Purdue University

Purdue e-Pubs

Channel Routing Algorithms for Overlap Models

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Report Number:

83-461

Hambrusch, Susanne E., "Channel Routing Algorithms for Overlap Models" (1983). Department of Computer Science Technical Reports. Paper 380.
https://docs.lib.purdue.edu/cstech/380

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Channel Routing Nlgorilhms for Overlap Models

Su_senne: Fi. Hambitust:/2
Department of Computer Sciences
Purdue University

C:SD-TR-461 October 1983

Abstract

Abstracl We develop algorithms for the two-terminal n-net channel routing problem on the L-layer model when k-fold overliap is allowed, $k \geq 2$, for $k \leq[L / 2]-2$ wo show how to solve the channcl routing problem using $a / k+1$ tracks, which is only one track more than the optimal channel width. for $[L / 2]-1 \leq k \leq[I / P]+1$ the width usod by our atgoribme differs from the optimil one by a small constant. Factor. Wo also present alporithms for the 3-and f-tayer model with double overlap that use fewer tracks than the gencral ehannel routing atgorithm. At algorithms use $O(n)$ contact points and run in time $O(n)$.

Key Words

Chamel rou'ing, two-terminal nets, overtap, chamel width, contact points.

1. InLroduclion

One of the most common channel routing problems is the two-terminal channel rouling problem (C[2]), where the two Lerminals to be connected lic on opposite sides of the channel. Solutions lo ths problem that minimize the ehannel width and the number of contact points have been developed for 2 - and 3layer wiring models ([BB], [1)], [1]], [PL]. [R]3N]. [R1•|). Jouling in 3 - or more layer mbdels in which wires are allowed lo overlap appears to be feasible and can be viowed as a first stop towards three-dimonsional channel routing. It is thus iniportant to study the relationship between the number of layers, the amount of overlap, the ebamel width, and the number of eontacel points. In this paper we develop offieient algorithms for the L-layor model with k-fold overlap. $k \geq 2$.

In our model each of the L, tayors can be used to run horizontal and vertical wires. If A-fold overlap is allowed, up to k wires can run in the same column or on the samo track of the chanmel as long as llay are on diferent layers. for $k \leq[/ / 2]-2$ our algorithmi uses $d / k+1$ lrucks, wheh is only one track more than the optimal chamel width. (The density is is the naximum over all x of the number of pairs (p, q) for which $p<x<q$ or $p>x>q$, and p must to be connected with q.) for $k=[L / 2]-1,[L / 2]$, and $[L / 2]+1$ the width difTers from the optimal one by a small constant factor. We also presont algorithme for the 3- and 4-layer model with donble overlap that use $3 t / 4+3$ and $2 d / 3+3$ tracks, respectively. Alt algorithms presented in this paper use $O(n)$ conlach points and run in time $O(n)$, where n is the number of terminals to be conneeted.

A channel of width w consists of the grid points $(i, j), 0 \leq i \leq w+1,-\infty<j<\infty$, where i is the track number and j is the colmman number, and the edges conneeling adjacenl grid poinls. Grid points on liack 0 and $w+1$ are called Lerminals. A wire is a path connecting adjacent grid points, and a wire can switch
from one layer to the another by using a grid point as a conlact puint. If a wire switehes from layer l to layer $i^{\prime}, l<l^{\prime}$, the conlece L point condition must be satisfied: layers $l+1, \ldots, l^{-1}$ cammot be used at that grid point. The two-terminal CR] consists of n nets $\left(p_{i}, q_{i}\right)$, wherte p_{i} is a colmmm number on track 0 ind q_{i} is a column number on track $u+i, i \leq i \leq n$. ard no lwo nets share a common terminal.

A number of papers have consirlared the P-layer modrl in which wires on different layers can cross or share a corner (i.e., form a knock-knee). In this morlel a CRJ' can be wired on $2 d-i$ triacks using $O(\alpha n)$ contact points ([$3 B]$, [IREN]). The channel width of $2 d-1$ is optimal for some ClRPs [i.]. When the same wirmg rules are used in the 3-fayer model, a Clर' wan be wired on d tracks using $O(n)$ contact points ($[$ PJ. \mid). In order to achereve a chanmel width less than d horizontal overlap has to be used. Horizontal overlap is not as powerfal as il may first appent. In |ll| we have shown hat a liage elates of Cols recuires d/($1,-1$) tracks on an L-layer model with h-fold overlap.

We consider models with $h i \geq 3$ and $k \leq 1,-1$. In section 2 we describe our general channel routing algorithm. An merease in k results in a diecrease in the channel width as long as $k \leq[1, / 2]+1$. We diseuss why allowing the algorithm to use more than $([/ L / 2+i)$-foldi overliap does not deerease the widh any further. In section 3 and 4 we prosent improved algorithmes for the 3 - and 4-layer model with double overlap, respectively.

2. The l-IJayer Model with k -Fold Overlap

In this section we present our general channel routing algorithm for the L layer model with k-fold overlitp, $L \geq 3$. We first give an algorither for $k \leq[L / 2 \mid-2$ that is within one track of the optimal chamel width. We then deseribe the modifeations necessary for $\{L / 2]-1 \leq k \leq[L / 2]+1$. Our algorithms determine the wiring by scanning the channel from left to right, column by column. Since each column containing a terminal of a net is processed in constant lime, and no work is done in columns containing no terminal, our algorithms run in $O(n)$ Lime.
A nel $\left(p_{i}, q_{i}\right)$ is called a right net if $p_{i}<\eta_{i}$, a leff net if $p_{i}>q_{i}$, and a trivial

 and left nets are grouped together in the channel similar to the approach used in [RMN] the topmost backs of the ehamel contan the lert nets, and the bottommost tracks contain the right nets. In our algorithms a constant number of empty tracks are between the two groups of nels, and no emply 'racks are within a group. All tracks in the channel, except the topmost one in the group of the right nots, the botlommost one in the proup of teft nets. and the empty tracks in between, contain exactly k wires. The length of the horizontal overlap is determined by the coordinates of the lemmals of the nets, and we use at most double venticial overiap, of lenglh $O(d)$.

A track in the channel is of type 1, type 2, or emply (i.e., it contains no hormontal wires). Let T_{1} be the set containing the first $|/, / 2|-1$ layers, i.e., $T_{1}=$ $\{1.2, \ldots,[h, \geqslant\}-1\}$. and lel T_{2} be the sel containing the last $[L / 2]$ layers, i.e., T_{2} $=\{\mid L / 2\}+1, \ldots, L\}$. A type $/$ trikek contians wires of layers in F_{1}, and a lype Z track contains wires of layers in η_{2}. Within the group of right a left nets we alternate tracks of type 1 and type 2. Untess otherwise stated layer [$L / 2$], which
does not appear in T_{1} or T_{2}, is used to run the vertical connections. We refer to a wire on layer l as an t-wire.

In our algorithms we show how to continue a right run, i.e., how to wire when a right net ends and a new right net slarts in the same column, and we describe how to wire when a right and a lefl net start m the same column. The wiring of the other situations follows from these two cases. When continuing a righl run we switeh the ending net into a w-wire and put the new net onto a track without violating the contact poinl and overlap condition. for $k \leq\lceil/ /$? $]-2$ this can be done quite easily. Since $\left|T_{i}\right| \leq k+1$, there is always one laycr in T_{i} that is currenlly nol used on a lrack, $i=1,2$. $\Lambda s k$ increases, the wiring gets more diffieult and the wiring rules got more involved.
(a) Algorilhmi for $k \leq[L / 2]-2$

When $k \leq[I, / 2]-2$, a lype 1 (2) Lrack conlains k wires that are on layers in $T_{1}\left(T_{2}\right)$. One spiare track, lrack e, is between the two groups of nets. Assume that a right run continues. and that the right net ending in column j is on track i and in layer l, and thal track i is or Lype 1 . Ihen, $1 \leq l \leq|L / \mathcal{Z}|-1$ and there is another layer I^{\prime} in F_{1} not eurrently used in track i. The new right net continues on track i m layer i°, and the wiring is done as follows. Since tracks $i-1$ and $i+1$ are of type 2, use the contact point $(i-i, j)$ to change the v-wire of the new net into an l^{-}-wire, and use $(i+1, j)$ to change the l-wire of the ending nel into a v wire. See l'ig. 2.1. The continualion of a loft run is analogous. Whenever a right (lefi) net on track i ends, and and no new right (lell) net starts up, we conlinue another right (left) nel of the topmost (botlommost) track on track i.

The empty track e is used in 2 situations. When the topmost track of the right nets and the bottommost track of the left nets are of the same type and a run on either track contimues, we use track e to aceommodate the contact poinl for the nel starting, up. 'Prack f is also needed in the wiring of a double startup
which is described below.

A double startup oceurs when a right and a left net start in column j. We then produce a vertical double overlap of length $O(d)$. Assume the left net is to be pall on track t_{2} and the right nel on track t_{r}. liel r_{1} and $r_{2}, r_{1}<\tau_{2}$. be two layers not used on track t_{T}, and l_{1} and $l_{2}, l_{1}<l_{2}$, be two layers nol used on track t_{t}. If t_{r} and L_{i} are different Lype Lracks, we use the contact points (t_{r}, j) and $\left(L_{l}, j\right)$ Lo change the v-wires of the starting nets into r_{1} and l_{1}-wires, respecLively. Sce Fig. 2.2 (i).

Thus, w.l.o.g. let t_{r} and l_{l} be Lracks of Lype 1. Assume that r_{1}, r_{2} and l_{1}, l_{2} are pairwise disjoint (if they are nol, the wiring is actually easier) and that $l_{1}<r_{2}$ (if not, use the miaror-image wiaing). The v-wire of the left nel starting in column j uses the conlact point $\left(t_{T}+1, j\right)$ Lo change into an r_{1}-wire, which crosses track L_{r}, and uses the contact point (e, j) to ehange into an l_{1} wire. The right net starting in cotumn j uses a conlact point (e.j) to change from a v-wire into un r_{2}-wire. Seo lig. 2.2 (ii), Since $v>r_{2}>l_{1}$ and $r_{2}>r_{1}$, the contact poinl condition is satisfied, 'The double contact point at (e, j) can be avoided for the cost of a second empty track. 'lhis coneludes the algorithm when $k \leq[L / 2]-2$.
(b) Algorithm. fork $=\{1, / 2]-1$

In this algorithme we distimpish whelher or mol $/$. Whe mumber of byers
 similad lo the previotri one. liecall that $\left|Y_{1}\right|=m-1$ and $\left|\%_{2}\right|=m$ m Lhis case. A type 1 lrack contains now $k-1=m-2$ wires on layers in $\%_{1}$. and a type 2 lrack conlains now $k=m-1$ wires on layers in T_{2}. Ho again have on each lype of track one layer not currently used, and can thus use the algorithm given above. Since we alternate lracks villy k-fold and ($k-1$)-fold overlap, we use a tolal of $2 d /(L-3)+1$ Lracks. I'he oplinal channel widlh is $2 d /(1,-2)$.

When L is odd, i.e., $L=2 m+1$ and $k=m$, we let a type 1 track contain $k=m$ wires on layers in T_{1}, and a lype 2 track contain $k-1=m-1$ wires on layers in T_{2}. Since $\left|T_{1}\right|=\left|T_{2}\right|=m$, we need new wiring fules for the continuation of a run on a lype 1 track. The contimbation of a ran on a lype 2 track is tone as before. On type I tracks we no longer have a apare layer that can be assigned to the new ned. We can put a new l-wire on track i not before column $j+3$. Our new wiring rule changes the v-wre of the starthen net mbe an l-wire on track $i-1$, runs this l-wire on track $i-1$ to column $j+1$ ereding an m-fold overfap on track $i-1$, and runs it down to track i in column $j+1$. The wiring is shown in Fig. 2.3 (i). The vertical segnient put into column $j+1$ causes a conflict in two situaLions.

The first problem oceurs when the net starling in column j is of length one. i.e., it ends in column $j+1$. We then run the net of length one entirely on layer v, and put the horizontar unit segment on track i. The net starting in column $j+1$ can be placed on track i in column $j+1$.

The second confict vecurs when another het on track i and in tayer $i, l<l$. ends in column $j+1$. The v-wire of the nel coming down column $j+1$ cannot use the contact point $(i-i, j+1)$ for changing into an $l^{\prime}-w$ we. But we can switeh from hayer l to layer y on a type 2 (rack when layer t° is present (since $t^{\prime}<l$). Fig. 2.3 (ii) shows the wirinit for this case. The l 'wire of the ending nel 'slips' onto track $i+1$ in column j, the i-wire on track $i-2$ slips onto triek i in column $j+1$, and the new nel starting in column $j+1$ continues on track $i-2$ as an i-wire.

We aiso need additional wiring rules for the double startup. Assume that a right and a left net start in columin j and that t_{T} and t_{i}, the tracks the nets have to be put on, are of type i. 'the algorithm may have to place the right net in layer r and the left net in layer l, or both nets in layer l. In this ease none of the 'freedom' used in the double starlup of algorithm (a) is available. If both
nots have lo be placed in layer l we wire as shown in lig. 2.4. (The wiring of the nets when they are put on different layers is easier and is omitted.) the wiring of Pig. 2.4 requires 3 emply tracks belween the group of righl and left nets, and puts a vertical segment of lemgh 2 into colmmen $j-1$ and $j+1$.

The verlical segment put into column $j-1$ can at most cause a double overlap with a v-wire. This is shown as follows. If columin $j-1$ has a right and a left net starting, it contains already a double overlap. But in this case track t_{t} has the layers L_{1} and $l_{\text {, and }}$ anack t_{r} has the layers r_{1} and l available in column $j-1$. The starlup wiring in column $j-1$ uses either liyers l and l_{i} or layers l and τ_{1}. which leaves different liyyers for column j. Sinee we can wire the double slartup for different layers in column j withoul placind a verlieal segment into cobumn $j-1$, the above statement is true.

If column $j+1$ has a right and a left net starting, they are the first wires on a type 2 track. Applying the wiring of lig. $2.5(i, i)$ produces a 3 -fold overlap in column $j+1$. 'Ihe 3 -rold overlap is avoided by wiring colarmen j and $j \mu 1$ as shown in Fig. 2.5, where i^{\prime} is an arbilrary layer in T_{2}. No problems arise when column $j+2$ has a right and a left nel starling, which have to be pul on track t_{r} and t_{j}, respectively. In this case coluntri $j+1$ eontitins then an endng right net and an endiag left net and thus no verticel wire somment betweon hook t_{t} and t_{r}. The case when the nots starting in column j end in columan $j+1$ is slightly difierent, but can be handled easily. Hence, our algorithm uses $2 \pi /(/ 4-2)+3$ tracks, and the optimal channel width is $2 d /(L-1)$.
(c) Algorithm for $k=[L / 2]$ and $[/, / 2]+1$

Consider first the algorillam for $k=\{1 /$? 2$]$. Por even I lel a lype 1 (2) (rack conlain $m-1=k-1$ wires on layers in $\eta_{1}\left(\%_{2}\right)$. The continuation of a type 1 track is done as the continuation ol a lype 2 track for odd L given in algorithm (b). The horizontal unit segment put on the type 2 track above (below) creales
in m-fold overlap. The conlinuation of a type 2 track in done as in algorithm (a). Hence, the number of tracks needed is $2 d /(L-2)+3=d /(m-1)+3$.

For odd L a type 1 (2) Lrack contains all $m=k-1$ wires on layers in $T_{1}\left(T_{2}\right)$. The continuation of a right run on a lype 1 and type 2 track is done as the continuation of a type 1 track in algorilhme (b). It produces an $(m+1)$-fold overlap on a track for one horizontal unil. Since the startup procedure needs 3 empty tracks, we need a Lotal of $2 d /(L-1)+3=d / m+3$ tracks.

One further reduction in the channel width is possible for $L=2 m$ and $k=[/ / / 2]+1=m+1$. LeL vach type track contain all the layers possible, i.e., a lype 1 track contains $m-1$ wires and a lype a track contains m wircs. The algorithm is like algorithm ($:$) For odd i and uses :2d/ $L-i+3$ lracks.

We briefly discuss the shape of the nets our algorithms produce. All wired nets (p, q), exeept trivial nets and nets of lengit one. have exactly two contact points, which are in column p and η, respectively. The horizontal wire segment can contain slips of length 1 or 2 . Slips of length 2 are made when the wiring rule shown in Fig. $2.3(i i)$ is applied.

None of the algorithms allows a lirack to use layers 'below' and 'above' layer v. This would be neeessity for reduem the ehinnel width further when $k \geq[L / 2\rceil+2$ while still having; one liayer reserved for vertical connections. for
 in layers below and above layer u. Ihis is possiltle for small $/ 4$. since the layers are 'close' enough to layer v for placing the contact points.

3. The 3-Layer Model

The algorithm presented in section 2 uses d tracks on the 3 -layer model when double overlap is used, and d tracks can be achieved without the use of overlap [PL]. We show how to wire a CIP ${ }^{[P} 3$ layers using $w=3 d / 4+3$ tracks and double overlap. The topmost tracks in the chamel will again contain the lefl nets. the bollommost trariks contain the right nets, and the three emply tracks are in the middie.

We refer to the 3 layers as the t - (Lop-), v - (vertical-), and b - (bollom-) layer, and vertical wires run on the v-layer. We distinguish between two types of tracks. A double track is a lrack containing a L - and a b-wire, and a single lrack is a track containing a t - or a b-wire. Within the group of left (right) nets, the nets are assigned to the tracks according to the single-single-double sehema: track $1(w)$ is a single track, track $2(w-1)$ is a double track, tracks 3, 4 $(w-2, w-3)$ are single tiacks. etc. In general, track $2+3 i(w-1-3 j)$ is a double track, and tracks $2+3 i+1,2+3 i+2(w-2-3 j, w-i 3-3 j)$ are single tracks.

We first outline how to continue a right run and again omit symmetric cases. When a right. run currently on track i continues in column j, the wiring depends on whether i is an lower single, upper single, or a double Lrack. Within the group of right nets, Lrack i is a lower single track if truck $i+1$ is a double track. Denee, lack $i-1$ is an upper single track.

Before giving the waing rules for each type of track, we describe the routine cont. H has lhree arguments, two lrack numbers, i1 and $i 2, i 1<i 2$, and one column number, j. Conl($i \mathrm{i}, i 2, j)$ takes the wire eurrently on track i2 down column j, and continues the v-wire coming down column j on track $i 1$ or $i 2$, depending on the type of wire currently on track i. Sec l'ig. 3.1 for the two possible cases.

If the net ending in column j is on a lower single track, use the contact point (i.j) to let the wire on track i switeh into a v-wire. Since track $i-1$ is a single track, call cont $(i-1, i, j)$, and the new nel is continued on track $i-1$ oi i.

Next consider the situalion where the net ending in column j is the t-wire of a double track (the case for the b-wite is imalogous). lijg. 3.2 shows the general solution. The vertical segment in column $j+1$ can cause a problem when a net on track i. $i-1$. or $i-2$ ends in column $j+1$. We thus have lo consider 4 special cases.
case 1: The nel starting in column j ends in column $j+1$.
Keep the net of lenglh one on layer w and run the horizontal unit segment on track $i-1$. If the situation shown in Fig. $3.2(i)$ occurred, call cont $(i-2, i-1, j+1)$ to place the nel starting in column $j+1$; if the situaLion shown in l'ig. 3.2(ii) oceurred, call conl($(i-2, i, j+1)$.
case 2: The wire the is on track $i-1$ before columna j ends in colurnn $j+1$.
Whether it is a t-wire (and slips onto Lrack i in the general solution) or a b-wire (and stays on track $i-1$), the wiring rutes given so far cannot be applied in colunan $j+1$.
Filg. $3.3(i)$ shows the solution when a t-wire is on track $i-1$ before column j : l'ig. $3.3(i i)$ the one for the b-wire. In both cases the net starting in column j runs on the track determined by cont $(i-2, i-1, j)$. No vertical wire segments are placed into column $j+2$, which is processed next.
case 3: The b-uite on track i ends in columan $j+1$.
If Lrack $i+1$ contains a l-wire, or tracks $i+1$ and $i+2$ contain both a $b-$ wire, perform the wiring shown in bis. $3.1(i)$ and (ii), respectively. In both situations the net ending in column $j+1$ slips onto track $i+1 \mathrm{~m}$ column j. The new nets coming down column j and $j+1$ can then be wired easily.
The hard case ocours when track $i+1$ contains a l-wire and $i+2$ a $b-$ wire. We then look al the wiring in column $j-1$: Column $j-1$ can be emply, contain a u-wire with no contact point on track i, or can contain a conlact point on track $i+1$, which was established by cont $(i+1, i, j-1)$. (Note thal there can be no contact point on Lrack i.) In the first two cases we let the t-wire on Lrack i slip onto $i+1$ in column $j-1$ and complete the wiring as shown in lig. $3.5(i)$. The new nets are wired according to cont $(i-1 i, j)$ and $\operatorname{conl}(i-1, i, j+1)$.
In the last case we undo the wiring in column $j-1$, and wire the nets that start and end in columns $j-1, j$, and $j+1$ logether - without putling any vertical segnent: into sotumar j re. lige. B.t)(ii) shows the viring when n continualaon as in lig. is. (i) had occurred in column $j-1$;

case 1: The wite on track i-t pends in roolumme $j+1$.
'Irack $i-2$ is an upper single track, and the wiring rules for a net on an upper single track are given below. These rales cannol be applied when Lrack $i-1$ and $i-2$ conlain n different type wire belween column $j+1$ and $j+2$. The reader might find it use nth to look at the solution for the upper single track in order to see why this case is needed. rig. 3.6 gives the wiring for the? possible cises.

The last type of track to be discussed is the mpper single track. If Lrack it is an upper single lrack and the wires on track i and $i+1$ are on different layers. we perform the wiring shown in l'ig. A.'7(i.). If the wires on track i and $i+1$ are on the same layer. we wire as shown in l'ig. $3.7(i i)$. The problenns caused by the vertical segment in column $j+1$ are, wilh the exceplion of case B, identical to the ones for an ending double track. When the b-wire on lrack $i-1$ ends in colmmn $j+1$, we wire as shown in fig. 3. $7(i a i)$. Because of case 4 , it is now guaranteed that tracks i and $i+1$ conlain wires on differenl layers. fhis eliminates all complicated conflicts thal could be caused by the vertical segment now in coltamm $j+2$

In order to maintain the single-single-double structure within the group of right (left) nels, we again take down (up) the right (lefl) nel on the lopmost (boltonmost) track of the group whenever a right (left) nel ends and no new one starts m the same column. In the wiring of a double startup (i.e., a right and a leit net slart in the same colamn) we pul, whonever possible, the two starting nets on difTerent layers. In this ease the wiring is similar to the one deseribed in section 2. If bolh starting nets are the second wires on a double track and need to be placed on the same layer, we wire as shown in lig. 2.4. Again, the vertical segment pul into column $j-1$ dous not creale a problem. The vertieal segment pul into column $j+1$ causes now a problem when a right and a left nel start in column $j+i$. We can pul them on different layers, but the wiring is done as shown in F'ig. 3.B.

We thus can solve a CRP in the B-layer model with doublz overlap on $3 / 4 d+3$ tracks using $3 n$ contact points. The lower boumd on the channel width in the 3-layer model when 3 -rold or double overlap are allowed is $d / 2$.

4. I'he 4-Layer Model

'lhe algorithm presented in section 2 requires $d+3$ tracks on 4 layers when double overlap is used and $2 \alpha / 3+3$ tracks when triple overlap is used. Recall that triple overlap oceurs on the lracks for only one horizontal unit. In this secLion we describe an algorithm that achieves $2 d / 3+3$ tracks by using only double overlap. We refer to the 4 layers as the t - (top-), v - (vertical-), m-(middle), and b-(bollom-) layer. Lel a double track contain a wire on the t - and m-layer. and let a single track contain a wire on the t-or b-layer. Within each group of right and lefl nets we alternate double and single tracks.

The continuation of a right run, when the net ending on track i and column j is on a single track, is done as follows. Make a contact point at (i, j) to let the ending nel switeh from the t - or b-layer into the v-layer. If the ending net is on the t-layer, let i^{\prime} be the track eontaining a b-wire so that $i^{\circ}<i$ and no b-wire is between track i ant track i. Take the b-wire from track i. down to track i, and continue the new net on track i as a t-wire. See lig. 4.1(i). If the ending net is on the b-liayer, take the L-wire from track $i-1$ down to track i, and continue the new net on track $i-1$ as a t-wire. The now net is thus treated like a new net in the continuation of a double Lrack, which is discussed below. Fig. 4.1(ii) shows the wiring when track $i-2$ contains a b-wire.

Consider now the continualion of a run currently on a double track. If a t wire on a double track ends, make a contact point at (i,j) for the ending net. Take either the t-wire from track $i-1$ or the t-wire belonging to the new net down to track i in column $j+1$. Pig. $1.1(i)$ and (ii) show the 2 possible cases. If an m-wire on a double Lrack ends, we make a contact point at ($i+1, j$) for the ending net. The v-wire coming down column j ehanges inlo an mowire at $(i-1, j)$. This switeh can be done independent of the type of wire on track $i-1$. Sce Fig. $1.2(i i i)$.

The wiring rules given in Pif. 4.2 can prodtuec confiets similar to the ones in the 3-layer algorithm when a net on track $i-1$ or i ends in column j. Ye consider 3 cases.
case 1: The net sluthing in column j ends in columbn $j+1$.
We then keep the net of length 1 entirely on the v-layer. If the situation shown in l'ig. $4.2(i)$ and (ii) had occurred, the horizontal unit segment is put on track $i-1$, and we complete the wiring as shown in Fig. 4.3. In fig. $4.3(i i)$ we treat the net starting in column $j+1$ like one continuing on a double track al is 1 -wire.
If the wire ending in column j was on the m-layer, the horizontal unit segment in put on track i. A new m-wire is pul on lrack i in column $j+1$ by lelting the net starling in column $j+1$ change into an m-wire al $(i-1, j+1)$.
case 2: The wite that is on trase $\mathrm{i}-1$ before column j entw in column $j+1$.
When the wiring was done as in lig. $1.2(i, i i)$ and track $i-1$ contains a t wire, we can apply rule $1 . j(i)$ in columm $j+1$.
For the threc remaining cases we do need new wiring rules, led the net ending in column j end as before, and use the rule given in 4.1 Lo switeh the wire on track $i-1$ into a v-wire and to wire the net starting in colurin j. The v-wire rums on track i or $i-1$ to column $j+1$ where it ends. Column $j+1$ looks now like column $j+1$ of case 1 ; i.e., the net ending in column $j+1$ appears to be a net of length one continuing the run on the double track. We thus wite columa $j+1$ as described above fig \& shows the resulling, wiring when an m-wre ends in column j and the b-wire above is ends in column $j+1$.
case 3: The spcond net currently on dondble track i ends in column $j+1$.
If the second net is a t-wire (i.e., the m-wire did end in columen j) and track $i-1$ contains a l-wire, we camol apply the wiring rule of Fig. $4.2(i)$ in column $j+1$ without violating the contact point condition. We then wire as shown in ligg. 4.6.

The wiring of a double startup is simitar the one described in section 3. We Lhus use $2 d / 3+3$ traeks when routing, in the 4 -layer model with double overlap.

5. Remarks

We have developed channel routing algorithms for the L-layer model when overlap can be used. F'or $k \leq[L / 2]$ our algorithms use fewer tracks when allowing $(k+1)$-fold overliap instead of k-fold overliap. More than $([/ L / 2]+1)$-fold overlap does not reduce the channel width any further. Ihis motivates a number of interesting questions.
(i) Can our algorithms be improved and/or extended?
(ii) We have shown that a number of CRP's require $d /(L-1)$ tracks when L-fold overlap is allowed ([1I]). The best achievable upper bound is $\frac{2 d}{L-1}+5$. Note that in the 3 -layer model we can achieve $3 a / 4+3$ tracks, while $d / 2$ is the lower bound. 'Thus, we cart do better than a factor of 2 off from the optimal channel width. Can we prove better lower bounds by incorporating the conLact point condition into the lower bound argument?

Acknowledgments

1 would like to thank Donna Brown for helpful discussions and comments.
[13B]
T. Bolognesi, D.J. Brown, ' Λ Channel lRouting /Agorithm with Bounded Wire Lenglh', unpublished manuseripl, 1982.
[BBL] B.S. Laker. S.N. Bhatl. J'.T'. Leighton, 'An Approximation Algorilhm for Manhatlen Rouling', Jroceedings of the $15 t h$ Annual ACM Symp. on Theory of Computing. pp A'子'゙-4BG. 1933.
[1)] 1).N. Deutseh, ' A Dogleg Cinannel Router', Proceedizegs of the 13 h JEEE Design Automodion Conf., pp APt-433. 1976.
[DKSSU] D. Dohev, K. Kaplus. A. Siepel. A. Strong, J.D. Ullman, 'Oplinal Wiring bowween Rechingles. Jrocereinags of the $13 t h$ Annual $A C M$ Symp. on. Theory of Compatizeg. pp 312-317, 1981.
[1] S. P. Hambrusch, 'Using Dverlap and Minimizing Contact Points in Chamnel Rouling', Procecdings of '21st Annual Allerton (ounf. on Commrn., Contr., mond Comp., 1983.
[L] l'.T. LeighLon, 'New hover Bounds for Channel Routing', unpublished manuscript, 1981.
[PL] P.l. Proparala, W. lipski, 'Threo layers are enough', Proceedings
 367.1930.
 Algorithms', Hroteedings of the CMU Conf. on V/SS/ Syskemsi and Commelizlions, pp 168-169. 1901.
[RP] R.L. Kivesl, C.M. J'idaceia, 'A 'Greedy' Chamel Rouler', Proseed-

Continuation when $k \leq|L / 2|-2$ Fig. 2.1

t_{l} and t_{r} are of different type (i)
t_{l} and t_{r} are of type 1
(ii)

Startup Wiring
Fig. 2.2

type 1 continues
Fig. 23

(i)
continuation of the new wire on il

(ii) continuation of the new wire on i2
--- t-wirc
..... v-wire $--b$-wirc
Fig. 3.1

(i)

(ii)

A net on a double track ends: general solution Fig. 32

(i)
t-wire on track i-I

(i)
$i+l$ contains a t-wire

(ii)
$i+1$ and $i+2$ contain a b-wire
Fig. 3.4

(i)
an wire (i) column $j 1$ (ii) continuation $33(i)$ in column $j-1 \quad$ continuation $33(i i)$ in column $j-1$

Fig. 35

wire on track $i-2$ ends in $j+1$
Fig. 3.6

(i)
$i+1$ is different type

(ii) $i+1$ is the same type

(iii)
double track ends

Fig. 3.7

double startup in j and $j+1$
Fig. 3.8

single track t-wire ends single track b-wire ends

- t-wire, v-wire, - - m-wire, $-b$-wire

Fig. 4.1

(i)
t-wire ends and above is a t-wire

(ii)

Fig. 42

(i)

(ii)

Net of length 1 starting in column j Fig. 4.3

