
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1996

Object Based Constraint Management for Collaborative Systems Object Based Constraint Management for Collaborative Systems

Chandrajit Bajaj

Peinan Zhang

Report Number:
96-039

Bajaj, Chandrajit and Zhang, Peinan, "Object Based Constraint Management for Collaborative Systems"
(1996). Department of Computer Science Technical Reports. Paper 1294.
https://docs.lib.purdue.edu/cstech/1294

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

OBJEcr BASED CONSTRAINT MANAGEMENT
FOR COLLABORATIVE SYSTEMS

Chandrajit Bajaj
Peioao Zbang

Department or Computer Science
Purdue University

West Larayette. IN 47907

CSD TR-96-0J9
June 1996

Object Based Constraint Management for
Collaborative Systems

Chandrajit Bajaj Peinan Zhang
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

Email: {bajaj,pnz}@cs.purdue.edu
Phone: (317)494-6531 Fax: (317)496-2567

June 28, 1996

1 Introduction

Although interest in distributed and collaborative applications is growing rapidly, con

struction of such applications is still difficult and time consuming. Flexible shadng and

system consistency are fundamental problems. A typical example is a collaborative design

system in which multiple users arc involved. These users may be separated in geographi

cally distributed sites, may share the same working space, and may be able to access and

manipulate a shared object (data, view, etc) simultaneously through distributed interfaces_

In a more complicated case, a shared object can be partitioned among users. A whole design

task can be partitioned among users as well, and the same partial or final result can be

viewed by all users. All of this requires a flexible sharing capability and introduces many

consistency problems. More flexible and powerful sharing capabilities are required and more

work in management and control is needed. When developing such application, there will be

much more effort spent on sharing management and consistency maintenance than on the

implementation of the application function itself.

If a general mechanism could be designed to handle sharing and system consistency,

construction of multi-user applications would be greatly simplified.

1

1 INTRODUCTION 2

Because of the diversity in motivations and interests among users and the variety of

application domains, the types of relationships belween objects, the meanings and the re

quirements for sharing and consistency could be very different. Thus, the maintenance

mechanisms we need should be flexible, efficient and easily controlled.

Constraint systems have proved to be useful mechanisms to maintain relationships among

values, such as the geometric or dependent relationship among graphical objects, or the

consistency between underlying data and their graphical depiction. This technique has been

widely used in many interactive graphical user interrace systems [6,22,15]. So far, few

system uses constraints to link the behaviors (i.e, functions, instead of variables) of objects.

We believe that a constraint system is a useful and ideal mechanism for specifying shared

behaviors and maintaining relationships in multi-user systems in which there are a great

lllany state variables that must be kept consistency. Furthermore, a multi-user system always

allows iTldependent controls to distributed views, and concurrent manipulation to internal

data from distributed views. So consistency between data and views, or between distributed

views are become complex, such that some time it is difficult to specify relationships only by

variable value. The motivation of this work is to design a constraint management system to

specify and maintain relationships among real object, that 1s not only the object variables

values, but also object methods, so that those complex relationship in multi-user applications

can be easily specifled and maintained.

Prior Approaches

Constraint systems are widely used in many interactive graphical direct-manipulation

systems, such as Coral [22,23], Garnet [15], ThingLab TJ (14,8,9,20], and Multi-Garnet

[19]. We mainly investigate where the constraints are used and how they are used.

Geometric layout is a most natural application for constraints which are used for specified

and maintained the geometry relations among entities or objects. Sketchpad [21] is the

earliest system in this area, it used constraints to define the geometric relationships (parallel,

attach, etc..) among geometric lines. The systems in this area include Thing1ab [5], Juno

[161 and Magritte [10J.

Constraint-based user interface systems extends using constraints to specify the depen

dent relationship (e.g., parent and child relation) of interface widgets, as well as to make the

1 INTRODUCTTON 3

consistency between application data and its graphical depiction. Grow [4], Coral, Gamet

are some of these systems. GameL [15], developed from Coral, is a user interface toolkit

based on a prototype-based objed systems. It relies on active value architecture, in which

an active value is registered by application program with a set of callbacks procedures and

is linked with a list of graphical objects, as shown in Figure 1. Once the active value is set,

l.hc constraints will propagate the change to linked graphical objects, and will call t.he pro

cedure to inform the application about the changes. Gamel extends constraints to support.

the construction of complex compound of objects containing multiple graphics objects and

constraints.

Rendezvous [18, 13J system provides high-level support for developing synchronous multi

nser applications. It is based on Abstraction-Link-View architecture, in which applicat10ns

are separated as abstract objects and view objects, and users from multiple views can interact

with a central abstraction through constraint "Links", as shown in Figure 2. Rendezvous

consLra1llt system provides many features of Garnet in building its graphics system. And

extensively, the constraint maintenance system in Rendezvous is used to link between the

abstraction and views, to maintain the consistency between the multiple views, and to hide

concurrent access from multiple users.

Although these systems have different capabilities and complexities, they are all ba."ied

on common features. One is that the constraints are only associaLed with values, no matter

graphical constraints or data constraints as defined in [22]. So if we think that the instance

variables define object states, and metllOds describe object behaviors, then the existing

systems only maintain the relationship among object states, but not object behaviors. The

second 1S that value items are visible to all other values, this is contrast to object based

FIGURE 1: Application structure in Garnet

1 INTRODUCTTON

,..

FIGURE 2: Application structure in Rendezvous

4

systems, and make them difficult to include heterogeneous objects. The third is that they

assumed that all relationships between objects have the same requirements, so that they

are represented and handled in the same way. Thus, programmers design more and mOTC

powerful methods for representing and solving constraint relationships (ill order to increase

their capabilities). Another assumption is that only one outside perturbation can apply to

a set of objects at a time. Although Rendezvous allows multiple access to a shared objccL

at Ollce, the basic function of its access constraints is to hide concurrent access, usmg a

turn-taking technique to serialize the multiple accesses to a sequence of cases.

Main Results

Because of our interests in the construction of multi-user applications, we have different

emphases and different requirements than in single-user user interface systems. The above

features and assumptions of exist-ing systems are not always satisfied to a multi-user col

laborative application. Here we mainly pay attention to the features unique to multi-user

applications. These features include:

1. Internal data may have multiple views distributed in different sites. Each user from

a distributed view can set up control to view objects independently_ At sometime,

it requires that these views be tightly constrained as WYSIWIS (What You Sec Is

What I See), or while at the other time, it requires that these views be customized

independently.

2. Multiple users can work in the same shared working space and are able to access a

shared object simultaneously; at once, more than one user can manipulate the same

set of constrained objects.
-I
i

!

1 lNTRODUCTION 5

3. Working spaces can be partitioned among users so that each user can work indepell

dently on the interior of a partition. The boundary part will be subjected to access

constraint. Any change in the boundary may affect all adjacent partitions. This im

plies that some constraint relationships may be created dynamically, and the constraint

maintenance should force the changes to propagate into more than one subspace.

4. An application task can be partitioned among users, thus any action or result in one

sub-task may affect the actions in other sub-tasks. The dependencies among tasks are

difficult to be specified by values.

In general, a multi-user collaborative application will introduce many more types of ob

jects and relationships than a single-user application does. These relationships are associated

with object states as well as object behaviors. So it is desirable for a constraint system to

maintain the relationship among variable value, as well as functions.

In a multi-user application, the complicity of these relationships are different widely.If a

weak sllaring and maintenance system is provided as an engine for construction of multi-user

applications, an application programmer is forced to handle a lot of consistency controls. If

an overly powerful maintenance system is provided, an application's performance will most

likely be degraded by unnecessary overhead. We believe that a suitable constraint system

for a multi-user application should provide many methods for specifying and maintaining

relationships and allow different applications and different types of relationships to choose

and link with the appropriate methods.

Lastly, we believe that simple turn-taking is unacceptable for collaborative applications

in which human factors are involved.

Our work is motivated at the extension of constraints to the real object domain, and

the investigation of a new way to flexibly organize a constraint management system based

on existing technique rather that definition of a constraint-based graphical system or design

new constraint solving mechanism.

This paper presents a flexible paradigm in which a constraint system is abstracted as ob

jects and services, and provides multiple constraint maintenance services to multiple types of

objects. This flexibHity, especially constraints associated with object methods and concur-

2 MODEL 6

rent modification, allows us to develop constrained based collaborative systems that are much

more general than prior systems such as Coral, ThingLab, OT Rendezvous. This paradigm is

incorporated into Shastra, a distributed and collaborative geometric design and scientific ma

nipulation environment, which is designed to ease the construction of multi-user distributed

and collaborative applications.

The Shastra constraint system provides an effective way to implement OUT object service

model. As a special consideration for multi-user applications, we designed a constraint.

maintenance service which allows multiple users to simultaneously manipulate the shared

objects. A set of collaboral.ivc applications based on the constraint system were developed

in the Shastra environment. Our experiences show that this paradigm greatly simplified the

creation of collaborative applications.

III the rest of this paper, first we introduce our model and its features. Then we describe

how we implemented the constraint system in Shastra. Next, we discuss a new constraint

solving method which allows a set of constrained objects to be manipulated by multiple

changes simultaneously. Several collaborative applications designed in the Shastra environ

ment are presented to demonstrate some initial results_ Finally, we draw conclusions and

discuss future work.

2 Model

The main idea of our design is to provide a generic constraint maintenance service to a

common object system. In this model, a constraint system consists of two parts: an object

system and a maintenance system. The object system contains application-defined objects

and relationships, whereas the maintenance system includes a set of services with different

solving methods. This model can be described as following:

1. The object system contains a set of objects, which could be centralized or distributed.

2. The relationship can be defined not only among instance variables in objects, but also

among methods in objects.

2 MODEL 7

3. The relationships among objects can be different types (e.g., unidireetion or bidireetioll.

etc.) according to application requlrements. Different types of relationships can be

represented and maintained in different ways.

4. The maintenance system consists of a set of constraint services with different solving

capability and complexity. Each service can be "connected" to objects to maintain the

constraint relationships independently_

5. If one type of relationships in a set of objects is completely independent of others, it

can be maintained iteratively or concurrently with other relationships.

The conceptual model is shown in Figure 3.

Based on this model, a constraint system is just as a set of object services with connection

interfaces; thus, application programmers can specify the relationships among objects in

multiple types according to application requirements and "link" them with the appropriate

services.

2.1 Design and Implementation Issues

Usually, a constraint systems is defined as a set of variables, which store values, and relation

ships specifications. And a constraint relationship is specified as a set of source variables,

one or more target variables, and one or more evaluation functions. Whenever the value of

any of source variables changes, the functions is applied to the new value Lo create a value

Lo targets.

Malnrananca ~'8m

r,=<,~,"="=_-,····,;

.::G2S.. .

TCI.,;o","

Obj<:et:o Obj..,.. Obj<:et:o

'?~!?r;:.~¥~~• ,i

FIGURE 3: The conceptual model of a constraint sysLem

2 MODEL 8

In the object service model, the constraint system is defined by a set. of objects, which is

stored values, methods, and constraint relationships. And a constraint relation is specified

as a set of source items, target items, and constraint functions. The source items and target

items could be variable values in objects, OT methods in objects. Whenever any source item

is "write" accessed, the constraint fundion will be forced to create llew value to the target

variable or to trigger the target method.

The followings are important issues in t.hc design and implementation of this model.

1. The object domain of the constraint system.

2. The definition or spccirication of the relationships among objects.

3. The constraint services provided by the constraint system, and the cla.'>sificatiOll or

organization of the services. This directly reflects the capability of a constraint system.

These issues reflect the features of our design and are unique in our model, we will discuss

them in our design and implementation of the Shastra constraint manager.

2.2 Features

This model provides the following features:

• Since it provides multiple maintenance services, it is efficient in maintaining simple

relationships, and provides the capability to represent and maintain complicated rela

tionships as well.

• The object based model supports encapsulation, such that it is independent of ob

ject implementation and can easy to maintain the relationships among heterogeneous

objects.

• It is based on a generic object system, so that it can specify relationships among object

states, as well as object behaviors. In this sense, some complex, such as domains and

tasks relations, can be specified easily and maintained uniquely.

.3 Sf/ASTRA CONSTRAINT MANAGER 9

• This object service model makes it possible to implement concurrent or distributed

maintenance services. Once the sets of objects or the constraint relationships in differ

ent types are completely independent, they can be maintained by multiple processes

simultaneously. This leads to much better performance when a complex system in

volves several thousands of constraints.

• We abstract constraint maintenance as an object service, which makes our constraint

system easy to extend and integrate with any existing or special constraint services.

3 Shastra Constraint Manager

Shastra is a distributed and collaborative design and scientific manipulation environment,

its system architecture and infrastructure for the construction of collaborative multimedia

applications are described in detail in (1,2,3].

In this section, we mainly discuss the object domain of our constraint system, and how

Shastra provides the interfaces to application objects, so that they can flexibly connect

to the appropriate service. The next section will discuss how we organize our constraint

maintenance services.

3.1 Object Domains

Shastra environment is used to construct multi-user applications for geometric modeling,

collaborative design and collaborative visualization.

These applications usually contain complex structure data. Each structure data contain

thousands of components with a small number of different types, such as a polyhedron

structure data usually contain thousands of points, edges, and faces. Constraints are used

to maintain relationships among components external to a structure data instead of internal

to a structure data. Comparing with the amount of components in an objects, only a few

components will have constraint relationships with others outside of the structure. Most

of time, the components of a structure data will have same features, or states, and the

constraints will be reevaluated whenever any of them changes. So, define constraints for

3 SHASTRA CONSTRAINT MANAGER 10

each component of a structure data will be time and space consumed. Thus, we define

the structure data as basic constrained data objects, such that the constraints are used to

specify the relationships among their components. And an aggregate object Lype is defined

for cad type of components, which can be used to specify the relationships of this type of

components hold. And the aggregate objects will have components pointed to components

which are constrained with others.

Besides data objects, the constraint systems also includes view objects. The view objects

in Shastra arc 3D graphical objects, rather than 2D objects, so it will contain much more

control information which is only related to 3D graphical views, such as camera, light, or

some event functions. So constrain connection among multiple distributed view objects will

be complex and different from other existing systems.

Constraint is defined as a separated object which links variables or methods among

objects.

User interaction with view objects will changes the view objects, functions in application

core will update the data objects, while constraint manager will evaluate the constraint

objects, which will propagate the changes from view object to data object, vice visa, and,

will propagate the change from view object to view objects.

We define the constraint relationship among variable values as value constraints, and

Lhe relationship among object method as method constraints. A typical constraint can be

represented as A < - f(B, C). For a value constraint, it can be interpreted as A's value is

always equal to the value of Band C under the relation of f. If the value of B or C changes,

the value of A is set to a new value. For a method constraint, it is interpreted as if method

Band C occurs satisfying the condition of f, the A occurs. For example, the relation r is a

OR relation, the above relationship means that either method B or C is applied, method A

is applied.

3.2 Application Interface to Constraint System

The constraint system is added into Shastra as a service and it is attempted to reduce

the additional works for application as far as possible.

-VVe extend the idea of active data model, which is used in Apogee to store, derive and

,3 SHASTRA CONSTRAINT MANAGER 11

update data values on the basis of functional rules. The active data in our system is the

adive object in some sense. It not only can connect data values, but also can connect object

method. And it supports the generation of message to invocate object method, as well as

deriving object data values.

There are import and export interfaces between an application and a constraint system.

When an object is created, application program uses its export interface to export the value

items and method items, which can effect to or be effected by outside, to constraint systems.

Relationships between items can be specified statically or added dynamically. Once there

is a changes to those exported items, application will report the changes to the constraint

system. The Constraint system uses import interface to import items and relationships

specifications. It will mai.ntain these relationships under indicated requirement. And it uses

its export interface to export the derived value or method invocation to the application.

There are two main advantages. One is the constraint system can represent and mai.ntain

the relationships among heterogeneous objects. Another is it is possible for a constraillt

system to select different solving methods to satisfy different requirements.

3.3 Interface to Constraint Services

One of the critical problems in the implementation of our service based model is how a

set of application objects can "connect" with the appropriate service.

Unfortunately, the system cannot know what type of relationship a set of objects will

has. But application programmer do know the type of relations a set of objects will be.

So programmer can declare the type of the relationships. The constraint relationships in

Shastra are represented constraint graphs. When objects are created and the relationships

are specified, the constraint graph is created based on the requirement of constraints in

(licated by the programmer. And the appropriate constraint solving method will be used

to propagation the changes through the constraint graph. When a constraint is created,

added or removed, or an object is created, added or removed, the system will reconstruct

the constraint graph based on the type of the constraints.

According to our model, the constraint maintenance system bas been implemented in two

ways. One is as a set of library functions which can be linked into an application program

3 SIlASTRA CONSTRMNT MANAGER 12

and run by an application process. Another way is to implement it as a set of object serverSj

a di[crent set of objects with different relationships can dynamically connect with different

servers to request maintenance service.

In order to provide a flexible and transparent "connection" to different types of constraint

maintenance servers, we extend the concept of an Object Request Broker (ORB) [17]. Tn our

implementation, a broker works as a generic constraint maintenance service to all constraint

objects, communicating with a set of constraint maintenance servers to do the actual work.

According to the different constraint specifications, the broker routes the request to the

appropriate constraint maintenance server. Figure 4 shows the conceptual paradigm.

FIGURE 4: Brokered constraint maintenance system

3.4 Functions of Shastra Constraint System

Based on the Shastra application structure model [3], an application consists of a set of

"Tools" and a "Core" which implements actual functionality. A tool consists of an "Interface"

and a 'lContexC' which is characterized by a "State" (see Figure 5). "Context" can be

local or remote, and "State" can be private or shared. User actions generate "Events"

to modify the "State" using functionality defined in the "Core". Collaborative setting in

Shastra is based on a session modelj that is, a session is a unit of collaborative activity. The

session context is the setting of connected shared contexts in multiple tools and provides

collaboration awareness to all users in the session (see Figure 5).

The Shastra constraint system is not used to construct its graphic systems, instead, it

is maillly used to support requirements of its structure model and multi-user applications.

That is:

4 CONSTRAINT MAINTENANCE SERVICES

............ ~....._---. - -
13

,.. .. ,.. ,
'""

,
""" 0- ,

0- 0-"'" ,,,

FIGURE 5: Session model based collaborative sel.ting.

• It tightly connects interface with context state, so that the interface always depicts the

current state.

• It connects multiple views of the same shared contexts.

• It connects multiple distributed instances of the shared context.

• It is used to connect multiple distributed view objects whenever necessary_

• It can specify and maintain the relationships among domain objects and task objects.

• It is used to handle multiple accesses to the shared objects.

Some of these functions are shown in Figure 6. The connector is just a set of constraints.

4 Constraint Maintenance Services

In our system, several constraint maintenance services are designed with different solutiOTl

methods and various complexities, so that, for different types of relationships, we can usc

different types of constraints and link with different constraint maintenance services.

Currently, only one-way constraints are used in which a relationship can be uniquely

represented by a single method, and all these solving methods are based on local propagation

techniques. Conceptually, constTaint Telationships are represented as a graph (a directed

4 CONSTRAINT MAINTENANCE SERVICES

Sile I

Interface

Sh=d
COn!cxt

c::::::::J Conneclor

Site 2

Interface

Shnred
COOIC;1:l

14

FIGURE 6: Constraint connector inside/between distributed tools of an appli
cation in Shastra

graph in one-way constraints). A node represents an object or a constraint, an edge represents

that there is a relaLion bcLween the object and the constraint. Figure 7 shows a simple

constraint graph.

o Ob)xl

C> eooslraint

- Dependency

- 3> Change

FIGURE 7: An one-way constraint graph with multiple changing sources

The types of constraint services are currently classified by two factors. One is the prop

erties of the constraint. graph: a "tree", a DAG (Directed Acyclic Graph), or an arbitrary

directed graph with cycles. The second fador is the number of concurrent changes that arc

allowed.

Existing constraint systems have provided many efficient ways to solve constraints in a

simple "tree" graph case l with multiple definitions, and sometimes in the presence of cycles

as long as only one change occurs at a time [22 1 121 20].

Here, we present a new service for maintenance of constraint relationships under the

occurrence of multiple and concurrent changes at a time. We believe this problem is a

4 CONSTRAINT MAINTENANCE SERVICES

feature unique to multi-user applications, and deserves special consideration.

4.1 Problems

15

In multi-user applications, especially in a collaborative design applications, multiple users

are expected to work in the same working space as far as possible. In this case, users access

and manipulate shared objects from their own interface. If we specify the set of underlying

objects with a constraint graph, then multiple changes are applied to different nodes in

the graph simultaneously. Figure 7 shows such a constraint graph. These changes may

propagate from different directions to a node, (e.g., node A in Figure 7), which is defined

by multiple constraint methods, and cause a conflict or an inconsistent result in this node.

Default turn-taking Or serialization of actions is not satisfactory in the context of human

factors [11]. We cannot take just one change and ignore tile others either, because that will

lead to an inconsistent result. Figure 8 shows an example of these cases: user A and user B

try to paint a graph with four nodes w, x, y, z, and each node's color is constraincd by the

colors of two adjacent nodcs, e.g., y.color (- x.color and y.colo1· (- Z.COI01·. Now, user A

aTld user B simultaneously begin to paint the graph with two different colors (e.g., red and

green) from nodes x and z, respectively. User A paints the graph in the order of x, y, z, and

w, and user B paints the graph in the order z, w, x, and y,

If we use a simple turn-taking method, then the color of this graph will first change to

one user's color and then to the other user's color. This result is not the expected one in a

collaborative application. If we simply take one change, whether the first or the last, and

User A UserS
I W I

0/ 0/
X
~

~z

y

FIGURE 8: Two users are painting a graph simultaneously

4 CONSTRAINT MAJNTENI\NCE SERVICES 16

19norc the other one, then if we allow some constraints to go unsatisfled, we will get the

graph with partly red and partly green, otherwise the painting process will go on forever.

4.2 A Constraint Solving Method

We aim at designing a constraint solving method such that constraint relationships can

be maintained under the situation of multiple change sources. In stead of using a simple

locking mechanism, we integrate the concurrent control techniques in distributed systems.

Here we designed an algorithm to support concurrent modification. This algorithm allows

multiple users simultaneously manipulate the same set of objects without explicit synchro

nization with cadl other or centralized control. Tn this method, if A and B, for example,

change the node x and y in the graph at the same time, the final result should be the same

as AB if there is no conflict, or A (reject the change of B), or B (reject the change of A).

The constraint solving process consists of three phases: generate a solution graph, order

the constraints in the graph, and evaluate the constraints in the ordered list.

Once there is a change applied to a node, a solution graph (DAG) with this node as a

source is generated according to the propagation of the change through the constraint graph.

The consistency will be a problem only when the DAGs generated from each source have

common nodes and if they exist at the same time. We add one more pass to mark nodes so

that we can ensure that there is only one solution DAG if there is any conflict. In this case,

the earlier action will have a higher priority.

Each node has a mark field with a pair (timestamp, color). Initially, each node is un

marked. A time stamp is assigned to each change and propagated with each change. From

each changing source, each reachable node will be marked with (timestamp, Green) in the

first pass and marked with (timestamp, Red) in the second pass. An nodes with the same

mark (timestamp, Red) will be in the final solution graph.

Supposing a change arrives at time ts, there may be some nodes already marked with a

timestamp tp, the algorithm marks nodes by DFS as followings:

• First Pass: For each reachable node do:

1. If it is unmarked, then marks it with (ts, Green).

5 APPLICATIONS 17

2. If it is marked with (ts, Green), then ignores it (it is a cycle, simply ignore it).

3. If it is marked with (tp, Green/Red), and tp<ts, then this change -is rejected, stop

(reject the latcr changes).

4. If it is marked with (tp, Green), and tp>ts, then re-marks the node with (ts,

Green) (earlier action has a higher priority). Put tp into a record list.

5. If it is marked with (tp, Red), and tp>ts, then if tp is in the record list, fe-marks

the node with (ts, Green), and continuej otherwise, this cl1ange is rejected, stop.

• Second Pass: For each reachable node do:

1. If it is marked with (is, Green), then marks it with (ts, Red).

2. If it is marked with (tp, Green/Red), and tp<ts, tllen this change is rejected,

stop.

3. Otherwise, error is reported, stop.

If these two passes are successful, a solution graph is generated and states of nodes can

be ensured of no conflict or inconsistency. Otherwise, the user with the rejected change will

be informed, so that tlw user in the collaborative activity is aware of the concurrent access.

After we get a solution DAG, we order the nodes in the DAG with a topological sorting

algorithm [7]. Then the constraints in the ordered list are evaluated one by one.

A more complicated service can be defined by allowing a solution DAG with cycles, or

allowing nodes in the solution DAG to be defined by multiple methods. In this case, the

above algorithm combines with previous common techniques, such as "once around the loop"

or "constraint priority", to break cycles or choose one constraint definition.

5 Applications

We have developed several collaborative applications in the Shastra environment to test

our design.

5 APPLICATIONS

5.1 Collaborative Visualization

18

Collaborative VAIDAK is a medical imaging toolkit for collaborative visualization. One

scenario is that two users simultaneously visualize the same CT data with different views

while sharing output in a master-slave mode, that is, each user creates a master window

(view) on his own site to control the visualization, and a slave window (view) is created 011

the other user's site to show what he is doing. Figure 9(left) shows two views in one user's

site, the lert is a master view which can be manipulated by this user, the right is a slave view

to indicate the other user's result. Constraints in this example connect underlying data to

image view, as well as slave views to master views, as shown in Figure 9(right). Both users

can manipulate shared data through master views, if there is conflict between two different

actions, one of them has to be rejected. When the shared data is changed, for example, some

CT slices are added, removed, or edited, this change will be reneeted to both master views as

well as slave view sides by data-view constraints. If the user change some view parameters,

like colors, or camera, in master view, then the changes will be "propagated" to slave views

through view-view constraints. And both users can change his view controls independently,

the slave view wHl be updated as well.

o Object

- D.t:J._Viow COll3lrni.tll

- View_Viow c."."".In,

FrCURE 9: Collaborative Visualization in master-slave mode. Left is Mas
ter/Slave windows in one user's interface. Right is a constraint graph of
data-view and view-view constraints.

5 APPLICATIONS

5.2 Collaborative Modeling

19

Collaborative ISMA (interactive surface modeling and analysis) is a toolkit to inter

actively design and visualize geometric objects. This toolkit permits a group of users to

collaboratively edit and smooth out a model by fitting certain continuous patches. Once

the object is partitioned, the algebraic continuity requirement imposes constraints at the

boundary of a partition. Users of adjacent parts must agree on the parameter setting for the

boundary vertices and edges so that continuity requirements are not violated.

Figure 10 shows a scenario in which two users collaboratively smooth an object by

partitioning the object into two parts: each user can set up conLrol parameters and edit

vertices, edges, and faces internal to his/her own part simultaneously. Constraints connect

the sllared data and views, and tightly link two distributed views to achieve WYSIWIS

behavior. Each user can see the independent action of another user. When a user tries to

edit an edge along the partition boundary, an information dialog box will pop up in the user's

site to inform the user that this edge is subjected to an access constraiTlt and that he/she

needs to wait for agreements from the others. Request dialog boxes will pop up in the other

users' sites, which allows the other users to indicate their agreement or disagreement (see

Figure 11). Only when the other users agree to modify the boundary, can the modification

or edit be applied. Once a boundary edge is updated, the adjacent patches in both parts

FIGURE 10: Two users collaboratively smooth an object, each user can modify
a partition simultaneously

5 APPLICATIONS

FIGURE 11: When a user tries to modify the boundary edge, access constraints
will cause information/request dialog boxes to pop up iTi both users' sites

20

need to be recomputed in order to maintain the continuity. Figure 12 shows a constraint

graph in this case.

5.3 Collaboration between Modeling And Analysis

Shastra hip prosthesis design is an example of collaboration between modeling and anal

ysis. Figure 13(1eft) shows a scenario where three users are collaboratively work together.

One user is using SHILP, a solid modeling toolkit, to model a femur. One user is using

,,':'.~.~ .
<D o-lU)'~

__ v-•••·Y.... """"....

FIGURE 12: A constraint graph of a collaborative smoothing activity with an
object partition.

6 CONCLUSION 21

SHILP to model a implant. The third user is using BHAUTIK, a physical analysis toolkit,

to generate an external mesh of a femur for analysis. These three users can do modeling and

analysis independently under some constraints, that is, the implant and femur model will

be constrained by boundary requirements, and mesh generation function is constrained to

the domain of the femur. Figure 13(right) shows a constraint graph between data objects

and tasks (it does not include constraint relationships between views). When the geometric

model of the implant changes, this change will propagate to the femur through data COll

straiTlts ana cause the change of femur model, then the change in femur will trigger the mesll

generation function through task constraints. The constraints between the femur and the

implant will ensure that user A and B cannot modify the geometric models of these two

objects simultaneously.

6 Conclusion

This paper presented our major considerations and preliminary experiences in designing

a generic constraint system for multi-user collaborative systems. It is unique in the following

ways:

FIGURE 13: Collaborative modeling and analysis: User A is modeling a fe
mur, user B is modeling a implant (left above), and user C is analyzillg and
visualizing (left below). Right is a constraint graph shown the relationships
between data objects and tasks.

7 ACKNOWLEDGMENTS 22

• It maintains the relationship among objects, including object states (values) and object

behaviors (methods).

• The constraint system is built in object based approach, it can represent the relation

Sllips among heterogeneous objects.

• The constraint maintenance is defined as object serVlces, so that applications can

make difrerent requirements. And this make it possible to implement distributed or

concurrent management.

• We integrate the traditional concurrent control techniques into constraint solving, so

that we can support concurrent modification.

• This model make our system very extensible.

Our experiences indicate that the Shastra environment with the constraint system greatly

simplifies the development of multi-user collaborative applications.

Slmstra, enhanced with the constraint maintenance system, is still under developmentj a

formal and convenient intedace for the system is being designed.

7 Acknowledgments

We thank Vinod Anupam, Steve Cutchin and Richard Kennell for all their assistance as

fellow Shastra substrate team members. We also thank Susan Evans and Dan Schikore for

developing the basic ISMA and VAIDAK toolkits in Shastra.

References

[1] V. Anupam and C. Bajaj. Collaborative Multimedia Scientific Design in SHASTRA. In

Pmc. of the Fi1'st ACM International Conference on Multimedia} ACM MULTIMEDIA

93, pages 447-456. ACM Press, 1993.

REFERENCES 23

[2] V. Anupam and C. Bajaj. SHASTRA ~ An Architeeturefor Development of Collabora

tive Applications. In Proc. of the Second Workshop on Enabling Technologies: Infras

tructure faT Collaborative Enterprises, pages 155-166. IEEE Computer Society Press,

1993.

[3] Vinod Anupam. Collabomtive Multimedia Environments faT Problem Solving. PhD

thesis, Purdue University, W. Lafayett.e, IN, August 1994.

[4] Paul S. Barth. An Object-Oriented Approach to graphical Interfaces. ACM Transactions

on Graphics, 5(2), April 1986.

[5] A. H. Eorning. The Programming Language Aspects of ThillgLab, A Constraint

Oriented Simulation Laboratory. A eM Transactions on Programming Languages and

Systems, 3(10), October 1981.

[6] Alan Borning and Robert Duisberg. Constraint-Based Tools for Building User Interface.

ACM Trun.saclions on Graphics, 5(4), October 1986.

[7] Thomas H. Cormen, Charles E. Leiserson, and Ronald 1. Rivest. Tntroduction to Algo

rithms. The MIT Press, Canbridge, Massachusetts, 1990.

[8] Bjorn Freeman-Benson. A Module Mechanism for Constraints in Smalltalk. In Proceed

ings of the /989 Conference on Object-Oriented Programming: Systems, Languages and

Applications, October 1989.

[9] Bjorn N. Freeman-Benson, John Maloney, and Alan Barning. An Incremental Constraint

Solver. Communications of the ACM, 33(1), January 1990.

[10] J. Gosling. Algebmic Constmints. PhD thesis, Pittsburgh, PA, 1983.

[11J Saul Greenberg and David Marwood. Real Time Groupware as a Distributed System:

Concurrency Control and its Effect on the Interface. In Proceedings of the C'SCW'9..{

Conference on Computer-Support Cooperative Work, pages 207-217, 1994.

[12] Ralph D. Hill. The Rendezvous Constraint Maintenance System. Tn P1'Oceedings of the

Sixth Annual Symposium on User lnte1jace Software and Technology, 1993.

REFERENCES 24

[13] Ralph D. Hill, Tom Brinck, Steven L. Rohall, John F. Patterson, and Wayne Wilner.

The Rendezvous Architecture and Language for Constructing Multiuser Applications.

ACM Transactions on Computer-Human Interaction, 1(2), June 1994.

[14] John Maloney, Alan Borning, and Bjorn Freeman-Benson. Constraint Technology [or

User-Interface Construction in ThingLab II. In Proceedings of the /989 Conference on

Object-Oriented P1'Ogramming: Systems, Languages and Applications, Odober 1989.

[15] Brad A. Myers, Daria A. Giuse, Roger B. Dannenberg, Brad Vander Zandcn, David S.

Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. Garnet: Comprehen

sive Support for Graphical, Highly Interadive User Interfaces. IEEE ComputeT, 23(11),

November 1990.

[16] G. Nelson. Juno: A Constraint-Based Graphics System. In (Proceedings of SIGGRAPH

85), pages 235-243, 1985.

[17] OMG. The Common Object Request Broker: Architecture and Specification. Technical

report, OMG, verson 1.1, December 1991.

[18] John F. Patterson, Ralph D. Hill, and Steven 1. Rohall. Rendezvous: An Architecture

fOT Synchronous Multi-User Applicat-ions. In Proceedings of the CSCWlgO Conference

on Computer-Supp07't Cooperative Work, pages 317 - 328, 1990.

[19] Michael Sannella and Alan Borning. Multi-Garnet: Integrating Multi-way Constraints

with Garnet. Technical report, University of Washington, 1992.

[20] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi

way versus One-way Constraints in Uscr Intcrfaces: Experience with the DeltaBlue

Algorithm. Software - Practice & Experience, 23(5), May 1993.

[21] Ivan Sutherland. Sketchpad: A Man-Machine Graphical Communication System. In

Proceedings of the AFIPS Spring Joint Computer Conference, pages 329-246, 1963.

[22] Pedro A. Szekely and Brad A. Myers. A User Interface Toolkit Based on Graphical

Objects and Constraints. In Proceedings of the 1988 Conference on Object-Oriented

Programming Systemsl Languages and A pplications, pages 36-45, 1988.

REFERENCES 25

[23] Brad Vander Zallden, Brad A. Myers) and Pedro Szekely. The Importance of Pointer

Variables in Constraint Models. In Proceedings of the Fourth Annual Symposium on

Use7' Interface Soflware and Technology, November 1991.

	Object Based Constraint Management for Collaborative Systems
	Report Number:
	

	tmp.1307986960.pdf.btaTb

