
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2002

A Case for Multi-key Secure Video Proxy: Theory, Design and A Case for Multi-key Secure Video Proxy: Theory, Design and

Implementation Implementation

Siu F. Yeung

John C.S. Lui

David K.Y. Yau
Purdue University, yau@cs.purdue.edu

Report Number:
02-011

Yeung, Siu F.; Lui, John C.S.; and Yau, David K.Y., "A Case for Multi-key Secure Video Proxy: Theory, Design
and Implementation" (2002). Department of Computer Science Technical Reports. Paper 1529.
https://docs.lib.purdue.edu/cstech/1529

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A CASE FOR A MULTI-KEY SECURE VIDEO
PROXY: THEORY DESIGN AND IMPLEMENTATION

Siu F. Yeung
John C.S. Lui

David K.Y. Yau

CSD TR #02-011
June 2002

A CASE FOR A MULTI-KEY SECURE VIDEO
PROXY: THEORY DESIGN AND IMPLEMENTATION

Siu F. Yeung
John C.S. Lui

David K.Y. Yau

CSD TR #02-011
June 2002

A Case for a Multi-Key Secure Video Proxy: Theory,
Design, and Implementation

John C. S. ~ u i * David K. Y. Yau
t

Siu F. Yeung
Department of Computer Department of Computer Department of Computer
Science & Engineering Science & Engineering Sciences

The Chinese University of The Chinese University of Purdue University
Hong Kong Hong Kong West Lafayette, IN 47907

sfyeung@cse.cuhk.edu.hk cslui @cse.cuhk.edu.hk yau @ cs.purdue.edu

ABSTRACT
Because of limited server and network capacities in multi-
media streaming, proxies are commonly used to cache multi-
media objects such that, by accessing nearby proxies, clients
can enjoy smaller start-up latencies and reduced packet loss
and delay jitters for their requests. However, the use of
video proxies increases the risk that multimedia data are
exposed to unauthorized access by intruders. In this paper,
we present a framework for implementing a secure video
proxy or, more generally, a secure proxy architecture. The
framework employs a notion of asymmetr ic reversible para-
metr ic sequences to provide the following security properties:
(1) data confidentiality during transmission, (2) end-teend
data confidentiality, (3) data confidentiality against proxy
intruders, and (4) data confidentiality against member col-
lusion. Our framework is grounded on a multi-key RSA tech-
nique such that system resilience against attacks is provably
strong given standard computability assumptions. We also
propose the use of a set of encryption configuration param-
eters to trade off proxy encryption throughput against the
viewing quality of video by unauthorized parties. Imple-
mentation results on a Pentium III/800 MHz machine show
that our techniques can simultaneously achieve high encryp-
tion throughput and extremely low video quality (in terms
of both PSNR and the visual quality of decoded frames)
during unauthorized viewing.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; C.5.5 [C o m p u t e r Sys tems
Organization]: Computer System Implementation

* ~ e s e a r c h supported in part by the Mainline and RGC Re-
search Grant.
t ~ e s e a r c h supported in part by the National Science Foun-
dation under grant numbers CCR-9875742 (CAREER) and
EIA-9806741.

Keywords
Security, Asymmetric Parametric Sequence Functions, Multi-
Key RSA, Video Proxy

1. INTRODUCTION
The emergence of the Internet as a pervasive form of commu-
nication, as well as advances in digital video and compres-
sion technologies, has led to the recent wide deployment of
continuous media streaming over the network. A wide range
of applications such as video-on-demand, distance learning,
and corporate telecasts and narrowcasts are now enabled
by the ability to stream video/audio data from servers to
clients across a wide area. However, because of the high
bandwidth requirement (e.g., a high quality video stream
usually has a bandwidth requirement of over 1 Mb/s) and
the long duration nature (e.g., from tens of minutes to sev-
eral hours) of digital video, server and network bandwidths
are major limiting factors in achieving a scalable streaming
service. Consequently, there has been a lot of research on
developing techniques for bandwidth-efficient distribution of
multimedia data to a large client population. One common
solution, for example, is to use a multimedia proxy to per-
form some form of data caching (say, prefix caching), so that
clients can access the cached video from their nearby proxies
to minimize delay and conserve bandwidth.

One major problem with the multimedia proxy approach is
the risk of revealing the original video data t o unauthorized
parties. For example, when the original data are sent from
server to proxy, anyone that eavesdrops on the communica-
tion link between the source and the proxy can gain access to
the video information. Some "naive" approaches to counter
the problem are:

a Encrypt ion using a secret key be tween t h e server
a n d t h e proxy: Under this approach, the server and
the proxy will exchange a secret key X for encrypting
the video data. The source encrypts the data based
on X and sends the encrypted data to the proxy. The
proxy, upon receiving the encrypted data, can perform
decryption and cache the video data in clear form.
There are several problems with this approach, includ-
ing:

- Data insecurity at the proxy: Since the cached

A Case for a Multi-Key Secure Video Proxy: Theory,
Design, and Implementation

Siu F. Yeung
Department of Computer
Science & Engineering

The Chinese University of
Hong Kong

sfyeung@cse.cuhk.edu.hk

*John C. S. Lui
Department of Computer
Science & Engineering

The Chinese University of
Hong Kong

cslui@cse.cuhk.edu.hk

David K. Y. Yau t
Department of Computer

Sciences
Purdue University

West Lafayette, IN 47907

yau@cs.purdue.edu

ABSTRACT
Because of limited server and network capacities in multi
media streaming, proxies are commonly used to cache multi
media objects such that, by accessing nearby proxies, clients
can enjoy smaller start-up latencies and reduced packet loss
and delay jitters for their requests. However, the use of
video proxies increases the risk that multimedia data are
exposed to unauthorized access by intruders. In this paper,
we present a framework for implementing a secure video
proxy or, more generally, a secure proxy architecture. The
framework employs a notion of asymmetric reversible para
metric sequences to provide the following security properties:
(1) data confidentiality during transmission, (2) end-to-end
data confidentiality, (3) data confidentiality against proxy
intruders, and (4) data confidentiality against member col
lusion. Our framework is grounded on a multi-key RSA tech
nique such that system resilience against attacks is provably
strong given standard computability assumptions. \Ve also
propose the use of a set of encryption configuration param
eters to trade off proxy encryption throughput against the
viewing quality of video by unauthorized parties. Imple
mentation results on a Pentium Ill/800 MHz machine show
that our techniques can simultaneously achieve high encryp
tion throughput and extremely low video quality (in terms
of both PSNR and the visual quality of decoded frames)
during unauthorized viewing.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; C.5.5 [COInputer Systems
Organization]: Computer System Implementation

*Research supported in part by the Mainline and RGC Re
search Grant.
tResearch supported in part by the National Science Foun
dation under grant numbers CCR-9875742 (CAREER) and
EIA-9806741.

Keywords
Security, Asymmetric Parametric Sequence Functions, Multi
Key RSA, Video Proxy

1. INTRODUCTION
The emergence of the Internet as a pervasive form of commu
nication, as well as advances in digital video and compres
sion technologies, has led to the recent wide deployment of
continuous media streaming over the network. A wide range
of applications such as video-on-demand, distance learning,
and corporate telecasts and narrowcasts are now enabled
by the ability to stream video/audio data from servers to
clients across a wide area. However, because of the high
bandwidth requirement (e.g., a high quality video stream
usually has a bandwidth requirement of over 1 Mb/s) and
the long duration nature (e.g., from tens of minutes to sev
eral hours) of digital video, server and network bandwidths
are major limiting factors in achieving a scalable streaming
service. Consequently, there has been a lot of research on
developing techniques for bandwidth-efficient distribution of
multimedia data to a large client population. One common
solution, for example, is to use a multimedia proxy to per
form some form of data caching (say, prefix caching), so that
clients can access the cached video from their nearby proxies
to minimize delay and conserve bandwidth.

One major problem with the multimedia proxy approach is
the risk of revealing the original video data to unauthorized
parties. For example, when the original data are sent from
server to proxy, anyone that eavesdrops on the communica
tion link between the source and the proxy can gain access to
the video information. Some "naive" approaches to counter
the problem are:

• Encryption using a secret key between the server
and the proxy: Under this approach, the server and
the proxy will exchange a secret key X for encrypting
the video data. The source encrypts the data based
on X and sends the encrypted data to the proxy. The
proxy, upon receiving the encrypted data, can perform
decryption and cache the video data in clear form.
There are several problems with this approach, includ
ing:

- Data insecurity at the proxy: Since the cached

data at the proxy are the original multimedia
data, any intruder who gains access to the proxy's
storage can access the original data.

- Data insecurity between the proxy and clients: Since
the data transfer between the proxy and its clients
can be over an insecure channel, one can eaves-
drop on this channel and gain access to the orig-
inal multimedia data.

End-to-end encryp t ion using a secret key be-
t w e e n t h e server , t h e p r o x y a n d t h e clients:
Under this approach, the server, the proxy and all the
clients behind the multimedia proxy will share a com-
mon secret key X. The source encrypts the data based
on X and sends the data to the multimedia proxy. The
proxy, upon receiving the encrypted data, caches the
data in its local storage. Whenever a client wants to
access the multimedia data. the encrypted copy will
be sent to that client. Since the client also knows the
secret key, it can decrypt and extract the original data
An intruder can still eavesdrop on the commun~cation
link between the proxy and the client, but it will not
be able to decrypt the data. The major problem with
this approach is that there is a high risk of revealing
the secret key X. The reason 1s that a proxy needs
to support a large number of clients, and if any of
these clients is compromised, an intruder can use the
revealed secret key X to gain access to the original
multimedia data.

Hete rogeneous secre t keys be tween t h e server-
p roxy pair a n d t h e proxy-client pairs: Under this
approach, the server encrypts the data based on a com-
mon secret key X that is shared between the server and
the proxy only. Upon receiving the data, the proxy
caches the encrypted data. Whenever a client, say i ,
bants to access the multimedia data, the proxy will
(1) decrypt the data based on the secret key X, (2)
encrypt the data based on a common secret key Xi be-
tween the proxy and the client i . The client i , upon
receiving the encrypted data, can gain access to the
original data because it knows the common secret key
X,. The potential problem with this approach is that
it requires high computational overhead at the proxy,
because the proxy needs to perform decryption and
encryption for every admitted client. This can limit
the number of concurrent clients that the proxy can
support.

In this paper, we present a proxy encryption framework hav-
ing the following properties:

The multimedia proxy will only cache encrypted video
data and data decryption will only happen at the end-
points (e.g, the clients). Therefore, the orignal video
data will not be revealed at any intermediate node.

The multimedia proxy will perform encryption opera-
tions only (i.e., it performs no decryption a t all); this
reduces the computational overhead at the proxy, and
hence allows to support a higher number of concurrent
clients.

Data encryption and decryption operations are based
on well accepted encryption theory that it is computa-
tionally infeasible to extract the original multimedia
data without knowledge of the expected decryption
key.

Membership collusion is avoided, such that given (1)
the decryption key of client i, (2) the encrypted data
of client j, and (3) possibly all the encryption keys,
one still cannot derive the original video data.

The rest of the paper is organized as follows. In Section 2, we
present multi-key encryption based on the asymmetric re-
versible parametric sequence. We then present an efficient al-
gorithm to implement the asymmetric reversible parametric
sequences such that the proxy server mill have the claimed
properties. In Section 3, we present the architecture of our
video proxy and the communication protocols between (1)
the proxy and the server, and (2) the clients and the proxy.
In Section 4, we report experiments to illustrate the encryp-
tion data rate achievable on a commodity Pentium machine,
and give quantitative and qualitative analyses of the en-
crypted video quality. Related work in multimedia proxies
is presented in Section 5. Section 6 concludes.

2. MULTI-KEY ENCRYPTION THEORY
In this section, we state the theory behind the design of
a multi-key secure video proxy. The main theory is based
on the reversible parametric sequence (RPS) [5]. We first
present the formal definition of RPS and its utilities. We
then present an implementation of RPS using the multi-key
RSA technique.

2.1 Reversible Parametric Sequence
Let. f : IN2 -+ IN be a function which has the following
property: if Y = f (X, e), it is computationally infeasible to
find e given that we know X and Y.

Assume that we have a finite sequence {eo, e l , . . . , eN) of
N + 1 elements. (Elements in this sequence do not need to
be unique.) Define a finite data transformation sequence

2) = (0-1, Do, ..., D N)

based on the function f and the finite sequence { e i) o < i < ~
such that

D-1 = original data

Di = f(Di-1,ei) f o r O < i < N

We have the following definitions of reversible parametric
sequences.

Definition 1. 2) i s a reversible parametric sequence of
the function f , denoted as RPS,, if for all (X,Y) E IN*
and -1 < i < j < N , there exists a computable function
Ri,j such that

D, = R,;j(Dj) for -1 < i < j 5 N .

Definition 2. A RPS, is called a symmetric reversible
parametric sequence o f f , denoted as SRPS,, i f the function

data at the proxy are the original multimedia
data, any intruder who gains access to the proxy's
storage can access the original data.

Data insecurity between the proxy and clients: Since
the data transfer between the proxy and its clients
can be over an insecure channel, one can eaves
drop on this channel and gain access to the orig
inal multimedia data.

• End-to-end encryption using a secret key be
tween the server, the proxy and the clients:
Under this approach, the server, the proxy and all the
clients behind the multimedia proxy will share a com
mon secret key X. The source encrypts the data based
on X and sends the data to the multimedia proxy. The
proxy, upon receiving the encrypted data, caches the
data in its local storage. Vvhenever a client wants to
access the multimedia data, the encrypted copy will
be sent to that client. Since the client also knows the
secret key, it can decrypt and extract the original data.
An intruder can still eavesdrop on the communication
link between the proxy and the client, but it will not
be able to decrypt the data. The major problem with
this approach is that there is a high risk of revealing
the secret key X. The reason is that a proxy needs
to support a large number of clients, and if any of
these clients is compromised, an intruder can use the
revealed secret key X to gain access to the original
multimedia data.

• Heterogeneous secret keys between the server
proxy pair and the proxy-client pairs: Under this
approach, the server encrypts the data based on a com
mon secret key X that is shared between the server and
the proxy only. Upon receiving the data, the proxy
caches the encrypted data. ,\'henever a client, say i,
wants to access the multimedia data, the proxy will
(1) decrypt the data based on the secret key X, (2)
encrypt the data based on a common secret key Xi be
tween the proxy and the client i. The client i, upon
receiving the encrypted data, can gain access to the
original data because it knows the common secret key
Xi. The potential problem with this approach is that
it requires high computational overhead at the proxy,
because the proxy needs to perform decryption and
encryption for every admitted client. This can limit
the number of concurrent clients that the proxy can
support.

In this paper, we present a proxy encryption framework hav
ing the following properties:

• Data encryption and decryption operations are based
on well accepted encryption theory that it is computa
tionally infeasible to extract the original multimedia
data without knowledge of the expected decryption
key.

• MemberBhip collusion is avoided, such that given (1)
the decryption key of client i, (2) the encrypted data
of client j, and (3) possibly all the encryption keys,
one still cannot derive the original video data.

The rest of the paper is organized as follows. In Section 2, we
present multi-key encryption based on the asymmetric re
versible parametric sequence. Vile then present an efficient al
gorithm to implement the asymmetric reversible parametric
sequences such that the proxy server will have the claimed
properties. In Section 3, we present the architecture of our
video proxy and the communication protocols between (1)
the proxy and the server, and (2) the clients and the proxy.
In Section 4, we report experiments to illustrate the encryp
tion data rate achievable on a commodity Pentium machine,
and give quantitative and qualitative analyses of the en
crypted video quality. Related work in multimedia proxies
is presented in Section 5. Section 6 concludes.

2. MULTI·KEY ENCRYPTION THEORY
In this section, we state the theory behind the design of
a multi-key secure video proxy. The main theory is based
on the reversible parametric sequence (RPS) [5]. We first
present the formal definition of RPS and its utilities. 'Ve
then present an implementation of RPS using the multi-key
RSA technique.

2.1 Reversible Parametric Sequence
Let f : IN2 --t IN be a function which has the following
property: if Y = f(X,e), it is computationally infeasible to
find e given that we know X and Y.

Assume that we have a finite sequence {eo,el,'" ,eN} of
N + 1 elements. (Elements in this sequence do not need to
be unique.) Define a finite data transformation sequence

V={D-1,Do, ... ,DN }

based on the function f and the finite sequence {e;}o~i~N

such that

D -I original data

Di f(Di-l,ei) for 0 ~ i ~ N.

'Ve have the following definitions of reversible parametric
sequences.

Definition 2. A RPSf is called a symmetric reversible
parametric sequence of f, denoted as SRPSf, if the junction

Definition 1. V is a reversible parametric sequence of
the function f, denoted as RPSf, if for all (X, Y) E IN2

and -1 ~ i < j ~ N, there exists a computable function
ni,j such that

• The multimedia proxy will only cache encrypted video
data and data decryption will only happen at the end
points (e.g, the clients). Therefore, the original video
data will not be revealed at any intermediate node.

• The multimedia proxy will perform encryption opera
tions only (i.e., it performs no decryption at all); this
reduces the computational overhead at the proxy, and
hence allows to support a higher number of concurrent
clients.

Di for -1 ~ i < j ~ N.

Figure 1: A graphical represen ta t ion of t w o RPS,
sequences.

I Video Proxy j
- - - - -

I Source . .

Figure 2: A graphical represen ta t ion of a n ARPS,
sequence for the secure video proxy.

Ri,j can be computed from the knowledge of the sub-sequence
{-%+I,. . . , ej).

Definition 3. A RPS, is called an asymmetric reversible
parametric sequence of f : denoted as ARPSf , if it is com-
putationally infeasible to determine the function 0,:j based
on the knowledge of the sub-sequence {ei+l,. . . , ej).

To understand this concept, we use a graph to represent a
reversible parametric sequence R P S f . Figure 1 illustrates
two RPSf sequences. In the figure, the original data D-1
are transformed to Do (or D:) using Do = f (D, eo). If
ei # e f , then the intermediate data Di will not be equal to
D f , for 1 < i 5 N. For a symmetric reversible parametric
sequence SRPS,, one can compute the original data D-1
if given the data D, (or D;) and the sequence {eo, . . . , ej}
(or {eg,. . . , e;)), for 0 < j 5 N. In other words, given the
information {eo, . . . , ej) and D j , one can construct a de-
cryption function R-l;j so as to obtain the original data
D-I . For an asymmetric reversible parametric sequence
ARPSf , one cannot compute the original data D-1 even
if given the data D, (or D;) and the sequence {eo, . . . , ej)
(or {e:,... ,e;}), for 0 < j 5 N .

One can use the properties of an asymmetric reversible para-
metric sequence ARPSf to implement a secure video proxy.
To illustrate, consider a graphical representation of an ARPSf
sequence in Figure 2. The proxy can request to obtain the
encrypted version of the original data D-l from the source.
Based on an encrypted key eo, the source will transmit the
encrypted data Do to the proxy, and the encrypted data Do
will be cached at the proxy's local storage. When a client
i requests the data, the proxy will further encrypt the en-
crypted data Do using the encryption key ei and send the

resulting encrypted data Di to client i. Client i , upon re-
ceiving D,, can decrypt the data to obtain the original data
D- 1, if i is given a decryption function 0- 1 .j (this is a prop-
erty of reversible parametric sequences). In addition, when
the encryption is carried out using an asymmetric reversible
parametric sequence, then even when an entity holds on
to all the encryption keys ei for 0 < i < A', it still can-
not decrypt any of the encrypted data Di being cached, for
0 < i < N, in order to obtain the original data D-1.

Therefore, one can use an asymmetric reversible parametric
sequence ARPS, to implement a video proxy which has the
following properties:

D a t a confidentiality d u r i n g transmission: Since
the original data D-1 are encrypted, an intruder who
eavesdrops on the link between the source and the
proxy can only access Do and will not be able to ex-
tract the original data. The same conclusion holds
when an intruder eavesdrops on the link between the
proxy and the client i. The intruder can only access
D, and will not be able to extract the original data.

End-to-end d a t a confidentiality: Because of the
RPS,, decryption of the original data D-1 only takes
place a t the endpoints (e.g., the clients). The proxy
and clients only store the data encrypted as Do and Di.
Hence, even if an intruder gains access to the proxy's
or client's local storage, the original data D-1 will not
be revealed.

D a t a confidentiality against p roxy intruders: If
an intruder compromises the proxy server or a client's
machine, and if the encryption process is an SRPS,,
then the intruder, on knowing eo and e,, can gain ac-
cess to-D-1. This is because the function 0-lSo can be
computed from the knowledge of eo and ei such that
the original data can be revealed by D- 1 = 0- 1 , o (D ~) .
On the other hand, if the encryption process is an
A R P S f , then even if eo and ei are compromised, the
original data D-1 cannot be revealed: because the
function R-l,o is computationally infeasible to deter-
mine in this case.

D a t a confidentiality against m e m b e r collusion:
If the encryption process is SRPS,, member collusion
is possible when a client j gains access to to (1) ei and
ej (where i, j > O), (2) the encrypted data D,, and
(3) the decrypting function R-I:, . In this case, client
j (i.e., the intruder) can access the original data D-l .
For example, given ei, the intruder can obtain Rori and
thus obtain Do = 00 ,~ (Di). Given the knowledge of ej
and Do, it can obtain D j by D j = f(D0, ej). Since
the intruder knows the decryption function R o , ~ , the
original data D-1 are revealed by D-1 = 0-l,j (Dj).
However, if the encryption process is an ARPS,, the
intruder cannot reveal the original data D-1 because
the function RoZi is computationally infeasible to de-
termine.

2.2 Implementation of ARPS,
We need a practical and efficient algorithm to realize the
properties of an asymmetric reversible parametric sequence.

Figure 1: A graphical representation of two RPSj
sequences.

r··........·....···..····· .. ···· ..·..·....·....·..···....·....····....·....~
g Video Proxy g D, . 1

I 8--·!---..~lien~
~ ~

g g D2

E}~~'--l-- .. G---I----0H=~
Source I Do I

I G---I---~H.n~
I " ..::

Figure 2: A graphical representation of an ARPSj
sequence for the secure video proxy.

Di,j can be computed from the knowledge of the sub-sequence
{eHI,'" ,ej}.

Definition 3. A RP S j is called an asymmetric reversible
parametric sequence of f, denoted as ARPSj, if it is com
putationally infeasible to determine the function Du based
on the knowledge of the sub-sequence {eHI,' .. , ej}.

To understand this concept, we use a graph to represent a
reversible parametric sequence RPS j. Figure 1 illustrates
two RPSj sequences. In the figure, the original data D- I

are transformed to Do (or Do) using Do = f(D,eo). If
ei # ei, then the intermediate data D i will not be equal to
Di, for 1 ~ i ~ N. For a symmetric reversible parametric
sequence SRPSj , one can compute the original data D_ I
if given the data Dj (or Dj) and the sequence {eo,· .. ,ej}
(or {eo,'" ,en), for 0 ~ j ~ N. In other words, given the
information {eo, ... ,ej} and D j , one can construct a de
cryption function D_I,j so as to obtain the original data
D_ I . For an asymmetric reversible parametric sequence
ARPSj, one cannot compute the original data D_ I even
if given the data D j (or Dj) and the sequence {eo,· .. ,ej}
(or {eo,'" ,en), for 0 ~ j ~ N.

One can use the properties of an asymmetric reversible para
metric sequence ARPSj to implement a secure video proxy.
To illustrate, consider a graphical representation of an ARPSj
sequence in Figure 2. The proxy can request to obtain the
encrypted version of the original data D_ I from the source.
Based on an encrypted key eo, the source will transmit the
encrypted data Do to the proxy, and the encrypted data Do
will be cached at the proxy's local storage. \~hen a client
i requests the data, the proxy will further encrypt the en
crypted data Do using the encryption key ei and send the

resulting encrypted data Di to client i. Client i, upon re
ceiving Di, can decrypt the data to obtain the original data
D _ I, if i is given a decryption function D_1,j (this is a prop
erty of reversible parametric sequences). In addition, when
the encryption is carried out using an asymmetric reversible
parametric sequence, then even when an entity holds on
to all the encryption keys Ci for 0 < i < N. it still can
not decrypt any of the encrypted dat-; Di-bei~g cached, for
o~ i ~ N, in order to obtain the original data D -I.

Therefore, one can use an asymmetric reversible parametric
sequence ARPSj to implement a video proxy which has the
following properties:

• Data confidentiality during transmission: Since
the original data D_ I are encrypted, an intruder who
eavesdrops on the link between the source and the
proxy can only access Do and will not be able to ex
tract the original data. The same conclusion holds
when an intruder eavesdrops on the link between the
proxy and the client i. The intruder can only access
D i and will not be able to extract the original data.

• End-to-end data confidentiality: Because of the
RPSj, decryption of the original data D_ I only takes
place at the endpoints (e.g., the clients). The proxy
and clients only store the data encrypted as Do and D i .
Hence, even if an intruder gains access to the proxy's
or client's local storage, the original data D_ I will not
be revealed.

• Data confidentiality against proxy intruders: If
an intruder compromises the proxy server or a client's
machine, and if the encryption process is an SRPSj,
then the intruder, on knowing eo and e" can gain ac
cess to.D_ I • This is because the function fLI,o can be
computed from the knowledge of eo and ei such that
the original data can be revealed by D_ I = D_I,o(Do).
On the other hand, if the encryption process is an
ARPSj, then even if eo and ei are compromised, the
original data D_I cannot be revealed. because the
function D_I,o is computationally infea~ible to deter
mine in this case.

• Data confidentiality against member collusion:
If the encryption process is SRPSj, member collusion
is possible when a client j gains access to to (1) ei and
ej (where i,j > 0), (2) the encrypted data Di , and
(3) the decrypting function D_I,j. In this case, client
j (Le., the intruder) can access the original data D_ I .

For example, given ei, the intruder can obtain DO.i and
thus obtain Do = DO,i(Di)' Given the knowledg~of ej
and Do, it can obtain D j by D j = f(Do,ej). Since
the intruder knows the decryption function Do,j, the
original data D_ I are revealed by D_ I = O_I,j(Dj).
However, if the encryption process is an ARPSj, the
intruder cannot reveal the original data D_ I because
the function DO,i is computationally infeasible to de
termine.

2.2 Implementation of ARPSj
\~e need a practical and efficient algorithm to realize the
properties of an asymmetric reversible parametric sequence.

In our work, we use multi-key RSA to implement an ARPSj.
We first present the basic idea of RSA. We then extend the
concept to a multi-key RSA framework.

For standard RSA (or single-key RSA), one needs to gener-
ate two distinct large prime number p and q. Let us define

n = Pq,

4 = (P - l) (q - 1) .

To encrypt a p e n data item D-1, one has to find an en-
cryption key eo such that the integer eo satisfies

To encrypt the data D-I , we generate a cipher C based on
the encryption key eo wherein

C = (D-l)"'(mod n).

The cipher C can be transmitted over an insecure channel.
The receiver needs to have a decryption key do to decrypt the
cipher. This decryption key do is an integer and is selected
such that:

1 < do < 4, and

Upon receiving the cipher, the receiver can decrypt the ci-
pher C and obtain the original data D-1 by

D-1 = Cdo (mod n).

We can extend the single-key RSA technique to a multi-key
RSA technique. Consider the proxy server as an example.
The proxy server needs to generate two large prime numbers,
say p and q. In addition, it needs to generate a sequence of
encryption keys {e,)oji j~ such that

1 < e i < 4 and (1)

gcd(ei, 4) = 1. (2)

The proxy server will send the encryption key eo and n over
a secure channel to the source. The source will encrypt the
original data D-1 using eo and generate a cipher Do using

Do = (D-l)"'(mod n). (3)

Upon receiving the cipher Do, the proxy can store the en-
crypted data in its local storage. Whenever a client i wants
to access the data from the proxy, the proxy can retrieve the
encrypted data Do from its local storage, and encrypt Do
using the encryption key ei by

Di = (Do)"(mod n). (4)

Moreover, the proxy generates a decryption key di for client
i. The decryption key di has to satisfy the following two
conditions:

l < d i < 4 and (5)

(e0ei)di = l(mod 4). (6)

Computing these decryption keys di can be easily achieved
using the Extended Euclidean Algorithm [7]. The proxy
sends the decryption key di and n to client i over a secure
channel. The encrypted data Di, on the other hand, can be
sent over an insecure channel. Client i, upon receiving the
encrypted data Di , can decrypt the data using di by:

D - I = R-l,i(Di) = (~ i) ~ ' (m o d n). (7)

Example: To illustrate, consider the following simple ex-
ample. Suppose that the two primes axe p = 5 and q = 7 (in
reality, p and q have to be large). Accordingly, n = 5 x 7 = 35
and 4 = (5 - 1) x (7 - 1) = 24. Let there be three encryp-
tion keys: eo = 5, el = 11 and e2 = 13. If the original data
D-I = 30, the cached data. in the proxy server will be

When client 1 requests the data, the proxy will generate a
decryption key dl such that (5 x 1l)dl = l(mod 24). Using
the Extended Euclidean Algorithm, we have dl = 7. There-
fore, the encrypted data for client 1 is

and client 1 can decrypt the data D l and get back the orig-
inal data D-1 by

d. D-l = (Dl) '(mod n) = loi(mod 35) = 10.

When client 2 requests the data, the proxy will generate a
decryption key dz such that (5 x 13)da = l(mod 24). Us-
ing the Extended Euclidean Algorithm, we have da = 17.
Therefore, the encrypted data for client 1 is

and client 2 can decrypt the data D2 and get back the orig-
inal data D-1 by

THEOREM 1. The above proxy encryption framework is a
reversible parametric sequence.

Proof: Please refer to [ll] for a proof. I

THEOREM 2. The above proxy encryption procedure is an
asymmetric reversible parametric sequence.

Proof: Please refer to [l l] for a proof. I

3. VIDEO PROXY: ARCHITECTURES AND
PRCITOCOLS

In this section, we describe in detail our server-proxy-client
architecture. The video server, the video proxy and the
clients have been implemented in C++ on a Linux platform.
In our current implementation, we use a 512-bit RSA key
to implement various encryption and decryption operations,
but this can be easily extended t o accommodate RSA keys
with a larger number of bits. Security features such as keys
generation, encryption and decryption axe implemented us-
ing the GNU hlultiply Precision (GMP 4.0) library, which

In our work, we use multi-key RSA to implement an ARPSf·
We first present the basic idea of RSA. We then extend the
concept to a multi-key RSA framework.

For standard RSA (or single-key RSA), one needs to gener
ate two distinct large prime number p and q. Let us define

Computing these decryption keys d; can be easily achieved
using the Extended Euclidean Algorithm [7]. The proxy
sends the decryption key di and n to client i over a secure
channel. The encrypted data Di, on the other hand, can be
sent over an insecure channel. Client i, upon receiving the
encrypted data D i , can decrypt the data using d; by:

n pq, D-l == D-1,i(Di) == (Di)d, (mod n). (7)

¢ (p-1)(q-1).

To encrypt a given data item D- 1 , one has to find an en
cryption key eo such that the integer eo satisfies

• 1 < eo < ¢, and

• gcd(eo,¢) == 1.

To encrypt the data D- 1 , we generate a cipher C based on
the encryption key eo wherein

C == (D_SO(mod n).

The cipher C can be transmitted over an insecure channel.
The receiver needs to have a decryption key do to decrypt the
cipher. This decryption key do is an integer and is selected
such that:

• 1 < do < ¢, and

• (eo)do == l(mod ¢).

Upon receiving the cipher, the receiver can decrypt the ci
pher C and obtain the original data D- 1 by

D-l == CdO(mod n).

Example: To illustrate, consider the following simple ex
ample. Suppose that the two primes are p == 5 and q == 7 (in
reality, p and q have to be large). Accordingly, n == 5 x 7 == 35
and ¢ == (5 - 1) x (7 - 1) == 24. Let there be three encryp
tion keys: eo == 5, el == 11 and e2 == 13. If the original data
D_ 1 == 10, the cached data in the proxy server will be

Do == 105 (mod 35) == 5.

VI/hen client 1 requests the data, the proxy will generate a
decryption key d1 such that (5 x 11)d1 == l(mod 24). Using
the Extended Euclidean Algorithm, we have d1 == 7. There
fore, the encrypted data for client 1 is

D 1 == (Do)€' (mod n) == 511 (mod 35) == 10

and client 1 can decrypt the data D 1 and get back the orig
inal data D- 1 by

D_ 1 == (D1/'(mod n) == 107 (mod 35) == 10.

·When client 2 requests the data, the proxy will generate a
decryption key d2 such that (5 x 13)d2 == l(mod 24). Us
ing the Extended Euclidean Algorithm, we have d2 == 17.
Therefore, the encrypted data for client 1 is

D2 == (Dor2 (mod n) == 513 (mod 35) == 5

and client 2 can decrypt the data D 2 and get back the orig
inal data D- 1 by

D-l == (D2)d 2 (mod n) == 517 (mod 35) == 10.

We can extend the single-key RSA technique to a multi-key
RSA technique. Consider the proxy server as an example.
The proxy server needs to generate two large prime numbers,
say p and q. In addition, it needs to generate a sequence of
encryption keys {edo:<;i:<;N such that

THEOREM 1. The above proxy encryption framework is a
reversible parametric sequence.

The proxy server will send the encryption key eo and n over
a secure channel to the source. The source will encrypt the
original data D-l using eo and generate a cipher Do using

THEOREM 2. The above proxy encryption procedure is an
asymmetric reversible parametric sequence.

1 < ei < ¢
gcd(ei,¢) == 1.

Do

and (1)

(2)

(3)

Proof: Please refer to [11] for a proof.

Proof: Please refer to [11] for a proof.

•

•

Moreover, the proxy generates a decryption key d; for client
i. The decryption key di has to satisfy the following two
conditions:

Upon receiving the cipher Do, the proxy can store the en
crypted data in its local storage. Whenever a client i wants
to access the data from the proxy, the proxy can retrieve the
encrypted data Do from its local storage, and encrypt Do
using the encryption key ei by

l<d;<¢

(eoei)d; == l(mod ¢).

Di (Do)€' (mod n).

and

(4)

(5)

(6)

3. VIDEO PROXY: ARCHITECTURES AND
PROTOCOLS

In this section, we describe in detail our server-proxy-client
architecture. The video server, the video proxy and the
clients have been implemented in C++ on a Linux platform.
In our current implementation, we use a 512-bit RSA key
to implement various encryption and decryption operations,
but this can be easily extended to accommodate RSA keys
with a larger number of bits. Security features such as keys
generation, encryption and decryption are implemented us
ing the GNU Multiply Precision (GMP 4.0) library, which

Server proxy Server P r o w Client i

key generation
seeest

authentication

authentication

Figure 3: Opera t ions be tween t h e source v ideo
server S a n d t h e proxy P.

provides arbitrary precision arithmetic on integers, rational
numbers, and floating-point numbers. GMP 4.0 provides
one of the fastest possible arithmetic library for applications
that need higher precision than is directly supported by the
basic C types.

3.1 Proxy-Server Operations
Figure 3 illustrates the operations bebween the video server
S and the proxy P for requesting and caching the video
data. These operations are:

1. K e y generat ion: To request video data from the
source video server S , the proxy P first randomly gen-
erates two large prime numbers p and q. Then P com-
putes the prime product n = pq, the pseudo-prime
product 4 = (n - l)(p - I), and the encryption key eo
via Equations (I) and (2). To ensure security, the two
prime numbers p and q should afterwards be deleted
from the proxy P .

2. In i t i a te connection: The proxy P sends a video re-
quest to the video server S through a secure channel
using the secure socket layer (SSL) protocol. The video
server S needs to authenticate that the request is in-
deed from the proxy P. If the authentication succeeds,
the server replies with an acknowledgment back to the
proxy P through the secure channel.

3. Authent ica t ion o f v ideo server S: The proxy P
authenticates whether the acknowledgment received
from the previous step is indeed from the video server
3.

4. Transmission of encryp t ion key: If the authenti-
cation is successful, the proxy P sends its encryption
request key ea and n to the video server S through a
secure channel.

5 . D a t a encryp t ion a n d s treaming: The video server
S uses the encryption key eo and n to encrypt the video
data packets. The degree of encryption is based on the
encryption configuration parameters (ECP) which we

I
authe ication and

I keys beneration 1
.e@eSc

authentication

authentication

e o n n

Data
encryption

f
L)

F i g u r e 4: Opera t ions be tween t h e client i a n d t h e
proxy P.

will describe in Section 3.3. The video server S then
streams the encrypted data packets to the proxy P
via an ordinary and possibly insecure channel. Upon
receiving the encrypted data packebs, the proxy caches
the data without decryption or modification.

3.2 Client-Proxy Operations
Figure 4 illustrates the operations between the client i and
the proxy P for streaming the encrypted data. These oper-
ations are:

1. In i t i a te connection: To request a video via the proxy
P , the client i sends a connection request to the proxy
P through a secure channel using SSL.

2. Authent ica t ion of client: The video proxy P au-
thenticates that the connection request is indeed from
a valid client i.

3. K e y generat ion: The proxy P checks whether the
requested video is cached or not. If it is not cached,
the proxy will request the video from the video server
S using the operations described above. If the video
is cached, the proxy P generates an encryption key ei
based on Equations (1) -(2), and a decryption key di
based on Equations (5)-(6).

4. Transmission of decryp t ion key: The proxy P
sends the decryption key di and n to client i through
the secure channel.

5. D a t a encryp t ion and streaming: Based on the en-
cryption key ei and the encryption configuration pa-
rameters (ECP), the proxy P encrypts the cached data
DO using Equation (4). The newly encrypted data Di
can then be sent to the client i over an insecure chan-
nel. If the video data are not cached in the proxy P ,
P requests the data from the video server S using the
operations described above. then, in a pipeline fash-
ion, caches the data While blocks of data for Do are

Server proxy Server Proxy Client i

generation

authentication

authentication

Data
encryption

Figure 3: Operations between the source video
server S and the proxy P.

provides arbitrary precision arithmetic on integers, rational
numbers, and floating-point numbers. GMP 4.0 provides
one of the fastest possible arithmetic library for applications
that need higher precision than is directly supported by the
basic C types.

3.1 Proxy-Server Operations
Figure 3 illustrates the operations between the video server
S and the proxy P for requesting and caching the video
data. These operations are:

1. Key generation: To request video data from the
source video server S, the proxy P first randomly gen
erates two large prime numbers p and q. Then P com
putes the prime product n = pq, the pseudo-prime
product ¢ = (n -1)(P - 1), and the encryption key eo
via Equations (1) and (2). To ensure security, the two
prime numbers p and q should afterwards be deleted
from the proxy P.

2. Initiate connection: The proxy P sends a video re
quest to the video server S through a secure channel
using the secure socket layer (SSL) protocol. The video
server S needs to authenticate that the request is in
deed from the proxy P. If the authentication succeeds,
the server replies with an acknowledgment back to the
proxy P through the secure channel.

3. Authentication of video server S: The proxy P
authenticates whether the acknowledgment received
from the previous step is indeed from the video server
S.

4. Transmission of encryption key: If the authenti
cation is successful, the proxy P sends its encryption
request key eo and n to the video server S through a
secure channel.

5. Data encryption and streaming: The video server
S uses the encryption key eo and n to encrypt the video
data packets. The degree of encryption is based on the
encryption configuration parameters (ECP) which we

authentication

Data
encryption

Figure 4: Operations between the client and the
proxy P.

will describe in Section 3.3. The video server S then
streams the encrypted data packets to the proxy P
via an ordinary and possibly insecure channel. Upon
receiving the encrypted data packets, the proxy caches
the data without decryption or modification.

3.2 Client-Proxy Operations
Figure 4 illustrates the operations between the client i and
the proxy P for streaming the encrypted data. These oper
ations are:

1. Initiate connection: To request a video via the prl)xy
P, the client i sends a connection request to the proxy
P through a secure channel using SSL.

2. Authentication of client: The video proxy P au
thenticates that the connection request is indeed from
a valid client i.

3. Key generation: The proxy P checks whether the
requested video is cached or not. If it is not cached,
the proxy will request the video from the video server
S using the operations described above. If the video
is cached, the proxy P generates an encryption key ei

based on Equations (1) -(2), and a decryption key di
based on Equations (5)-(6).

4. Transmission of decryption key: The proxy P
sends the decryption key di and n to client i through
the secure channel.

5. Data encryption and streaming: Based on the en
cryption key ei and the encryption configuration pa
rameters (ECP), the proxy P encrypts the cached data
Do using Equation (4). The newly encrypted data Di
can then be sent to the client i over an insecure chan
nel. If the video data are not cached in the proxy P,
P requests the data from the video server S using the
operations described above. then, in a pipeline fash
ion, caches the data \Vhile blocks of data for Do are

received and cached in the proxy's local storage, the
proxy - in a pipeline fashion - encrypts the Do data
blocks to the D, data blocks, and the Di data blocks
are sent to the client i. The client i: upon receiv-
ing the encrypted data D,: can decrypt the data using
the previously received decryption key d, generated by
Equation (7).

3.3 Encryption Configuration Parameters
Although the proxy P does not need t o perform any de-
cryption, the RSA encryption operation - even when im-
plemented using the optimized GMP 4.0 library - can still
be expensive. Since P has to perform encryption for every
client i , the encryption overhead can limit the achievable
streaming throughput and the number of concurrent clients
that the proxy can support.

To reduce the computational overhead a t the proxy we per-
form encryption based on specifiable encryptzon configura-
tzon parameters (ECP). The idea consists in not performing
encryption on an entire video stream, but instead on selected
data blocks in the video stream. Note that for certain video
formats, encrypting a complete video stream is inherently
redundant. For example, if video data are encoded using
MPEG-1, then one might argue that encrypting all the I
frames in the video sequence would suffice: since the other
frames depend on the I frames in decoding.

We propose to use a general encryption method that can
reduce the encryption overhead a t the proxy for a variety
of commonly used video encoding formats (such as MPEG-
1, MPEG-2, and Quicktime). We exploit the observation
that, for video encoding that accounts for inter-frame data
dependencies, a video stream only needs to be encrypted up
to a certain percentage for decoding to be practically useless
by an unauthorized viewer, in that either the video cannot
be decoded, or the quality of the decoded video will be so
poor that it is unacceptable for viewing. ECP specifies a
packet based encryption pattern given by four adjustable
parameters, namely

Spktr the expected number of bytes in a data packet.

I - the video stream is to be partitioned into successive
groups each having I consecutive packets, and a single
packet encryption operation is to be applied to the first
packet of each group.

P - for a packet to which the packet encryption oper-
ation is to be applied, the fraction of data within the
packet that should be encrypted.

B - for a packet to which the encryption operation is
to be applied, the number of encryption blocks that
should be evenly distributed within the packet.

In our current implementation, we use UDP as the transport
protocol for data transmission. The entire video stream will
be divided into UDP packets with each packet having a pay-
load size of Spkt = 1400 bytes. For every I > 1 consecutive
UDP packets, we will select the last UDP packet for encryp-
tion. For the encrypted packet, it will be further divided up

-=key D ~ c k e t 1 gacker I packer 3 packer 4
1 1 4 0 0 ~) 11400m1 I14OORB) (1400KB) 11400m) .

F i g u r e 5: I l lustrat ion of E C P w i t h Spkt = 1400, I = 2,
P = 0.5, and B = 4.

into sub-blocks and only some of the sub-blocks will be en-
crypted. In our current implementation, the sub-block size
is chosen to be 4 bytes less than the RSA key length (e.g.,
6CI bytes for 512-bit RSA) and the encryption will be based
on this sub-block unit size. The total length of data to be
encrypted within a packet is equal to P * Spkt rounded up
to the nearest multiple of the sub-block size. The encrypted
sub-blocks will then be regrouped as B consecuti\~e blocks
of data, and and the blocks will be distributed evenly across
the whole packet.

Figure 5 illustrates a possible set of encryption configura-
tion parameters, where the packet size Spkt is equal to 1400
bytes, I = 2 (i.e., out of every two consecutive packets, we
select the first one for encryption), the fraction P is equal
to 0.5, and and B = 4 blocks are to be evenly distributed
across an encrypted packet. The four configuration param-
eters allow us to achieve varying degrees of encryption and
levels of video quality for the decoded stream. In Section 4,
we illustrate the computational and quality tradeoffs implied
by these parameters.

4. EXPERIMENTS
In this section, we report experiments that quantify the
encryption throughput, and the peak signal-to-noise ratio
(PSNR) and the visual quality of the decoded video, in the
context of our secure video distribution architecture.

In our current implementation, we use encryption configura-
tion parameters (ECP) to control the amount of encryption
applied to blocks of video data. The experimental results
are taken on an 800 MHz Pentium-111 Linux machine with
256 MBytes of main memory. The video samples used in
these experiments are a set of video sequences, each being
an 18 MByte MPEG-1 stream or a 4.47 MByte Quicktime
stream.

E x p e r i m e n t 1: Encrypt ion T h r o u g h p u t Analysis:
In this experiment, we consider the effect of the parame-
ters P and I on the encryption throughput, measured as p
in MBytes/s. Assume that we are encrypting an MPEG-
1 stream with an average bit rate of 1.5 Mbps. Given
the assumption, the average number of concurrent MPEG-
1 streams that a proxy can support is M , where M =
p/(1.5/8). Table 1 illustrates the encryption throughput
p and the average number of concurrent MPEG-1 streams
(M) under different values of P and I, when B = 1. As we
can observe from Table 1, if we encrypt 25.7% of each video
packet (i.e., I = I) , the encryption throughput achieved is

received and cached in the proxy's local storage, the
proxy - in a pipeline fashion - encrypts the Do data
blocks to the D; data blocks, and the Di data blocks
are sent to the client i. The client i, upon receiv
ing the encrypted data D" can decrypt the data using
the previously received decryption key d; generated by
Equation (7).

packet Q

(14QOXB)

packet 1
(UOOXB)

packet 2
11400KB)

packet 3 packet "
(1400KB) (UOOXB)

0..: encrypted
blocks

IS:! encrypted
~ sub-blocks

3.3 Encryption Configuration Parameters
Although the proxy P does not need to perform any de
cryption, the RSA encryption operation - even when im
plemented using the optimized GMP 4.0 library - can still
be expensive. Since P has to perform encryption for every
client i, the encryption overhead can limit the achievable
streaming throughput and the number of concurrent clients
that the proxy can support.

To reduce the computational overhead at the proxy we per
form encryption based on specifiable encryption configura
tion parameters (ECP). The idea consists in not performing
encryption on an entire video stream, but instead on selected
data blocks in the video stream. Note that for certain video
formats, encrypting a complete video stream is inherently
redundant. For example, if video data are encoded using
MPEG-l, then one might argue that encrypting all the I
frames in the video sequence would suffice, since the other
frames depend on the I frames in decoding.

vVe propose to use a general encryption method that can
reduce the encryption overhead at the proxy for a variety
of commonly used video encoding formats (such as MPEG
1, MPEG-2, and Quicktime). \Ve exploit the observation
that, for video encoding that accounts for inter-frame data
dependencies, a video stream only needs to be encrypted up
to a certain percentage for decoding to be practically useless
by an unauthorized viewer, in that either the video cannot
be decoded, or the quality of the decoded video will be so
poor that it is unacceptable for viewing. ECP specifies a
packet based encryption pattern given by four adjustable
parameters, namely

• Spkt, the expected number of bytes in a data packet.

• 1 - the video stream is to be partitioned into successive
groups each having 1 consecutive packets, and a single
packet encryption operation is to be applied to the first
packet of each group.

• P - for a packet to which the packet encryption oper
ation is to be applied, the fraction of data within the
packet that should be encrypted.

• B - for a packet to which the encryption operation is
to be applied, the number of encryption blocks that
should be evenly distributed within the packet.

In our current implementation, we use UDP as the transport
protocol for data transmission. The entire video stream will
be divided into UDP packets with each packet having a pay
load size of Spkt = 1400 bytes. For every 1 2: 1 consecutive
UDP packets, we will select the last UDP packet for encryp
tion. For the encrypted packet, it will be further divided up

Figure 5: Illustration of ECP with Spkt = 1400, 1 = 2,
P = 0.5, and B = 4.

into sub-blocks and only some of the sub-blocks will be en
crypted. In our current implementation, the sub-block size
is chosen to be 4 bytes less than the RSA key length (e.g.,
60 bytes for 512-bit RSA) and the encryption will be based
on this sub-block unit size. The total length of data to be
encrypted within a packet is equal to P * Spkt rounded up
to the nearest multiple of the sub-block size. The encrypted
sub-blocks will then be regrouped as B consecutive blocks
of data, and and the blocks will be distributed evenly across
the whole packet.

Figure 5 illustrates a possible set of encryption configura
tion parameters, where the packet size Spkt is equal to 1400
bytes, 1 = 2 (i.e., out of every two consecutive packets, we
select the first one for encryption), the fraction P is equal
to 0.5, and and B = 4 blocks are to be evenly distributed
across an encrypted packet. The four configuration param
eters allow us to achieve varying degrees of encryption and
levels of video quality for the decoded stream. In Section 4,
we illustrate the computational and quality tradeoffs implied
by these parameters.

4. EXPERIMENTS
In this section, we report experiments that quantify the
encryption throughput, and the peak signal-to-noise ratio
(PSNR) and the visual quality of the decoded video, in the
context of our secure video distribution architecture.

In our current implementation, we use encryption configura
tion parameters (ECP) to control the amount of encryption
applied to blocks of video data. The experimental results
are taken on an 800 MHz Pentium-III Linux machine with
256 MEytes of main memory. The video samples used in
these experiments are a set of video sequences, each being
an 18 MEyte MPEG-l stream or a 4.47 MEyte Quicktime
stream.

Experiment 1: Encryption Throughput Analysis:
In this experiment, we consider the effect of the parame
ters P and 1 on the encryption throughput, measured as p
in MEytes/s. Assume that we are encrypting an MPEG
1 stream with an average bit rate of 1.5 Mbps. Given
the assumption, the average number of concurrent MPEG
1 streams that a proxy can support is]vI, where M =
p/(1.5/8). Table 1 illustrates the encryption throughput
p and the average number of concurrent MPEG-l streams
(M) under different values of P and 1, when B = 1. As we
can observe from Table 1, if we encrypt 25.7% of each video
packet (i.e., 1 = 1), the encryption throughput achieved is

Table 1: Effect of P a n d I o n t h e encryp t ion t h r o u g h p u t p (in un i t of M B y t e s / s) a n d t h e average n u m b e r of
M P E G - 1 s t r e a m s M w h e n B = 1.

only around 2.13 MBytes/s, which implies that we can only
concurrently handle about 11 MPEG-1 streams. On the
other hand, if we encrypt one video packet for every 10 pack- E x p e r i m e n t 3: Compar i son of visual qual i ty of en-
ets (i.e., I = 10) and for each video packet encrypted, we c r y p t e d video: In this experiment, we consider the effect
encrypt only 4.3% of its data, then the encryption through- of the ECP parameters I, P and B on the visual quality of
put improves to 11.82 MBytes/s, which implies that we can the video. Figure 6 illustrates the quality of five consecu-
concurrently support about 63 MPEG-I streams. In general, tive MPEG-1 video frames. Figure 6(a) is the original video
the smaller the values of P and I, the higher the encryption frames that a client can decode given access to the decryp-
throughput and the number of concurrent video streams the tion key. Figures 6(b)-(e) are the corresponding five video
system can handle. frames when decoded without the decryption key. Note that

Table 2 illustrates the effect of I and B under two different
encryption percentage parameters P. As we can observe, the
parameter B has little effect on the encryption throughput.

E x p e r i m e n t 2: P e a k Signal-to-Noise Analysis:
In this section, we consider the effect on the video quality as
we vary the parameters I, P and B. One way to quantita-
tively assess the video quality is by the peak signal-to-noise
ratio. In general. for a frame size of m x n with a total of 1
frames an: 3 colbr channels (e.g., red, green and blue, each
represented by a 8-bit number), the peak signal-to-noise ra-
tio (SN&,,k) is calculated using the following equation:

where PI (2, y , z, c) means that the pixel value at coordinates
(2, y) in the z-t.h frame for color channel c, where c = 1,
c = 2, and c = 3 correspond to the color channels red, green,
and blue, respectively. In our experiment, the values of m,n,
and 1 are 640, 480, and 1000, respectively. Values of PI are
obtained from the oideo frames decoded by a client which
does not have access to the decryption key, while values of
Pz are obtained from the original video frames. Note that a
lower value of SNR,,,k indicates that the encrypted stream
is more highly distorted from the original video data stream.

Table 3 and Table 4 illustrate the peak signal-to-noise ratio
SN&,,k for different values of P and I with B = 1 for
MPEG-1 and Quicktime video, respectively. Note that even
when we encrypt one out of 10 video packets, and for a
selected packet, we only encrypt 4.3% of the data, we still
obtain a very low value of SN&,,k. This indicates that (1)
we can apply this encryption technique for different video
formats, and (2) we only need to encrypt a small fraction of
the video data to achieve both high encryption throughput
and high video distortion.

the video quality is the worst when the ECP parameters are
I = 1 and P = 0.043, which corresponds to encrypting 4.3%
of the data for every video packet. Note that when we select
I = 10, P = 0.043, and B = 1 (this corresponds to Figure
6(e)), the visual quality of the video is still quite unaccept-
able for viewing. This shows that we can achieve high en-
cryption throughput (e.g., around 11.82 MBytes/s or about
63 concurrent MPEG-I streams from Table 1) and, a t the
same time, ensure that those clients which do not possess
the decryption keys will get unacceptable video quality on
viewing. Figure 7 shows the corresponding results for five
consecutive Quicktime video frames.

5. RELATED WORK
Recent research on video proxies has mainly focused on
caching strategies and replacement algorithms. Sen and
Towsley [8] present how prefix caching at a proxy can help
to shield clients from large start-up delay, low throughput,
and high packet loss. Guo et al. [3] propose the use of a
prefix-caching proxy in conjunction with a periodic broad-
casting technique t o improve system scalability. Focusing
on implementation and protocol issues, Cruber et al. [2]
show how to realize proxy prefix caching by using the Real-
Time Streaming Protocol (RTSP). Rejaie e t al. [6] present a
fine-grained replacement algorithm for a multimedia proxy,
which targets layered-encoded streams. Kangasharju et al.
141 present a caching model of layered-encoded multimedia
streams, and propose utility heuristics whose performance
are evaluated through their caching model.

There are only a small number of papers emphasizing se-
curity issues in a video proxy. Griwodz et al. [I] propose
an approach in which the proxy stores the major part of
the video streams which are intentionally corrupted. The
proxy can distribute the corrupted part via multicast trans-
mission, while the origin server will supply the part for data
reconstruction in a unicast manner. Since the original server
must perform data encryption for each client, this is not
a scalable solution. Tosun and Feng [ICI] propose a much
more scalable approach based on a lightweight encryption
algorithm for multimedia streams. When a client makes a
request, the proxy will decrypt the locally stored encrypted

P == 0.257 P == 0.214 P == 0.171 P == 0.120 P == 0.086 P == 0.043
p M P M p M p M p M p M

1==1 2.13 11.36 2.53 13.50 3.11 16.60 4.05 21.60 5.8 30.90 10.10 53.90
1==2 4.10 21.87 4.84 25.81 5.91 32.52 7.54 40.20 10.16 54.19 11.77 62.77
1 == 5 9.06 48.32 10.17 54.24 11.56 61.65 11.64 62.08 11.76 62.72 11.78 62.82
1 == 10 11.64 62.08 10.70 57.10 11.70 62.40 11.73 62.56 11.73 62.56 11.82 63.04

Table I: Effect of P and 1 on the encryption throughput p (in unit of MBytes(s) and the average number of
MPEG-I streams l'v[when B == 1.

only around 2.13 MBytes(s, which implies that we can only
concurrently handle about 11 MPEG-1 streams. On the
other hand, if we encrypt one video packet for every 10 pack
ets (i.e., 1 == 10) and for each video packet encrypted, we
encrypt only 4.3% of its data, then the encryption through
put improves to 11.82 MBytes(s, which implies that we can
concurrently support about 63 MPEG-1 streams. In general,
the smaller the values of P and 1, the higher the encryption
throughput and the number of concurrent video streams the
system can handle.

Table 2 illustrates the effect of 1 and B under two different
encryption percentage parameters P. As we can observe, the
parameter B has little effect on the encryption throughput.

Experiment 2: Peak Signal-to-Noise Analysis:
In this section, we consider the effect on the video quality as
we vary the parameters 1, P and B. One way to quantita
tively assess the video quality is by the peak signal-to-noise
ratio. In general, for a frame size of m x n with a total of I
frames and 3 color channels (e.g., red, green and blue, each
represented by a 8-bit number), the peak signal-to-noise ra
tio (SNRpwk) is calculated using the following equation:

SNRpwk ==

where H (x, y, z, c) means that the pixel value at coordinates
(x, y) in the z-th frame for color channel c, where c == 1,
c == 2, and c == 3 correspond to the color channels red, green,
and blue, respectively. In our experiment, the values of m,n,
and I are 640, 480, and 1000, respectively. Values of H are
obtained from the video frames decoded by a client which
does not have access to the decryption key, while values of
P2 are obtained from the original video frames. Note that a
lower value of SNRp<ak indicates that the encrypted stream
is more highly distorted from the original video data stream.

Table 3 and Table 4 illustrate the peak signal-to-noise ratio
SNRpwk for different values of P and 1 with B == 1 for
MPEG-1 and Quicktime video, respectively. Note that even
when we encrypt one out of 10 video packets, and for a
selected packet, we only encrypt 4.3% of the data, we still
obtain a very low value of SNRpeak. This indicates that (1)
we can apply this encryption technique for different video
formats, and (2) we only need to encrypt a small fraction of
the video data to achieve both high encryption throughput
and high video distortion.

Experiment 3: Comparison of visual quality of en
crypted video: In this experiment, we consider the effect
of the ECP parameters 1, P and B on the visual quality of
the video. Figure 6 illustrates the quality of five consecu
tive MPEG-1 video frames. Figure 6(a) is the original video
frames that a client can decode given access to the decryp
tion key. Figures 6(b)-(e) are the corresponding five video
frames when decoded without the decryption key. Note that
the video quality is the worst when the ECP parameters are
1 == 1 and P == 0.043, which corresponds to encrypting 4.3%
of the data for every video packet. Note that when we select
1 == 10, P == 0.043, and B == 1 (this corresponds to Figure
6(e)), the visual quality of the video is still quite unaccept
able for viewing. This shows that we can achieve high en
cryption throughput (e.g., around 11.82 MBytes(s or about
63 concurrent MPEG-1 streams from Table 1) and, at the
same time, ensure that those clients which do not possess
the decryption keys will get unacceptable video quality on
viewing. Figure 7 shows the corresponding results for five
consecutive Quicktime video frames.

5. RELATED WORK
Recent research on video proxies has mainly focused on
caching strategies and replacement algorithms. Sen and
Towsley [8] present how prefix caching at a proxy can help
to shield clients from large start-up delay, low throughput,
and high packet loss. Guo et al. [3] propose the use of a
prefi..x-caching proxy in conjunction with a periodic broad
casting technique to improve system scalability. Focusing
on implementation and protocol issues, Cruber et al. [2]
show how to realize proxy prefix caching by using the Real
Time Streaming Protocol (RTSP). Rejaie et al. [6] present a
fine-grained replacement algorithm for a multimedia proxy,
which targets layered-encoded streams. Kangasharju et al.
[4] present a caching model of layered-encoded multimedia
streams, and propose utility heuristics whose performance
are evaluated through their caching model.

There are only a small number of papers emphasizing se
curity issues in a video proxy. Griwodz et al. [1] propose
an approach in which the proxy stores the major part of
the video streams which are intentionally corrupted. The
proxy can distribute the corrupted part via multicast trans
mission, while the origin server will supply the part for data
reconstruction in a unicast manner. Since the original server
must perform data encryption for each client, this is not
a scalable solution. Tosun and Feng [HI] propose a much
more scalable approach based on a lightweight encryption
algorithm for multimedia streams. ·When a client makes a
request, the proxy will decrypt the locally stored encrypted

(a) P=0.257 (b) P=0.171

Table 2: Effect of I a n d B o n t h e encryp t ion t h r o u g h p u t p (in M B y t e s l s) for (a) P = 0.257 a n d (b) P = 0.171.

~ e a k sianal-to-noise ratio SN%,,r. fl

Table 3: Effect of P a n d I o n t h e p e a k signal-to-noise r a t i o S N q C a k o n M P E G - 1 v ideo w h e n B = 1.

data and encrypt it again using the client's encryption key.
The major drawback with their approach is that the use of
light-weight encryption offers no proven resilience against
attacks on data confidentiality. Furthermore, the need for
decryption operations at the proxy results in higher compu-
tational overhead. Shi and Bhargava [9] present an MPEG
video encryption algorithm called VEA such that one can
encrypt a video stream multiple times (each with, say, a
client-specific key) and still decrypt the video in a single op-
eration using a composite decryption key. However, VEA is
not resilient against plaintext attack. Hence, while the ap-
proach is highly efficient, more determined adversaries can
obtain the VEA secret key with feasible efforts.

6. CONCLUSION
We have presented the design and implementation of a multi-
key secure video proxy architecture. Our design is based
on the notion of an asymmetr ic reversible parametric se-
quence (ARPS). We discussed how ARPS can be applied
to a general client-proxy-server architecture. To practically
achieve the confidentiality properties of ARPS, we presented
a ~nulti-key RSA technique, and proved that the technique
realizes an ARPS. In summary, our theoretical results show
that the proposed architecture can achieve comprehensive
data confidentiality that is provably resilient against attacks,
given standard computability assumptions.

We have an implementation of our video streaming archi-
tecture - consisting of server, proxy and client - on com-
modity Pentium III/800 MHz machines running Linux. Our
implementation results empirically demonstrate how a set
of four ECP parameters can trade off encryption through-
put against data confidentiality, for a number of standard
MPEG-1 and Quicktime video sequences. They indicate
that it is possible to simultaneously achieve high encryp-
tion throughput and extremely low video quality (in terms
of both PSNR and the visual quality of decoded frames)
during unauthorized viewing. For example, by using I = 10
and P = 0.043 a single Pentium III/800 MHz machine can
concurrently sustain more than 64 distinct MPEG-1 video

streams, while giving good protection for the original video
data.

7. REFERENCES
[l] C. Griwodz, 0. Merkel, J. Dittmann, and R. Steinmetz.

Protecting vod the easier way. In Proceeding of the 6th
ACM International Multimedia Conference, pages 21-28,
September 1998.

[2] S. Gruber, J. Rexford, and A. Basso. Protocol
considerations for a prefix-caching proxy for multimedia
streams. In Proceedings of the 9th International World
Wide Web Conference, Amsterdam, Netherlands, May
2000.

[3] Y. Guo, S. Sen, and D. Towsley. Prefix caching assisted
periodic broadcast: Framework and techniques to support
streaming for popular videos. In IEEE ICC, 2002.

[4] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross.
Distributing layered encoded video through caches. In
Proceedings of IEEE Infocom 2001, pages 1791-1800,
Anchorage, Alaska, April 2001.

[S] R. Molva and A. Pannetrat. Scalable multicast security in
dynamic groups. In Proceeding of the 6th ACM Conference
on Computer and Communications Security, pages
101-111, November 1999.

[6] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy caching
mechanism for multimedia playback streams in the
internet. In Proceedings of the 4th International Web
Caching Workshop, San Diego, CA., March 1999.

[7] B. Schneier. Applied Cryptography. John Wiley and Sons,
New York, 1996.

[8] S. Sen and D. Towsley. Proxy prefix caching for multimedia
streams. In IEEE INFOCOM, New York, March 1999.

[9] C. Shi and B. Bhargava. A fast mpeg video encryption
algorithm. In Proceeding of the 6th ACM International
Multimedia Conference, pages 81-88, September 1998.

[lo] A. S. Tosun and W. chi Feng. Secure video transmission
using proxies. In Tech.nica1 Report, Computer and
Information Science, Ohio Slate Univensty, 2002.

[ll] S. F. Yeung, J. C. S. Lui, and D. K. Y. Yau. A case for a
multi-key secure video proxy: Theory, design, and
implementation. Technical report, Dept of Computer
Science and Engineering, Chinese University of Hong Kong,
Hong Kong, 2002. Also as CS TR-02-011, Purdue
University, West Lafayette, IN.

encryption throughput p (MB/sec)
1=1 1=2 1=5 1 = 10

B = 1 2.13 4.10 9.06 11.64
B=2 2.12 4.09 9.01 11.66
B=3 2.12 4.09 9.07 11.65

(a) P=0.257

encryption throughput p (MB/sec)
1 = 1 1=2 1=5 1 = 10

B-1 3.11 5.91 11.56 11.70
B =2 3.11 5.89 11.67 11.72
B=4 3.11 5.89 11.60 11.72

(b) P=0.171

Table 2: Effect of 1 and B on the encryption throughput p (in MBytes/s) for (a) P = 0.257 and (b) P = 0.171.

peak signal-to-noise ratio SNRpwk
P = 0.257 P = 0.214 P=0.171 P = 0.120 P = 0.086 P = 0.043

1=1 7.83 8.01 8.52 9.32 9.39 8.85
1=2 9.13 8.30 8.70 9.48 9.87 9.51
1=5 11.17 9.81 10.73 10.81 11.39 11.33
1 = 10 13.06 11.26 12.87 12.60 13.26 12.82

Table 3: Effect of P and 1 on the peak signal-to-noise ratio SNRpwk on MPEG-l video when B = 1.

data and encrypt it again using the client's encryption key.
The major drawback with their approach is that the use of
light-weight encryption offers no proven resilience against
attacks on data confidentiality. Furthermore, the need for
decryption operations at the proxy results in higher compu
tational overhead. Shi and Bhargava [9] present an MPEG
video encryption algorithm called YEA such that one can
encrypt a video stream multiple times (each with, say, a
client-specific key) and still decrypt the video in a single op
eration using a composite decryption key. However, YEA is
not resilient against plaintext attack. Hence, while the ap
proach is highly efficient, more determined adversaries can
obtain the YEA secret key with feasible efforts.

6. CONCLUSION
Vve have presented the design and implementation of a multi
key secure video proxy architecture. Our design is based
on the notion of an asymmetric reversible parametric se
quence (ARPS). We discussed how ARPS can be applied
to a general client-proxy-server architecture. To practically
achieve the confidentiality properties of ARPS, we presented
a multi-key RSA technique, and proved that the technique
realizes an ARPS. In summary, our theoretical results show
that the proposed architecture can achieve comprehensive
data confidentiality that is provably resilient against attacks,
given standard computability assumptions.

Vve have an implementation of our video streaming archi
tecture - consisting of server, proxy and client - on com
modity Pentium III/800 MHz machines running Linux. Our
implementation results empirically demonstrate how a set
of four ECP parameters can trade off encryption through
put against data confidentiality, for a number of standard
MPEG-1 and Quicktime video sequences. They indicate
that it is possible to simultaneously achieve high encryp
tion throughput and extremely low video quality (in terms
of both PSNR and the visual quality of decoded frames)
during unauthorized viewing. For example, by using 1 = 10
and P = 0.043 a single Pentium Ill/800 MHz machine can
concurrently sustain more than 64 distinct MPEG-1 video

streams, while giving good protection for the original video
data.

7. REFERENCES
[1] C. Griwodz, O. Merkel, J. Dittmann, and R. Steinmetz.

Protecting vod the easier way. In Proceeding of the 6th
A CM International Multimedia Conference, pages 21-28,
September 1998.

[2] S. Gruber, J. Rexford, and A. Basso. Protocol
considerations for a prefix-caching proxy for multimedia
streams. In Proceedings of the 9th International World
Wide Web Conference, Amsterdam, Netherlands, May
2000.

[3] Y. Guo, S. Sen, and D. Towsley. Prefix caching assisted
periodic broadcast: Framework and techniques to support
streaming for popular videos. In IEEE ICC, 2002.

[4] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross.
Distributing layered encoded video through caches. In
Proceedings of IEEE Infocom 2001, pages 1791-1800,
Anchorage, Alaska, April 200l.

[5] R. Molva and A. Pannetrat. Scalable multicast security in
dynamic groups. In Proceeding of the 6th ACM Conference
on Computer and Communications Security, pages
101-111, November 1999.

[6] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy caching
mechanism for multimedia playback streams in the
internet. In Proceedings of the 4th International Web
Caching Workshop, San Diego, CA., March 1999.

[7] B. Schneier. Applied Cryptography. John Wiley and Sons,
New York, 1996.

[8] S. Sen and D. Towsley. Proxy prefix caching for multimedia
streams. In IEEE INFOCOM, New York, March 1999.

[9] C. Shi and B. Bhargava. A fast mpeg video encryption
algorithm. In Proceeding of the 6th ACM International
Multimedia Conference, pages 81-88, September 1998.

[10] A. S. Tosun and W. chi Feng. Secure video transmission
using proxies. In Tech.nical Report, Computer and
Information Science, Ohio State Univeristy, 2002.

[11] S. F. Yeung, J. C. S. Lui, and D. K. Y. Yau. A case for a
multi-key secure video proxy: Theory, design, and
implementation. Technical report, Dept of Computer
Science and Engineering, Chinese University of Hong Kong,
Hong Kong, 2002. Also as CS TR-02-011, Purdue
University, West Lafayette, IN.

peak signal-to-noise ratio SN&,,k

1 1 P = 0.257 1 1 P = 0.214 1 1 P = 0.171 (1 P = 0.120 1 1 P = 0.086 1 1 P = 0.043

Table 4: Effect of P and I on the peak signal-to-noise ratio SN&,,k on Quicktime video when B = 1.

(a) Original frames

(b) Encrypted frames with I = 1, P = 0.043 and B = 1

- -

(c) Encrypted frames wlth I = 2, P = 0 043 and B = 1.

(d) Encrypted frames with I = 5, P = 0.043 and B = 1

(e) Encrypted frames with I = 10, P = 0.043 and B = 1.

Figure 6: Quality of five consecutive MPEG-1 video frames under different ECP parameters.

peak signal-to-noise ratio SNRpm"
P = 0257 P = 0.214 P=0.171 P = 0.120 P = 0.086 P = 0.043

1=1 11.38 11.56 11.72 12.13 12.28 12.48
1=2 12.15 12.13 12.27 12.55 12.48 12.77
1=5 12.63 12.48 12.57 12.97 12.84 12.98
1 = 10 12.97 12.76 12.84 13.24 12.98 13.09

Table 4: Effect of P and I on the peak signal-to-noise ratio SNRp€ak on Quicktime video when B = 1.

(a) Original frames

(b) Encrypted frames with I = 1, P = 0.043 and B = 1.

(c) Encrypted frames with I = 2, P = 0.043 and B = 1.

(d) Encrypted frames with I = 5, P = 0.043 and B = 1.

(e) Encrypted frames with I = 10, P = 0.043 and B = 1.

Figure 6: Quality of five consecutive MPEG-l video frames under different ECP parameters.

(a) Original frames

(b) Encrypted frames with I = 1, P = 0.043 and B = 1.

(c) Encrypted frames with I = 2, P = 0.043 and B = 1.

(d) Encrypted frames with I = 5, P = 0.043 and B = 1.

(e) Encrypted frames with I = 10, P = 0.043 and B = 1.

Figure 7: Quality of five consecutive Quicktime video frames under different ECP parameters.

(a) Original frames

(b) Encrypted frames with I = 1, P = 0.043 and B = 1.

(c) Encrypted frames with I = 2, P = 0.043 and B = 1.

f ~

" -- ,

':"

,~-. ~ ~~~
l"~\. ...; -~~_'" _;.~_~...

'. '

~,'--'-~~ ,-~--~
,~ ---./ : -.-

.;ipo',l". -:- -' -

. - -
. ---

, - - ~.

~ :.~_ \1: .' >.~,.
, ~-~ --_... "

.

-::;-

- ., i!!Y,
'-,~- - ~
... ' ..,' 'i>
'.'. ~s

"" - - -- >

- - - - ~ -
· '

. '

. -'. . >!;;
-~.- -'~
'.- . - - ."iii

'.. ' ~. - - a

~

~ ~ . ~

-~- '
,~ - -. - - ,

~~ ~ ~

•

. . .,

,~.. "" '

'~' •• Ilt.....- -
-.\;~ . -.~. : ~

- .»14 •

, .

\ >iN, -.
·.~iit _~ ,=- .- ,

...... r

~.t: :.
(d) Encrypted frames with I = 5, P = 0.043 and B = 1.

~. . '

, .1 -, '. '. .

~ ~: ,:=:;:.>. -,',

,

~ -~
'...~ --: ';" ~

, II"~~~ .
.~ ~-
· ... -, .

~{' .
•

- - -

• l,. ~ efi} ~

'- <ro-- ~
-, T ,v .

.~ ': > ~

(e) Encrypted frames with I = 10, P = 0.043 and B = 1.

Figure 7: Quality of five consecutive Quicktime video frames under different ECP parameters.

	A Case for Multi-key Secure Video Proxy: Theory, Design and Implementation
	Report Number:
	

	tmp.1307986960.pdf.dYVes

