
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2001

Application Performance on the CROSS/ Linux Software Application Performance on the CROSS/ Linux Software

Programmable Router Programmable Router

Prem Gopalan

Seung Chul Han

David K.Y. Yau
Purdue University, yau@cs.purdue.edu

Xuxian Jiang

Puneet Zaroo

Report Number:
01-019

Gopalan, Prem; Han, Seung Chul; Yau, David K.Y.; Jiang, Xuxian; and Zaroo, Puneet, "Application
Performance on the CROSS/ Linux Software Programmable Router" (2001). Department of Computer
Science Technical Reports. Paper 1516.
https://docs.lib.purdue.edu/cstech/1516

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

APPLICATION PERFORMANCE ON THE CROSSLINUX
SOFTWERE-PROGRAMMABLE ROUTER

Prem Gopalan
Seung Chul Han
David K.Y. Yau

Xuxian Jiang
Puneet Zaroo
John C.S. Lui

CSD TR #01-019
October 2001

APPLICATION PERFORMANCE ON THE CROSSlLlNUX
SOFTWERE-PROGRAMMABLE ROUTER

Prem Gopalan
Seung Chul Han
David K.Y. Yau

Xuxian Jiang
Puneet Zaroo
John C.S. Lui

CSD TR #01-019
October 2001

Application Performance on the CROSS/Linux

Software-~ro grammable Router
Prem Gopalan, Seung Chul Han, David K. Y. Yau, Xuxinn Jiang, Puneet Zaroo, John C. S. Lui

A bscracr- proccss network flows that require QoS-nrvarc access to n~ul-

1% present CROSSLinus, n soft~vare-progranlmable tipic resources. To realize our goal, wc integrate the resource

rouler platform that combines the resource mnnagen~cilt ca- management capabilities of CROSS [211 from our P ~ C V ~ O U S

pabilitiw of CROSS Fronl otlr earlier $*ark and tile modu- work and tlie n~odular configurability of Click [9] from MIT.

Iar conhgurability of Click From MIT. By additionally intc- \Vc name our syslenl CROSSILinus to reflect thc current im-

grating n remote code downloading mechanism and a multi- plementation cfforts using Fully open source Linus.

hop signaling protocol, CKOSSJLinux is dynanlicauy extcn-
In Click, ele t~~er~ts are C++ kernel rnodulcs cach iniplc-

siblc, conBgurable, and able to providc predictable proccss-
nlcnting a simple router function (c-g., packet classification,

ing of nclwork flo\r.s that require QoS-e~varc access to mlrl-
qucucing, and packet sclicduling), ~vhich .can bc composed

tiplc resources. Wrc discuss our integration strategy - in par-
and configurcd into per-%owv processing pipclines. To rully

ticulnr, Row signaling and HIC assimilation of flow clement
realize the resource nlanagenlent ability of CROSS, we ad-

sclmduling in Click into our resource nlanagemenl Tramc-
drcss the issue of scheduiing Ctick elements with per-flow

work. CROSS/Linux can support diverse pcr- flow process-
QoS allocations. A thrce-lcvel schcduling policy is defined.

ing that gives bencfifs to end users. 1% present and evaiuate
At l l ~ e first level, a real-time CPU scliedulcr [21] allocatgs - .

two applications: intelligent video scaling in rcsponse to net-
CPU resources between a modified Click clement scl~eduler,

work congeslion, and router throttling as n defense nlccll-
a corr!rol thread for on-the-fly flow ltlanngen~cnl (described

anisrn against distributed dcnial-of-service attacks. While
in Seclion IV), and all cligiblc (in the CPU scheduling sense)

intelligent video scaling has been demonstrated in previous
systcn~ and user processes in Linux. Second lcvcl scheduling

work, our focus is on how guarantccd access to systcnl rc-
takes place whcn the Click ckn~en t scheduler altocates its

sources can impact scaling performance.
CPU share among global router functions or network input,

network output, and vanilla IF forwarding, and a11 thc back-
I . INTROUUCT~ON

togged flows in~plementing per-flow processing. At the tfrird

n'e target a sortware-~rogranlmable is d ~ - Icvcl, a sclleduled ftolv sclecb one of i& e]jgibJc clemen& Tor
namically extensible, configurablc, and able to predictahiy exccutjon,

Conlncr aurhor: D. Y3u (yau@cs.p~rdue.cdu); P. Gopalm is now with
rt network input clement is responsible for moving ar-

M n u Ne~works, Cambridge. MA (work done wllilc hc was nt Purdue);
riving packets from 3 nctwork interface into per-flow input

S. f Inn, D. Yau, X. l i ~ n g and P. Zam are wilh thc Departrncnl of Com-

pulcr Scicnccs, Purdue U~~ivcrsity, Wcsr Ldayektc, IN; J. Lui is will1 [he queues, aftcr packet classification. A nctwork output ele-

Departmcn[o[Computcr Science and Engineering, C11ini-s~ Uni\zcrsi1y "lent is res~omihJc moving pack'& from Output

of Hong Kong. Sharin, Hong Kong. Rcsemh supported in pan by rile 9ueUa l o an outgoing nciwork intcrfacc; it may perrornb

Nalional Science Foundilrion under granl nurnbcrs EIA-9806741 md link level scheduling to providc per-flow bandwidth guar-

CCR-9875742 (CAREER). md in rat by CERIAS antees or differentiation. For a device driver optrating in

Application Performance on the CROSSlLinux

Software-programmable Router
Prem Gopalan, Seung ChuJ Han, David K. Y. Yau, Xuxian Jiang, Puneet Zaroo, John C. S. Lui

Aoslrac/-

\Ve present CROSSlLinux, a software-programmable

router platform that combines the resource man::lgement ca

pabilities of CROSS fronl ollr earlier work and the modu

lar configurabiJity of Click from MIT. By addHionaUy inte

grating a remote code downloading mechanism and a muUi

hop signaling protocol, CROSS/Linux is dynamicaUy exlen

sible, configurable, and able to provide predictable process

ing of network flows that require QoS-aware access to mul

tiple resources. We discllSs our integration strategy - in pa.-

ticular, flow signaling and the assimilation of flow clement

scheduling in Click into onr resource management frame

work. CROSS/Linux ean support diverse pel"-f1ow process

ing that gives benefits to end users. 'Ve present and evaluate

two applications: inteJligent video scaling in response to net

work congestion, and router throUling as a defense mech

anism against distributed denial-or-service attacks. While

intelligent video scaling has been demonstrated in previous

work, our fOCllS is on how guaranteed access to system re

sources ciln impact scaling performance.

I. INTROOUCTION

We target a software-programmable l"Outer that is dy

namically extensible, configurablc. and able to predictably

Conlact author: D. Yau (y'lU@cs.purdue.edu); P. Gopalan is no\\' with

Mazu Networks, C:unbridge. M,\ (work done while he was at Purdue);

S. Illln, D. Yau. X. Ji~ng and P. Zarno arc wilh the Departmenl ofeom

pUler Sciences, Purdue University. West Lafayette, IN; J. Lui is wilh the

Departmelll ofComputer Science and Engineering, Chinese Unl\'ersity

of Hong Kong, StJa(in, Hong Kong. Research supported in part by Ihe

National Science Foundation unde.- granl numbers EIA-980674\ and

CCR-9875742 (CAREER). and in pm by CERIAS

process network flows tll::lt require QoS-a ware access to mul

tiple .-csources. To realize our goal, we integrate the resource

management capabilities of CROSS [21] f.-om our previous

work and th~ modular configurabiJity of Click [9J from MIT.

We lIame our system CROSSlLinux to reOect the current im

plementation e(forts using full}' open source Linux.

In Click, elements are C++ kernel modules each imple

menting a simple router function (e.g., packet classification,

queueing, and packet scheduling), which 'can be composed

.md configured into per-flow pl"Ocessing pipelines. To fully

realize the resource management abilit)' of CROSS, we .ad

d.-css the issue of scheduling Click clements with per-flow

QoS allocations. A three-level scheduling poHcy is defined.

At Ule lirst level, a real-time CPU schedule.- [21} allocates

CPU resources between;) modified Click clement sc11eduler,

a cOlllrol t1rread for on-the-fiy flow managelllent (descl;ibed

in Section IV), and all eligible (in the CPU scheduling sense)

system and use.- processes in Linux. Second level scheduling

takes place when the Click clement scheduler ::Inorates its

CPU share among global router functions of network i....put,

network output, and vanilla IP forwarding, and aJi the back

logged flows implementing pel"-Oow processing. At the third

Ic\"e1, a scheduled flow selects one of its eligible clements for

execution.

A network input clement is responsible for moving ar

riving packets from .a network interface into per-flow input

queues, after packet classification. A network output ele

nlent is responsible for moving packets from their output

queues 10 an outgoing network interface; it rna)' pel"form

link le"el scheduling to provide per-flow bandwidth guar

antees or differentiation_ For a device dri"er operating in

polling mode (as opposed to being interrupt driven), the in- main strcanl routing protocols (e.g., see proposals for se-

put and output elenicnts will additionally handshake with

thc dcvicc for the polling operations. Polling can signili-

cnntly contribute to system efficiency and stability [12], [IS].

Linux proctsses competing with thc Click e l c l~~en t sched-

uler for CPU tinlc niay belong to the control plane of the

routcr, c.g., routing and signaling dacrnons. They may also

correspond to per-flow processing n~odulcs started in user

space 1211. As discussed in 1213, uscr-level modules providc

beneliis or h u l t containnicni for ~ ~ n t r u s i e d codc. Thcsc pro-

ccsscs can run with specified allocations of CPU time, net-

work bandwidth, disk bandwidth, and physical memory.

Beyond resourcc mallagenient a t a single router, we sup-

port raource allocation at designatcd hops on a n end-to-

cnd network path. Thc ink-mncliine signaling protocol is

sender-driven. 1 i signrlin'g packet is I P encapsulated with

-source rouling through specified internlcdiate hops. An ac-

tivate signaling packet is interpreted for flow setup with re-

source allocation a t al[CROSSLinux routers, and is passed

uninterpreted by a non-cognizant router- Flows establish

.YOJ state, wliich can be dealIocatcd eithcr through limeout

or a n explicit deactivate signaling packct.

W e prototype applications on CROSS/Linux to gain expe-

ricncc with the cost and benefit of various per-flow process-

ing functions. Our current loci~s areas arc rcal-time rnuIti-

nicdia data streaming and network sccurity. The valuc OF

in-network proccssing for mullimedia strcanling is increas-

ingly well documented (e.g., 131, [7), [a]), although somc of

these services can aIso be depIoyed as active services (71 us-

ing proxy servers on a nct\vork path.

For security, we are niotivatcd by the observation that

routcr sofhvare plays a criiicaI role in ensuring the "heaIth"

of a public network in1rastrticture. First, s i~lce security

problems are highly subtle, par& of the running kernel -

in spite of i is "moturiiy" - may havc obscure security bugs,

making thc routcrs targets for attacks. Patclies to fix newly

discovcrcd security bugs must be applied in a timely rnan-

ner. Second, sccurily loopholes have brcn discovered ror

curing OSPF and distance vector routing 141, [13]), which

should bc rcnlorcd in newer protocol versions. Third, as

new fornls of nchvork attacks appear, nciv derense nlccha-

nisrns [14], [16], 1171, [lo] may be designed and deployed to

improvc the sccurily of a nctwork. \Vc believe it is highly

uscfu1 to have n scalablc and auton~atic deployn~ent mecha-

nism to dclivcr bug fises and new sccurity sersiccs to a large

number or routing points, wit11 minimal human il~tervention

and disruptions on csisting service.

The importance of flolv-based scllcduling is widely rccog-

nizcd for providing perIormancc isoIation between hcteroge-

neous router serviccs wllich have QoS constraints or do not

necessarily trust cac l~ other [5], f2I1. Meanwhile, lllc valuc

of niodular configurability of router serviccs is recently

shown 191. IVc advance a working systcln that contbines

these important Ieaturcs. Together with our flow signal-

ing and om-the-fly service extension n~cchanisrns, we dcnion-

strate a soltware-based routcr that can providc value-added

serviccs to uscrs in a QoS-aware manner, and proniiscs to

kccp up with the evolving Intcrnet with grealer facility than

esisting systcnls. Our espericncc building and evaluating

two uselul value-added servicc~ to users (interesting in their

own right) gives now insights about thcsc applications, and

dcnionstrates the uliIity of our system.

3. Paper organization

The balance of the paper is organized a s follows. IVe

briefly review thc Click modular router architecture in Sec-

tion 11. l a Section Ill, we dctail the design of pcr-flow re-

source scheduling in CROSS/Linux. The use of a signaling

mechanisn~ to create new flows and configure them on-lhc-

fly is discussed in Scclion IV. In Scction V, we overview

two router services prototyped on CROSSLinux: router

lhrottlc as a defense against DDoS attacks and intclligent

video scaling in rcsponsc to network congestion. Section VI

presents pcrforrnancc results for the applications running on

, polling mode (as opposed to being interrupt drh'en), the in

put amI output elements will additionally handshake with

the device ror the polling operations. Polling can signifi

cantly contribute to system efficiency and stability [12], [15].

Linux processes competing with the Click elcment sched

uler for CPU timc may belong to the control plane oC the

router, e.g., muting and signaling daemons. They may also

correspond to per-flow processing modules started in user

space [21]. As discussed in [211, user-level modules provide

benefits of fault containment for untrusted code. Thesc pro

cesses can run with specified allocations of CPU time, net·

work bandwidth, disk bandwidth, and physical memory.

Beyond resource management at a single router. wc sup

port resource allocation ::It designated hops on an end-to

end network path. The inte.-m::lchine signaling protocol is

sender-driven. A signaling packet is IP encapsulated with

. source routing through specified intermcdiate hops. An ac

tivate signaling packet is interpreted for lIow setup \lith re

sounc allocation 3t all CROSS/Linux routers, and is passed

uninterpreted by a non-cognizant router. Flows establish

soft state, which can be deallocated either through timeout

or an ell:plicit deactivate signaling packet.

We prototype applications on CROSSlLinux to gain expe·

rience with Ihe cost and benefit of various per-flow process·

ing functions. Our current foclls areas arc Tcal-time multi

media dala streaming and network security. The value of

in·network processing for mullimedia stTcaming is increas~

ingly well documented (e.g., [31, [7], [8]), although some of

these services can also be deployed as active services [7] us

ing proxy servers on a network path.

For secuTity, we are motivated by the obsenation that

routeT sortware plays a critical role in ensuring the "health"

of a public network infrastructure. FiTst, since security

problems 3re highl)' sublle, parts of the running kernel

in spite of its "maturity" - may have obscure security bugs,

making the routers targets for attacks. Patches to fix newly

discovered security bugs must be applied in a timely man·

nero Second, securily loopholes have been discovcred Cor

2

main stream routing protocols (e.g., see proposals for se

curing OSPF and distance vector routing {4J, [13]), which

should be remoyed in newer p.otoco! versions. Third, 115

new forms of network aU3cks appear, new defense mccha

nisms {l4], [16], [17], [10] may be designed and dcployed to

improvc the security of a network. We believe it is highly

userul to haye a scalable and automatic deployment meeha~

nism to deliver tug lixes and new security scnices to a large

number of routing points, with minimal human intervention

and disruptions on existing service.

A. Our cOlltributiOIlS

The importance of flow-based scheduling is widely recog

nized for providing performance isolation between heteroge

neous router scrvicc.'i which ha'lle QoS constrainls or do not

necessarily trust each other [5]. £21]. r"'leanwhile, the ,'olue

of modular conligur.ability of router serviccs is recently

shown [9]. We advance a working system that combines

these important fe.aturcs. Together nith our flow signal.

ing and ()ll·tlle-fly service extension mechanisms, we demon

strate a software-b::lsed router that can pro\'ide value-added

services to USCTS in a QoS-aware manner, and promises to

keep up with the evolving Internet with greater facility than

existing systcms. Our experience building and evaluating

two useful value-added senices to users (interesting in their

own right) gives ncw insights about these applic.ations, and

demonstrates the utility of OUT system.

B. Paper organization

The balance of the paper is oTganized as follows. We

briefly review the Click modular router architecture in Sec

lion II. In Section III, we detail the design of per-flow re

source scheduling in CROSSlLinux. The use of a signaling

mechanism to create new llows and configure them on-the

fly is discussed ill Seclion IV. In Section V, we Q1,'erview

two rouler services proto typed on CROSS/Linux: router

throttle as a defense against DDoS attacks and intelligent

video scaling in response to network congestion. Section VI

presents performance resu Its for the appl ications running on

our platform. In parlicular, me cnreh.tlly study l l ~ c effects

of CPU auocation and interrupt versus polling YO on video

scaling pcrformar~ce. Section VII discusses tclalcd vrork.

Section YIII concludes.

For service configuration, we leverage tllc Click modular

router. For con~pleteness, wc rcviclv the Click router arclu-

tccturc. Further dehils can be found in 191. 111 Click, ele-

ments arc C++ kernel modulcs cacl~ irnpIernenting a simple

roufer function (e.g., rcccivc from an input nclwork inler-

face, send to an output interacc,packct classilication, qucuc-

ing, and packct scheduling). Elcments can be considered

nodcs in a directed graph, and they can bc connected to each

oll~er through one or rnoreporfs thcy have. When an output

port of an clcment is conncctcd to an inpul port of another

clcment, it Forms a direcled edge from the rorn~er (the irp-

rlrrorrr clcrncnt) to -the laitcr (the dolowrrslrearrr elenlent). A

packet can then bc passed from the upstream to the down-

stream clcnlcnt. Hence, in general, packels flow along the

cdges or the flow graph, from input to output. They will rc-

ceive custoniizcd protocol processing according to 1 he actual

paths they travcrsc.

An upstream clement initiates packet transrcr to its im-

mediate dolvnstreanl ncighbor by calling lllc prrslr virtual

function of the neighbor. Hence, packet transfers initiated

from upstream (e.g., by nctwork input) arc called pusfr pro-

cessirig. It is also possible h o n ~ a dolvnstream clcnrcnt lo

request packets from upstream (e-g., when an output nct-

work inledace becomes ready, it may request a packel to

send). This is done by the dorvnslrearn element calling the

p~tN virtual function of its immediatc upstream ncighbor.

Hence, packet transFcrs initiated horn downstream B called

prtll processi~zg .
Click has lo scheduie the cxccution order of elements.

From thc scheduling point of view, a scqucncc of push (or

pull) runction calls cannot bc interrupted. A packet must

pass through the corrcsponding sequcncc of elements, until

it is either dropped, or queued in thc context of a Qrrerte el-

ement. When thal happens, l l ~ c clement schcduler rcgair~s

control, and schedules n next element to run. Hence, the

position of Queue elcrncnts in a processing path deternlincs

the path's precnlplion granularity in Click scheduling. If

more clements are connected in tandem ~vithout intcrpos-

ing Qucuc clements, the preemption granularity beconlcs

coarser, since thc scheduler nlust wait for all the cfcmcnts

to complete berore it can reschcdulc.

Resource managcmcnl in CROSS is based on resorrrce ol-

localio~rs [21]. Resource allocation objccts allow router ser-

vices lo havc QoS-aware access lo various system resources,

including CPU time, network bandwidlh, disk bandwidtll

and memory share. This t ra~~sla les into predictable perfor-

nlancc for user serricc., on a per-flow basis.

Click processs clcn~enls in thc contest of a designated

control Illread. Each clcnlent can bc given a number of

stride scheduling tickets 1191, ml~ic l~ determines the cle-

ment's share of the CPU. Elements can be put on a tusk

qrrerie as a policy decision 191. Among all the elements ap-

pearing in the @sk queue, the schcdulcr selecls t he nest onc

For processing according to ihcir stride schcduling priorities.

This allows to balance variousprrsfr/pi~ll processing between

different inpuVouput interfaces. However, since the same cI-

ement can be used by multiple flolvs, elcmcnt-based schedul-

ing is not compatible with the pcr-Rorv resource scheduling

paradigm in CROSS.

We modify the Click element scheduler to support per-

flow scheduling. Each flow is defined by ajlow spccijicatiorz

(e.g., a layer-four IP flow can be defined by the sourcc IP ad-

dress, destination IP addr ts , transport prolocoI, transport

source port, and transport destination port) installed with

thc packet classifier. It prescribes a processing pipeline of

elements, which is assumcd fised for the Row's lifc time. Un-

like Click, we allow individual flows to be given their own

resource allocations. 111 addition, since multiple elements

for the same Row can be eligibile for running - duc to the

prescncc of Q~tetre elcn~cnts in Click [9] - we allow a flow

III. SINGLE NODE RESOURCE SCIIEDULING

emcnt. Wben that happens, the clement scheduler regains

control, and schedules a next element to run. Hence, the

position of Queue elements in a processing path determines

the path's preemption granularity in Click scheduling. If

more clements .are connected in tandem without interpos

ing Queue clements, Ihe preemption granularity becomes

coarser, since the scheduler must wait for all the clements

to complete before it can reschedule.

II. BACKGROUND

For senice configuration, we leverage the Click modular

router. For completeness, we review the Click router al"chi

tecture. Further details can be found in [9]. In Click, ele

ments arc C++ kernel modules each implementing a simple

routCf" function (e.g., receive from an input network inter- Resource management in CROSS is based on resolJrcr: a/

face, send to.an output interace,packet classification, queue- locatiolls [21J. Resource allocation objects allow router ser

iog, and packet scheduling). Elements can be wnsidcred vices to have QoS-aware access tn various system resources,

nodes in a directed gl"aph, and they can be connected to each including CPU time, network band width, disk bandwid tit

other through one or more pOris they have. When an output .and memory share. This translates into predictable perfor

port of an clement is connected to an input port of. another mance for user services, on a per-flow basis.

clement, it forms a directed edge from the former (the IIp- Click processes clements in Ihe context of a designated

stream clement) to -the latter (the downstream clement). A control Ihreat!. Each clement can be given a number of

packet can then be passed from the upstream to the down- stride scheduling tickets [19J, which detel"mines tbe ele

stream clement. Hence, in general, packets now along the ment's share of the Cpu. Elements can be put on a task

edges of the now graph, from input. to output. They will re- queue as a policy decision [9]. Among all the elements ap

ceh'e customized protocol processing according to the actual pearing in the t'lsk queue, the scheduler selects the next one

paths they tral'ersc. for processing .according to their stride scheduling priorities.

An upstream clement initiates packet transfer to its im- This allows to balance various prts!llpllll processing between

mediate downstream neighbor by calling lhe push virtual different input/ouput interfaces. However, since (he same el

function of the n~igbbor. Hence, packet transfers initiated ement can be used by multiple flows, element-based schedul·

from upstream (e.g., by network input) 3l"e called push pro- ing is not compatible with the per-fiow resource scheduling

cessiug. It is also possible from a downstream eleDlent 10 paradigm in CROSS.

request packets from upstream (e.g., when an output net· We modify the Click element schedulef" to support per

work interface becomes rcady, it may request a packet to flow scheduling. Each now is defined b}' afloll' specificatiorz

send). This is done by the downstream element calling the (e.g., a layer-four IP now can be defined by the source IP ad

pull \'irtual funclion of its immediate upstream neighbor. dress, destination IP address, transport pJ:Otocol, transport

Hence, packet transfers initiated from downstream is called source port, and transport destination port) installed with

pull processing. the packet classifier. It prescribes a processing pipeline of

Click has (0 schedule the execution order of clements. elements, which is Ilssumed fixed for the Row's life time. Un

From the scheduling point of view, a sequence of push (or like Click, we allow individual ftows to be given their own

pull) function calls cannot be interrupted. A packet must resource allocations. In addition, since multiple elements

pass through the corresponding sequence of elements, until for the same flow can be eligibile for mnning - due to the

it is either dropped, or queued in the context of a Queue el- presence of Queue elements in Click [9] - we allow a now

· our platform. In padicular, we carefully study Ihe effects

of CPU allocation and interrupt versus polling JJO on video

scaling performallce. Section VII discusses related work.

Section VIII concludes.

to in turn apportion its resource alIocation among tho con- scheduled, ntouter selects the next clcn~ent lo run based on

stitucnt elements. (Hence, a flow clenicnt nlay l~aveschedul- thc (flow-private) scl~eduling slate of these elmtenb. Fig. 1

ing state in thc conlcxt of i t s flow.) With the modifications, shows a roulcr configuration in wlrich a single ioRoutcr is

the Click's task qucuc conlains a S C ~ of all eligible Jlo~vs in used for the router global functions, and two Router's havc

CROSSfLinus - as opposed to element- in the original de-

sign. Each eligiblc flow is represented by a n lRoutcr object

in thc task queue.

Notice that certain clcmcnts do not logically belong to

any particular low. Inslead, they pcrf'orna functions in the

global router contest. Input and output elements For nct-

work ports, and on clcnient for vanilla IP forwarding, are

important csamples. ?Ve trcat thcsc global elements as be-

Ionging to certain globnl 'fPo)~ls" (cach represented in tllc

task qucuc hy all ioRouter objecl). For the purpose of

scheduling, global flows arc just like nornlaI flows. Thcy

can be endowed will1 specified resource alIocations, tlius al-

lolrting Lhcir elements to conipctc for sy-stcm resources with

other per-fiow clcmcnls. The assignment of gloabl router

functions to global flows is flcsiblc. For cxample, we could

have one global flow for each network input elemcnt, onc

global flom for each network output clcn~cnt, and one global

flom for vanilla 1P Forwarding. O r we could have one global

Row for all of network input, nctlvork output, and vanilla IP

forwarding.

To support accurate per-flow scheduling, early dcniulti-

plexing or packets into thcir flows is ncccssary. This is done

by placing a Click Qucuc elcment immediately after thc nct-

work input element nssociaicd with an input port (see Scc-

tion I1 and [9J). This allolvs the input element to return im-

n~ediately after moving a packet from the input port and

classifying Ihe packet into the appropriate flow; instead of

perForn~ing any per-flow processing in the input element's

global context. (In essence, this solves thc problem oflridiierr

scirerriing 1221.)

been crcatcd for per-flow user processing.

IV. FLOW SIGNALING AND SERVICE CONFIGUR~~TION

Section I11 dacribcs ffo\~-hascd scheduling assuming that

ihe flows have been alrcady set up. CROSSLinus also al-

lolvs Rows to bc dynamically crcatcd and flcsibly config-

ured as a pipeline of processing elemcnb. Such flow man-

agement is controlled by 1P control packets with lllc roriter

ulcrf option being set. Threc kinds of control packets arc

defined: ICSETUP ror creating flows, IC-TEARD for de-

stroying flows, and IC-CONFIG for configuring a flow ele-

ment. Thc CROSSLinux packet classifier reading from an

input port idenlilies thcsc control packcb and delivcrs them

to a control qucue. The control queue is processed in FIFO

ordcr by a CROSSfLinus coirtrol flrrend. The control thread

receives its CPU share from tIleJrst-level CPU scheduler

and, assuch, competesdirectly for system resourccswith the

flow scheduler dcscribed in Scction 111. The conlrol thread

performs now managcnlcnt by running a new Click object

called FlowManagcr (thejlov marrager). Flo\vPvlanager is a

derived class of the original IPFilter clcment (corrcsponding

to a packet classifier) in Click. Compared with IPFilter, it

I r a s the added flexibility of being extensible with nclv ports

and filter rules, key to on-the-fly flow selup.

Flow scfup. When an lCSETUP packct is received, the flow

manager constructs a configrralion string representing tllc

flow specification encoded in thc packet. Once the string

is composed, the original set of configuration slrings main-

tained by the flow manager is rcconfigured to include the

new string. As part of thc reconfiguration process, a ncw cl-

ement output port is created for the flow manager. Tlrc ncw

The ptr-flow Router object contains a set of eligibIe ele- port is then connected lo a ncwljt created Qucuc clement,

n~ents and their rcspcctive current packets for thc flolv. One called flowQueue, corresponding to ihc new flowv. Finally,

of these clcnients, called flo\stStart, is responsible for initiat- K c flowQueue elenlcnt is used to initialize an iRouter for

ing per-flow processing ofpackctsarriving for thc flo\v. Once the new flow with the flowslart eIement described in Section

· to in turn apportion its resource allocation among the con

stituent elements. (Hence, a flow clement may h~l\'eschedul·

ing state in the conlext of its flow.) With the modifications,

the Click's task queue contains a set of all eligible flows in

CROSS/Linux - as opposed to elemenl'i in the original de

sign. Each eligible flow is represented by an fRouter object

in the task queue.

Notice that certain clements do not logically belong to

any particular now. Instead, they perform functions in the

global router context. Input and output elements for net·

work ports, and lln clement for \'anilla IP forwarding, are

important examples. '''0 treat these global elements as be

longing to certain global uflows" (each represented in the

task queue by an ioRouter object). For the purpose of

scheduling, global Oows :ne just like normal flows. They

can be endowed with specified resource allocations, thus al

lowing lhcir elements to compete for sy.stem resources with

other per·f1ow clements. The assignment of gloabl router

functions to global Oows is flexible. For example, we could

ha\'e one global Uow for each network input element, one

global Row for each network output clement, and one global

flow for vanilla IP forwarding. Or we could have one global

How for all of network input, network output, and vanilla IP

f()rwarding.

To support accurate per-flow scheduling, early deOlulti

ple)(ing of packets into their nOll'S is necessary. This is done

by placing a Click Queue element immediately after the net

work input element nssociated with an input port (see Sec·

tion II and (9». This allows the input clement to return im·

mediately after moving a packet from the input port and

classifying Ihe packet into the approp.iate flow, instead of

performing any per-flow processing in the input element's

global context. (In essence, this solves the problem of hidden

sclleuling [22].)

The per·flow £ROllter object contains a set of eligible ele·

ments and their rcspecth'e current packets for the fiow. One

of these clements, cal.led nowSt3rt, is responsible for initi3t

ing per-Dow processing ofpackets arriving for the Uow. Once

scheduled, fi{outer selects the next clement to run based on

the (flow-private) scheduling state of these elements. Fig. 1

shows a router configuration in which a single ioRouter is

used for the router global functions, and two mouter's have

been created for per-llow user processing.

IV. FLOW SIGNALING AND SERVICE CONFIGURATION

Section III describes flow-based scheduling assuming that

the flows have been already set up. CROSS/Lillux also al

lows flows to be dynamically created and flexibly config.

ured as a pipeline or processing elements. Such flow man

agement is controlled by IP cOlltrul packets with the rOllter

alert option being sel Three kinds of control packets 3re

defined: IC...sETUP for creating flows, IC_TEARD for de

stroying flows, and IC_CONFIG for configuring 8 flow ele

ment. The CROSSlLinux packet classifier reading from an

input port idenlilies these control packets and delivers (hem

to a control queue. The control queue is processed in FIFO

order by a CROSS/Linux control thread. The control thread

receins its CPU share from the first-level CPU scheduler

and, as such, competes directly for system resources with the

flow scheduler described in Section HI. The con(rol thrcad

performs flow management by running a new Click object

called FlowManager (thejlow mallager). FlowManager is a

derived class or the original IPFiltcr clement (corresponding

to a packet classifier) in Click. Compared with IPFilter, it

has the added OexibiJity of being extcnsible with nCW ports

and filter rules, key to on-the.fly flow selup.

Flo\v selup. When an lC.5ETUP packet is received, the flow

manager constructs a COnfigllraUon string representing the

flow specification encoded in the packet. Once the string

is composed, the original set of conliguration strings main

tained by the flow manager is reconfigured to include the

new string. As part of the reconfiguration process, a new c1.

ement output port is created for the now manager. The new

port is then connected to a newb' created Queue clement,

called flowQueue, corresponding to tit!;! new flow. Finally,

the flowQueue eleJl1(lnt is l1Sed to initialize an fRouter for

the new now ,,,ith the flowSlart element described in Section

Fig. 1 . A CROSSLinux router configuralion wilh c~nc global flow and two user flows.

TIT. The R o u t e r is allocated system resources according to the code is available Iocally, it is dynamically Iinked wit11 the

parameters in thc ICSETUP packcts. Later packets that running kcrncl using the standard Linux insmod utility. Fi-

match thc filter rule for thc ncw Bow a re then delivered to nally, the Iinked module is configured into the processing

thc corresponding BowQueue. These packcts mill be pickcd pipeline through tlic standard Click mechanism of writing

up by flowstart when the corrcsponding fRoutcr is sclccted aservice specfjicolio~r to tlle kernel tl~rough the lproc Plcsys-

to run. tcn~.

Flow configuration. An IC-CONBIG control packct is used

to addldclctc an element from the processing pipeline a n

existing flow. In the case of adding an element, thc Born

manager checks whether thc rcql~ested servicc is already

available in a local service repository. If not, it signals n

user-Ievcl active network dacnlon aneld U to download the

namcd service from a rcn~ote node.' The anetd implemen-

Lation looks up the remote node having the servicc. I t then

reliably fetches the codc, a s a n uninterprctcd byle stream,

from a web s e n e r running on that node, using HTTP. For

CROSSILinux, the byte stream must correspond to a con)-

pilcd kernel module Tor thc requesting machine. lCthe down-

load fails (c.g., the requested scrvice cannot be found) in

the current inlplementalion, the rcquest to add an clen~ent

silcntlg rails, in that the sender of Ihe add rcquest is not no-

tified or ihc failure. If the download succeeds, the fetched

code will be cntcred into thc local service repository. Once

'we originally implcrnen~ed a CORBA baed naming and code

download scrvice, will1 rhc download process supervised by ihe control

thrcad. We dccidcd in favor of anctd bccausc 01 si~nplihcd syncha-

nizarion and i~s wider accrpfancc in rhc active neL\\tvrk cornrnurlity.

Flow dclcte. When an IC-TEARD is received, tile flow man-

ager verifies the existence of the narncd Wouter. Tf it exists,

it is removed from the flow schcdufcr, ib flow specification

is removcd from tile packct classitier, and any mcnlory allo-

cated to it is returned to the kernel.

iVc are building user applications on CROSS/Linux. We

describe two services: router ibrottling as a defcwe mech-

anism against distributed denial-of-service (DDoS) atbcks,

and wavclct video scaling lor application-aware network

congestion control. The services are implcmented in C++ as

Click elements. Thcy a re compiled as Linux loadablc kernel

modulcs for deployment.

Router throttling [lo] is a resource management bascd de-

fense nlechanism against DDoS a thcks (e.g., [I], [2]). Its

goal is to protect a server system from l~aving to deal with

excessive service requcst arrivals (from a cohort o r a lhck-

ing machines) over a global nctivork. To do so, a proactive

-;l~rl
-;-; i~~§;:::'

Fig- 1. A CROSSlLinux rouler configuration Wilh one global flow and two user flows.

III. The CRouter is allocated system resources according to the code is available locally, it is dynamically linked with the

parameters in the ICBETUP packets. Later packel,> that running kernel using the standard Linux insmod utility. Fi

match the filter rule for the new flow are then delivered to nally, the linked module is configured into the processing

tbe cOrTesponding flowQueue. These packets will be picked pipeline through the st:mdard Click mechanism of writing

up by flowStart 'vhen the corresponding mouter is selected a sl!rvice specificatio1l to the kernel througb the Iproc file sys-

to run. tem.

Flow configuration. An IC_CONFIG control packet is used Flow delete. When an IC_TEARD is received, the flow man

to addlddete an element from the processing pipeline an ager verifies the existence of the named fRouter. lfil exists,

existing flow. In the case of adding an element, the flow it is removed from the flow scheduler, its flow specification

manager checks whether the requested sen-icc is already is removed from the packet classifier, and any memory allo

available in a loeaJ service repository. If not, it signals a cated to it is returned to the kernel.

user-level active network daemon aneld D to download the

named service from a remote node. I The anetd implemen

tation looks up the remote node having the service. It then

reliably Cetches the code, as an uninterprcted byte stream,

from a web server running on that node, using HTTP. For

CROSS/Linux, the byte stream must correspond to a com

piled kernel module for the requesting machine. Uthe down

load fails (e.g., the requested service cannot be found) in

the current implementalion, the request to add an element

silenll}' fails, in that the sender of the add request is not no

tified of the failure. Ir the download succeeds, the fetched

code will be entered into the local service repository. Once

I We origiTlally implemented a CORBA based naming and codc

download service. Wilh the download process supervised by Ihe conlTol

thread_ We decided in favor of Metd bcciluse of simpJi lied synchro-

nization and ils wider acceptance in the i1ctivc nelwork community.

V. ApPLICATIONS

We are building user applications on CROSSlLinux. We

describe two services: router tbrottling as a defense mech

anism against distributed denial-oC-service (DDoS) attacks,

and wavelet video scaling for application~aware network

congestion control. Tbe services are implemented in C++ as

Click elements. They are compiled as Linux loadable kernel

modules ror deployment.

A. Router throttle

Router throttling [lO] is a resource management based de

fense mechanism against DDoS attacks (e.g., [I}, [2]). Its

goal is to prated a sener system from having to deal with

excessive sen-ice request arrh'als (rrom a cohort of attack

ing machines) over a global network. To do so, a proactive

approach is used: Before aggressive packets can converge lo

overrvhelm a scrver, me ask routcrs along forwarding paths

to regulate the contributing packet rates to nrorc nloder-

ate IeveIs, thus €orestalling a n in~pcnding attack. Thc basic

nlcchanism is for a scrvcr under stress (e-g., bcing flooded

with attack traffic), say S, to install n ror~ter throffle a t an up-

strcam router scvcral hops away. An inslalled throttle Iiniits

thc rate a t which packcls destined for S will be forwarded

by the router. To accomodate bursty traffic, a tlirottle is im-

plemented as a leaky buckct with tlre desired ratc lintit and

some bucket sizc s (in bits) to absorb thc burstiness. Traffic

that exceeds tllc rate limit can cither he dropped o r rcrouted

to an atternate server.

In a rcleted technical report [lo], we study the problem of

dctcrmining appropriate throttle rates at distributed rout-

ing points, such that, globally, S cxports its full scrvice ca-

pacity to flie network, but no more. The "appropriate"

tllrottles are adaptive to the current demand distributions,

and arc negotiated dynamically between scrvcr and net-

work. Via simulations, we show that router throttling can of-

fer significant relief to a scnrcr that is being flooded with ma-

licious attacker tranic. First, for aggressive attackers that

send a t significantly highcr rates than lcgitinlate users, the

throttle mechanism can preferentially drop attacker traffic

over good user traffic. This allows a much largcr fraction of

good user trarlic to make it to the servcr as compared with no

net\vorkprotection. Second, for both aggressive and "meek"

attackers (i.e., attackers that send comparable amounts of

tramc as legitimalc users), throtlling can regulate the expc-

rienced server load to within its design load limits, so f hat the

server can rcmain operational during a DDoS attack. Tlle

ability to increase the availability of a Web server during at-

tack cpisodes is also denionstrated Ihrougl~ simulations.

In this papcr, we prototypc router throttling on CROSS/-

Linus. The implenrcnlation complenrenls our simulation

results, and atlows us to nlcasure the depIoyn~cnt costs of

the n~cchanisrn a t a network node. I c arc, for example,

interested in thc rtlemory and processing requirenrcnls of

throttling as a iunciion of tllc numbcr of throttles instalted.

More generally, the inq~lenreniation esercise demonstratm

the ability of CROSSKinus to dynamically extend tlie secu-
\

rity Features at a router. Othcr security nlechnnisnis (e.g.,

1141, [16], 1171) useful in diverse scenarios can similarly bc

introduced in a seamless nnlnncr using CROSSLinux.

In thc implementation, a server, say S, requests throflling

a t a CROSSLinux router by sending it a control packet.

The control packet specifics the TP address of S, and the

throttle leaky bucket size and token ratc. On receiving s~rch

a packet, CROSSLinux checks if the throttle scrvice is 31-

ready available a t the local nodc. If not, it uses the scrvice

downloading nlcchanism in Scction IV to fetch the throltle

code from a dcsignatcd code servcr, and links the code dy-

nanlicalty into the running kernel. When tlle throttle ser-

vice has been linked to tIlc kernel, it is configured into thc

processing pipeline of packets d~stincd for S. A configured

throttle limits thc long-tern1 forwarding rate of packets for

S to the token rote, and the maximum burst size to the lcaky

buckct size. Any cxcess packets are dropped in our imple-

mentation.

A media scaling scrvice is reported in [SJ for routcr plu-

gins 151. The scrvice appliw to wavclct-encoded real-time

video consisting of a base laycr and progressive enhance-

ment layers. Lower layers contain more basic video infor-

mation, and are needed for highcr layers to add to thc video

quality. By using a plugin to examine the layer information

of backlogged video packets at limes of network congestion,

thc router can drop enhancement layer packets bcfore base

layer packels, and higher enhanccmenl laycr packets bcfore

lower enhancement laycr packets. This way, it is possible

to acllieve gmcefirri degrudafion of video quality under con-

strained network bandwidth.

We have portcd wavclct video scaling to CROSSLinus.

Likc router throttle, it can be fctclled and loaded on demand,

in response to user requests. While thesameservice has bccn

den~onstraled in [8], our goal in this paprr is to understand

approach is used: Before aggressin packets can converge to

o,"'erwhelm a sCn'er, we ask routers along forwarding patbs

to regulate the contributing packet rates to more moder

ate levels, thus forestalling an impending attack. The basic

mechanism is for a server under stress (e.g., being flooded

with attack traffic), say S, to install a rOllter throUle at an up

stream router several hops aW3J'. An installed throttle limits

the ("ate at which packets destined for S will be forwarded

by the router. To accomodate bursty traffic, a throttle is im

plemented os a leak~' bucket with the desired rate limit and

some bucket size s (in bits) to absorb thc burstiness. Traffic

that exceeds the rate limit can either be dropped Or rerouted

to an allernate server.

In a related technical report [101. we study the problem of

determining appropriate throttle rates at distributed rout

ing points, such that. globally, S exports its full service ca

pacity to the network, but no more. The "appropriate"

throttles arc adaptive to the current demand distributions,

and are negotiated dynamicallJ' between server and net

work. Via simulations, we show that ["outer throWing can of

fer significant relief to a serl'cr thaUs being nooded with ma

licious attacker trame. First, for aggressive attackers that

send at significantly higher rates than legitimate users, the

throttle mechanism can preferentially drop attacker trartie

over good user traffic. This a 1I0ws a much largcr fraction of

good user trame to make it to the servcr as compared with no

network protection. Second, for both aggres.... ive and "meek"

attackers (i.e., attackers that send comparable amounts of

traffic as legitimatc users), throttling can regulate the expe

rienced server load to within its design load limits, so that the

server can remain operational during a DDoS atrack. The

ability to increase the availability of a Web server during at

tack episodes is also demonstrated through simulations.

In this paper, we prototype routcr throWing on CROSS/

Linux. The implementation complements our simulation

results, and allows us to measure the deployment costs of

the mechanism at a network node. We are, for example,

interested in the memor)' and processing requiremcnts of

6

throttling as a function of the number of thl"OUlcs installed.

More generally, the implementation exercise demonstrates

the a bilit)' of CROSSlLinux to dynamically extend the secu-
\

rHy fcatures at a router. Other securit}' mechanisms (e.g.,

[14], [16], [17]) useful in diverse scenarios can similarly bc

introduced in :l seamless manner using CROSSlLinux.

In the impJementation, a server, say S, requests throilling

at a CROSS/Linux router by sending it a control packet.

The control packet specifies the IP address of S, and the

throttle leaky bucket size and token rate. On receiving stich

a packet, CROSSlLinux checks if the throttle service is .al

re.ady available at the local node. If not, it uses the service

downloading mcchanism in Section IV to fetch the throltle

code from a designated code server, and links the code dy

namically into the running kernel. When the throttle ser

vice has been linked to the kernel, it is configured into the

processing pipeline of packets destined for S. A configured

throttle limits thc long-term forwarding rate of packets for

S to the token rate, and the maximum burst size to the leaky

bucket size. Any excess packets are dropped in OUI" imple

mentation.

R. Video scaling

A media scaling scn-ice is reported in [8J for routcr pID

gins [5]. The service applies to wavclet-encoded re.al·time

video consisting of a base layer and progrcssh'e enhance

ment layers. Lower layers contain more basic video infor

mation, and are needed for higher layers to add to the video

quality. By using a plugin to examine the layer information

of backlogged video packets at (imes of network congestion,

the router can drop enhancement layer packets before buse

layer packcts, and higher enhancement layer packets before

lower enhancement layer packets. This way, it is possible

to achieve graceJrtl degradatioll of video quality under con

straincd network bandwidth.

We have ported wavelet video scaling to CROSSlLinux.

Like router throttlc, it can be fetched and loaded On demand,

in response to user requests. While the sameservice has been

demonstrated in [8), our goal in this paper is to understand

how resource allocation in CROSS/Linus can impact video

quality pcrceived by end uscrs. In particular, video scaling

requires sufficient processor cj?cfes to be effective. Olhcr-

wise, video packets will be dropped in an n~rd~ferenliated

manner while awaiting processing by the scaling module.

We are interested in experimentally assessing how different

CPU allocations for the scaling service an affect video qual- 4
ity. Resource allocation issues arc particularly relevant for I MP CZWSI n m ~

applications like video streanling that have QoS constraints.

VI. EXl'l.:RlbiI?NTAL RESULTS

We present experin~ental results to illustrate application
Fig. 2. Expcrirncntat nerrvork setup for vidw scaling. with a

perforrnancc on CROSSfLinux. l ' l ~ e rouling platrorm used
rernotc ctde server rcccssed tl~rough the In~ernet.

is a Pcntium IIU864 MHz PC fitted with four PC1 3Com

3c59x (vortex) 10/100 h.lb/s ethernct interf3ces. We made

our own cl~anges to thc vortex device drivcr to support

polling U0. rore, thc cxpcrimentsgivc an idea o r t l ~ c kind of perfornlance

For the global router functions, we schcdule them in the when code may have to be fetchcd from remote servers ac-

context or a sirzgle global flow. I.c., one ioRouter object ran cessed through a typical shared network infrastruclure.

on an cxperimeotal router. We used Click's default algo-

rithm to adaplivcly allocate the global Bow's CPU allocation Fig. 3 shows the HTTP tmnsfcr times ror anctd to ob-

to the individual flow clcnicats. For examplc, when Click tain the cod$ from poncc's wcb server, as a function of the

sces a burst of arriving packets, it will automatically in- code size. The figure plots the averagc transfer time over 50

crease the CPU share givcn lo the relevant network input el- mensuremcnts for eachservicc, and thc standard deviationis

cment. Bemuse of t t ~ c design in CROSS/Linux to isolate the shown as a n error bar. Notice that lhc average transfer lime

resource allocations bctwccn Rows, any such rate increase b largely dircctly proportional to the codc size. The vidco

occurs only itpithin the contest of ihc global Ilow in our sys- scaling service implemented as wavcscalco has size about

tem. 9.8 kbytes, and rcquires a transfer time of about 23.19 ms.

A. Service exlerrsion
Roulcr tlirottling impfernenled as thrott1e.o has size about

20.5 kbytes, and requircs a transrer time of about 23.83 ms.

\Ire nlcasure ihe overhead of configuring and integrating Fig. 4 reports the time taken to dynamically link wavescalc.~

new router scrvices in CROSS/Linux, as described in Sec- and t11rottle.0, rcspcctively, inlo thc running Linux kernel.

lion 1%'. In the experiments, thc machine mdiz shown in Fig. The time to link our modified Click module (click.0) is also

2 is the CROSSLinus router on which the new services arc shown for comparison. From the figure, wavesca1c.o and

to bc instalIed. It runs in our research lab in the Purduc CS thro1tle.o each takes about 10 nls of linking time, whereas

department. The in~plemented codc is not initially available click.0, being Inrgcr and more complex, takes about 80 ms.

locally a t cadiz, and has to be fetchcd rrom ponce (sce Fig. 2), Lastly, the time taken to configure the video scaling and

a web server owned by the campus compuhtion center, and router throttle services into their corresponding processing

connected to cadiz via the public mntpus Iniernet. There- pipelines is rncasured to bc 11-31 and 11.06 INS, respcctiveiy.

7

how resource allocation in CROSSlLinux can impact video

quality perceived by end users. In p3rlicular, video scaling

rcquires surfJcient processor C)'cles to be effective. Other

wise, video packets will be dropped in an ul/differentiated

manner while awaiting processing by the scaling module.

We are interested in experimentally assessing how dilTerent

CPU allocations for the scaling service c"10 affect video qual.

ity. Resource allocation issues arc particularly relevant for

applications like video streaming that have QoS constraints.

VI. EXPERIMENTAL RESULTS

We present experimental results to illustrate application

performance on CROSSlLinux. The routing platform used

is a Pentium 111/864 MHz PC lUted with four PCI 3eom

3c59x (vorte:,,) 10/100 Mb/s etherncl interfaces. We made

Fig. 2. Expcrimcnta[network setup for video scaling. wilh a

remote code server accessed through the Inlernet.

our own changes to the ..'ortex device drivcr to support

polling IJO. fore, the cxperiments give an idea ofthc kind ofperformance

For the global router functions, we schedule them in the when code may have to be fetched from remote servers ac

context of a single global How. I.e., one ioRouter object ran cessed through a typical shared network infrastructure.

on an experimental router. We used Click's default algo-

rithm to adaptiYcly allocate the global flow's CPU allocation Fig. 3 shows the HTTP transfer times for anctd to ob·

to the individual flow clements. For example, when Click tain the cod.c from ponce's web server, as a function of the

sees a burst of arriying packets, it will automatically in- code si-,:c. The figure plots the a\'eragc transfer time over 50

crease the CPU share giYen to the relevant network input el· measurements for eachservicc, and the standard deviation is

ement. Because of the design in CROSS/Linux to isolate the shown as an error bar. Notice that lhc avcrage transfer (ime

resource allocations between flows, any such rate increase is largely directly proportional to (he code size. The video

occurs only within the context of the global How in our sys- scaling sen-ice implemented as wav~cale.o has size about

tem. 9.8 kbytes, and requires a transfer time of about 23.19 ms.

Rouler throttling implemented as IhroUle.o has size about
A. Service ex/elISion

We measure the overhead of configuring Bnd integrating

new router services in CROSS/Linux, as described in Sec

tion IV. In the experiments, the machine cadiz shown in Fig.

2 is the CROSS/LinlJx router on which the new services an~

to be installed. It runs ill our research lab in the Purdue CS

department. The implemented code is not initially available

locally at cadiz, and has to be fetched from ponce (sec Fig. 2),

a web server owned by the campus computation center, and

connected to cadiz via the public campus Internel. Therc-

10.5 kbytes, and requires 8 transfer time of about 23.83 IDS.

Fig. 4 reports the time taken lo dynamically link wavescale.o

and throttle.o, respectively, into tbe running Linux kernel.

The time to link our modified Click module (c1ick.o) is also

shown for comparison. From the figure, wavescale.o and

throUle.o cach takes about 10 DIS of linking lime, whereas

c1ick.o, being Inrgcr and more complex, takes about 80 ms.

Lastly, the time taken to configure the video scaling :md

router throttle services into their corresponding processing

pipelines is measured to be 11.31 and 11.06 illS, respectively.

Fig. 3. A plot of service module transfcr time using HTTP, as a Fig. 5. Rcccivcd video quality for video scaling versus drop-

funcrion of [he codc size. rail, under nelwvork congestion.

Fig. 4. Dynamic linking tirnc Tor the video scaling scrvice. ~tle

modified Click module. and Ihe roulcr throlrle service.

3. Reso~rrce i~tlplicuCiotrs for video scaiitirrg

Vidco scaling is designed to respond Lo network conges-

tions, and is most useful for connections without access l o

guaranteed link bandwidth. Hencc, we do not perform real-

time link scheduling in our expcrinacnts. Instead, dclault

FIFO packet scheduling is used lor each network output

port.

The experinhcntal network setup for video scaling is

shown in Fig. 2. In the figure, a wavelct video stream con-

sisting of 300 frames and \with a peak bandwidth require-

ment of 2.6 Mb/s is being sent a t 25 DamesJs from bolling

to madrigal, through ihe CROSSLinus router cadiz. The

video stream, encoded to have one base layer and 127 en-

hancement layers, is displayed at madrigal when received.

A t cadiz, it competcs for resources with a cross traffic slream

of UDP packcls,ser~t at diffcrcnt bit ratesand requestingdif-

fercnt pcr-Row processing, from sevilla to madrigal. Ui~less

oiherwise shtcd, (lie direct links showvn bctwcen nlachincs

are 10 Mbls point-to-point ctllernet conncclions.

B.1 Network congestion

In a set of esperiments, we vcrify the value of intelti-

gent video scaling during network congeslion. We constrain

the outgoing link bandwidth iron) cadiz to n~adrigal to he

8 Mb/s. \Vc run the vidco flow in compctitiol~ with a UDP

flow. The UDP flow is being generatcd at a rate of 10,UOO

packetsls, with packet size of 64 bytes. fntcrrupt UO is bc-

ing uscd. Fig. 5 profiles the PSNR of ihc video displayed at

the receiver machine, with and without vidco scaling a t the

router. Wit11 video scaling, all 300 frames are displayed at

lhe receircr, with an svcrage per-frame PSNR of 24.6 dB.

With drop-tail, the indiscriminate drops cause loss or play-

back synchronization a t the receiver, and only 79 frames are

successfully displayed. Thc average PSNR is 14.36 dB.

B.2 CPU congestion

Ncxt, we examine the effecb of CPU sllocalion on video

quality at thc receiver. In a sct of experiments, we vary ihc

CPU rate allocated to the vidco flow lo be 0.006%, 0.061 %,

0.09176, and 0.122%, respectively. A CPU allocation of 20%

is given to Ihe global router functions of input, output, and

20) .&to eoo e:f.I 'coo I~ 1&lIlJ 15X2 1!lO.;I 2OCIO
rr.&i:.~I)

'5<>'

I
~

IOU>

...
C

0

.--

...".
.?~._J

-,'....

J

I; !I.,...

: /~\X/~;~fl---·:\\>~.:!.t"··--'-<~ :f,~: t\/_···--" ..
\f.~0 '_~i

'" .. '. /\."j'
......./

"
10

.L-__::':-__~__----'---__~_____'______l

o so lOG I~ 2'00 7'.:h ~)

Fun'llI lhni.,

Fig. 3. A plot of service module tr:msfcr lime using HTTP, as a Fig. 5. Received video quality for video scaling \'ersus drop-

function of the code size. lail, under network congestion,

90

""

'"
""

f 50

J
30

",

10

i
W~SoI.1I2o

__a

r:>.., (U'.:lloJ

Fig.4. Dynamic linking time for lhe video scaling service, the

modified Click module, and the rouler throttle service,

B. Resou.,-ce implicatiollsJor video scaling

Video scaling is designed to respfmd to network conges

tions. and is most useful for connections without access to

guaranteed link bandwidth. Hence, we do not perform real

time link scheduling in our experiments. Instead, derault

FIFO packet scheduling is used £or each network output

port.

The experimental network setup for video scaling is

shown in Fig. 2. In the figure. a wavelet video stream con

sisting of 300 frames and with a peak bandwidth require

ment of 2.6 Mb/s is being sent at 25 framesJs from boiling

to madrigal. through the CROSSlLinux router cadiz. The

video stream, encoded to have one base layer and 127 en

hancement layers, is displayed at madrigal when received.

A t cadiz. it competcs for resources with a cross traffic slream

of UDP packels,sent at different bit rnles and reqnesting dif

ferent pcr-Row processing, from sevilla to madrigClI. Unless

otherwise stated, the direct links shown between machines

are 10 Mb/s point-to-point ethernet connections.

B.l Network congestion

In a set of experiments, we verify the value of intelli

gent video scaling during network congestion. We constrain

the outgoing link handwidth from cadiz to madrigal to be

8 Mb/s. \Ve run the vidco flow in compctition with a UDP

flow. The UDP now is being generated at a rate of 10,000

packets/s, with packet size of 64 bytes. Interrupt lJO is be

ing used. Fig. 5 profiles the PSNR of the ,,'ideo displayed at

the receiver macbine. with and without video scaling at the

router. With video scaling, all 300 frames are displayed at

(he receiver, with an average per-frame PSNR of 24.6 dB.

With drop-tail, the indiscriminate drops cause loss of play

back synchronization at the receiver, and only 79 frames are

succcssruJly displayed. The average PSNR is 14.36 dB.

B.2 CPU congestion

Next, we examine the eITects of CPU aUocntion on video

quality at the receiver. In a set or experiments. we vary the

CPU rate allocated to the video flow to be 0.006%, 0.061 %,

0.091 %, and 0.122%. respectively. A CPU allocation of20%

is given to lhe global Touter functions of input, oufput. and

Fig. 6. Rcccived video quality wilh the video scaling service Fig. 7. Total number of video packets dropped at the video flow

2 1 . <
W l o c l t) l P Z s - . l

- ' .

CFJ k.6 O 1 F . i -. , A, ., ti.r..I.3;:', ; s t . / . *. , . ,-. : :.. , , Y13D -
. ' , ' ! 7

em -

35 - f * xco - . ,

'.
Irm - --

running at difkrent CPU rolcs, under CPU congeslion. qucue as a function of the allocntcd CPU ralc ro the video

xm

r) - gm

I r m

I S 0

flow.

-

- -_
' ..

-
' _ _

vanilla IP forwarding. These global functions arc not CPU
f l o ~ . Thc results confirm that a sufficicn t CPU rate is nccdcd

intensive in the ex-ucriments. and do not use UD their CPU al-

0 Y! IM 1% m TA M o 0 0 2 ODI om om 0.1 ~ 1 2 01. ore 01s -12
rtrm f W r W dwnm)

fo allow the video flow to process its packets fast enough, in
locations.' Thc remaining CPU capacity is entirely allocated

order to avoid buffer overflow at its input queue.
to a competing UDP flow. We run the competing UDP flow a t

a low bit rate, so that the nctwork is not congested. IIolfcver, B.3 CPU nnd net\,-ork congalion

me performed CPU-intensive per-ROW processing, artificially

crcated to wusc CPU congestion, for each UDP packct. The

actual CPU utilization is 100% throughout each cxpcrimefit.

Figure 6 profiles tile vidco PSNR a t tlbc receiver. Notice that

in the face of compctition from the UDP flow, thc amount of

CPU time guaranteed to the video flow has a significant inl-

pacl on the receiver video qualily- The averogc PSNR7s for

0.006%) 0.061%) 0.091 %,and 0.122% of the allocated vidco

CPU rate arc 21-70, 23.06,24.94, and 25.71 dB, rcspcctively.

The loss in video quality is due to packet loss. We measure

the number of packets dropped at the qucues linked lo the

flowstart element o f video scaling and the qucue linked to

In the presence oT nchvork congestion, CPU allocslions

similarly haven significant impact on thc quaIiiy ofthe vidco

received. In f11is set oT experiments, we run the video Ao\v

wilh a competing UDP Row gcnerntcd a t a rate 01 12,499

packctsls (packct size of 64 bytes). Each UDP packct re-

ceives CPU-intensive per-flow processing to create CPU con-

gtstion. (The aclual CPU utilization is 100% througl~out

each experiment) When the video flow is routcd tl~rough

the scaling service, we vary the CPU allocation of the flow to

be 0.003%) 0.067% and 0.122%, respectively. The remain-

ing CPU capacity, Iess thc 20% givcn to thc global router

funcfions, is entirely altocatcd to thc competing UDP flow.
the network output clement, respectivcIy. Sincc there is no Fig. 8 profiles the PSNR of
network congalion, we observe negligible packet loss a1 the pSNRTs for 0.003%) 0.067% 0.122% of video CPU

shOrvs the Ill trnber Of packets Ibr lhe frames are disp]aycd for eac]l experinlent using video sc-1-
video as a function of 1l1e allocated CPU ratc to the video ing. comparison, st,O,,, the video

'In our cxperin~enis. \vc roule small packcis ai a ratc oInbout 10.000 ity mi'h drop-tai1 and CPU a'1oc3tion lhc video

packelsls. Even including inicmpt overhead, [hc m;~uirnum forwarding flow- In spite O r (hc relatively l~igh CPU allocation, [he vidco

n r e ant1 loss-irce fonvarcling rare oi64-byrc packers on our pla~ionn i s quality is Very low -only 7 franlcs aresucccsfully displayed,

about 65.000 and 50.000 packetsls, respeclively (using inlermpl VO). with an average PSNK 0123.12 dB.

..r-----.------,----,.---~--~-___,
,., .. ~

CP1J~.a01"2"Ioo
CFJ\.·...r- o~··...

.&.:lo -........, r\:"~-:"~~~~".. -......:

,.
"-

i .>0

~

'"z..
~ ,.

'"

F· 6 Received video quality with the video scaling service19..

running at dif[crem CPU ralc~, under CPU congeslion.

,'anilla IP forwarding. These global functions are not CPU

intensh'e in the experiments, and do not usc up their CPU 01

locations.2 The remaining CPU capacity is entirely allocated

to a competing UDP flow. 'We run the competing UDP Oow at

a low bit rate, so that the network is not congested. However,

we performed CPU-inlcnsiYe per-flOW processing, arlificially

created to cause CPU congestion, [or each UDP packet. The

actual CPU utilization is 100% throughout each experiment.

Figure 6 profiles tbe video PSNR at the rcceh'er. Notice that

in the face of competition from the UDP Oow, the amount of

CPU time guaranteed to the video flow has a significant im

pact on the receiver video quam)'. The ayeragc PSNR's for

0.006%,0.061 %,0.091 %, and O.122o/D of the allocated video

CPU rate arc 21.10, 23.06, 24.94, and 25.71 dB, respectively.

The loss in video quality is due to packet loss. We measure

the number of packets dropped at the queues linked 10 the

f10wStart element of ,'ideo scaling and the queue linked to

the network output clement, respectively. Since Ihere is no

network congestion, we observe negligible packet loss at the

network output queue. For loss at the "ideo queue, Fig. 7

shows (he total number of packets dropped for (he entire

video as a function of the allocated CPU rate to lhe video

21n our experimeniS. we route 5m31t packets at a Talc o[about 10.000

p<Jcketsls. Even including imcrruploverhead, the maximum forwarding

rute and loss-frce forwarding r.lle of 64-bYEC packets on our phnfonn is

::JbOUI 65,000 and 50.000 packets/s, respective]}' (using interrupt I/O).

9

''''''''
w.o ,
.,.,.

Ii
..c<"il

.!

I """ ,,
~ ""'"
I ."" ,
" '.

):XIJ)
,

""" ,

''''''
• GO'! .'" 0.1 ." .,. 010 Ol! 02. 00'

<:PV """""""I"I

Fig. 7. TOlal number of video packets dropped al the video flow

queue as a funclion of the allocated CPU ratc to the video

flow.

now. The results confirm that a sufficient CPU rate is needed

to al.low the video flow 10 process its packets Fast enough, in

order to amid burrer overflow at its input queue.

B-3 CPU nnd network cungeslion

In the presence of network congestion, CPU allocations

similarly have n significant impact on the quality afthe video

received. In Ihis sef of experiments, we run the video flow

wUh a competing UDP now generated at n rate of 12,499

packetsfs (packet size of 64 bytes). Each UDP packet re

ceh'es CPU-intensive per-flow processing to create CPU con·

gestion. (The aclual CPU utilization is 100% throughout

each experiment) When fhe video flow is routed through

the scaling service, we vary lhe CPU allocation of the flow to

be 0.003%,0.067% and 0.122%, respectively. The remain

ing CPU capncity, less lhe 20% given to the global router

functions, is entirely allocated to the competing UDP flow.

Fig. 8 profiles the PSNR of the receh'ed video. The average

PSNR's for 0.003%, 0.067% and 0.122% of video CPU al·

location are 20.56, 21.67 and 22.61 dB, respectively. All 300

frames are displayed for each experiment using video scal

ing. For comparison, we also show tlte received video qual.

ity with drop-Iail and 0.183% CPU alJocation to the video

flow. In spite or lhe relatively high CPU allocation, lhe video

quality is very low -only 7 frames are successfully displayed,

with an average PSNR or23.12 dB.

Fig. 8. Received video quality with the video scaling service Fig. 9. Received video qualily For router crnploying polling UO

running at differen1 CPU rales, under CPU and nerwork con- vcrsus inlerrupr U 0 , wirh UDP cross lrnilic generated at a

geslion. rare of 9,500 packeds (paclict size 64 byces).

cutiotr, wg route l l ~ e vidco flow and a competing UDP Row o ~n ~m IS .m LYI W, I
F r l m l*

B.4 Polling UO -
JS

While thc previous experiments ustd interrupt I/O, it has
- . , - . becn shown lhnl polling 110 can give signilicantly improved
f n

syslern performance whcn forwarding high-rate traffic. I ' l~is
;.,

$ is because polling docs no1 incur expensive per-packet over- IS

Lead of interrupt handling. To denlonstrate the eUcct of To

polling versus interrupt I f0 011 our streur~lirrg video appli- '.I

under either configuration. No scaling service is employed
Fig. 10. Received video quality for rouier cmploying polling

for the vidco flow. In n Erst experimenl, the UDP flow is
UO vcrsus inrerrupt UO, wirl~ UDP cross ~ralhc gencrated

gencrated at a ratc of 9,500 packctsls, rvilh packet size of
31 a rate of 10.000 packelsls (packet size 64 bytes).

64 bytes. Each UDP packet rcceives normal IP forwarding.

'...̂ . ,. ..
- 22 :.'.:: ;ii .

I .. 9

I - 2 .
I; . , ,, 'i ,$

\ ,!, , ,,
1 . ' ! 8 . -

a,I.,, I i . ::
, . ! t . 1

,.; . . :. j ! I ! ' ' -
:5 - !I: : l

: ,,'; J, 1
<! .,; , I : * -

i j i ' C' ..,, .:. I ; . .
jb k i i _ l .
1:. .:: : !L - .
2: 3 ?.j:.; J;. -
: : :-:..:., .,-; -.., .>-. . '<:
! .. i \

:; , .-: :--- -...
I ; '.
I i

i ,

Fig. 9 compares rccciscd video qualities Tor polling versus 14.96 dB. With inlerrupt, 77 framrs are displayed, with an
interrupt UO. With polling, 282 frames arc successfully dis- average PSNR of 14.69 dB. Wc conclude that the increased
playcd at the rcceivc' with an average PSm Or 1s'6s dB* efic~encv of' routing packets by transla& into
With interrupt, 181 framer are succeahlly dirplaycd, with gains in ,,idco at the recei ,,er,
an averagc PSNR or 15.63 dB. Noticc that the PSNR profile

of polling is consistenlly better than that of interrupt. Thc R O ~ f e r

original PSNR profile, with an avcrage of 27.2 dB, is also To measure the memory overhead of router throttle, wc

shown for comparison. first load the CROSSLinux router and the throttle rnod-

In another csperimeni, we increase thc competing UDP ules info the kernel. Then, using the Iproc file systcnr, we

flow ratc to 10,1100 packetsk, whilc keeping thc packel size note the amount of memory allocaicd as 540 kbytes. IVc

a1 64 by tcs. Figure 10 profiles the rcccived video qualities thcn ins1;lll up to 1000 throttlcsone by one, observing the in-

for polling and intcrrupt. With polling. 192 frames are suc- crease in memory allocated arter each throllle installed. Pig-

ccssfully displayed at thc receiver, with an aversgc PSNR of ure 11 plots the average memory allocated, as a function 01

10

,.

~ (V!j\i\.:.~.:: ..,·.,.::...:,.•;.,'J;\.:,·.:f-;..::.::,'.....:.,.,,::':.:.._·.n...:.:',l:.r.~...::;·,:r,~. ,-"":,~..",,,:.. :,.,""'!"":; ...r,l·_~.:.::·~.,_.: : . Jl'{[if~ ~ fl
~ , ;i',.:;~; :~1j !.l.~~;~i"{.~_Ul[Li:_:'
'" :. '.. ; I !l 3 "r;

Of ~\!
"1

100) ,~ ;'IXI
Fr.ll'T1ON~1

o I__---:':-__~__---"-__-,-L-__-'--__-.l

Q sa 100 I~ 200 2:ioO
F'AmI!lIl"l't...u

Fig. 8. Received video quality with the video scaling service Pig. 9. Received video quality for router employing polling JJO

running at differenl CPU niles. under CPU ilnd network coo- versus interrupt JJO, with UDP cross lrnffic generated at a

geslioo. rate or 9,500 packe[s/s (packet size 64 byles).

<Sr---~--~--~--~--~---,

C. Rouler Throttle

oL-__~__-,-__-,-__~__~__...J

o :;r.I lOCI IS; :00
Fr;L.... tlllnbot

- ./.J

! .

~'.;.~.~ -_..,.,.......,
It\t,)lLfI:-·

,s

Fig. 10. Received video qualily for rouler employing polling

IJO versus interrupt I/O, wilh UDP cross traffic generated

al a rate of 10,000 packels/s (packet size 64 bytes).

To measure the memory overhead of router throttle, we

first load the CROSSlLinux router and the throttle mod-

14.96 dB. With interrupt, 77 frames arc displayed, with an

average PSNR of 14.69 dB. We conclude that the increased

efficiency or routing packets by polling 110 translates into

significant gains in video quality at the receiver.

B.4 Polling VO

While the previous c1'periments used interrupt 1/0, if has

been shown that polling lIO can give significantly improved

system pedormance when forwarding high-rate traffic. This

is because poIling docs not incllr expensi"e per-packet over

llead of interrupt handling. To demonstrate the c{feel of

poning nrsus interrupt lIO 0/1 ollr streaming video appli.

catioll, w,: route the video flow and a competing UDP flow

under either configuration. No scaling service is employed

fol' the ,'ideo flow. In a first experiment, the UDP flow is

generated at a mte of 9,500 packetsls, with packet size of

64 bytes. Each UDP packet I"cceives normal IP forwarding.

Fig. 9 compares received video qualities for polling versus

interrupt YO. With polling, 282 frames nre successfully dis

played at the receiver, with an average PSNR or 18.68 dB.

With interrupt, 181 frames are successfully displayed, with

an averagc PSNR of 15.63 dB. Noticc that the PSNR profile

of polling is consistently bettcr than that of inter-rupt. The

original PSNR profile, with an average of 27.2 dB, is also

shown for comparison.

In :mothcr experiment, we increase the competing UDP

Oow rate to 10,000 packets/s, while keeping the packet size

at 64 bytes. Figure 10 profiles the received video qualities

for polling and interrupt. With polling, 192 frames are suc

cessfully displayed at the receiver, with an average PSNR of

ules inlo the kernel. Then, using the Iproc file system, we

note the amount of memory allocatcd as 540 kbytes. We

thcn install up to 1000 throtlles one by one, observing the in·

crease in memory allocated arter eaeh throHle installed. Fig

ure 11 plots the average memory allocated, as a function of

Fig. I I . Router throule mcmnry overhead, as a function he

number of rhroltles installed.

the number of throttles installed, over several ex~eriments.

The resultssho~v thal the nlcmory allocated increases Iargcly

Iincarly with the nunlhcr of Lhrollles, with an average per-

throllIe memory of abont 7.5 bytcs.

We breakdown thc delay or throltling into two compo-

ncnk: tllrottle lookup in thc packet classifier, and Ll~e delay

due to the throttlc clement ikelf. Wc found illat the delay

through the throttle elcmcnt is aboltt 200 ns, independent of

the number or throttles installed. This sniall and relatively

constant delay is very encouraging, showing that tl~rottling

is not inherenlly cspcnsive. Throttle lookup depends heavily

on lhc performance or thc packet classifier. Wc use the de-

h u l t classifier in Click. From Fig. 12, nolicc that the4'base"

classifier dclay (i.e., without any created flo~vs) is about 150

ns. Following that, the delay increases about IinearIy with

the number of throttles installed, reaching aboul475 ns for

18 throttles. We expect thal by porting our previous classi-

fier in [21] - shown to have highly scalable lookup perror-

mance - to CROSSninus, we can much improve upon the

linear increase in delay.

Ib ascertain how thc throttle overhead affects Ihrough-

put, we measure the maximum achicvablc forwarding rates

of packets through CROSS/Linux, with no tlirottled flow, to

up to 18 flows created lor throttling. Fig. 13 sl~o\vs the aver-

age numbcr of 64-byte packets rvc can forward per sccond,

Fig. 12. Dclay perforrnancc o f router rhrottling, as n runclion of

the number of rhrottlcs installed

Fig. 13. l'hroughput performanceof router tlirot~ling, as a func-

tion of the number of thrortlcs installed

VII. RELATED WORK

Conlponcnl-based synthesis of network protocols has

been advanced in x-kcrnel[6], and adopted in recent exten-

sible sortware-based routers [IS], [S], [20]. A notable exam-

ple is routcr plugins [5] - however, plugin gates arc Fix4 in

the 1P forwarding path and cannot bedynamically extended.

Our work heavily leverages thc Click router 1121, [9]. We

support the use of Click elements with pushlpull data move-

ment as router service coniponents, and cxploit Click's con-

figuration language and systen~ support in constructing flow

service pipelines. However, we have extended Click in sev-

eral important directions. First, we run Click in the context

as a function of the number of throttled flows. of lhc CROSS resource management framework, which at-

II

o:>o:l

.'"
10aJ

ooסס ,'"

i; """"~

":l ,:<I
~ -<DOO

6
""f :lroJ

""'" lOG

''''''' '". •• ,.. """ ..." ", "'" 700 .." '0:<:1 D • I. I • ,. " "'brbof 01 TbtJI'!"1- 1-IU'l'04rtllnlJe.

Fig. I I. Router IhroUie memory overhead, as a function of the Fig. 12. Delay performance of router throllfing, as a function of

number of throttles inslalled. the number of [hroltlcs installed

the number of throtlles installed, over se"~ral e,..periments.

The results show that the memor)' allocated increases largely

linear)}' wHh the number of throttles, with an average per

throttle memory of about 7.5 bytes.

We breakdown the dela)' of throttling into two compo

nents: throttle lookup in the packet classifier, and the delay

due to the throltle clement itself. We found that the dela)'

through the throttle element is about 200 os, independent of

the nUJ!lber of throttles installed. This small and relatively

constant delay is very encouraging, showing thaI throWing

is nol inherently expensil'e. ThroUle lookup depends heavily

on the performance of the packet classilier. We usc the de

fuult classifier in Click. From Fig. 12, notice that the "base"

classifier dclay (i.e., without an)' created flows) is about ISO

os. Following that, the delay increases about linearly with

the number of throUies installed, reaching about 475 liS for

18 throttles. We expect that by porting our previous c1assi

lier in [21] - shown to have highly scalable lookup perfor

mance - to CROSS/Linux, we can much improve upon the

linear increase in delay.

To ascertain how the throllie overhead affects Ihrough

put, we measure the maximum achievable fonvarding rates

of packets through CROSSfLinux, with no throttled flow, to

up to IS flows created for throUling. Fig. 13 shows the aver

age number of 64-byte packets we can forward per second,

as a function of the number of throttled flows.

--------1

DDL--~--'---~o-~.-~'D------'I2-~"~-,~.--'
~~II"b.,d n"",• ., Cl~d...

Fig_ 13. Throughput performance ofrouter throttling. as a func

tion of the number of throttles installed

VII. RELATED WORK

Component-based synthesis of network protocols has

been advanced in x-kernel [6], and adopted in recent exten

sible software-based routers [18J, [5], (20). A notable exam

ple is router plugins [5] - however, plugin gates arc fixed in

the IP forwarding path and cannot be dynamically extended.

Our work heavily leverages the Click routcr [12], [9). We

support the use of Click clements with pushfpull dala move

ment as router service components, and exploit Click's con·

figuration language and system support in constructing flow

scrvice pipelines. However, we have extended Click in sev

eral important directions. First, we nm Click in the context

or the CROSS resource management framework, ,vllich al·

loivs multidimension QoS-mrarc resource allocation at fhc

level of processts and threads. Hence, thc scl~eduling of flow

service elcnients can he controlled in relation to otl~cr sys-

tem acti\.iLies, such as routing in the control plane. Second,

we have adapted clement schcduling in Click to a pcr-ffow

paradigm, key to providing performance isolation between

users and applications. Third, we provide a signaling mcclt-

anism Lo create flows with given resource specifications on-

the-fly, and to incremenlally extend or modify 3 flow pro-

cessing pipcline.

Resource management in software-programn~ablc routers,

especially for both computation and forwarding resources,

is an important problcrn. However, relatively little work has

bcen donc in the area. Qie el al [IS] present very interesting

experimental rcsults pertaining to balancing between input,

output, and Row processing in a software router. Our cxperi-

menk in this paper have stressed resource contention during

flow processing. In our system, schcduIing control between

input, output and flow processing can be spccificd in various

ways. For csomple, one can define a globaI flow each for net-

work input and output, and givc these flows certain resource

shares relative to other Rolvs in thc system. Alternatively,

it is possibIe to usc one global flow and assign dinerent re-

source shares lo tlie input, output and vanilla IP forward-

ing elemcnls within the flow. Currently, wc use the single

global flow approach, with Click's default adaptive rcsource

allocation poIicy bctween the lorn's elemenls. CROSS [21J

ndvanccs per-flow multircsource allocation and schcduling

for router services. We extend CROSS to include scrvice

crtensibility and configurability inside the kcrnel. Our in-

vesfigation on polling VO follows earlier work to eliminate

received livelocks in an OS [IIJ. The polling I/0 approach is

also adopted in [9], [15].

Recently, the use o l network processors in a soitwarc

router, chiefly for data plane services, is rcported in 1181.

By using different processors (general purposc versus spc-

ci~lizcd) for various data and control plane serviccs, new

schcduling problenis arise, which is an interesting area for

fi~lurc research.

Thc video scaling service we usc has bcen reported in

[8], but \ritlrout rcfercnce to ttre elTects oE resource schcdul-

ing on application perforrnancc. We demonstrate our

syslenl's ability to support video scaling on-the-fly, and

carefully study the relevance of resource management in

CROSSLinux to the efTFctiveness of video scaling. Router

tlrrottling is describrd in s relatcd technical report [lo] . We

conipleinent the sin~ulation results in 1103 by measuring the

depIoynrcnt cosfs of router throtlling on a software-bascd

router.

We presented thc CROSS/Linus soltwarc-programmable

routcr. Our routcr integrales thc resource management ca-

pabilities of CROSS [21] and the service configurability of

Click [9]. \Ye described our liow signaling nlechnnism that

allows ncw Bows Lo be dynamically crcated with on-$he-fly

service inshntiatioll and configuration. For resource man-

agement, me en~ploy a design that allows resources lo be

scheduled anlong (i) global router functions of input, out-

put, and vanilIa 1P forwarding, (ii) pcr-flow user processing,

and (iii) other Linux processes and threads (c.g., routing and

signaling daemons, and Lhe control thread for Row signal-

ing). We detailed our design to provide per-flow resource

allocation in the context of Click elements. We also prc-

sentcd flow signaling to dynamically create flows with given

resource spcci6cations, and to con6gure the flows on-the-fly

with new services, possibly fetchcd from a remote server.

Wc presented two routcr services that have been proto-

typed on CROSSiLinux. For router throttling, wvc measured

its deployment cosls on our routcr platform. This comple-

men& previous simulation results that asscss the effective-

ness of router throttling in countering DDoS atlacks in a

global network. For wavelet video scaling, we dcmonstrated

how resource schcduling can significantly impact the qual-

ity of received video in thc face or CPU congestion, network

congestion, or both. WC believe that CROSS/Linux is an cf-

fectivc plafform for providing flexiblc value-added services

lows multidimension QoS-awarc resource allocalion at the

level of processes and threads. Hence, the scheduling of now

sen-ice elements can be controlled in relation to other sys.

tern activities, such as routing in the control plane. Second,

we have adapted clement scheduling in Click to a per-flow

paradigm, key to providing performance isolation behveen

users and applications. Third, we provide a signaling mech

anism to create flows with given resource specifications on·

the-flJ, and to incrementally extend or modify a fiow pro

cessing pipeline.

Resource management in software-programmable routers,

especially for both computntion and rorwarding resoun;cs,

is an important problem. However, relatively litHe work has

been done in the area. Qie et 31 [15J present very interesting

experimental results pertaining to balancing between input,

output, and flow processing in a software ronter. Our experi

ments in this paper have stressed resource contention during

Dow processing. In our system, scheduling control between

input, output and flow processing can be spl;dficd in vadous

ways. For example, one CBn define a global Dow each for net·

work input and output, and give these Rows certain resource

shares relative to other ftows in the system. Alternalively,

it is possible to usc one global Rowand assign different re

source shares 10 lhe input, output and vanilla IP forward

ing elemenls within Ihe flow. Currentl}', we use lhe single

global flow approach, with Click's default adapfh'e resource

allocation policy between the flow's elements. CROSS [211

advances per·flow multircsource allocation and schedUling

for router services. We extend CROSS to include service

extensibility and configurabiJity inside the kernel. Our in

vestigation on polling YO follows earlier work 10 eliminate

received Iivelocks in an OS [11]. The polling I/O approach is

also adopted in [9J, [15).

Recently, the use or network processors in a software

router, chieOy for data plane services, is reported in [18].

By using different processors (general purpose versus spe

cialized) for various data and control plane services, new

scheduling problems arise, which is an interesting orea for

12

future research.

The video scaling service we use has been repurted in

[8J, but wilhout reference to the effects of resource schedul

ing on application performance. We demonstrate our

system's abilitr to support video scaling on-the-fly, and

carefully study the rclev:mcc of resollrce management in

CROSSfLinu:< to Ihe effectiveness of video scaling. Router

throtlling is described in a related technical report [10]. We

complement the simulation results in [10J by rneasllring the

deployment costs of router throttling on a software-ba5ed

rouLer.

VIII. CONCLUSIONS

We presented the CROSS/Linux software·programmable

router. Our roufer integrates the resource management ca

pabilities of CROSS [21] and the service configurability of

Click [9J. We described our flow signaling mechanism that

allows new flows to be dynamically creaLed with on-the-fly

senice inst:mtiatioll and configuration. For resource man

agement, we employ a design that allows resources 10 be

scheduled among (i) global router functions of input, out

put, and vanilla IP forwarding, (ii) per-flow user processing,

and (iii) other Linux processes and threads (c.g., routing and

signaling daemons, and the control thread for ftow signal

ing). We del4lilcd our design to provide per-jluw resource

allocntion in Ihe context of Click elements. We also p.-c

sented flow signaling to dynamieaUy create Rows with given

resource specifications, and to configure the flows on.tlte-fly

with new services, possibly fetched from a remote server.

We presented two router senices that have been prolo

Iyped on CROSSlLinux. For router throUling, we measured

its deployment costs on our router platform. This comple

ments previous simulation results that assess the effective

ness of rouler throttling in countering DDoS aU.acks in a

global network. For wavelet video scaling, we demonstrated

how resource scheduling can significantly impact the qual

ity of received video in the face of CPU congesrion, network

congestion, or both. We believe that CROSS/Linu;\; is an ef·

fective platform for providing flexible value-added services

sented flow signaling to dynamically create flows with given [8] R KeUer,S. Choi, D. D e q e r , M. Dasen, G. Fankbemser, and

rrsollrce specifications, and to configure the Rows on-tbe-fly B. Plot her. An active router architecture Tor rnuIticast video

with new services, posibly fetched from a remote server. distribution. In Proc. IEEB In/ocom, Mnrch 2000.

\Ve present& two routof sewices that have been prolo. 191 Eddie Kohler, Robert Morris, Benjie Chen, John J a n n o ~ ,

typed on CROSSLinux. For router thmltling, we measured and M. Frars Knashwk. T b e click moddar router. ACM

Tranmctions on Cornp~tler Sysfems, 18(3):26L297, August
ils deployment cosls on our router platform. This comple-

2000.
ments previous simulation t ~ l l s that assess the effective-

[lo] E Liong, D. K. Y. Yau, and J. C. S. Lui. On defcnd-
srvs OF router throttling in countering DDoS attacks in a

inp. against distributed denial-of-service attacks with semer-
global network. For wavelet video scaling, we demonstrated

how rcsource scheduling can significantly impact the qual-

ity of received video in Ihe face of CPU congestion, network

congestion, or both. W e believe that CROSS/Linux is an ef-

fective platCom Ior providing flexible value-added services

to network users, with useful QoS-aware resource sharing.

S. Jeyaraman implemenled polling VO for the vortex fast

ethernet device driver used in our experiments

[l] TCP SYN boding and IP spwfiog atlack. CERT Advisory

CA-96.21. swilable at bltpd/llw~vw.cerl.oq$.

121 SmurrlY denial-ol-service ellnck%. CERT Advisory CA-1998-

01, January 1998. avaliablc at ~\nv.cerl.orgledvisorieslCA-

98.01.htmI.

[3] K. L. Calvcrl, J. CriiKoen, A. Scbgnl, and S. \Vrn. Build-

ing n pmgremmnble rnultiplesingscwice on concnst. In Proc.

IBBE ICNP, Osaka, Japan, Novcmber 2000.

[4] S. Cheuog. An e l 3 cient messagc authentication scheme Tor

link ststc routing. In Proc. 13t11 Annrtol Comprrter Secariry

Applicalions Co~/erelrce, San Dicgo, CA, December 1997.

[S] D. Dcstoper, Z. Dittia, G. Pnrulkar, and B. Plottner. Router

plugins: A sofhvare nrchitecture for next gencretion routers.

In Proc. ttCM SIGCOMM, Vancouver, Cansda, Sept 1998.

[6j Normnn C. Hutchinson nnd Larry L. Peterson. The x-kcmcl:

An at-chilecturc for irnplementiog nclrvork protocols. lEEE

Trarrs. SoJrware Engineering, 17(1):6&76, January 1991.

171 S. K. Kasere, S. Bhatlnchoryya, M. Keaton, D. Kiwior,

J. Kumse, D. Towsley, and S. Zabele. Scalable fair reli-

able rnullicnst whg aaive semces. IEEE Nemork, February

2000.

- -

centric router throttles. Tcchnid Report TR-01-008, Dept oi

Computer Sciences, Purduc University, \Vmt Lafayette, IN,

hlay 2001.

I l l] J. Mogul and K. Ramakrkhaan. Fliminating receive livelock

in an interrupt-driven kernel. In Pruc 1996 USENIX Techni-

cal Conference, 1996.

I121 Robed Morris, Eddie Kohler, John Jmnotti, nnd M. F m s

Kaashoek. The Click modu tar router. In Proceedings o/ rlre

17rlr ACM Symporirrm orr Operding Sysfems Principles (SOSP

'99), pnges 217-231, Kiawah Islend, South Carolina, Decem-

ber 1999.

[13] S. Murphy m d M. Badger. Digild signature protection of the

OSPF routing protocol. In Proc. I~rtentet Society Symposirrm

on Network orrd Disrribrrted Systems Secrrrity, San Diego, CA,

Februnry 1996.

[14] K. Park and TI. Lee. On the eiTectivenm oT roule-bascd

pncket Iiltcring Tor dislributcd DoS attack prevention in

po~~er-law Internets. In Proc. ACM SIGCOMM, Sm Diego,

CA, August 2001.

[15] Xinohu Qic, Andy Ravier, Lerry Peterson, and Scolt Kar.

lin. Scheduling Compulations on n Soihvnre-Bascd Router.

In Proceedirrgs o/ the ACM SIGMETRICS 2001 Corrjererrce,

poga 1L24, June 2001.

[I61 S. Savagc, D. IVelheroU, A. Karlin, and T. Anderson. Pnclicml

ncluork supporl for IP traceback. In Proc. ACM SIGCOMM,

Stockholm, SH-eden, August 2000.

1171 A. C. Snoeren, C. hrtridge, L. A. Smchez, C. E. Jones,

F. Tchakountio, S. T. Kent, and 1%'- Timotby. Ilmh-bascd IP

tncebnck. In Pror. ACM SIGCOMM, Snn Diego, CA, August,

2001.

1181 Tamno Spalink, Scott Knrlin, Larry Peterson, and Yitzchok

Gottlieb. Building n Robusl Soitware-Bnsed Rouler Udng

Network Processors. In Proceedings of lhe l8rh ACM Sympb

sented Dow signaling to dynumicaUy create flows with given

resoun:e specifications, and to configure the flows on-the-lly

with new services, possibly fetched froID a remote server.

We presented two router services that have been proto

typed on CROSSlLinux. For router throttling, we measured

its deployment cosls on our router platform. This comple

ments previous simulation results tllal assess fbe effective

ness of ronter throttling in cOllntering DDoS attacks in a

global network. For wavelet video scaling, we demonstrated

how resource scbeduling can significantly impact the qual

ity of received video in Ihe f::lce of CPU congestion, network

congestiun, or both. We belic'\'e th::lt CROSS/Linux is ::ID ef

fective platform for providing flexible value-added services

to network users, with useful QoS-aware resource sharing.

ACKNOWLEDGEMENT

S. Jeyaraman implemented polliog 110 for tbe vorlex fast

ethemet device driver used in our experiments.

REFERENCES

[IJ TCP SYN {boding and IP spoofing attacks. CERT Advi~ory

CA-96.21. avuiJable at hllp:J/www.rerl.org!.

[2J SmurflP dellial-of·s~rviceallnck.~. CERT Advisory CA-199S

01. JanuDI-Y 1998. nvaliable fit mvw.cert.orglodvisoriwCA

98.01.html.

[3J K. L. Culverl, J. Grlffi oen, A. Sehgal, ~lQd S. W~n. Build

ing II programmnble multipl~xingservic~on concnsl. In Proc.

IEEE ICNP, OsaluJ, Japnn, November ZOOO.

[4J S. Cheung. An dli cient message olllhent1clIlion scheme for

IiDk slate routing. In Proc. 13th Aml/lol Compl/ter SeCllrity

ApplicaJiolls COll!erel/(;e, San Diego, CA, December 1997.

[5J D. DesCllper, Z. Dillia, G. P:nulkar, ;md B. Plattner. Router

plugins~ A sortwilre areWlecture for next geDemtion routers.

In Proc. ItCM SIGCOMM, VancouYrr, Canada, Sep11998.

[61 NonDilD C. Hutchinson lind Lorry L. Pet~rson. The x-kernel;

An architecture for implementing network protocols. IEEE

TrailS. Sofrware Engineering, 17(1):64-76, January 1991.

[7J S. K. Kasero, S. BhillUlchoryya, M. Kenton, D. Kiwior,

J. Kuruse, D. Towsley, and S. Zabele. Scalable fuir reli

able mullicllSt using active services. IEEE Network, February

2000.

13

[8J R. Keller, S. Chol, D. DeCilSpCl. M. Osseo, G. Fankb0 user, and

B. PIDtln~r. An active router architecture [or multicast video

distribution. InProl". IEEE lrifocom, Mnrch zOOO.
[9J Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti.

and M. Frans Knashoek. The click modular router. ACM

Transacti()IlS on Computer Syslems, 18(3):263-297, August

2000.

[10J F. Liong, D. K. Y. Yau, nnd J. C. S. Lui. On defcnd

ing against distributed denial·of·service aHacks with s~rver

centric: router throttles. Technical Report TR-OI-OOS, D~pt of

Computer Sciences, Purdue University. West Lafayelle, IN.

May 2001.

[11] J. Mogul and K. Ramakrishnan. Eliminating nceive nvellKk

in an interrupl-driven kernel. In Proc. 1996 USENIX Techni

cal Conference, 1996.

IIZJ Rob~rt Morris, Eddie Kohler, John Jannotti, lind M. Frons

Knashoek. The Click modular router. In Proceedings ()f the

17tl, ACM Symposillm 01' Operaling Syslems Pn"lIcip/es (SOSP

'99), pllges 217-231, Kiawah Island, South Carolina, Decem

ber 1.999.

[13] s. Murphy and M. Badger: Digilnl signaltJre protection of the

OSPF routing protocol. In Pr()c. 11ltemet Society Symposil/m

on Network and Disrribl/led Systems SUI/rily, San Diego, CA,

February 1996.

[14J K. Pork nnd II. Lee. On the elTectiveness of roule·based

packet fi ltering for distributed DoS attack prevention in

power-law Internets. In Proc. ACM STGCOMM, San Diego,

CA, August 2001.

[15) Xillohu Qie, Andy Bavi~r, Lorry Peterson, and Scolt Kar·

lin. Scheduliog Compulations on a Sofhvare-Bascd Router.

In ProceediflKS of tile ACM SlGMETRICS 2001 COfljerellce,

pDges 13-24, June ZOOI.

[161 S. Sange, D. Welhernll, A. Karlin, and T. Anderson. Prnclical

nelwork ~lJpportfor IP traceback. In Pror:. ACM SlGCOMM,

Stockholm, Swed~D,August 2000.

[17J /I.. C. Snoeren, C. P:lrtridg~, L. A. Snnchf'l, C. E. Jones,

F. Tchakountio, S. T. Kent, and W. Timothy. HllSh·based IP

troc~back. In Prol". ACM SIGCOMM, Son Diego, CA, August,

2001.

[181 TalTUDo Spalink, Scott Knrlin, LllJ"ry Peterson, and Yil2chllk

Gottli~b. Building a Robust Sofiware-Bosed Router Using

Network PrOCr55ors. In Proceedings ofthe 18(h ItCM Sympo-

lees. IEEEIACIW Tmnsoclior~s or1 Nerworki~rg, q6), Dcccmber

1998.

tees. IEEEIACM TromiacoallS 011 Networkil/g, 6(6), December

1998.

J4

	Application Performance on the CROSS/ Linux Software Programmable Router
	Report Number:
	

	tmp.1307986960.pdf.Eb1WD

