notice that because threads can become runnable
at different times, it is in general impossible to serve
all threads at the rates of their service curves at
all times. To see why, denote by < ml, d, m2 > a
two piecewise linear service curve having slope ml

from [0, d) and slope m2 from (d,oo) (d in ms).
Consider two threads P and Q with service curves
<0.1,10,0.9> and <0.9,10,0.1>, respectively. P be
comes runnable at time 0, and Q becomes runnable
at time 10 ms. From 10-20 ms, therefore, the ag
gregate service curve of P and Q has rate 1.8, which
exceeds the CPU capacity. Clearly, P and Q cannot
both run at rate 0.9.

To satisfy service curves, therefore, it is gener
ally needed to provide service in advance Cor some
threads, so that irrespective offuture CPU demands,
thread deadlines are not in danger of being violated.
Providing too much advance service, however, may

(1)Wi(t, t'l 2: 8 i (t' - t)

themselves.
Finally, we aim to preserve maximal compatibility

with existing applications. Where possible, we make
our support for QoS accessible to unmodified Solaris
applications, such as through the HFSC and Atempo
interfaces. Train requires straightforward source code
changes to existing applications, and techniques such
as binary rewriting may serve to remove such need
for certain applications_ Some other systems, such
as the resource container in [1], adopt a more major
revamp of OS design for QoS provisioning.

1.2 Paper organization

The balance of this paper is organized as follows. In
section 2, we review thread scheduling using hierar
chical fair service curves, and present its command in
terface and application programming interface. The
train abstraction for extending thread level perfor
mance guarantees to cross domain computations is
reviewed in section 3. For interrupt driven network
receive, CPU time for protocol processing cannot be
controlled directly by HFSC. Section 4 presents a
complementary mechanism that allows Internet flows
to reserve CPU resource for network receive. The
Atempo interface supporting third party reservations
is also introduced. In section 5, we dicuss issues aris
ing from integration of our CPU scheduler in Solaris
2.5.1, a truly multithreaded and preemptible kernel.
Section 6 presents experimental results on system de
lay, rate and efficiency performance under various
conditions of lock contention, client/server program
ming, and network processing.

Our CPU scheduler allows Solaris applications to re
serve guaranteed CPU time. It allows CPU capacity
to be recursively partitioned into configured service
classes with given resource specifications. Threads
can then be admitted to any configured service class
with sufficient capacity, and we view them as leaf
service classes (which of course cannot admit other
threads)_ A resource specification for a (configured
or leaf) service class is in the form of a service curve
S(·), whose use is explained in section 2.1.

Any CPU service class created in our system is
given a global integer identifier. A class with id p can
then be configured explicitly as a child of another
class with id q using the privileged call

join_nodeCp, q)j

This allows to establish a CPU sharing hierarchy.
Threads are similarly created to be children of spec-

2 Decoupled Delay and Rate Guar

antee CPU Scheduling

3

priocntl -e -c HFSC -rl <ml> -x <d>
-r2 <m2> -n <class> <program>

where <program> is the name of the application
to run, <class> identifies the service class (e.g.
HFSC_CO) that is to be the parent of the applica
tion, and the service curve for <program> is specified
to have slope <rol> (in unit of 0.1%) during time (0, d)
«d> is in I1s) and slope <m2> during time [d,oo) (i.e.
we restrict the specification to only two piecewise lin
ear service curves).

Second, application threads once started can
change their scheduling parameters using the SVR4
priocntl (2) system call. For the PC...8ETPARHS en
try point of priocntl, which sets the scheduling
paramters of a specified set of threads (e.g. all
threads belonging to a given process, the thread for
the current LWP, all threads belonging to a given
user, etc), the HFSC class specific parameter struc
ture is defined as follows:

time, we partition CPU capacity into two default ser
vice classes: HFSC_CO and HFSC_Cl, that have 90%
and 10% of the CPU respectively. Once the system is
booted up, a privileged user can repartition the CPU
into other configurations.

We change the Solaris kernel to run the init pro
cess (process number 1 and an ancestor of all Unix
user processes) in HFSC_CO with the linear service
curve of slope 0.001. In Unix SVR4, children pro
cesses forked by a parent process inherit the schedul·
ing class and parameters of the parent by default;
therefore, all user processes (and their associated
threads) also run in HFSC_CO with the linear service
curve of slope 0.001 by default.

We provide two principal ways to change the de
fault scheduling parameters of an HFSC thread.
First, we support the priocnt1Cl) command for
HFSC scheduling. Using this command, any stan
dard Solaris application can be started with specified
parameters from a Unix shell, as follows:

unnecessarily jeopardize fairness, when a thread run·
ning far ahead of its deadlines is later punished (i.e.
not scheduled) for an extended period of time. To
solve this dilemma, a key observation in [11] is that
it is possible to determine the minimum amount of
advance service the system should provide for each
thread so that deadlines are not in danger of being
missed. This leads to a definition of thread eligibility.

Definition 1 A TUnnable thread, say i, is eligible if
it has not received minimum advance service to en
sure that its deadlines will not be missed.

When all threads in the system are ineligible, there
fore, we can schedule to optimize for fairness. Other
wise, we prefer the real-time goal by first scheduling
eligible threads in SCED order.

In practice, eligibility is approximated by comput
ing an cligibifity curve E, (.) for each thread i, which
is updated every time i becomes runnable. The in·
tention is that a thread, say i, should be consid·
ered eligible until it has received at least E,(t) CPU
time under the real-time goal. Because EiO can be
shown to overestimate the minimum amount of ad
vance service in Definition 1, scheduling for fairness
when all threads are ineligible (according to E;(·))
cannot cause service curves to be missed.

Fairness aims to minimize normalized service dis
crepancies between sibling nodes in the CPU sharing
hierarchy. This ensures that runnable nodes make
progress in ratio of their service curves. A system can
provide fairness by keeping a virtual time with each
service class (i.e. not just threads) in the CPU shar
ing hierarchy. Informally, this virtual time remem
bers the amount of CPU time the service class has
received normalized by its resource specification. To
schedule threads according to the fairness criterion,
we start with the root of the CPU sharing hierar
chy and recursively select a child service class having
a minimum virtual time. The thread that is finally
returned is then chosen for execution. Service time
received by the thread increases the virtual times of
all its ancestor nodes. Together with update of dead
line and eligibility curves at rescheduling points, this
gives a fonn a rate control in which thread priorities
are adjusted according to CPU usage.

struct
int
int
int
int

hfsc_params {
ml; 1* in 0.1 y. *1
m2; 1* in 0.1 Yo *1
d; 1* in microseconds *1
class; 1* id of parent class *1

2.2 CPU scheduling interface

Solaris comes from the lineage of Unix SVR4. As
such, it supports different scheduling classes. Our
system retains the use of the SYS class for inter
rupt processing (see also section 5.1). Our service
curve based CPU scheduling is implemented as a
new scheduling class called HFSC. At system startup

4

};

3 Cross Domain Scheduling

OS services are frequently implemented in isolated
protection domains. This has many advantages, in
cluding modularity, protection, and service access
control. A consequence, however, is that an explicit

Receive Network Reservation

HFSC scheduling does not explicitly control the CPU
demand of interrupt activities. Particularly impor
tant is interrupt processing due to network packet
arrivals [4, 8]. If such processing overhead cannot be
controlled, then aggressive network flows generated
by greedy or malicious remote applications can gain
a grossly unfair share of CPU time.

We provide an Atempo module for userS to ex
plicity reserve system resources used in receive side
packet processing. A reservation is of the form
[<flowspec> <rspec>], where <flowspec> corre
sponds to an Internet flow specification, and <rspec>
specifies the reservation amount, which is the max
imum number of outstanding packets that can be
queued for flows classified to the flow specification.
(A packet is outstanding if it is being buffered in
side the kernel waiting to be read by an application.)
Hence, if packets arc destined for a process which
docs not have enough CPU reservation to consume
its packets, these packets can be dropped early by
the system, limiting CPU processing overhead. Sim
ilarly, stray packets with no intended receivers are
also discarded early, if they classify to a null Atempo
reservation. This is an application of the design prin
ciple of early packet demultiple;...ing.

Atempo works as follows. When a network receive
interrupt occurs for an IP packet, the interrupt han
dler examines the received packet's IP header and
classifies it to a most specific Atempo reservation.
(The classification mechanism is being implemented
as a hash table with one-behind caching, which scales
well to a fairly large number of reservations.) If there
is non-zero capacity in the reservation to admit the
packet, the packet consumes one unit of the reserva
tion and is passed up the protocol stack:. Otherwise,
the packet is dropped immediately. If the packet is
passed up, we store a reference to its Atempo reserva
tion with the network data buffer holding the packet.
This achieves efficiency, since the system needs fu
ture access to the reservation. The unit of reservation
consumed by the packet is not replenished until the
buffer is later freed by the system. If the free occurs
on the normal read path of the stream head, an appli
cation has read the packet in question. The packet's
reservation unit is then immediately returned to the
corresponding Atempo reservation. If the free occurs
because there is no receive endpoint for the packet,
then the reservation unit is not returned. Atempo
reservations can be created, deleted, changed or listed
with the atempo (1) command.

In our implementation, network data buffers can
reference Atempo reservations. When a data buffer is

interprocess communication (IPC) mechanism will be 4
needed for client processes to invoke services in a
server domain. In this regard, the remote proce
dure call (RPC) is a particularly attractive mecha
nism which allows high level remote code access in
the style of local procedure invocations.

Traditional RPC uses independently scheduled
server threads to process client requests. These server
threads axe generally oblivious to the progress re
quirements of their clients. As such, they may cause
forms of priority inversion, and client timing con
straints may be violated. For example, a high prior
ity client thread making a call to a low priority server
thread can be indirectly blocked by another medium
priority thread.

1Tain is a new IPC mechanism for QoS provision
ing across protection domains [13]. It allows a thread
of control to access services in multiple protection
domains while carrying its resource and scheduling
states intact. This ability is achieved by decoupling
a thread (a scheduling entity) from its associated pro
cess (which provides protected resource context - al
beit non-permanently - to the thread).

The train API has six major functions [13]. Among
them, train_createO allows a server to create a
train object in the file system name space that can be
opened by client processes. The train object specifies
a secure entry point to server code (i.e. a program
counter value). A previously exported train object
can be later revoked with the train..delete 0 call.

Given proper permissions, a client process can ob
tain a handle to a train object using train_openO.
The handle can be passed to train_call 0 together
with other user parameters. During train_calIO,
the caller thread first locates an available server stack
for the call and copies in parameters from user to ker
nel space. It then switches to the resource context of
the server process that exports the opened train ob
ject, and sets up execution context on the server stack
so that it will begin execution with the exported en
try point. When the server function completes, it
calls train...Ieturn 0, which allows the caBer thread
to return to the process context at the time the corre
sponding train_callO was made. When a process
finishes using a train object, it gives up its reference
to the object through train_close O.

Straightforward source code changes can enable
legacy applications to switch from a traditional IPC
mechanism to train. We have applied it to a Solaris X
window 11 server. Section 6.4 describes the modified
system and evaluates its performance.

5

duplicated (using the Solads dupb(9F) call) that has
such a reference, the reservation unit in question is
not returned until the last reference to the data buffer
is freed. IT a data buffer is copied (using copyb(9F)),
its Atempo reservaCion, if any, is flot copied. Atempo
reservations that are being referenced by any data
buffers cannot be deleted until the last such refer~

ence is gone. The system automatically enforces this
condition.

4.1 Network reservation interface

Atempo supports third party resource reservations for
receive side network processing. Hence, reservations
to be used by an application need not be made by
the application itself, but possibly by software agents
specialized for resource management. The atempo (1)
command allows privileged users to create such reser
vations from a Unix shell:

atempo <flovspec> <rspec>

where <flowspec> specifies an Internet flow specifi
cation and <rspec> specifies the desired reservation
amount;. The atempo command invoked with no pa
rameters lists all the current Atempo reservations in
a system. For example, the following output shows a
system with three Atempo reservations. These reser
vations are for UDP (protocol number 17) ports 8010,
8001 and 15000 and have values 2, 3 and 3, respec
tively.

yau@breeze.cs.purdue.edu > atempo
Binding [0] 17/8010 limit 2 current 0
Binding[l] 17/15000 limit 3 current 0
Binding [2] 17/8001 limit 3 current 0

5 CPU Scheduler Implementation

and Kernel Integration

In this section, we describe our experience in im
plementing guaranteed perfonnance CPU schedul
ing in the Solaris kernel. We found that even after
the scheduling algorithm has been well specified and
its theoretical properties understood, integrating the
scheduler with the rest of the kernel's design gave
rise to a number of interesting issues. We believe
that our experience with Solaris is particularly inter
esting because Solads is a truly multithreaded and
preemptible kernel, highlighting issues that may not
occur in a single threaded, non-preemptible counter
part such as Linux, FreeBSD, or 4.4BSD.

6

5.1 Interrupt processing and dynamic
priority inheritance

While all CPU processing should ideally take place
in the context of HFSC threads, it seems impracti
cal to have exclusively HFSC scheduling in a system.
It is difficult, for example, to process interrupts using
HFSC, since the needed service curves are hard to d~
termine. Moreover, interrupts are typically designed
to obey a certain priority order which is hard to con
trol precisely with HFSC. IT interrupt processing is
unnecessarily delayed, incorrect system behavior may
result.

In view of the above, we retain the Solaris SYS
class for interrupt threads.3 Moreover, we let inter
rupt threads have strictly higher priorities than any
other threads in the system, and keep the relative pri
orities between interrupt threads the same as the rel
ative interrupt levels handled by the threads. While
all runnable HFSC threads are maintained within an
HFSC specific priority queue, each of the interrupt
priorities keeps its own dispatch queue of threads as
in the original Solaris kernel.

This gives rise to another concern. It has been ob
served, and definitely confirmed by our experience,
that real-time performance is hard to achieve not just
because thread priorities have to be computed in an
appropriate manner, but also because threads can
contend for resources, which upsets their intended
priorities. Priority inheritance is essential to cope
with this problem, whereby a lower priority thread
blocking a higher priority one should inherit the lat
ter's priority. This complicates our HFSC scheduler
because an HFSC thread blocking an interrupt thread
will inherit an interrupt level priority. The inheriting
thread should then "leave" the HFSC priority queue
and "join" an interrupt level dispatch queue. There
are two basic approaches in which such leave/join can
be perfonned.

The first approach is the following. We temporar
ily remove the inheriting thread from HFSC while the
priority inheritance is in effect, and let the thread
rejoin HFSC once the original priority is restored.
However, doing so means that the thread will be im
mune to all forms of HFSC rate control (which would
be performed at given rescheduling points) while it
has the inherited priority. This essentially allows the
thread to use the CPU "for free" during certain time
intervals. Section 6.3 presents some experimental re
sults that demonstrate the resulting impact on real
applications.

31n Solaris, interrupt processing occurs in interrupl context
although interrupt threads do not need to run a.s full fledged
threads - thus improving efficiency - unless they block.

In the second approach, we remove an HFSC
thread from the HFSC priority queue when the
thread is inheriting an interrupt level priority. (The
removed thread will then join the appropriate SYS
level dispatch queue.) However, we continue to per
form usual rate control for the inheriting thread at
all rescheduling points. We say that the inheriting
thread is physically inactive in HFSC (i.e. it is tem
porarily not scheduled according to HFSC criteria)
but is logically active (in that it will still affect the
scheduling state of certain HFSC data structures).
For example, all logically active HFSC threads to
gether define a logically active fair sharing hierarchy.
An internal sharing node in this hierarchy is logically
active if any of its children is logically active, and
its virtual time (for fair sharing) can be computed
according to normal HFSC rules. An experimental
evaluation of this second approach versus the first
approach is given in section 6.3. Implementation of a
proper priority inheritance strategy is an important
factor contributing to the stability of our System.

Switching threads in Solaris (a process known as dis
patching) requires dispatch locks to be held before
the process completes. Dispatch locks are like mu
tex locks in that they ensure mutual exclusion. In
addition, however, they raise the processor interrupt
level to prevent further rescheduling attempts while
a current round of dispatching is still going on. Since
rescheduling has been disabled, dispatch code cannot
block on synchronization resources. (Threads hold
ing the resources in question cannot be scheduled to
release the resources, thus ensuring deadlocks.)

Dispatching in HFSC, however, can be most easily
and flexibly accomplished if memory can be dynami
cally allocated. This causes a problem because both
kmem.2alloc and kmem...free in the standard kernel
memory allocator can block on mutex locks. To solve
the problem, we introduce a new kmem...fast.2alloc
and kmem...fast...free interface that allocates and frees
kernel memory from and to cached lists of free blocks
of predetennined sizes. (We know the sizes of data
structures needed by HFSC; hence determining the
sizes of memory blocks to cache is straightforward.)
The free lists of cached memory blocks are protected
exclusively by a dispatch lock, and not by any addi
tional synchronization locks, thus circumventing the
deadlock problem. A kernel thread periodically mon
itors the number of free blocks in the cached lists.
If the number is running low for a cached list the
thread allocates more free blocks and add the~ to
the list.

HFSC introduces the need to return CPU reserva
tions to the system when a thread exits. Solaris
(following Unix SVR4) provides the CL-.EXITCLASS
scheduling point when a thread leaves a scheduling
class. It seems a logical choice to release a thread's
reservation when CL.EXITCLASS is being called for
it. However, CL-.EXITCLASS is called only when a
thread is being freed by the system, which in turn
happens only when a reaper thread rUllS to reclaim
zombied threads. Therefore, there can be significant
delay from when a thread zombies, at which time
the thread's reservation can be safely returned to
the system, to when CL-.EXITCLASS is called for
it, introducing unnecessary delay in freeing up CPU
resources. To avoid this problem, we intrOduced a
CL..zOMBIE scheduling point that is called as soon
as a thread's scheduling state is changed to ZOM
BIE in thread_exit or l101ILexit. Also, it is impor
tant to run CL..zOMBIE after the thread's state has
changed. Otherwise, the thread may be preempted in
the middle of a CL..zOMBIE call, but after some of
the thread's scheduling resources have already been
deallocated by CL..zOMBIE.

Our current system reported in this paper has been
in production use by members of the System Software
and Architecture Lab at Purdue for several months.
It is being run on a cluster of Ultra-! and Pentium II
machines interconnected by Ethernet, FastEthernet
and Myrinet interfaces. Common tasks performed by
our users include Web browsing, Real audio and video
streaming, program editing and compilation, docu
ment processing, email, network access with telnet
and rlogin, playing of MPEG3 songs, etc. When
users log on to our system without explicilty using
its underlying support for QoS, they generally are
unaware that a modified Solaris kernel is being used,
and see the same level of performance as with a stan
dard kernel. This gives us reassurances that QoS sup
port does not need to be intrusive, such as reducing
system flexibility, limiting user tasks, or compromis
ing ease of use. If desired, however, users can easily
find out the scheduling dispositions of their processes
with the priocntl (1) command. Figure! shows the
output of an example call. As shown, all user pro
cesses run by default in the HFSC class with a linear
service curve of rate 0.1% and a preemption quantum
of 1 ms.

We now report experimental results to illustrate
the performance of our system when its QoS features

Reservation release

Performance Evaluation

5.3

6

Dispatch time memory allocation5.2

7

Figure 1: Output of priocntl command showing the
default HFSC parameters with which user processes are
run in our system.

'~r---~---------------c_ ,...'-""'"-_ _,-,""-
..10""----

...---'

-

-

,-

I _
l

> priocntl -d -i all

STIHE WORK QUANTUM
10000 10000 1000
10000 10000 1000
10000 10000 1000
10000 10000 1000
10000 10000 1000

yau~gale.cs.purdue.edu:

HFSC PROCESSES:
prD CLASS RATE SRATE

23337 CO 1 1
740 CO 1 1

23362 CO 1 1
8040 CO 1 1
1758 CO 1 1

are invoked. Measurement data were taken on a Sun
Ultra-1/Sbus workstation with a 167 Mhz processor,
512 Kbytcs ofE-cache, and 128 Mbytes of main mem
ory.

6.1 Service curve sharing dynamics

Our first experiment illustrates some sharing dynam
ics with service curves. We use a CPU intensive appli
cation numeric that repeatedly does rounds of some
mathematical computation and prints a timestamp
after each round. In the first experiment, we ran
three (single threaded) processes of numeric concur
rently: the first process with a convex service curve
<1%,3 seconds, 9%>, the second process with a lin
ear service curve of 4.5%, and the third process with
a concave service curve of <9%,3 seconds, 1%>. Fig
ure 2 shows how the three processes make progress.
Notice that the concave service curve allows its pro
cess to achieve very low delay with its first rounds
of computation, even though its long term reserved
rate is the lowest. (Because the total CPU rate of all
threads in this case is 14.5%, the third process runs
at its higher rate for about 14.5% x 3 seconds, or 435
ms.)

6.2 Decoupled delay and rate perfor
mance

To further assess the delay performance of our sys
tem, we use two UDP applications, one for send and
one for receive. The send application sends a packet
to UDP port 10000 on a specified host at three sec
ond intervals. Each packet contains 10 bytes of user
data. The receive application reads from UDP port
10000. For each packet received, it performs some
computation instrumented to take about 30 ms on
our Ultra-1 measurement platform, and sends back a
reply UDP packet with 10 bytes of user data. (Hence,
the receive application requires a low long term CPU
rate.) In an experiment, we ran the send applica
tion on an Ultra-5 and the receive application on an

Figure 2: Service curve sharing dynamics.

Ultra-I, with the two machines connected to a same
10 Mbps Ethernet subnet. The send application ad
dressed packets to the Ultra-I; these packets were
thus read by the receive application. Because the
Ultra-5 was very lightly loaded, the send application
was able to provide an independent and timely stream
of packet arrivals on the Ultra-I.

To accurately quantify the delay from the time a
packet arrived on the Ultra-I to the time that the
receive application was able to process it and send
back a reply, we inserted some simple but effective
measurement code in the Ultra-I kernel. Specifi
caJly, early at the receive network driver, we inspected
the header of an arriving Ethernet packet. If it
was determined to be destined for UDP port 10000,
we recorded a timestamp of the arrival using the
gethrtimeO call, a high resolution timer with about
4 JlS precision. At the send network driver, we simi
larly determined if the Ethernet packet to send came
from UDP port 10000. If so, we used gethrtimeO
to record a timestamp for the send. The difference
between a receive timestamp and its corresponding
send timestamp gives a measured delay value, which
accurately accounts for any scheduling delay the re
ceive application experienced before it could respond
to an external packet arrival event. One hundred de
lay samples were generated over a 5 minute period as
packets were sent at 3 second intervals.

To show how service curves can allow the receive
application to achieve different delays in the presence
of competing CPU intensive applications, we did two
separate runs of the experiment. In the first run, the
receive application ran with a linear service curve of
2% CPU capacity. Simultaneously, a CPU intensive
competing workload ran with a linear service curve
of 98%. The actual CPU load was 100% throughout
the experiment (as shown by the Solaris perfmeter

8

Run Min M= Mean S.D.
Linear 2% 30.91 1931.89 1327.96 755.05
Concave 90%/2% 31.27 41.80 39.35 4.18

Table 1: Delay statistics for two e>..-perimcntal runs with
linear and concave service curves, respectively. All num
bers arc in ms.

application). The first row in Table 1 shows the max
imum, minimum, average and standard deviation for
the 100 delay samples collected in this run. We ob
serve that because the receive application ran with a
low linear CPU rate, it also eJe-perienced high schedul
ing delay on the order of one to two seconds.

In the second run, we ran the receive application
with a concave service curve, with rate 90% during
the first 50 ms, and rate 2% after 50 ms. The com
peting CPU workload ran with a convex service curve
of 10% during the first 50 illS, and rate 98% after 50
ms. As in the first experiment, the actual CPU load
was 100% throughout. As shown in the second row
of Table 1J the higher initial CPU rate4 specified by
the concave service curve was effective in reducing
the scheduling delay for the receive application. In
this case, the average delay was lowered significantly
to 39.35 ms (the maximum and standard deviation
being 41.80 and 4.18 ms respectively).

6.3 Priority inheritance

This section evaluates the two approaches of priority
inheritance discussed in section 5.1. In our experi
ment, we ran three single-threaded mpeg2play pro
cesses decoding (without display) a same segment of
MPEG IPPPP video together. One process had rate
1% and the other two had rate 8%. We show progress
for the three processes by plotting the time at which
a frame is displayed against the frame number.

Figure 3 shows the results for the first approach in
which an HFSC thread inheriting an interrupt level
priority is temporarily removed from the HFSC class.
The figure shows that while the processes made long
term, coarse time scale progress in their relative rate
ratios, their short term progress rates exhibit consid
erable irregularities.

Figure 4 shows progress for the three processes un
der the previous experimental setup but using the
second approach in which an HFSC thread inheriting
a SYS level priority remains logically active in HFSC.
As shown, the progress rates were able to maintain
their intended ratios over much shorter time scales
than in the previous experiment. We conclude that

4Nolice, however, that the long lerm CPU rate remained
the same al 2%.

9

-,---------------,.....,... --

-J _
i

Figure 3: Priority inheritallce approach in which an
HFSC thread having an inherited SYS level priority tem
porarily leaves the HFSC class. This results in rate fluc
tations over small time scales.

continuing to perform usual rate control for HFSC
threads that have inherited interrupt level priority
achieves stable performance.

6.4 X window display with train

We have e."'<tended Xeun, Solaris server for X Window
version 11, and libXext. so, the X client extension
library, to include train support. Two new extension
library functions are supported. The first one is

TrainHandle XTrainShmAttach(Display *dpy,
XShmSegmentlnfo *shminfo)i

which works similarly as the standard extension li
brary call XShmAttaeh in that it establishes a shared
memory display between client and server. In ad
dition, however, XTrainShmAttach returns a handle
that identifies the calling client's connection in the X
server. The client can then later use this handle to
make train requests with the server.

The second added function is

Status XTrainPutlmage(TrainHandle handle,
Display *dpy, Drawable d, GC ge,
Xlmage *image, int arc_x, int src_y,
int dst_x, int dst_y. u_int src_width,
u_int arC_height, Bool send_event)i

XTrainPutlmage works similarly as the standard ex
tension library call XShmlmage in that it displays an
X image in a (previously established) shared memory
display. There are, however, two differences. First,
XTrainPutlmage additionally takes a TrainHandle,
previously returned by XTrainShmAttaeh, as first
parameter. Second, XTrainPutlmage uses train

Figure 6: Distribution of timcs between frames displayed
by X for a client thread, when Unix domain socket is used
as the IPe mechanism.

Figure 5: Progress rates of three mpeg2play threads de
coding MPEG video and displaying frames in an X win
dow.

~

"'~I"'-

/

~

I ~

j /
./- /- /-/

'. //
•• .. " ..

<mol_l

Figure 4: Priority inheritance approach in which an
HFSC thread having an inherited SYS level priority is
physically inactive in HFSC, but remains logicnlly active.
The threads are able to make progress in their intended
rate ratios over finer time scales than the previous ap
proach.

to directly access the server function, whereas
XShmPutlmage uses a Unix domain socket to send re
quest to the separately scheduled X server.

To support train access, the X server is made mul
tithreaded. To synchronize between client threads, a
mutex lock is acquired at service entry and released
when the service completes. At startup time, the
X server exports the XTrainPutlmage entry point as
/tmp/. Xtrains. Using the Itmp directory is natural
since there is typically one /tmp directory and one X
server on each machine.

-,... -
,~ ------

1-
J

~

~

~ rJ:
•• ,

--
~

I -
~

~.. " ,

.. EO " EO ., ,'" '" "" ,'" ,0> ,.. ,0>---

Experimental evaluation

We have experimentally evaluated the performance
of X window display using train. In our experiment,
we ran three processes of the mpeg2play application
concurrently, which all playa same MPEG IPPPP
encoded video segment. The first and second pro
cesses used standard Unix domain sockets (specifi
cally XShmPutlmage) to call to the X server, for dis
play of decoded pictures in an X window. The first
process had rate (i.e. linear service curve) 1% and the
second process had rate 8%. The third process also
had rate 8%, but used XTrainPutlmage to display
pictures in an X window. Because of the X server's
synchronization strategy, the three mpeg2play pro
cesses compete for a same mutex lock. The X server
ran with rate 1% in the experiment.

Figure 5 shows that in spite of the lock contention,
the three processes made progress at roughly their
relative reserved rates. This is because the Solaris

kernel enqueues threads waiting for a synchronization
resource in decreasing order of their thread priority,
and when a resource becomes available, the thread
at the head of the wait queue gains access. Hence, a
client thread's reserved rate is also a good estimate of
the rate at which the thread can successfully obtain
service from the X server.

Nevertheless, we can see a clear benefit of using
train for predictable IPC in this experiment. To sub
stantiate the point, Figure 6 presents a distribution
of the times between frames displayed by the X server
for the client thread using Unix domain socket, while
Figure 7 gives the corresponding distribution for the
client thread using train. For Unix domain socket, be
cause the X server ran with a much lower rate than its
client, a significant number of frames were delayed by
about 50-100 ms. For train, the higher delays were
not observed, because the server was able to run with
the same reservation provided by its client.

10

-
! -
-

I --,
·.~"H.rl.rl.""'.c.I;-;.H.;-:.;-:,.c,""c_:;-;,."",."',.oi.,.---

Figure 7: Distribution of times between frames displayed
by X for a client thread, when train is used as the IPC
mechanism.

6.5 Train efficiency

In this experiment, we quantify train call and return
overheads. We implemented a train server exporting
the simple service of computing and returning the
sum of two integer parameters. We then ran a client
to make 3000 repeated calls to the service. Using
the Solaris TNF facility, we inserted probe points at
strategic places of the train call and return path. An
executed probe point logs, among other things, the
time at which the probe point is reached. The logged
timestamps thus allow a detailed breakdown of train
component costs. To quantify the overhead of trac
ing, we report that the average time to complete one
call was about 975 JiS when the probe points were dis
abled, and about 990 JiS when the probe points were
enabled.

Table 2 gives statistics of the different component
costs, for the 3000 samples collected in this experi
ment. For the call path, the "call initial" component
measures the elapsed time from entry of train_call
to when the thread starts changing context from
client to server. This includes the time to check for
access rights, validate call parameters, locate a server
stack, and and copy in parameters from user to kernel
space. The "entry to server" component measures the
time taken to complete the context change. "Entry
to server user" reports the time taken from comple
tion of the context change to when the server begins
execution in user mode. This includes the time to set
up execution conte},.-t on the server stack.

For the return path, "return initial" measures the
time taken from entry of train.return to when the
threads starts changing context from server back to
client. This includes the time to copy in call results
from user to kernel address space, to locate the return
client context, and to release the server stack back to

Component cos~ Min M= Mean S.D.
Call initial 12.8 68.6 14.5 1.7
Entry to server 7.3 56.8 8.6 1.6
Entry to server user 4.0 35.3 4.5 1.1
Return initial 11.3 23.2 13.1 1.2
Reentry to client 6.7 55.1 8.0 1.9
Reentry to client user 5.8 55.8 6.1 1.8

Table 2: Overhead breakdown of train mechanism. All
numbers arc in p.s.

the system. "Reentry to client" measures the time
to complete the context change. "Reentry to client
user" reports the time taken from completion of the
context change to when execution switches back to
client user mode. This includes the ~ime to restore
execution context on the stack of the client address
space. The total system time for one call/return thus
has average value 54.8 JiS. (This time does not include
the time spent by user level application code.) It is
about 10 times more efficient than the same service
implemented with standard RPC.

6.6 Network receive reservation

For this set of experiments, we configured two
Atempo reservations: the first reservation for UDP
destination port 8000 has value 00 (i.e. no limit on
receive side CPU processing for packets destined for
this UDP port), while the second reservation for UDP
destination port 8001 has value 3. In an e),:periment,
we sent a continuous UDP stream of packets at a high
rate of 10 Mbps from a Pentium II to an Ultra-I. The
two machines are connected to a same isolated Eth
ernet subnet. In each experiment, the UDP stream
consists of packets all having the same size of user
payload. We varied this size to be 1400, 1000, 500,
100 and 1 bytes in five separate runs destined for UDP
port 8000. These five runs are then repeated for UDP
port 8001. In all the experiments, two applications
reading from UDP ports 8000 and 8001 respectively
were blocked throughout and hence were not able to
read any of the received packets.

Using perfmeter, we sampled the resulting CPU
load on the Ultra-1 at one second intervals in an ex
periment. (The 10 Mbps UDP stream was active
throughout the time these samples were taken.) The
samples averaged over a 60 second period of mea
surement are plotted in Figure 8 (with corresponding
standard deviation indicated as a range around the
average value). The figure clearly indicates much re
duced CPU load on the Ultra-l for UDP port 8001
than for port 8000. This is because the limited reser
vation for port 8001 causes packets to be discarded
early before they consumed too much CPU time.

11

•

Figure 8: Performance of Atcmpo reservations. Packets
destined for unP port 8001 are processed with a limited
Atempo rcservation of value 3. Packets destined for UDP
port 8000 arc processed with an unlimited reservation.

z
1
!

"
•
•
•
•

For network receive, we introduced a new Atempo
mechanism that allows mternet flows to reserve CPU
capacity for receive side protocol processing. While
the idea is an application of the well known principle
of early packet demultiplexing, our work differs from
previous works in two respects. First, we define a new
interface that supports third party reservations and
allows legacy applications to benefit from Atempo.
Second, our mechanism is integrated into the buffer
management subsystem for protocol implementation
and, as such, does not require changes to the protocol
implementations themselves.

A public binary release of our system as an
extended Solaris 2.5.1 kernel is available from
http://ssal. cs .purdue .edu. Reference source
code is available for institutions with Solaris 2.5.1
source code license. If interested, please send email
to ssa1<rlcs. purdue. edu.

Atempo protection was quite good when the UDP
payload was SOD bytes or larger (about 2% to 4% of
CPU time was consumed within this range). At 100
bytes, about 12% of CPU time was consumed, and
at onc byte, about 25% of CPU time was consumed.
While these numbers are significant, they neverthe
less represent much improved performance over the
case of no reservation limit, in which as much as 95%
of CPU time can be consumed for a one byte packet
size.

7 Conclusions

We discussed three mechanisms designed to give user
applications predictable and fine grain CPU alloca
tions, related to thread scheduling, inter~proces$com
munication, and receive side network reservations, re
spectively. For our CPU scheduler, we reviewed its
principal features, presented practical challenges in
integrating it into a multithreaded and preemptible
kernel, evaluated two priority inheritance strategies
for dynamic HFSC priorities, and reported experi
mental results on the scheduler's delay and rate per
formance. We also presented our CPU scheduling
interface to demonstrate how users and applications,
including legacy applications, can easily access the
new scheduler.

For predictable IPC, we reviewed the train abstrac
tion, presented a case study of retrofitting train into
an existing Solaris X window server, and detailed the
efficiency aspect of train. We showed that train pro
vides predictable cross domain call performance for
several competing video applications.

Acknowledgements

The author wishes to thank Dan Trinkle and the sys
tem support staff in the Computer Science Depart
ment at Purdue for accomodating many requests to
set up our Solaris network for kernel development and
experimentation. They expertly restored file system
partitions corrupted by a few of our more wayward
kernel modifications. Peter T.S. Tam helped analyze
data and prepare figures reported in this paper.

References
[lJ G. BilIlga, P. Drusche1, and J. C. Mogul. Resource

containers: A new facility for resource management
in server systems. In Proc. USENIX OSDI 99, New
Orleans, LA, February 1999.

[2J B. Bershacl, T. Anderson, E. Lazowska, and H. Levy.
Lightweight remote procedure call. ACM funs.
Computer Systems, 8, February 1990.

{3] R. Cruz. Quality of service guarantee in virtual
circuit switched network. IEEE JSAC, 13(6):1048
1056, August 1995.

[4] P. Druschel and G. Banga. Lazy receiver processing
(LRP): A network subsystem architecture for server
systems. In Proc. 2nd USENIX OSDI, Seattle, WA,
October 1996.

[5J P. Goyal, X. Guo, and H. M. Yin. A hierarchical
CPU scheduler for multimedia operating systems. In
Proc. of 2nd USENIX OSDI, 1996.

(6] Sun Microsystems Inc. Solaris 2.5.1 Online door(2)
system call documentation.

[7J K. Jcfi'ay, F. D. Smith, A. Moorthy, and J. Anderson.
Proportional share scheduling of operating system

12

services for real-time applications. In Proc. IEEE
Realtime Systems Symposium, December 199B.

[B] J. Mogul and K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. In Proc. 1996
USBNIX Technical Conference, 1996.

[9] J. Nieh and M. Lam. The design, implementation
and evaluation of SMART: A scheduler for multime
dia applications. In Proc. of 16th ACM Symp. on Op
erat1ng System Principles, Cannes, France, Novem~
ber 1997.

[1O} O. Spatscheck and L.L. Peterson. Defending against
denial of service attacks in scout. In Proc USENIX
OSDI99, New Orleans, LA, February 1999.

(ll] l. Stoica, H. Zhang, and T.S. Eugene Ng. A hier
archical fair service curve algorithm for link-sharing,
real-time and priority services. In Proc. ACM SIG
COMM 91, September 1997.

[12] H. Tokuda, T. Nakajima, and P. Rao. Real-time
Mach: Toward a predictable real-time system. In
Froc. USENIX Mach Workshop, October 1990.

[13] D. K. Y. Yau. Decoupled delay and rate guarantees
for cross domain thread scheduling. Technical report,
Purdue University, November 1998.

[14] D. K. Y. Yau and S. S. Lam. Migrating sockets - end
system support for networking with quality of service
guarantees. IEEE/ACM 2"Tansaclions on Network
ing, 6(6), December 1998.

13

	Performance Evaluation of CPU Isolation Miechanisms in a Multithreaded OS Kernel
	Report Number:
	

	tmp.1307986960.pdf.uoXhC

