
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Cooperating Brokers to Support Cooperative Work Cooperating Brokers to Support Cooperative Work

Vinod Anupam

Chandrajit Bajaj

Peinan Zhang

Report Number:
94-009

Anupam, Vinod; Bajaj, Chandrajit; and Zhang, Peinan, "Cooperating Brokers to Support Cooperative Work"
(1994). Department of Computer Science Technical Reports. Paper 1112.
https://docs.lib.purdue.edu/cstech/1112

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COOPERATING BROKERS TO SUPPORT
COOPERATIVE WORK

Vinod Anup3rn
Ch3ndrajit Bajaj

Peinan Zhang

CSD TR·94-009
February 1994

Cooperating Brokers to Support Cooperative Work

Vinod Anupam Chandrajit Bajaj Peinan Zhang

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907
Email: {anupam,bajaj ,pnz}@cs.purdue.edu

Phone: (317)494-6531 Fax: (317)494-0739

Abstract

We motivate the utility of brokering systems in CSCW and highlight the requirements of cooperative brokering.
We also demonstrate how we have augmented the infrastructure of a prototype CSCW environment called SHASTRA
to accomodate cooperative brokering. Several applications and possible scenarios of CSCW with cooperative brokering
are a/so presented. We describe how cooperating brokers can be used to exploit plurality and commonality of tasks in
a cooperative setting, improving throughput for the entire group.

Keywords:

Task Brokering; Load Balancing; Scheduling; Cooperative Problem Solving; CSCW Infrastructure; Groupware;
Virtual Team Support;

1 Overview

This section motivates the use of brokering in CSCW, in the context of related work. Section 2 briefly introduces
the architecture of Shastra and highlights the main features of the system. Section 3 presents requirements for
cooperative brokering, and describes the brokering infrastructure of the Shastra environment. Example CSCW
applications that exploit brokering and have been implemented in SHASTRA are briefly presented in Section 4.
Section 5 addresses future direction.

1.1 Brokering in CSCW Environments

Task brokers provide a mechanism by which clients programs needing service make requests to brokers and
receive responses transparently. Brokers work seamlessly in heterogeneous distributed environments. Clients are
typically interested only in the results of service requests, and are not usually concerned with how and where the
request is serviced. In brokering, clients are abstracted away from implementations of the services that they require.
Brokers are responsible for locating service implementations for a client request, conveying appropriate request
information to the implementations, and finally conveying results to the clients. Thus, clients use brokers which
interoperate with servers to provide services.

Brokering is useful as a facility that allows access to non-native functionality in applications. They have
traditionally been used in single user systems. Service requests used in brokering systems are usually computationally
large, to benefit in the classic compute-communicate tradeoff. In the design arena, brokers are used to access servers
for analyses, simulations, animations, and other special purpose computation not locally available in an application.
They are used to conduct database and file system searches in information systems.

Cooperative brokering refers to the notion of systemic and mutual interoperation of multiple task brokers along
with the exchange of supporting information in order to speed up the process of servicing requests for multiple

clients. Here, brokers maintain meta-informatic descriptions of the tasks that they are performing, infrastructural
information about local workstations, and other state information, in order to possibly optimize on actual service
requests issued to servers, effectively reducing total time to service.

In a CSCW setting, users are collaborating to perform tasks. Since they are typically striving towards a common
goal, there often is commonality in the computational tasks they need to perform. IT the tasks are performed through
a brokering system, it is possible to identify the commonalities in task requests and response presentation. This can
be exploited to optimize the overall throughput. This is especially true in replicated CSCW systems, where multiple
users can simultaneously generate multiple service requests.

1.2 Benefits of Brokering

Brokering has well known benefits.

1. Automatic Resource and Service Location

2. Workstation Cluster Utilization.

3. Load Balancing

4. Scheduling

5. Parallelization

6. Decomposition

7. Modularity

In a distributed system, different types of services may be offered at different points on the network. Brokers
relieve clients of the burden of keeping track of where a required service is offered. Brokers can instantiate and use
servers on accessible idle machines on the network to service requests. Brokers schedule jobs based on workstation
load, speed, and applicability for a particular task, by maintaining relevant information about systems. Dynamic
scheduling is used to balance load on server machines. Brokers can utilize the option of executng independent tasks
on separate workstations, using the computational power of multiple workstations in parallel to reduce throughput
for tasks. It is also sometimes possible to decompose large tasks into multiple independent subtasks that can be
executed in parallel. Clients that use brokers consider the service provider to be a black box. This has great utility
from the software engineering point of view, since the 'plug-and-play' paradigm it enables promotes software reuse,
and eases testing and debugging.

There are additional benefits in the CSCW realm. Cooperating brokers can make optimizations based on the
fact that collaborating users often have similar or identical service requests. Such brokers can cache request-response
tuples, so that identical requests do not need to be executed again. Thus requests that need results in many sites are
executed only once. Application and task dependent partitioning of tasks provides a finer grain for determination
of functional overlap, providing further scope for optimization. Coarse grain tasks can sometimes be decomposed
into finer grain subtasks. In addition to the being potentially parallelizable, this presents more opportunities for
optimization.

1.3 Related Work

Object Management Group (OMG), an industrial consortium, proposed the Common Object Request Broker
Architecture (CORBA) [8], which was adopted from a joint proposal of the constituent companies (DEC, Hewlett
Packard, HyperDesk, NCR, Object Design, and SunSoft). The document defines a framework for different Object
Request Broker (ORB) implementations to provide common services and interfaces to support portable clients and
implementation objects.

Groupware focuses on using the computer to facilitate human interaction for problem solving. Ellis et afpresent
an overview of the field in [10]. The Rendezvous system proposes a powerful architecture for multi-user applications
and provides high level support for creating groupware [13J. Language based approaches to generating multi-user
applications are described in [12]. GroupKit presents a mechanism for creation of realtime work surfaces which are
essentially shared visual environments [14]. Weasel is another system for implementing multi-user applications [11].

2

Networked collocation facilities have received a lot of attention e.g. MMConf [9]. Rapport [1], etc. They provide
useful conference management facilities, and support content-independent shared view-spaces.

The CSCW infrastructure of the Shastra system facilitates creation of collaborative multimedia applications
[3]. We adopt an abstract application architecture that enables inter-application communication and cooperation.
It supports remote task invocation and brokering. We propose a hybrid computation model for CSCW applications
which is very effective in a heterogeneous environment. The system provides intuitive session initiation methods,
flexible interaction modes, and dynamic access regulation. We motivate the utility of cooperative brokering in CSCW
environments by highlighting some applications that would benefit from such a scenario.

Cooperative brokering has great potential in the scientific design and analysis arena, where brokers are already
used to access servers for analyses, simulations, animations, and other special purpose computational tasks not
locally available in applications. As we head towards CSCW environments to support team design (e.g. [2]), the
multiplicity of brokering requests for computationally intense tasks shall provide opportunity for optimizations of the
kind we describe. In addition, this would benefit CSCW environments for Air Traffic Control and other applications
like Office Information Systems which need to conduct database and file system searches.

Another important application domain is Cooperative Information Retrieval, where multiple users collabora
tively browse through information servers looking for specific data. In this application, front end browsers could
communicate with brokers and drive them to use information servers to retrieve specified information. Cooperating
brokers could share common parts of information searches. Collaborative hypermedia browsing is an important ap
plication of this setup. Brokers can cache retrieved information for use by all collaborating sites, eliminating the need
for multiple repeated searches and retrievals. This has the advantages of reducing network traffic and turnaround
time. An important issue here is information representation, which enable brokers to identify commonality.

2 SHASTRA - A Brief Tour

Shastra 1 is an extensible, distributed and collaborative geometric design and scientific manipulation environ
ment. The Shastra system architecture is described in detail in [3]. Example collaborative multimedia applications
are described in [2]. Shastra consists of a static and a dynamic component. The static component, the Shastra
layer, is a CSCW infrastructure for building scientific CSCW applications. It defines an architectural paradigm that
specifies guidelines on how to construct applications which are amenable to interoperation. Its connection and distri
bution substrate facilitates inter-application cooperation and distributed problem solving for concurrent engineering.
Its communication substrate supports transport of multimedia information. The collaboration substrate supports
building collaboration-aware synchronous multi-user applications by providing session management and access reg
ulation facilities. In addition to the distribution, communication and collaboration framework, Shastra provides a
powerful numeric, symbolic and graphics substrate. It enables rapid prototyping and development of collaborative
software tools for the creation, manipulation and visualization of multi-dimensional geometric data.

The dynamic component of Shastra is a runtime environment that exploits the benefits of the architectural
philosophy and provides runtime support for conferenced applications. The Shastra environment consists of multiple
interacting processes, collectively called Tools. Tools are built on top of the CSCW infrastructure of Shastra.

2.1 Tool Architecture

Tools are built with the underlying idea of inter-application cooperation. Every tool is abstractly composed
of three layers. The Engine is accessed through any of the Interfaces via a Mapper. The application-specific
core, the Application Engine, implements the core functionality offered by the tool. Above the core.is a functional
Interface Mapper which invokes functionality embedded in the Engine in response to requests from the Graphical
User Interface, ASCII Interface or the Network Interface. It also maps requests to alter the user interface or to
send messages on the Network Interface. The separation of Engine and Interface makes it easy to build multi-user
systems, since it enables maintenance and display of shared state at a user interface due to external commands in a
distributed system.

The GUI is application-specific. The ASCII interface is a shell-like front end for the application. Tools com
municate with other tools in the environment, via the Shastra substrate, through an abstract Network Interface,

IShll5tra is the Sanskrit word for Science

3

Toors

I Kernels
Session
Managers '---_Br_O_ke_r_s_11 Services II Toolkits

Interface Mapper I

IL-__G_u'__---.J1 I'---__A_S_C_II__I I Network I"tert"ce 1

THE SHASTRA LAYER..
Collaboration Substrate Initiate, Terminate, Join, Leave, Invite ...

...
Communication Substrate Send, Receive ...

Models, Audio, Video, 2D & 3D Graphics, Images, Text
..~. .
~ Connection Substrate Connect. Disconnect ... :. ,, ..

...n

tbh

Figure 1: High Level Application Architecture of a Tool in the Shastra Environment - Users interact with tools
via the user interface. The Shastra Layer is a connection, communication and collaboration management substrate.
Shastra tools inter-operate using facilities provided by this layer, via their Network Interface.

4

which multiplexes multiple simultaneous network connections, and implements the Shastra communication protocol
[3]. The high level block architecture of tools in Shastra is depicted in Figure 1. The architecture makes it easy for
tools to connect to other tools and request operations, synchronously as well as asynchronously.

The entire set of connected Network Interfaces of Shastra tools manifests itself as the abstract Shastra layer
at runtime (see Figure 1). It maintains the collaborative environment, provides access to functionality of different
systems, and provides facilities for initiating, terminating, joining, leaving and conducting collaborations. The
connected network interfaces of Shastra tools comprise a distributed virtual machine on which we build problem
solving applications.

The Shastra paradigm emphasizes separation of interface and function in applications by building user interfaces
as abstract, separate parts. It also makes applications amenable to networked interoperation by allowing access to
functionality via abstract network interfaces. This aligns with the concept of configurable user interfaces proposed
by [7], where user interfaces are separate, easily replaceable modules which interface with a single back end.

2.2 Runtime Environment

The Shastra environment consists of multiple interacting processes, collectively called Tools. Some tools pro-
vide scientific design and manipulation functionality (the Toolkits). Other tools are responsible for managing the
collaborative environment (Kernels and Session Managers). Yet others provide specific services for communication
and animation (Service Applications). Tools register with the environment at startup, providing information about
the kind of services that they offer (Directory), and how and where they can be contacted for those services (Loca
tion). The environment provides mechanisms to create remote instances of applications and to connect to them in
client-server or peer-peer mode (Distribution). It supports multimedia messaging between different tools (Commu
nication). It provides facilities for starting and terminating collaborative sessions, and for joining or leaving them.
It supports mechanisms for different types of multi-user interaction ranging from master-slave blackboarding (Turn
Taking) to synchronous multiple-user interaction (Collaboration). Problem solving applications in Shastra consist of
a collection of cooperating tools.

Shastra collaborations are implemented using a Hybrid Centralized-Replicated computation model. A central
Session Manager regulates collaborative activity of multiple collaboration-aware tool instances.

2.2.1 The Kernel

The Shastra Kernel is responsible for maintenance of the runtime environment. It consists of a group of cooperating
Kernel processes. It maintains information about all instances of tools in the distributed system, and keeps track of
all environment relevant activity. A Directory facility lets users dynamically discover what tools (and users) are
active in the environment at any time, as well as what functionality they provide. This includes information about
ongoing collaborative sessions and their membership. A Location facility provides contact information about where
the tools are running, letting applications dynamically connect to each other to access functionality. A Ronting
facility enables transport of data and control information between tool instances.

2.2.2 Session Managers

Collaborative Sessions, or Sessions, are instances of synchronous multi-user collaborations or conferences in the
Shastra environment. A collaboration in Shastra consists of a group of cooperating tools regulated by a Session
Manager, the conference management tool of Shastra. One Session Manager runs per collaborative session. It
maintains the session and handles details of connection and session management, interaction control and access
regulation. It keeps track of membership of the collaborative group, and serves as a repository of the shared objects
in the collaboration. It supports a multicast facility needed for information exchange in a synchronous multi~user

conferencing scenario. It has a constraint management subsystem which resolves conflicts that arise as a result of
multi-user interaction, enabling maintenance of mutual consistency of operations. It has a regulatory subsystem that
controls synchronous multi-party interaction, and provides a floor control facility based on turn-taking.

2.2.3 Fronts

Front End or Front is the term used to collectively refer to all tools in the Shastra environment that a user directly
interacts with. This includes Toolkits - actual engineering and design applications, Services - special purpose

5

~eme';)5:::::::::::::::::::::::::::::----::1----------- -:::::::::::::::::::::::::::::::::::::::-:-::-"C::eme~

:! !.. !(Front) ..•••••••••••--------------j! !LJ__ __..__ ! !!"- j !
. t. Session Manager ..:! !

------k:ronl=3:-lq(::::~:~~; 5!- r-...·...--~;o~;--5· ...·...~r-------->--F;~::· ..~:
: :: /~!..

<I t> Peer/Peer Link

Ibh

D
,-------,
I •••••••'

.. .
Hosl

Session

Session Link

Control Link

ClienVServer Link

Fronl i if:~~~~~:_~~.n~g.~~.:)1..._ ,. '. . ,

i : 1....--0jL ::::·_:::·:::::.:·:~

Figure 2: The Shastra Runtime Environment - Note that collaborative sessions span multiple hosts, and that tools
can participate simultaneously in multiple independent sessions. Arrows and dotted lines indicate paths of flow of
data and control information.

6

tbh

Brokering

Client

Service Requiremenl

Server

Service Implementation

Server

Service Implementation

Broker

Service Location

Scheduling

Load Balancing

Partitioning

Server

Service Implementation

Figure 3: Brokering in Sha.s~ra - Client Tools in Shas~ra can connect ~o mul~iple brokers, each of which can use many
servers to service requests. Brokers exchange information and cooperate to optimize request servicing.

applications primarily for communication, and Games - recreational applications. Fronts are created by specializing
~he basic Fron~ End which is a minimal collaboration-aware tool which understands Shastra protocol messages, and
generates requests to interface with the Kernel, Session Managers, Brokers and s~andard Services. Figure 2 shows a
view of the Shastra world, where different tools interact to support a collaborative environment.

Fronts add core functionality to the Application Engine. They extend Network Interface signatures to under
stand new requests, and to offer different services in the environment. This makes it possible for Fron~s to connect
to each other in client/server and peer/peer settings to access functionality, and to exchange data.

3 Brokering in CSCW

A brokering implementation should ideally meet the requirements in terms offlexibili~yand ease of use, efficiency
of service, extensibility, and interoperability with different implementations. These needs are highlighted in the
CORBA specification [8]. In Shastra we exploit the power of application architecture, and the flexibility of connection
se~up and networked interoperability offered by the substrate, to provide a brokering service to aid in Collaborative
Problem Solving. A typical setup utilizing brokering in the Sha.s~ra environment is depicted in Figure 3.

3.1 Brokers

Brokers are specialized Service Tools in ~he Shastra environment. Brokers create many instances of server tools
for the different services offered in ~he environment. This occurs automatically or under control of tools using the
Broker. In the simple case a Broker behaves as a surrogate client. Tools send multiple service requests to a Broker,
which uses i~s set of connected servers to service the multiple requests, and sends the results back to the client tools.
All Brokers service the following brokering control requests .

• Start - Request to start a server tool.

• Stop - Request to terminate a server tool.

7

• Connect - Request to connect across the network to an existing server tool.

• Disconnect - Request to terminate a server connection.

• Service - Request to service a computational task.

• Describe - Request to describe a service request to the broker.

Tools use the Start message to control creation of server instances, and the Stop message to terminate them.
They can choose the server instances to be used for the task by sending Connect and Disconnect requests to the Broker.
They use the Service message to request the Broker to perform operations on their behalf. The Broker forwards the
request to an appropriate server for servicing. The Describe message is used to provide meta-information to the
Broker describing the request. The description is shared by cooperating brokers to make optimizations.

In a more complicated scenario, Tools send large computational tasks to application specific Brokers which
partition them, in a task-dependent manner, into independent subtasks. These !lubtasks are then serviced using the
connected pool of server Tools. The results are put together and transmitted to the requesting Tools. Application
specific Brokers for different tasks are created from the basic Broker which provides application independent con
nection, communication and brokering control facilities. Such brokers support additional messages for operations
specific to the application.

Brokers exploit application-level cooperation to perform multiple tasks in parallel in a distributed setting, by
harnessing the computational power of clusters of idle workstations on a network. They use load balancing and
scheduling criteria to optimize computation time of large tasks which can be decomposed into independent subtasks.

3.2 Services

We use brokers in Shastra to transparently provide high level services to client applications.

3.2.1 Multimedia

An application area in the context of Shastra, in light of the prolireration of multimedia workstations, is multimedia
rendition and multimedia conferencing. Brokers provide a high~level abstract mechanism to handle multimedia inter
faces. Client programs that need to incorporate multimedia facilities interact only with the interface device broker.
The brokers are designed to support recording and playback of multi-media information. Using Shastra facilities
for developing collaboratve applications enables us to configure cooperating brokers to provide media conferencing
to the requesting clients. Clients that use this facility need not be collaboration aware and gain the benefit of a
conferenced architecture transparently.

The main advantages of this approach are

1. Abstraction

2. Heterogeneity

3. Extensibility

4. Modularity

Clients deal with multimedia device brokers at a very high level of abstraction. This shields them from details of
media and device handling. It also supports platform independence. The modularity provides isolation from issues
of hardware and software upgrade. Possible optimizations in a heterogeneous CSCW setting include avoidance of
redundant media format conversions.

3.2.2 3D Graphics

Another important application area in the Shastra context is that of 3D graphics rendering and conrerencing. In
this setting, brokers handle 3D view generation and display, under control of client drivers. Clients need not be
aware of the local graphics platform. They simply send data and control requests to the broker. Once again, Shastra
facilities are used to make brokers collaboration aware. Cooperating brokers can therefore provide conferenced 3D

8

viewing and interaction transparently to collaboration unaware clients. This primarily benefits applications where
collaborative visualization is needed.

The advantages of a brokered graphics system are

1. Heterogeneity

2. Modularity

Brokering supports platform and graphics device independence, shielding clients from low level details of graphics
interaction. Brokers isolate display and rendering functionality, easing incorporation of 3D graphics facilities in
clients. The modular interface provides easy upgradability to faster software and hardware platforms. A possible
optimization in a conferenced setting is shared view generation. Note that, in general, the network bandwidtb
requirements of transmitting centrally generated shared views at high rates in a conferenced scenario are too high,
even with the most advanced networking and compression technologies.

3.3 Applications

There are the following many possible user, broker and task configuration scenarios in the Shastra brokering
system. We are specifically interested in the k user, n broker, m task situation which represents the typical CSCW
setting we would like to address. Using a single broker in this setting would make it the hub of a star topology, which
would negatively affect performance. Multiple instances cooperate to provide higher throughput.

We have built applications that exploit the Shastra brokering system in the more traditional sense of providing
transparent access to services on a network.

Applications that require lots of scientific computation can benefit greatly from the Shastra brokering system.
Here brokers are used to schedule and drive scientific compute-servers to execute multiple tasks on a cluster of
networked workstations. Brokers use load balancing criteria to control scheduling in order to optimize throughput.
They also 'decompose' tasks, if possible, into independent parallelizable subtasks in an application dependent manner.
These sub tasks can be then be executed in parallel on multiple workstations.

The benefits derived from this setup include

1. Speed

2. Load Balancing

3. Resource Utilization

Scientific computation based brokering applications allow us to reap all of the classic brokering benefits. Idle worksta
tion clusters are utilized to speedily service multiple requests. Tasks that have parallelizable subtasks are completed
faster.

3.3.1 Cooperative Design

An example of multi-user cooperative design in the context of Shastra is Collaborative Smoothing using Shilp and
Ganith toolkits [2]. This application permits a group of collaborating Shilp users to collectively smooth out a rough
polyhedral model by fitting C 1 continuous patches using Hermite interpolation [5]. The Ganith Algebraic Geometry
Toolkit is optimized to perform algebraic manipulation - curve-curve, curve-surface, and surface-surface intersection,
as well as interpolation. The Shilp Geometric Design and Modelling Toolkit is optimized for boundary representation
based solid modelling. A coordinated nexus of the two has let us add a powerful group design facility to the Shastra
environment.

The smoothing operation we refer to provides an easy method for generating. solid models with curved surfaces
from approximate polyhedral models that have been created interactively. Patch computation for a face is inde
pendent of that for other faces, except for continuity requirements, and can be done in parallel. However, surface
curvature parameters often require interactive twiddling by the designer, in order to adhere to global or local crite
ria, and to control the goodness of fit. Collaborative Smoothing parallelizes the design steps by allowing multiple
designers concurrent access, and thus significantly improves design throughput. The session manager for this task
partitions the object into zones which are collaboratively smoothed by a design team. Multimedia communication
facilities permit rapid exchange or ideas and resolution of conflicts in this design scenario.

9

Generation of the surface patch is a compute intensive operation. The actual interpolation operation is per
formed by using instances of the Ganith Toolkit, or Ganith servers. In the brokered setting, the Shilp instances
communicate with their brokers. The brokers get machine load information from the Kernel, and create multiple
Ganith server instances on idle machines on the network. Users can explicitly instantiate servers on specific machines.
Shilp sends multiple patch computation requests to the broker, which uses machine load information to determine an
optimal schedule. The requests are then serviced on the connected servers in keeping with the schedule. Brokers can
be instructed to maintain a dynamic, adjustable schedule which is sensitive to change of load on the server machines.
They can also be instructed to return scheduling information to the clients.

The brokers keep track of request descriptions, and cache generated results. They exchange description in
formation periodically, and use cached results to service request repetitions. This setup significantly improves the
throughput of large design tasks.

3.3.2 Volume Visualization

Volume visualization is a very intuitive method for interpretation of volumetric data [6]. Measurement-based volu
metric data sets arise from sampling - medical imaging geophysical measurements, 3D scanning etc. Synthetic volume
data sets are generated by computer based simulation and modelling - finite element analyses, computational fluid
dynamics etc. Volume visualization provides mechanisms to express information contained in these, typically huge,
data sets via images. The synchronously conferenced collaborative volume visualization environment in Shastra (4]
lets multiple users on a network share volume data sets, simultaneously view shaded volume renderings of the data,
and interact with multiple views. It supports several ways of viewing volumetric data and provides facilities for
interactive control and specification of the visualization process.

Visualizing volumes is data and computation intensive. Large data sets are visualized using brokers which
partition image space (the volumetric data set) appropriately and use a pool of visualization servers on the network
to generate the final image. The brokers use load balancing and scheduling strategies to optimize total rendering
time.

In a multi-user setting, and even with a single user, brokers for independent visualization tasks share information
about previously visualized parts, using techniques like image caching to further improve throughput. They share
common images and parts of images to avoid needless recomputation.

4 future Direction

We have used the brokering facility of the Shastra environment to provide high level services and to improve
the efficiency of some collaborative applications. Users in a distributed CSCW setting can exploit this brokering
facility to improve throughput of individual tasks in a collaborative activity. Cooperating brokers can be used to
exploit the plurality and commonality of tasks in a cooperative setting, improving throughput for the entire group.

We need to explore formal information representation mechanisms to describe tasks to brokers.

Acknowledgements

This work was supported in part by NSF grants CCR 92-22467, DMS 91-01424, AFOSR grant F49620-93-10138,
NASA grant NAG-1-1473 and a gift from AT&T.

10

References

[1] Ahuja, S., Ensor, J., Horn, D., (1988), ''The Rapport Multimedia Conferencing System", Proc. A CM Conference
on Office Information Systems '88, Mar. 1988.

[2] V. Anupam and C. Bajaj. Collaborative Multimedia Scientific Design in SHASTRA. In Proc. of the First ACM
International Conference on Multimedia, ACM MULTIMEDIA 93, pages 447-456. ACM Press, 1993.

[3] V. Anupam and C. Bajaj. SHASTRA - An Architecture for Development of Collaborative Applications. In Proc.
of the Second Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, pages 155-166.
IEEE Computer Society Press, 1993.

[4] V. Anupam, C. Bajaj, D. Schikore, and M. Scbikore. Distributed and Collaborative Volume Visualization. Com
puter Science Technical Report, CAPO-93-50, Purdue University, 1993.

[5] C. Bajaj and I. Ibm. Algebraic surface design with Hermite interpolation. ACM Transactions on Graphics,
19(1):61-91, January 1992.

[6] A. Kaufman. Volume Visualization. IEEE Computer Society Press Tutorial, New York, 1990.

[7] K. Lantz. An Architecture for Configurable User Interfaces, 1986.

(8) OMG and XOpen. The Common Object Request Broker: Architecture and Specification. Object Management
Group and X Open, 1992.

[9] Crowley, T., Milazzo, P., Baker, E., Forsdick, H., Tomlinson, R., (1990), "MMConf: An Infrastructure for
Building Shared Multimedia Applications", Proc. ACM Conference on CSCW '90, Oct. 1990, pp. 329-342.

[10] Ellis, C., Gibbs, S., Rein, G., (1991), "Groupware: Some Issues and Experiences", Comm. of the ACM, Vol. 34
No.1, Jan 1991, pp. 38-58.

[11] Graham, T., Urnes, T., (1992), "Relational Views as a Model for Automatic Distributed Implementation of
Multi-User Applications", Proc. ACM Conference on CSCW '92, Vol. 1.

(12] Hill, R., (1992), "Languages for Construction of Multi-User, Multi-Media Synchronous (MUMMS) Applica
tions", In Brad Meyers (cd.) Languages for Developing User Interfaces, Jones and Bartlett, 1992.

[13] Patterson, J., Hill, R., Rohall, S., Meeks, M., (1990), "Rendezvous: An Architecture for Synchronous Multi-User
Applications", Proc. ACM Conference on CSCW '90, 317-328.

[14) Roseman, M., Greenberg, S., (1992), "A Groupware Toolkit for Building Real-Time Conferencing Applications" ,
Proc. A CM Conference on CSCW '9£, pp. 43-50.

11

	Cooperating Brokers to Support Cooperative Work
	Report Number:
	

	tmp.1307986960.pdf.bOhfj

