View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2001

Application Performance on the CROSS/ Linux Software
Programmable Router

Prem Gopalan
Seung Chul Han

David K.Y. Yau
Purdue University, yau@cs.purdue.edu

Xuxian Jiang

Puneet Zaroo

Report Number:
01-019

Gopalan, Prem; Han, Seung Chul; Yau, David K.Y.; Jiang, Xuxian; and Zaroo, Puneet, "Application
Performance on the CROSS/ Linux Software Programmable Router" (2001). Department of Computer
Science Technical Reports. Paper 1516.

https://docs.lib.purdue.edu/cstech/1516

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4971693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

APPLICATION PERFORMANCE ON THE CROSS/LINUX
SOFTWERE-PROGRAMMABLE ROUTER

Prem Gopalan
Seung Chul Han
David K.Y. Yau

Xuxian Jiang

Puneet Zaroo

John C.S. Lui

CSD TR #01-019
October 2001

Application Performance on the CROSS/Linux

Software-programmable Router

Prem Gopalan, Seung Chul Han, David K. Y. Yau, Xuxian Jiang, Puneet Zaroo, John C. S. Lui

Abstract—

We present CROSS/Linux, a software-programmable
router platform that combines the resource management ca-
pabilities of CROSS from our earlier work and the modu-
Iar conligurability of Click from MIT. By additionally inte-
grating a remnote code downloading mechanism and a multi-
hop signaling protocol, CROSS/Linux is dynamically exten-
sible, configurable, and able to provide predictable process-
ing of network flows that require QoS-aware access to mul-
tiple resources. We discuss our integration strategy — in par-
ticalar, Aow signaling and the assimilation of Row element
scheduling in Click into our resource management frame-
work. CROSS/Linux can support diverse per-flow process-
ing that gives bencfits to end users. We present and evaluate
twe applications: intelligent video scaling in response to net-
work congestion, and router threitling as a defense mech-
anism against distributed denial-of-service aitacks. While
intelligent video scaling has been demonstrated in previous
work, our focus is on how guraranteed access te system re-

sources can impact scaling performance.

I. INTRODUCTION

We target a soitware-programmable router that is dy-

namically extensible, configurable, and able te predictably

Conlact author: D. You (yau@®cs_purdue.cdu}; P. Gopalan is now with
Mazu Networks, Cambridge, MA {(work done while he was at Purdue);
S. Han, D. Yau, X. Jiung and P. Zaran are wilh the Department of Com-
puter Sciences, Purdue University, West Lafayeite, IN; J. Luvi is with the
Department of Computer Science and Engincering, Chinese Universily
of Hong Kong, Shatin, Hong Kong. Research supported in pan by the
National Science Foundution under grant numbers EIA-9806741 and

CCR-9875742 (CAREER), and in part by CERIAS

process network flows thal require QoS-aware access to mul-
tiple resources. To realize our goal, we integrate the resource
management capabilities of CROSS [21] from our previous
work and the modular configurability of Click {9) from MIT.
We name our system CROSS/Linux to rellect the current im-

plementation cfforts using fully open source Linux.

In Click, elements are C++ kernel modules each imple-
menting a simple router function (e.g., packet classification,
queueing, and packet scheduling), which can be composed
and configured into per-flow processing pipelines. To [ully
realize the resource management ability of CROSS, we ad-
dress the issue of scheduling Click clements with per-flow
QoS allocations. A three-level scheduling policy is defined.
At the first level, a real-time CPU scheduler [21] allocates
CPU resources hetween a modified Click element scheduler,
a controf thread for on-the-fly flowy management {(described
in Section IV), and all eligible (in the CPU scheduling sense)
system and user processes in Linux. Second level scheduling
takes place when the Click clement scheduler allocates its
CPU shace among global router functions of network input,
retwork output, and vanilla IP forwarding, and ali the back-
logged flows implementing per-flow processing. At the third
level, a scheduled flow selects one of its elipible elements for

exccution,

A network input clement is responsible for moving ar-
riving packets from a network interface into per-flow input
quenes, after packet classification. A network output ele-
ment is responsible for moving packets from their output
queucs {0 an obtgoing nelwork interface; it may perform
link level scheduling to provide per-flow bandwidth guar-

antees or differentiation. For a device driver operating in

, polling mode (as opposed to being intcrrupt driven), the in-
put and output elements will additionally handshake with
the device for the polling operations. Polling can signifi-

eantly contribute {o system efficiency and stability [12], [15].

Linux processes competing with the Click element sched-
uler for CPU time may belong to the control plane of the
router, e.g., routing and signaling dacmens. They may also
correspond to per-flow processing modules started in user
space [21). As discussed in [21], user-level mogdules provide
benelits of fanlt containment for unirosted code. Thcsc pro-
cesses can run with specified allocations of CPU time, net-

work bandwidth, disk bandwidth, and physical memory.

Beyond resource management at a single router, we sup-
port resource allocation at designated hops on an end-to-
end network path. The inter-machine signaling protocol is
sender-driven. A signaling packet is 1P encapsulated with

-source routing through specified intermediate hops. An ge-
tivate signaling packet is interpreted for flow setup with re-
source allocation at all CROSS/Linux routers, and is passed
uninterpreted by a non-cognizant router. Flows establish
soft state, which can be deallocated either through timeont

or an explicit deactivate signaling packet.

We prototype applications on CROSS/Linux to gain expe-
rience with the cost and bencfit of various per-flow process-
ing {functions. Our current focus areas are real-time multi-
niedia data streaming and network security. The value of
in-network processing for mutlimedia streaming is increas-
ingly welt documented (e.g., [3], {7), [8]), although somc of
these services can also be deployed as acfive services [7] us-

ing proxy servers on a network path.

For security, we are motivated by the observation that
router software plays a critical role in ensuring the *health”
of a public network infrastructure. First, since security
problems are highly subtle, parts of the running kernel —
in spite of its “maturily” — may have obscure security bugs,
making the routers targets for attacks. Patches to fix newly

discovercd security bugs must be applied in a timely man-

ner. Second, sccurily loopholes have been discovered for

main stream routing protocols {(e.g., see proposals for se-
curing OSPF and distance vector routing {4], [13]), which
should be removed in newer protocol versions. Third, as
new forms of network attacks appear, new defense mecha-
nisms [14], [16], [17], [10] may be designed and deployed to
improve the sccurity of a network. We believe it is highly
useful to have a scalable and automatic deployment mecha-
nism (o deliver bug fixes and new sccurity services to a large
number of routing points, with minimal human intervention

and disruptions on existing service.

A. Our contributions

The importance of low-based scheduling is widely recog-
nized for providing performance isolation between heteroge-
neous router services which have QoS constraints or do not
necessarily trust cach other [5], {21]. Meanwhile, the value
of modular configurability of router services is recently
shown [9]. e advance a working system that combines
these important featurcs. Together with our flow signal-
ing and on-the-fly service extension mechanisms, we demon-
strate a software-based router that can provide value-added
services to users in a QoS-aware mannert, and promises to
keep up with the evolving Internet with greater facility ithan
exisling systemss. Our experience building and evaluating
two useful value-added services to users (interesting in their
own right) gives new insights abeut these applications, and

demonstrates the utility of our system.

B. Paper organization

The balance of the paper is organized as follows. We
briefly review the Click modular router architecture in Sec-
tion I1. In Section 111, we detail the design of per-flow re-
source scheduling in CROSS/Linux. The use of a signaling
mechanisn to create new {lows and configure them on-the-
fly is discussed in Seclion IV. In Section V, we overview
two router services prototyped on CROSS/Linux: router
throttle as a defense against PDoS aftacks and intelligent
video scaling in response to network congestion, Section VI

presents performance results for the applications running on

,our platform. In particular, we carefully study the effects
of CPU allacation and interrupt versus poiling 1/O on video
scaling performance. Section VII discusses related work.

Section VIII concludes.

El. BACKGROUND

For service configuration, we leverage the Click modular
router. For completeness, we review the Click router archi-
tecture. Further details can be found in {9]. In Click, ele-
ments arc C++ kernel modules cach implementing a simple
router function (e.g., receive from an input nctwerk inter-
face, send 1o an output interace, packet classilication, qucue-
ing, and packet scheduling). Elements can be considered
nodes in a directed graph, and they can be connected to each
other through one or more ports they have. When an output
port of an clement is connected to an input port of ancther
clement, it forms a directed edge from the former (the up-
streami clement) to ‘the Jatter (the dowunstream clement). A
packet can then be passed from the upstream to the down-
stream clement. Hence, in general, packets flow along the
edges of the flow graph, from input to output. They will re-
ceive customized protocol processing according to the actual
paths they traverse.

An upstream clement initiates packet transler to its im-
mediate downstream neighbor by calling ihe push virtual
function of the neighbor. Hence, packet transfers initiated
from upstream (e.g., by network input) are called push pro-
cessing. It is also possible from a downstream clement to
request packeis from upstream (e.g., when an output net-
work interface becomes ready, it may request a pachet to
send). This is done by the downstream element calling the
pull virtual function of its immediate upstream neighbor.
Hence, packet transfers initiated from downstream is called
pull processing.

Click has to schedule the execution order of elements.
From the scheduling point of view, a scquence of push (or
pul)) function calls cannot be interrupted. A packet must
pass through the correspording sequernice of elements, until

it is either dropped, or queued in the context of a Quene el-

ement. When that happens, the clement scheduler regains
control, and schedules a next element to run. Hence, the
position of Queue elements in a processing path determines
the path’s preemption granularity in Click scheduling. If
more clements are connected in tandem without interpos-
ing Queue clements, the preemption granularity becomcs
coarser, since the scheduler must wait for all the clements

to complete belore it can reschedule,

IIT. SINGLE NODE RESOURCE SCHEDULING

Resource management in CROSS is based on resource al-
locations [21]. Resource allocation objects allow router ser-
vices to have QoS-aware access {0 various system resousces,
including CPU tinme, network bandwidth, disk bandwidth
and memory share. This translates into predictable perfor-
mance for user services, on a per-flow basis.

Click processes clements in the context of a designated
control thread. Each clenent can be given a number of
stride scheduling tickets [19], which determines the cle-
ment’s share of the CPU. Elements can be put on a rask
guene as a policy decision [9]. Among all the elements ap-
pearing in the task queue, the scheduler selects the next onc
for processing according to their stride scheduling priorities.
This allows to balance various pusft/puil processing between
different input/ouput interfaces. However, since the same cl-
ement can be used by multiple flows, elemcnt-based schedul-
ing i5 not compatible with the per-Row resource scheduling
paradigm in CROSS.

We modify the Click element scheduler to suppoert per-
flow scheduling. Each flow is defined by a flow specification
{e.g., a layer-four IP flow can be defined by the source IP ad-
dress, destination [P address, transport protocol, transport
source port, and transport destination port) installed with
the packet classifier. It prescribes a processing pipeline of
elements, whicl is assumcd fixed for the Row’s life time. Un-
like Click, we allow individual flows to be given their own
resource allocations. In addition, since multiple elements
for the same flow can be eligibile for running - duc (o the

presence of Qreue elements in Click [9] — we allow a flow

_to in turn apportion iis resource allocation among the con-
stituent elements. (Hence, a flow element may have schedul-
ing state in the context of its Row.}) With the modifications,
the Click’s task queuc coenlains a sct of all eligible flows in
CROSS/Linux — as opposed to elements in the original de-
sign. Each eligible flow is represented by an fRouter object

in the task queue,

Notice that certain clements do not logically belong to
any particular flow. Instead, they perform functions in the
global router context. Input and output elements for nct-
work ports, and an clement for vanilla IP forwarding, are
important examples. We treat these global elements as be-
longing te certain glebal ““flows’’ (cach represented in the
task qucuc by an ioRouter objecl). For the purpose of
scheduling, global flows are just like normal flows. They
can be endowed with specilied resource aliocations, thus al-
lowing their elements to compete for system resources with
other per-flow cleracnts. The assignment of gloabl router
functions to glebal fows is flexible. For example, we could
have one global fow for cach network input element, one
global flow for each network output clement, and one global
How for vanitla 1P forwarding. Or we could have one global

Aow foc all of network input, network output, and vanilla 1P

forwarding.

To support accurate per-flow scheduling, early demulti-
plexing of packets into their flows is nccessary. This is done
by placing a Click Qucuc element immediately after the net-
work input element associated with anr input port (see Sce-
tion H and {9]). This allows the input element to return im-
mediately after moving a packet [rom the input port and
classifying the packet into the appropriate flow, instead of
performing any per-flow processing in the input element’s
global context. (In essence, this solves the problem of hidden

schenlting [22].)

The per-flow [Router object contains a set of eligible ele-
ments and their respective current packets for the flow. One
of these clements, called flowStart, is responsible for initiat-

ing per-flow processing of packets arriving for the fow. Once

scheduled, Router selects the next element to run based on
the (How-private) scheduling state of these elements. Tig. 1
shows a router configuration in which a single ioRouter js
used for the router global functions, and two fRouter’s have

been created for per-flow user processing.

~

IV. FLOW SIGNALING AND SERVICE CONFIGURATION

Section H1 describes Row-based scheduling assuming that
the flows have been already set up. CROSS/Linux alse al-
lows flows to be dynamically created and flexibly config-
ured as a pipeline of processing elements. Such flow man-
agement is controlled by 1I* control packets with the router
alert option being set. Three kinds of control packets are
defined: IC_SETUP for creating flows, IC_TEARD for de-
stroying flows, and IC_CONFIG for cenfiguring a flow ele-
ment. The CROSS/Linux packet classifier reading from an
input port identilies these control packets and delivers them
to a control qucue. The control queue is processed in FIFO
ocder by a CROSS/Linux control thread, The control thread
receives its CPU share from the first-level CPU scheduler
and, as such, competes directly for system resources with the
flow scheduler described in Section 1II. The control thread
performs flow management by running a new Click object
calted FlowManager (the flow manager). FlowManager is a
derived class of the original IPFilter clement (cerresponding
to a packet classificr) in Click. Compared with IPFilter, it
ktas the added Rexibility of being extensible with new ports

and filter rules, key to on-the-fly flow selup.

Flow sctup. When an IC_SETUP packet is received, the flow
manager constructs a configuration string representing the
flow specification encoded in the packet. Once the string
is composed, the criginal set of configuration sirings main-
tained by the flow manager is reconfigured to include the
new string. As part of the reconfiguration process, a new cl-
ement output port is created for the flow manager. The new
port is then connected to a newly created Quene clement,
called flowQueune, corresponding to the new flow. Finally,
the AowQueune element is used to initialize an fRouter for

the new flow with the flowStart element described in Section

ynrlel videg 1ot

van IF forwasting

UDP i provrnaing

Fip. I, A CROSS/Linux router conliguration with onc global Aow and two user flows.

ITT. The fRouter is allocated system resources according to
parameters in the IC_SETUP packets. Later packeis that
match the filter rule for the new flow are then delivered to
the corresponding flowQueue. These packets will be picked
vp by flowStart when the corresponding fRouter is selected

to run.

Flow configuration. An IC_CONFIG control packet is used
to add/dclcte an element from the processing pipeline an
existing flow. In the case of adding an element, the flow
manager checks whether the requested service is already
available in a local service repository. If not, it signals a
user-level active network dacmon aneld [] io download the
named service from a remote node.! The anetd implemen-
tation looks up the remote node having the service. It then
reliably fetches the code, as an uninterpreted byte stream,
from a web server running on that node, using HTTP. For
CROSS/Linux, the byte stream must correspond to a com-
piled kernel module for the requesting machine. If the down-
load fails (¢.g., the requested service cannot be found) in
the current implementation, the request to add an element
silently lails, in that the sender of the add request is not no-
tified of the failure. If the download succeeds, the fetched

code will be entered into the local service repository. Once

'We originally implemenied a CORBA based naming and code
download scrvice, willi the download process supervised by the control
thread. We decided in favor of anctd because of simplificd synchro-

nization and iis wider acceptance in the active nelwork community.

the code is available locally, it is dynamically linked with the
running kernel using the standard Linux insmod utility. Fi-
nally, the linked module is configured into the processing
pipeline through the standard Click mechanism of writing
a service specification to the kernel through the /proc file sys-

ten.

Flow dclete. When an KC_TEARD is received, the flow man-
ager verifics the exisience of the named fRouter. Tf it exists,
it is rentoved from the flow scheduler, its flow specification
is removed from the packet classifier, and any memory allo-

cated to it s returned to the kernel.

Y. APPLICATIONS

We are building user applications on CROSS/Linux. We
describe two services: router throttling as a defense mech-
anism against distributed denial-of-service (DDoS) attacks,
and wavelet video scaling for application-aware network
congestion control. The services are implemented in C++ as
Click elements. They are compiled as Linux loadable kernel

modules for deployment.

A. Router throttle

Router throttling [10] is a resource management bascd de-
fense mechanism against DDeS aitacks (e.g., [1}, [2]). Its
goal is to protect a server system from having to deal with
excessive service reguest arrivals (from a cohort of attack-

ing machines) over a global nctwork. To do so, a proactive

_ approach is used: Belore aggressive packets can converge to
oversvhelm 2 server, we ask routers along forwarding paths
to regulate the contributing packet rates to more moder-
ate levels, thus forestalling an inipending attack. The basic
mechanism is for a server under stress (e.g., being llooded
with attack traiffic), say S, to install a router throftle at an up-
stream router scveral hops away. An installed throttle limits
the rate at which packets destined for S will be forwarded
by the router. To accomodate bursty traffic, a throttle is im-
plemented as a leaky bucket with the desired rate limit and
some bucket size s (in bits) to ahsorb the burstiness. Traftic
that exceeds the rate limit can cither be dropped or rerouted

to an alternate server.

In a related technical report [10], we study the problem of
determining appropriate throttle rates at distribnted rout-
ing points, such that, globally, S exports its full service ca-
pacity to the network, but no more. The “appropriate”
throttles are adaptive to the current demand distributions,
and are negotiated dynamically between server and net-
work. Via simulations, we show that router throttling can ol-
fer significant relief to a server that is being flooded with ma-
licious attacker traffic. First, for aggressive attackers that
send at significantly bigher rates than legitimate users, the
throttle mechanism can preferentiaily drop attacker tralfic
over good vser traffic. This allows a much larger fraction of
good vser tralfic to nrake it to the server as compared with no
network protection. Second, for both aggressive and “meek”
attackers (i.e., attackers that send comparable amounis of
traffic as legitimatc users), throttling can regulate the expe-
rienced server load 1o within its design load linits, so that the
server can remain operationat during a DDoS attack. The
ability to increase the availability of 8 Web server during at-

tack episedes is also demonstrated through simulations.

In this paper, we prototype router throftling on CROSS/-
Linux. The implemeniation complements cur simulation
results, and allows us to nicasure the deployment costs of
the mechanism at a nctwork node. We are, for example,

interested in the memory and processing requirements of

6

throttling as a function of the number of throttlcs instalied.
More generally, the implenentation exercise demonstrates
the ability of CROSS/Linux to dynamically extend the secu-
rity features at a router. Other security mechanisms (e.g.,
[14], [16], [17]) uvselul in diverse scenarios can similarly be
introduced in a seamless manner using CROSS/Linux.

In the implementation, a server, say S, requests throtlling
at a CROSS/Linux touter by sending it a control packet.
The contsol packet specifics the TP address of .S, and the
throttle leaky bucket size and token rate. On receiving such
a packet, CROSS/Linux checks if the throttle service is al-
ready available at the local node, If not, it uses the scrvice
downloading mechanism in Scction IV to feich the throitle
code from a designated code server, and links the code dy-
namically into the running kernel. When the throttle ser-
vice has been linked to the kernel, it is configurcd into the
processing pipeline of packets destined for 5. A configured
throttle limits thc-long-term forwarding rate of packets for
S to the token rate, and the maximum burst size to the leaky
bucket size. Any cxcess packets are dropped in our imple-

mentation.

B, Video scaling

A mcdia scaling service is reported in [8] for router plo-
gins [5]. The service applies to wavelet-encoded real-time
video consisting of a base layer and progressive enhance-
ment layers. Lower layers contain more basic video infor-
mation, and are needed for higher [ayers to add to the video
quality. By using a plugin to examine the layer information
of backlogged vidco packels at times of network congestion,
the router can drop enhancement layer packets before base
layer packets, and higher enhancement layer packets before
lower enhancement layer packets. This way, it is possible
to achieve graceful degrudation of video quality under con-
straincd network bandwidth.

We have ported wavelet video scaling to CROSS/Linux.
Like router throttle, it can be fetched and loaded on demand,
in response to nser requests. While the same service has been

demonstrated in [8), our goal in this paper is to understand

_how resource allocation in CROSS/Linux can impact video
quality perceived by end users. In partienlar, video scaling
requires sufficient processor cycles 1o be effective. Other-
wise, video packets will be dropped in an undifferentiated
manner while awailing processing by the scaling module.
We are interested in experimentally assessing how different
CPU allocations for the scaling service ean affect video qual-
ity. Resource allocation issues arc particularly relevant for

applications like video sircaming that have QoS consiraints.

VI. EXPERIMENTAL RESULTS

We present experimental results to illusiraie application
performance on CROSS/Linux. The routing plaiform used
is a Pentivm /864 MHz PC fitted with {four PCI 3Com
3c59x (vortex) 10/100 Mb/s ethernet interfaces. We made
our own changes to the vortex device driver fo support
polling /O.

For the global router functions, we schedule them in the
context of a single global fow. L.c., one ioRouter object ran
on an cxperimental router. We used Click’s default algo-
rithm to adaptively allocate the global flow’s CPU allocation
to the individual flow clements. For example, when Click
sces a burst of acriving packets, it will automatically in-
crease the CPU share given (o the relevant network input el-
cment. Because of the design in CROSS/Linux to isolate the
resource allocations between Rows, any such rate inccease
occurs only within the context of the global flosw in our sys-

tem.

A. Service extension

We measure the overhiead of configuring and integrating
new router services in CROSS/Linux, as described in Sec-
tiom 1V. In the experiments, the machine cadiz shown in Fig.
2 is the CROSS/Linux router on which the new services are
to be installed. It runs in our research lab in the Purdve CS
department. The implemented code is not initially available
locally at cadiz, and has to be fetched (rom ponce (sce Fig. 2),
a web server owned by the campus compulation center, and

connected to cadiz via the public canipus Internet. There-

@ wacds vides strexn
1&W%ps
baltng
F=——NN
Fig. 2. Experimental network setup for video scaling, with a

remote code server accessed through the Internet.

fore, the cxperiments give an idea of the kind of performance
when code may have to be fetched from remote servers ac-

cessed through a typical shared network infrastructure.

Fig. 3 shows the HTTP transfer times for anetd to ob-
tain the code from ponce’s web server, as a function of the
code size. The figure plots the average transfer time over 50
measurements for each service, and the standard deviation is
shown as an error bar. Notice that the average transfer time
is largely dircctly proportional to the code size. The video
scaling service implemented as wavescale.o has size about
9.8 kbytes, and requires 2 transfer time of about 23.19 ms.
Router throttling implemented as throttle.o has size about
10.5 kbytes, and requires a transfer time of about 23,83 ms.
Fig. 4 reports the time taken {o dynamically link wavescale.o
and throttle.o, respectively, into the running Linux kernel.
The time to link our modified Click module (click.o) is also
shown for comparison. From the figure, wavescale.o and
throttle.o each takes about 10 ms of linking time, whereas
click.o, being Iarger ard more complex, takes about 80 ms.
Lastly, the time taken to configure the video scaling and
router throttle services into their corresponding processing

pipelines is measured to be 11.31 and 11.06 ms, respectively.

=0
. -
2000 |]
rd
1500 J
E e
.-"-
i "
"
1000 L e T
.“’
/’/
.'_-
rd
%0]
W
/"‘
A
A
K4

a N . R 2 . L s .

o 200 a0 eoo 81 000 1IN0 30 IS 1D 2000
Tl 1ite (yier)

PSNR - ¥ charral (aB)

o 50 1o

150
Frumo Mharics

200

Fig. 3. A plot of service module transfer time using HTTP, as a

function of the code size.

20 —

P)
&

y
I

ko

(e85 =

Thodo o
{105y

WN\:Sﬂ-\co
oo
Fig. 4. Dynamic linking time lor the video scaling scervice, the

modifted Click module, and the router throttle service.

B. Resource implications for video scaling

Vidco scaling is designed to respond (o netwock conges-
tions, and is most useful for connections without access to
gonaranteed link bandwidth. Hence, we do not perform real-
time link scheduling in our experiments. Instead, default
FIFO packet scheduling is used for each network output
port.

The experimental network sctup for video scaling is
shown in Fig. 2. In the figure, a wavelet video stream con-
sisting of 308 frames and with a peak bandwidth require-
ment of 2.6 Mb/s is being sent at 25 {rames/s from bolling
to madrigal, through the CROSS/Linunx router cadiz. The
video stream, encoded to have one base layer and 127 en-

hancement Iayers, is displayed at madrigal when received.

Fig. 5. Received video quality for video scaling versus drop-

tail, under network congestion.

At cadiz, it competes for resources with a cross tralfic slream
of UDP packels, sent at diffcrent bit rotes and requesting dif-
ferent pec-fRow processing, from sevilla to madrigal. Uniess
otherwise stated, thic direct links shown betwcen machines

are 10 Mb/s point-to-point ethernet conncctions. R

B.1 Network congestion

In a set of experiments, we verify the value of intelli-
gent video scaling during network congestion. We constrain
the cutgoing link bandwidth from cadiz to madrigal to be
8 Mb{s. We run the video flow in competition with a UDP
flow. The UDP flow is being generated at a rate of 10,000
packets/s, with packet size of 64 bytes. Interrupt O is be-
ing used. Fig. 5 profiles the PSNR of the video displayed at
the receiver machine, with and without video scaling at the
router. With video scaling, all 300 frames are displayed at
the receiver, with an average per-frame PSNR of 24.6 dB.
With drop-tail, the indiscriminate drops cause loss of play-
back synchronization at the recciver, and only 79 frames are

successfully displayed. The average PSNR is 14.36 dB.

B.2 CPU congestion

Next, we examine the effects of CPU allocation on video
quality at the receiver. In a set of experiments, we vary the
CPU rate allocated to the video flow to be 0.006%, 0.061%,
0.091%, and (.122 %, respectively. A CPU allocation of 20%

is given to the global router functions of inpnt, output, and

PENA « ¥ cnanel ()

Fig. 6. Received video quality with the video scaling service

running at different CPU rates, under CPU congestion.

vanilla IP forwarding. These global functions arc not CPU
intensive in the experiments, and do not vse up their CPU al-
locations.> The remaining CPU capacity is entirely allocated
to a competing UDP flow. We run the competing UDP flow at
alow bit rate, so that the nctwork is not congested. However,
we performed CPU-inicensive per-flow processing, artificially
created to canse CPU congestion, for each UDP packet. The
actwal CPU utilization is 100% throughout each experiment.
Figure 6 profiles the vidco PSNR at the rcceiver. Notice that
in the facc of competition from the UDP flow, the amount of
CPU time guaranteed to the video flow has a significant im-
paci on the receiver video guality. The average PSNR’s for
0.006 %, 0.661 %, 9.091 %, and 0.122% of the allocated video
CPU rate are 21.70, 23.06, 24.94, and 25,71 dB, respectively.

The loss in video quality is due to packet loss. We measnre
the number of packets dropped at the queues linked to the
tlowStart element of video scaling and the qucue linked to
the network output clement, respectively. Since there is no
nctwork congestion, we observe negligible packet loss at the
network eutput quene. Tor loss at the video guewe, Fig. 7
shows the total number of packets dropped for the entire

video as a funciion of the allocated CPU rate to the video

*In our experiments. we roule small packels at a ratc of about 10.000
packets/s. Even including interrupt overhead, the maximum forwarding
rate and loss-free forwarding rate of 64-byte packets on our plaiform is

about 65,000 anl 50,800 packets/s, respeclively (using inlerrupt /O).

— — T T -

8 3

§

Humen! o erocpod packohy

TRRE

i

4 PES I 4 — I
0 on2 ata 003 ooa Q.1 D12 =B 23 e -RL a2
CPU dcmon®)

Y

°©

Fig.7. Total number of video packets dropped at the video Row
qucue as a function of the allocated CPU rale 1o the video

flow.

Dow. The results confirm that a sufficient CPU rate is needed
to allovw the video flow to process its packets fast enough, in

order to avoid buffer overflow at its input queue.

B.3 CPU and network congeslion

In the presence ol netwerk congestion, CPU allocations
similarly have a significant impact on the quality of the video
received. In this set of experiments, we run the video flow
with a conipeting UDP flow generated at a rate of 12,499
packets’s (packet size of 64 bytes). Each UDP packet re-
ceives CPU-intensive per-llow proeessing to create CPU con-
gestion. (The actual CPU utilization is 100% throughout
each experiment.) When the video flow is routed through
the scaling service, we vary the CPU allocation of the flow to
be 0.003%, 0.067 % and 0.122%, respectively. The remain-
ing CPU capacity, Iess the 20% given to the global router
functions, is entirely allacated to the competing UDP flow.
Fig. 8 profiles the PSNR of the received video. The average
PSNR’s for 0.003%, 0.067% and 0.122% of video CPU al-
location are 20.56, 21.67 and 22.6}1 dB, respectively. Al 300
frames are displayed for cach experiment using video scal-
ing. For comparison, we also show the received video qual-
ity with drop-tail and 0.183% CPU allocation to the video
flow. In spite of the relatively high CPU allocation, the vidco
quality is very low —only 7 frames are successfully displayed,

with an average PSNR of 23.12 dB.

PSNR « ¥ charmol (30)

¥

N
15 2 250 aca
Frame Numbsr

Fig. 8. Received video quality with the video scaling service
running it different CPU rates, under CPU and network con-

geslion.

B.4 Polling IO

While the previous experiments used interrupt 170, it has
been shown that polling /O can give signilicantly improved
system performance when {orwarding high-rate traffic. This
is because polling docs not incur expensive per-packet over-
head of interrupt handling. To demonstrate the effcct of
polling versus interrupt VO on our streaming video appli-
catioit, we voute the video flow and a competing UDP flow
unrder cither configuration. No scaling service is employed
for the video flow. In a first experiment, the UDP flow is
generated at a rate of 9,500 packets/s, with packet size of
64 bytes. Each UDP packet rcceives normal IP forwarding.
Fig. 9 compares received video qgualities for polling versus
interrupt YO. With polling, 282 frames are successfully dis-
played at the receiver, with an average PSNR or 18.68 dB.
With interrupt, 181 frames are successlully displayed, with
an average PSNR of 15.63 dB. Notice that the PSNR profile
of polling is consistently better than that of interrupi. The
original PSNR profile, with an average of 27.2 dB, is also
shown for comparison.

In another cxperiment, we increase the competing UDP
flow rate to 10,000 packets/s, while keeping the packet size
at 64 bytes. Figure 10 profiles the received video qualities
for polling and interrupt. With polling, 192 frames are suc-

cessfully displayed at the receiver, with an average PSNR of

10

ASKA . Y cranvel [€B)

N
158 200 230 a9
Frame Xurte:

Fig. 9. Received video quality Sor router employing polling VO
versus imerrupt VO, with UDP cross iraffic generated at a

rate of 9,500 packets/s (packet size 64 byles).

PSNA .Y gunre: (¢B)

: x
o Lol [{:] = 200 a 30a
Frameo Mumnbor

Fig. 10. Received video quality for router empioying polling
/O versus interrupt YO, with UDP cross traffic gencrated

at a rate of 10,000 packels/s (packet size 64 bytes).

14.96 dB. With interrupt, 77 frames are displayed, with an
average PSNR of 14.69 dB. We conclude that the increased
efficiency of routing packets by polling 1/O translates into

significant gains in video quality at the receiver,

C. Router Throttle

Te measurc the memory overhead of router throttle, we
first load the CROSS/Linux router and the throttle med-
ules into the kernel. Then, using the /proc file systent, we
note the amount of memory allocated as 540 kbytes. We
then install up to 1000 threttles one by one, observing the in-
crease in memory allocated after each throiile installed. Fig-

ure 11 plots the average memory allocated, as a function ol

°«0) — v
Jom 1
oooo
H
- 4
=
A
g ool
s
é
g 3000 | 4
WL
g - b
L — 2) .
< 1o 200 am 30 X0 700 ena QoD 100
Teurber of THOR 83

Fig. 11. Router throttle memory overhead, as a function of the

number of throtiles installed.

the number of throttles installed, over scveral experiments.
The results show that the memory allocated increases largely
lincarly with the number of throtiles, with an average per-
threttle memory of about 7.5 bytes.

We breakdewn the delay of throitling into two compo-
nents: throttle lookup in the packet classifier, and the delay
due to the throttlc clement itself. We found that the delay
through the throttie element is about 200 ns, indcpendent of
the number of throttles installed. This small and relatively
comstant delay is very encouraging, showing that throttling
is not inherently expensive. Throttle lookup depends heavily
on the performance of the packet classifier. We use the de-
foult classifier in Click, From Fig. 12, nof(ice that the “base”
classifier delay (i.e., without any created flows) is about 150
ns. Following that, the delay increases about linearly with
the number of throttles installed, reaching about 475 ns for
18 throttles, We expect that by porting our previous classi-
fier in [21] — shown to have highly scalable loockup perfor-
mance — to CROSS/Linux, we can much improve upon the
linear increase in delay.

Te ascertain how the throttle overhead affects through-
put, we measure the maximum ackievable forwarding rates
of packets through CROSS/Linux, with no throttled flow, to
up to 18 Aows created for throttling. Fig. 13 shows the aver-
age number of 64-byte packets we can {orward per second,

as a function of the number of throttied flows.

- — + T d
oo 4
a0 L .‘

E owf

®

2

5 300

H

[

-

=

¥

B o0}

®

3 174 4

B

o
100 |
” 1

ol 1 1 . "
[2 . ° a "0 ”7 13 " ”»
Hurnbar o Niutes

Fig. [2. Delay performance of router throttling, as a function of

the number of throttles installed

000 T T L T T T 4 g
—_—
——
43003 L
2
©
3
S 3o | B
§
Z
2000
z
H
-
10000
n Y 3 N N L 2 a M
o z 4 12 13 o ;

¢ B L[]
Nurntae of Muloh 1 Qdaelms

Fig. 13. Throughput performance of router throttling, as a func-

tion of the number of throttles instalied

VII. RELATED WORK

Componcnt-based synthesis of network protocols has
been advanced in x-kernel [6], and adopted in recent exten-
sible soltware-based routers [18], [5], [20]. A notable exam-
ple is router plugins [5] - however, plugin gates are fixed in
the 1P forwarding path and cannot be dynamically extended.
Our work heavily leverages the Click router [12], [9]. We
support the use of Click clements with push/pull data move-
ment as router service coniponents, and exploit Click’s con-
figuration language and system support in constructing flow
service pipelines. However, we have extended Click in sev-
eral important directions. First, we run Click ia the context

of (he CROSS resource management framework, which al-

lows multidimension QoS-aware resource allocation at the
level of processes and threads. Hence, the scheduling of flow
service elements can be controlled in relation to other sys-
tem activities, such as routing in the contrel plane. Second,
we have adapted clement scheduling in Click to a per-flow
paradigm, key to providing performance isolation between
users and applications. Third, we provide a signaling meck-
apism to create flows with given resource specifications on-
the-fly, and to incrementafly extend or modify a flow pro-

cessing pipeline.

Resource management in scftware-programmable routers,
especially for both computation and forwarding resources,
is an important problem. However, relatively little work has
been donc in the area. Qie et al [15] present very interesting
experimental results pertaining to balancing between input,
output, and Row processing in a software router. OQur experi-
ments in this paper have siressed resource contention during
flow processing. In our system, schednling control between
input, output and flow processing ean be specificd in various
ways. For example, one can define a global flow each for net-
work input and output, and give these flows certain resource
shares relative to other flows in the system. Alternatively,
it is possible to usc one global flow and assign different re-
sourcc shares to the input, output and vanilla IP forward-
ing elements within the flow. Currently, we use the single
global flow approach, with Click’s default adaptive resource
allocation policy between the flow’s elements. CROSS [21}]
advances per-flow multircsource allocation and scheduling
for rouler services. We extend CROSS to include scrvice
extensibility and configurability inside the kernel. Our in-
vestigation on polling 1/O follows carlier work to eliminate
received livelocks in an QS [11]. The polling /O approach is
also adopted in [9], [15].

Recently, the use of network processors in a software
router, chielly for data plane services, is reported in [18].
By using different processors (general purpose versus spe-
cialized) for various data aad centrol plane services, new

scheduling problems arise, which is an interesting area for

fulure research.

The video scaling service we wse has been reported in
[8], but withoul reference to the effects of resource schedu)-
ing on application performance. We demonstrate our
systent’s ability io support video scaling on-the-fly, and
carefully study the relevance of resource management in
CROSS/Linux to the effectiveness of video scaling. Router
throttling is described in a related technical report [10]. We
complement the simulation results in [10] by measuring the

deployment costs of router throtiling on a software-based

router,

VIII. CONCILUSIONS

We presented the CROSS/Linux software-programmable
rouler. Our router integrates the resource management ea-
pabilities of CROSS [21] and the service configurability of
Click [9]. We described our flow signaling mechanism that
allows new fows to be dynamically created with on-the-fly
service instantiation and configuration. For resource man-
agement, we employ a design that allows resources to be
scheduled ameng (i) global router functions of input, eut-
put, and vanilla IP forwarding, (ii) per-flow user processing,
and (iil) other Linux processes and threads {e.g., routing and
signaling daemons, and ihe control thread for flow signal-
ing). We detailed our design to provide per-flow resource
allocation in the coniext of Click elements. We also pre-
sented flow signaling fo dynamically create flows with given
resource specifications, and to configure the flows on-the-fly
with new services, possibly fetched from a remote server.

We presented {wo router services that have been proto-
typed on CROSS/Linux. For router throttling, wec measured
its deployment costs on our router platform. This comple-
ments previous simulation reselts that assess the cffective-
ness of router throttling in countering DDoS attacks in a
global network. For wavelet video scaling, we dcmonstrated
how resource scheduling can significantly impact the qual-
ity of received video in the face of CPU congestion, network
congestion, or both. We believe that CROSS/Linux is an cf-

fective platform for previding flexible value-added services

sented fow signaling to dynamically create flosws with given
resource specifications, and to configure the flows on-the-fly
with new services, possibly fetched from a remote server.
We presented Lwo router services that have been profo-
typed on CROSS/Linux. For router throttling, we measared
ils deployment cosls on our router platform. This comple-
ments previous simulation results that assess the effective-
ness of router throttling in countering DDoS attacks in a
global network. For wavelet video scaling, we demonstrated
how resource scheduling ¢an significantly impact the qual-
ity of received vides in the face of CPU congestion, network
congestion, or both. We believe that CROSS/Linux is an ef-
fective platform for providing flexible value-added services

to network users, with useful QoS-aware resource sharing.

ACKNOWLEDGEMENT

8. Jeyaraman implemented polling VO for the vortex fast

ethernet device driver used in our experiments.

REFERENCES

[11 TCP SYN fboding and IP spoofing atiacks. CERT Advisory
CA-96.21. awnilable at bitp://www.cerl.org/.

[2] SmurflP denial-of-service allacky. CERT Advisory CA-1998-
01, Januory 1998. avaliable at wwiwv.cert.org/edvisories/CA-
98.01.html.

[3) K. L. Calvert, J. Griffi oen, A. Schgal, and S. Wen. Build-
ing n progremmable multiplexing sexrvice on concast. In Proc.
IEEE ICNP, Osaka, Japan, November 2000.

[4]1 S. Cheung. An el cient message authenticalion scheme for
link stete routing. In FProe. 13th Annnol Computer Security
Applications Conference, San Dicgo, CA, December 1997.

[5] D. Deseaper, Z. Dillis, G. Parulkar, and B. Plattner. Rouler
plugins: A software architecture for next gencration rowvters.
In Proc. ACM SIGCOMM, Vancouver, Canada, Sept 1998.

[6] Norman C. Hutchinson and Larry L. Peterson. The x-kernel:
An architeclure for implementing network protocols. IEEE
Traus. Sofiware Engineering, 17(1):64-76, January 1991.

[71 S. K. Kasera, S. Bhattachoryya, M. Keaton, D. Kiwior,
J. Kurose, D. Towsley, and S. Zabele. Scalable fair reli-
ahle mullicast using active services. IEEE Nerwork, February
2000.

13

[8]1 R.Keller,S. Choj, D. Decasper, M. Dasen, G. Fankhauser, and
B. Plottrer. An active rouler architecture [or multicast video
distribution. In Proc. IEEE Infocom, March 2000,

[9] Eddie Kobler, Robert Morris, Benjie Chen, John Janopotti,
and M. Frans Koashoek. The click modular ronter. ACM
Transactions on Compiter Systems, 18(3):263-297, Avgust
2000.

[10] F. Liang, D. K. Y. Yau, and J. C. S, Lui. On defend-
ing against distribnted denial-of-service attacks with server-
ceptric router throtues. Technical Repori TR-01-008, Dept of
Computer Sciences, Purdue University, West Lafayelle, IN,
May 2001.

[11] J. Mogul and K. Ramakrishnan. Eliminating reccive livelock
in an interrvpt-driven kernel. In Proc. 1996 USENIX Techni-
cal Conference, 1996.

{12] Roberi Morris, Eddie Kohler, John Jannott, and M. Frans
Koashoek. The Click modular router. In Proceedings of the
17sh ACM Symposium on Operating Systems Principles (SOSP
’99), pages 217-231, Kiawah Islend, Sonth Carolina, Decem-
ber 1999,

[13} S. Murphy and M. Badger. Digilal signature protection of the
OSPF routing protecol. In Proc. Internet Society Symposinm
on Network and Disiributed Systems Security, San Diego, CA,
February 1996.

[14] K. Park and II. Lee. On the efTectiveness of roule-based
packet filtering for disiributed DoS atiack prevention in
power-law Inlernets. In Proc. ACM SIGCOMM, San Diego,
CA, August 2001.

[15! Xiachu Qic, Andy Bavier, Larry Peterson, and Scoit Kar-
lin. Scheduling Cempulations en a Soihvare-Based Router.
In Proceedings of the ACM SIGMETRICS 2001 Conference,
pages 13-24, June 2001.

[16] S.Savape, D. Welherall, A. Karlin, and T. Anderson. Practical
retwork suppord for IP traceback. In Proc. ACM SIGCOMM,
Stockholm, Sweden, August 2000.

[17] A. C. Snoeren, C. Partridge, L. A. Sonchez, C. E. Jones,
F. Tchakeuntio, S. T. Kent, and W. Timothy. Hash-based IP
traceback, In Proc. ACM SIGCOMM, San Diego, CA, August,
2001.

[18] Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak
Gottlieb. Building a Robust Soltware-Based Ronler Using
Network Processors. In Proceedings of the 18th ACM Sympo-

tees. JEEE/ACM Transactions en Networking, 6(6), December
1998.

	Application Performance on the CROSS/ Linux Software Programmable Router
	Report Number:
	

	tmp.1307986960.pdf.Eb1WD

