
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1993 

Extending Multidatabase Transaction Management Techniques to Extending Multidatabase Transaction Management Techniques to 

Software Development Environments Software Development Environments 

Aidong Zhang 

Omran Bukhres 

Report Number: 
93-081 

Zhang, Aidong and Bukhres, Omran, "Extending Multidatabase Transaction Management Techniques to 
Software Development Environments" (1993). Department of Computer Science Technical Reports. Paper 
1094. 
https://docs.lib.purdue.edu/cstech/1094 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


EXTENDIDNG MULTIDATABASE TRANSAcrlON
MANAGEMENT TECBNIQUES TO SOFTWARE

DEVELOPMENT ENVIRONMENTS

Aidong Zhang
Omran Bukhres

CSD-TR-93-l181
December 1993



Extending M ultidatabase Transaction
Management Techniques to Software

Development Environments

Aidong Zhang and·Omran Bukhres
Department of Computer Science

Purdue University
West Lafayette, IN 47907 USA

Abstract

A multidatabase system integrates a set of autonomous local databases that can be

accessed as a single unit. Such a. multidatabase environment is actually a special case

of a more general software development environment in which local components may

be either database systems or file systems. This paper discusses the new issues that

arise in such software development environments and presents some initial solutions

for these issues by extending multidatabase transaction management techniques.

1 Introduction

A software development environment (SDE) is a distributed heterogeneous software system

in which local components can be either database systems or file systems. These local systems

originally ran in isolation to support their individual applications. It then became evident

that more complex applications involving multiple systems could be supported through in­

tersystem cooperation. Consider an example at BNR [4]. A group of engineers at corporate

headquarters is responsible for maintaining switching-system quality. An application soft­

ware package, the Statistical Analysis System (SAS), is used to analyze available data. From

the SAS output, they develop perforn:ance and reliability graphs, which are stored in a DB2

database on an IBM mainframe. This informa.tion is then be used by design engineers to

improve the switching-system design. The integration of these systems must, however, be

accomplished without the disruption of loca.l system autonomy.

1



Such an autonomy feature has been recognized and studied in multidatabase systems.

A multidatabase system (MDBS) serves to integrate a set of local database systems at

various locations (sites). The central concern of such an integration is the preservation of

the local autonomy of the component database systems. Aspects of autonomy such as design,

execution, and control have been studied in [7, 2, 5, 12]. MDBSs process two varieties of

transactions. Each local transaction accesses a local database only and is submitted directly

to a local database system. Global transactions, in contrast, may simultaneously access

several local databases and are submitted to an integration phase, where they are parsed

into a set of global subtransactions to be submitted to local database systems.

Thus, a SDE is a generalized. case of an MDBS. The techniques developed in MDBSs

may be extended to SDEs. The aspects of the integration on system and language designs

have been studied in [11, 4]. In this paper, we investigate the application of multidatabase

transaction management techniques to the decentralized software development environment.

In such an environment, the conditions that can be placed on local sites must be more

relaxed than those which may be in effect in a multidatabase environment. For example,

there may be no concurrency control mechanisms in place at local sites, and prepare-to­

commit states may also not be supported at local sites. We will discuss approaches that

can be developed to ensure the correct execution of global and local applications in this less

restrictive environment.

2 Decentralized Model

As software development environments usually deal with a large number of local compo­

nents, a decentralized approach to integration is essential for SDEs. Such a decentralized

approach provides a high degree of fault-tolerance, and the system can be easily extended

to accommodate new local sites. We therefore anticipate that the decentralized design of

global application management will become an important feature of SDEs, particula.rly of

those systems integrating a large number of participating local software systems.

A SDE consists of a set of {local software systems, denoted LSS i , for 1 ::; i ::; m}, where

each LSS i comprises an autonomous software system on a set D j of data at the local site

LSi and a global application manager (GAM). The GAM is decentralized on all machines

participating in the SDE. Each LSS is associated with a GAM server (GS), and all machines

participating in the SDE can run the GAM interpreter (Gl). A global application is submitted

by invoking a process of the GAM interpreter at its machine while a local application is

2



submitted directly to a LSS. All machines are connected by a computer network. Figure 1

illustrates this architecture.

User

LoooI

:""PPlica1i0Dli
,,,,
: D1,,,
~-----------------------

Local Site LS I

User

G,

LoooI
v\ppligd.juns,.,,,
: D2,,,,

Local SiteLS 2

- : Da1a 3l1d comrnancl flows

User

LoooI
II\pplKatiollS,,,,,,
: Dm,,
~-----------------------

Local Site LS m

Figure 1: Decentralized SDE architecture

The GAM interpreter manages the decomposition and execution of global applications.

In particular I the execution of a global application G j is controlled by the GAM interpreter

process Gli , which submits the subapplications of G; to the relevant GAM servers for ex­

ecution. A GAM interpreter process can independently manage the execution of a global

application without requiring any knowledge of the others' existence.

A GAM server is responsible for the execution of global subapplications received from

the GAM interpreter processes. It then submits for execution each global subapplication to

the LSS at its associated site. The completion of each subapplication is acknowledged by the

LSS to the GAM server, which, if necessary, returns these results to the GAM interpreter

processes. Each GAM server runs independently from other GAM servers and coordinates

only with the GAM interpreter processes froJ!1 which it receives global subapplications.

3



3 Global Concurrency Control Issues

Since some local software systems may not be database systems, they may not provide a.ny

concurrency control mechanisms. Thus, the GAM must be equipped to handle the mixed

situation in which some local sites provide concurrency control mechanisms, while others do

not. Without loss of generality, we assume that serializabilityl is ensured in those local sites

which have concurrency control mechanisms.

A straightforward approach to controlling the execution of global applications is to ensure

that all global applications run serially at the global level. In order to ensure the serial

execution order of global applications at the global level, we must ensure that the execution

orders of global subapplications at all local sites are relatively synchronized. That is, there

exists a total order 0 on all global applications such that, at each local site, the execution

order of its global subapplications is consistent with O. For those local sites which have no

concurrency control mechanisms, both local applications and global subapplications must

be executed serially. The execution order of global subapplications at the global level is

obviously inherited at such local sites, and the effect of the execution of global subapplications

at the global level is equivalent to the effect of their execution at these local sites.

It has been pointed out in [2, 5, 8] that the execution order of global subapplications at

the global level may not be the same as their serialization order at a local site. Thus, even

if the execution orders of global subapplications at all local sites are relatively synchronized,

their execution orders at those local sites which have concurrency control mechanisms may

not be identical to their serialization order. Consequently, the effect of the execution of

global applications may not be serial. The enforcement of local conflicts [8, 13] has been

proposed to force the execution order of global subapplications at the global level to conform

to their serialization order at local sites.

The remaining issue in the implementation of an efficient decentralized scheme for the

serial execution of global applications is the synchronization of the relative execution orders

(REOs) of global subapplications at all local sites. Our method begins by numbering all GAM

servers in an order 0, with each GAM server maintaining a site-lock. Prior to executing

global application Gi, GAM interpreter Gli must first request all necessary site-locks from

the relevant GAM servers in an order consistent with O. The REO of Gi is determined

at all relevant sites only when Gli has acquired the necessary site-locks. After the REO

of G i is determined, Gli releases all held site-locks. During this process, if failures occur,

lIn this paper, 6erializability refers to conflict serializability [1].

4



GIi will request all relevant GAM servers to remove G, from the pre-determined REOs

and release all held site-locks. Because the site-locks are requested in an order consistent

with 0 and the REO of G, is determined only after GI, holds all necessary site-locks, the

correct synchronization of concurrent site-locks requests is ensured and correct REOs of

global applications at all sites are thus guaranteed. After the REO of Gi is determined,

GI, sends subapplications of G j to the relevant GAM servers. Using the ticket method

[8], these GAM servers can enforce conflicts among all subapplications at each local site

where a concurrency control mechanism is used and submit the subapplications for execution

according to the pre-determined REO. This synchronization approach permits each global

application to be submitted for execution without waiting for the completion of a previously

submitted global application.

At this point, it is not clear to us whether more liberal approaches to controlling the

execution of global applications at the global level will improve their execution performance.

With the mixed situation in which some local sites provide concurrency control mechanisms,

while others do not, those global subapplications which can be executed concurrently at

some local sites may need to wait for the results of others which must be executed serially at

other local sites. Depending on the load of data flow among global subapplications of each

global application, those global correctness criteria, that permit global subapplications to run

concurrently at the local sites which provide concurrency control mechanisms, may achieve

better performance on the execution of global applications. Further investigation need be

done to explore the effects of local concurrency control mechanisms on global concurrency

control in SDEs.

4 Non-conventional Commit Protocols

The global applications in SDEs may be more flexible than global transactions in MDBSs.

In other words, some actions in a global applications may not have to be executed or may

be replaced by other actions if they fail. For example, in a debugging global application, the

failure (existing bugs) of one source code module may be replaced by other version of the

same module and also, partial execution of all source code modules may be acceptable. This

flexibility allows a global application to adhere to a weaker form of atomicity, which we term

semi-atomicity, while still maintaining its correct execution in the SDE environment. Semi­

atomicity allows a global application to commit even if some subapplications fail, provided

that either the failed subapplications are unnecessary to be executed or their alternative

5



subapplications complete.

We are currently investigating non-conventional commit protocols for ensuring the semi­

atomicity of global applications. To preserve the semi-atomicity of global applications, given

the assumption that LSSs can recover from failures, the GAM must ensure either that all

global subapplications of a global application that must complete commit or that none of

the effects of each global subapplication remain permanent.

Preserving the atomicity [1] of global transactions in multidatabase systems has been

recognized as an open and difficult issue [10]. Of particular concern is the fact that mul­

tidatabases cannot assume that the local databases support a visible prepare-ta-commit

state for those subtransactions in which a subtransaction has not yet been committed but

is guaranteed the ability to commit. This scenario clearly remains problematic in the SDE

environment. In such situations, a local software system that participates in a SDE envi­

ronment may unilaterally fail a global subapplication without agreement from the global

level (termed a local unilateral faiQ. As a result, it becomes difficult to ensure that a single

complete logical action of the subapplications in a global application that must complete

is consistently carried out at multiple local sites. The traditional two-phase commit (2PC)

protocol developed in distributed database environments thus becomes inadequate to the

preservation of the semi-atomicity of global applications in the SDE environment.

Both forward and backward recovery approaches which utilize the redo, retry, and com­

pensation techniques have been proposed [3, 9] for the preservation of the semantic atomic­

ity [6] of global transactions. These techniques allow each global subtransaction to commit

unilaterally, requiring either the redo or retrial of aborted global subtransactions or the

undoing of tentatively committed global subtransactions by corresponding compensating

transactions. Note that at most one subtransaction of each global transaction can be pivot.

The compensatable subtransactions must be completed before the completion of the pivot

subtransaction, which in turn must complete before the completion of the retriable subtrans­

actions. The global complete/fail decision is determined by the outcome of the completion

of the pivot subtransaction. If it fails, all of the compensatable subtransactions are compen­

sated for; otherwise the retriable subtransactions are attempted until they complete.

Semi-atomicity is also weaker than semantic atomicity. In order to utilize the above tech­

niques in the SDE environment, we categorize each global subapplication as either retriable,

compensatable, or pivot. We say that a subapplication is retriable if it is guaranteed to com­

mit after a finite number of submissions when executed from any consistent database state.

A subapplication is compensatable if the effects of its execution can be semantically undone

6



after commitment by executing a compensating subapplication. A compensating subapplica­

tion eti for a subapplication ti must be independent of the applications that execute between

ti and Cti' This is because local database autonomy requires that arbitrary local applications

be executable between the time tj is committed and the time Cti is executed, and these local

applications can both see and overwrite the effects of tj during that time. A subapplication

is a pivot subapplication if it is neither retriable nor compensatable.

Our investigation starts with the construction of global applications whose semi-atomicity

can be maintained in the SDE environment. In general, the semi-atomicity of a global ap­

plication may not be ensured without using local prepare-to-commit states. For example,

the possession of two or more pivot subapplications that must be executed in a global appli­

cation may render it difficult to determine a commit order among them which ensures that

the global application can move either forward to the commitment of its subapplications or

backward to the removal of any partial effects of the committed subapplications. However,

if one pivot subapplication can be replaced by some other retriable subapplicatioD, then the

global application may still proceed when the pivot subapplication fails. The establishment

of the essential properties of global applications such that their semi-atomicity can be en­

sured provides a foundation for the design of an advanced global application language. We

are also investigating the decentralized commit protocol for ensuring the semi-atomicity of

such global applications.

5 Conclusions

In this paper, we have discussed those issues that arise when the techniques of multidatabase

transaction management are applied to the software development environment. Our inves­

tigation represents a first step toward global application management in SDEs, one which

may be amplified in the future by additional refinement. The synchronization approach de­

scribed above has been implemented in the context of our InterBase project, the design of

the commit protocol is currently being investigated as part of that project.

References

[1] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Databases Systems. Addison-Wesley Publishing Co., 1987.

[2] Y. Breitbart and A. Silberschatz. Multidatabase Update Issues. In Proceedings of the
ACM SIGMOD Conference on Management of Data, pages 135-142, June 1988.

7



[3] Y. Breitbart, A. Silberschatz, and G. Thompson. Reliable Transaction Management in
a Multidatabase System. In Proceedings of the ACM SIGMOD Conference on Manage­
ment of Data, pages 215-224, May 1990.

[4J O. A. Bukhres, J. Chen, W. Du, A. K. Elmagarmid, and R. Pezzoli. !nterBase: An Exe­
cution Environment for Heterogeneous Software Systems. IEEE Computer, 26(8):57-69,
August 1993.

[5] W. Du and A. Elmagarmid. Quasi Serializability: a Correctness Criterion for Global
Concurrency Control in InterBase. In Proceedings-of the 15th International Conference
on Very Large Data Bases, pages 347-355, Amsterdam, The Netherlands, Aug. 1989.

[6] H. Garcia-Molina. Using Semantic Knowledge for Transaction Processing in a Dis­
tributed Datahase. ACM Trans. Database Syst., 8(2):186--213, June 1983.

[7] H. Garcia-Molina and B. Kogan. Node Autonomy in Distributed Systems. In Proceedings
of the First International Symposium on Databases for Parallel and Distributed Systems,
pages 158-166, Austin, Texas, USA, Dec. 1988.

[8] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. On Serializability of Multidatabase
Transactions Through Forced Local Conflicts. In Proceedings of the 7th Intl. Con! on
Data Engineering, pages 314-323, Kobe, Japan, Apr. 1991.

[9} S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. A transaction model for
multidatabase systems. In Proceedings of International Conference on Distributed Com­
puting Systems, June 1992.

[10] N. Soparkar, H. F. Korth, and A. Siberschatz. Failure-resilient transaction management
in multidatabases. IEEE Computer, 24(12):28-36, December 1991.

[11] P. Tarr and S. Sutton. Programming heterogeneous transactions for software develop­
ment environments. In Proceedings of Fifteenth International conference on Software
Engineering, pages 358-369, 1993.

[12] J. Veijalainen. Transaction Concepts in Autonomous Database Environments. R.Old­
enbourg Verlag, Germany, 1990.

[13] A. Zhang and A. K. Elmagarmid. A theory of global concurrency control in multi­
database systems. The VLDB Journal, 2(3):331-359, July 1993.

8


	Extending Multidatabase Transaction Management Techniques to Software Development Environments
	Report Number:
	

	tmp.1307986960.pdf.NC5M2

