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Optimal Rotation Problems in Channel Routing

MUchail J. Atllllah
Susa.nne E. Ha.mfJnLSch

Department of Computer Sciencell
Purdue University

West Lafayette. IN 47907

OSD-TR-46? January 1984

Abstract
In the channel routing problem two rows of termin.all!l. which are opposite

each other, have to be connected. We study what effect the rotation of one row
of terminals has on the cost measures of the routing phase. The cost measures
we consider are the crossing number. which is closely related to the number of
crossings between two wires aD di1lerent layers. the density. which delermlnes
the width of the channel, and the length of nets, which is related to the wire
length needed in the routiog of the channel routing problem. We present
etl'icient algorithms for delennlning the rOlation which mlnlm1zB8 each of these
cost measure.
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1. Introduction

Conventional design systems tor the layout of VLSI chips consist of two

interrelated phases: placement and routing. The placement phase arranges ter

minals, whloh are connection points for wires. on the chip, and the routing phase

determines the necessary lnterconnectLons. A common way to cope with the

inherently difficult combinatorial problems arising in placement and routing is

to partition them into smaller. independent subproblems which can be solved

more etriciently (R]. One important subproblem is the channel routing problem

(CRP) in which two rows of terminals are posltioned opposlte each other ([D].

[PL]. [RBMJ). While some placement conditions are determined by technological

constraints, placement, in general, contains a certain amount of freedom

([DKSSU]. [GCW]. [LL]. [LeP]). UsUlg this Ireedom so that it makes routUlg

easier is often a difficult problem.

In this paper we show how the freedom to rotate one row of terminals can

etJiciently be used to minimize some cost measures of the routing phase. Let

the two rows of terminals be of length m., and assume we are given n pairs of

terminals (p"q,), called net$, in which no two nels share a common terminal.

We need to conneclp,. which is on the upper row. with qt, which is on the lower

row, lSPi.qi~m.. The lower row of terminals can be circularly rotated before the

routing, where a rotation of size p results in every q" moving p positions to the

right (position 1 is the successor of position m.). An example of the etrect of a

rotation can be seen 1n Figure 1.~. where (a.) shows tbe inlt1al situation and (b)

the sItuation after a rotation ot size 3. The problem .we consider is tbat at cboos

ing a value ot rotation which minimizes any 01 a number 01 cost measures. Since

the cost measures to be minimized are closely related to the wirlng model used

in the routing phase. we briefly describe the model.
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Our wiring model is the rectilinear knock-knee model ([H]. [PL]. [RBM]) with

at least 2 layers. A number of results also hold in polygonal or curvilinear

mod~lll. The c:hannel (Le., the space between the two rows) consists of Il ree·

tangular grid. and wires have to run along grid lines. Each layer can contain

horizontal and vertical wires. and two ditJerent wires are allowed to cross or

form a knock-knee at a grid-point (as net 2 and net 4- in Figure 1.2). but are not

allowed to run on top of each other.

One of our cost measures is the crossing numb8t" of a CRP. The crossLng

number of the i-th net (Pi,q,,) is the number of nels which have theu- entry ter-

minallo the right of Pi while their exit terminal is to the left of qf,. or their entry

terminal is to the left of Pi while their exit terminal is to the right of qi' The

crossing nwnber of the CRP is the largest crossing number of any net. For

example, nets 1,2,3, and 4 of Figure 1.1(a) have a crossing number of 2.2.3. and

3, respectively, and thus the CRP has a crosslng number of 3. Nole that in an

actual wiring the number of wires that cross the wire joinlng.A to q, haa to be at

least as large as the crossing number of net i. We give an O(nlogn.) time algo-

rlthm that determines the rotation which minimizes the crossing number of the

resulting CRP. The solution involves an interesUng variant of 2-3 trees, one in

which an integer key is not slored in any particular node but 1s "distributed" on

a path trom the root to a leaf, and is equal to the sum of the dala items stored in

the nodes of this path. We also outline an O(nlogn) time algorithm for the

easier problem of minimizing the sum of the crossing numbers of all nels,

Another cost measure we consider 1s the dsnsity of the CRP. which is the

maximum over all z of the number of nets (p"q,) for whichp,:Sz<q, or Pc>zi:!:qi;

i.e .. it is the number of nets that have to cross from column z to column % +1.
--

For example. the CRP of Figure 1.1(a) has density 3. which is achieved between

columns 3 and 4. 4 and 5. and 5 and 6. respectively. Every etricient routing
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algorithm tries to minimize the width of the channel, and the width is at least 8.9

large as the density of the CRP. We show bow to determine the rotation achiev

ing minimlim density in O(n210gn) time. The third cost measure considered is

the length oj nets. where the length of net i equals the channel Width pLus the

horizontaL distance separating p( and q, (the length of net i is therefore a lower

bound on the length of the wire needed to connect Pc and qc). Note that the run

ning limes of our algorithms depend only ann, not on m (we thus place no

bound on how large m can be).

A problem ot a siml1a:z:o nature as the rotation problem is the oO'set problem

in which the lower row of terminals can slide right or·lett. The offset problem

with an underlytng i-layer model (Le.. no crossings are allowed) has been stu

died in [DKSSU]. Our bounds achieved tor determtiung the rotation minimizing

the density and the length of nets also hold for the offset problem. In fact. our

algorithm for the density becomes simpler when modified to solve the optimal

offset problem. In additlon. some of our algorithms for minimiZing the length ot

nets are faster tor the optimal offset problem than for the optimal rotallon

problem. In some sense the optimal offset problem is easier than the optimal

rotation problem because it does not have the discontinuities introduced by the

qc's jumping trom position m to position 1. Note that the crossing numbers are

independent at the otrset.

The paper is organized as follows. Section 2 contains the algorithms con

cerning the crossing number. In Section 3 we discuss how to determine the

rotation minimizing the demLty, and Section 4- contaim results about the length

of nets. Section 5. briefly sketches our results for the optimal ofl'set problem.
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2. lIinimi.zin.g the Cr'ossing Number

In this Section we first ~onsider the problem of tlnding a rotation which

minimizes the crossing number of the resulting CRP, and give an O(nlogn) time

algorithm for solving this problem. Since a net with a large crossing number is

more vulnerable to electrical interference caused by electrical signals traveling

on the other nets, it Is important to select a rotation which minimizes the larg-

est crossing number. Furthermore, our algorithm. can be used to determine

whether there exists a rotation that results In a i-layer mahle CRP (Le., a CRP

with no crossings).

Throughout this paper we assume that the input consists of the nets CPt,q,),

lSiSn. where Pl<P2<· .. <Pn. Two nets i and i cross each other if ;<i and

ql >q(, and the crossing number ot a net is the number of nets which cross it. Let

c,(P) be the crossing number of net i at rotation p. We want to minimize c (p),

where c (p) =. Mru c,(P) .•
Lemma 2.1 The initial crossIng numbora Cl(O), ... ,cn(O) can be computed in

time O(nlogn).

Proof: Let T( be the rank at q, among the q/s at zero rotation. First we com

pute the T,'S in time O(nlogn), by sorting the qs's. We now use a modifled 2-3

tree structure T whose leaves contain nets ordered according to their r, values.

A leat containing net i is called leal i. We start with T empty and insert in it the

nets 1.2.... .11. in that order, updating It In time O(logn) tor each insertion.

Every node v at T contains, in addition to the information usually stored in 2-3

trees, (1) NR(v), the number at leaves in v's subtree, and (ti) a number A(v).

The significance of the A's is that for every leati, the sum at the A's on the path

tram the root to i equals the number ot intersections ·between net i Bnd the

other nets that are currently stored in T. Once the dnal tree has been
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constructed. the c,(O)'s can easily be computed-,

The updates required when net i Is inserted. are guided by the following

observation: The number of intersecUoos between net i and the nets already in

T 1s the number of leaves of T that are to the rlght of leaf i. Every such lea! j

has j <i and qJ>qi, and net i is therefore involved in a crossing with net i.

Heilce we have to record that the sum of the b.'s on the path from the root to

every leaf to the right of i is incremented by 1. We do this by adding 1 to the 4'9

of the nodes on the right fringe of the path from the root to leaf i. The rl.ght

fringe of a path is the sequence of nodes obtained when going down the path and

Ustlng the siblings to the right of the current node (the concept of lett fringe Is

defined in a similar way). More precisely. inserting net i into T 1s done as fol

lows:

(i) Use rio to find the location of T where net i will be inserted. This traces a

path P from the root to the place of insertion.

(ii) Set A(i) to the sum of the NR's of the nodes on the right fringe of P minus

the sum of the A's on P. (Note that this ensures that the sum of the A's on

P plus A(i) equals the number of leaves to the right of i..)

(iii) Add 1 to the I::. of every node on the right fringe of P.

(iv) Insert net i Into the 2-3 tree. Mainta1n.1ng the correct NR and b. values as

nodes get split can easUy be done with minor modltlcations to the standard

insertion procedure described in [AHU].

Correctness of the above Steps (i)-(iv) follows from the preceding discussion.

The O(logn) time per insertion follows from the fact that the height of a 2-3 tree

(and hence the number of nodes on P and on its frlnges) Is O(log71.). Since there

are 71. insertions, their total cost is O(nlogn). After the n nets have been

inserted, CI(O)•... '':n(O) can compute-d in lime 0(71.) by a preorder traversal of
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the tree T.•

Let Ihs' .•. SPa be the rotations at which the 9J'S have changed trom posi

tion m (at p~-l) to position 1 (at p(). For example. in Figure 1.1. we have PI=2.

p2=3, Ps=5. and p,,=6. We want to select the p, whicb minimizes c.

Theorem 2.2 It 1s possible to compute. in time O(nlogn). the minimum crossing

number and a value of rotation whicb achieves Lt.

Proof: It is su1Iicient to sbow that C(PI)•... ,c (Pn) can be computed in

O(nlogn) time. First we compute c,(O).··· ,c,,(O) in time O(nlogn) (Lemma

2.1). At rolation p, the tree rcp) is detlned as follows. f(p) is a modified 2-3

tree whose leaves contain the n nets. Net i is slored in the itA leftmost leaf of

• •T(P). which is referred t~ as lea! i. (Note that T(P) di1lers substantially from T

of Lemma 2.1's proof). Every node 'lI of rcp) bas two additlonal fields:

(i) A 6(v) field, whose significance Is that for every leaf i, c,CP) equals the sum

at the A's of the nodes on the path tram the root to 'i.

(ii) A MAX(v) field, which contains A(v) plus the largest of the MAX's ot v's chil-

dren.

Initially (Le .. at rotation zero). leat i of T(O) has A(i)=c,(O) (l:!OiSn), and the A

of every Internal node is zero, Glven the c,(O)'s, building T(O) and computing

MA.X"(v) for every node v can be done in 0(71.) tlme.

The MAX value at the root at rcp) is equal to c (P). ThIs can be seen by

observing that tor every v. the definition at MAX(v) lmplies that It is the max~

imum, over all leaves i in the subtree at v, of the sum of the A's on the lI-tO-i

path. Hence. MAX at the root is the largest at c 1(P), ....c,,(p). which is c (P).

A A A A

Starting with T(O). we compute the sequence ~(PI).T(P2)' ... T(Pn). Every

time we change T(Pi_l) inlo T(Pi), we examine lhe MAX value at the root (which

is equal to c (Pi». and at the end we select the rotation Pi for which the C (Pi) is
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lll~aJlest. In order to complete the proof, it sufiices 10 sho~ how to ob1aln r(p,)

from r(p,-l) in O(log11-) lime. Assume p, cau~es 91 to mC?v~ trpm position 'In t.o

1. Th~ effect on the c., 's caused by 91 moving from position rn to position 1 is.

tp-at nel ; s~itches from crossing nets ;+1, ... ,n (Figqre 2.1(~» to crossing

nets 1.··· ;1-1 (Figure 2.1(b». The update should the~forl! add 2'--'1).-110 cl'

increment (resp. decrement) by one c., tor every leaf k which is tp the left (resp.

right) of j, and update the approprLate MAX values. ,This ~ implemented In Urp.e

G(Iogn) as follows:

(i) Trace a path P tram the root to leaf j and. add 2j~ -.1 to A(j)

(ii) add 1 to the /1's ot the nodes on the left tr-inge of P. and f!.dd -1 to the A's of

the nodes on the right fringe of P

(#i) Ilpdat~ tp-~ MAX value ot the nodes on path P and its ~ett and right fr.jnges..

(th~se are the only nodes whose MAX needf! updatipg). ..,

f.fance. T(P,) can be obtained tram T(Pi-l) in time O(logn), which concludes the

proof of Theorem 2.2. •

The total crossing number of a CRp is hal! the sum ~t 'the crossing nllmbers

at all nets. The algorithm for determining the rotaUon p that mini~izeB the

total crossing number is similar to the one outlined a~ove. The initial total

crossing number is computed in O{nlogn) time (Lemma 2.1). and the optimal p

can be determined in O(n) time. Slnce we do not need to keep track of the

number of nets crossing each individual net, only the total number, the algo-

rithm requires less bookkeeping.

We now brietly sketch a proof that the O(nlogn) bound tor the total cross

ing numb~r is optimal. We do this by reducing to this p~oblem, in O(n) time, the

problem ot computing the total number of inversions in a permutation. In a

comparison-based model, O(nlogn) comparisons are needed tor computing the
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total number of inversions in an n-element permutation [K].

Let a l a2 ... tin be a permutation of (1.2.... nt. Let the CRP consisting ot the

nets (lI(.nH), l~:Sn. be the basic CRP. It is easy to see that the total croBllng

number in the basic CRP is equal to the total number of inversions in the given

permutation. Next embed the basic CRP in an 4ft-net CRP as shown in Figure

2.2. The total croBsing number ot the new CRP (at rotation zero) is 2n2+2c.

where c is the total crossing number in the baslc CRP. No rotation can achieve

a total crossing number less than 2n2+2c. Hence. the total number of inver

sions can be obtained by Bolving the crossing number problem.
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S, lIinimizillg the D9iJ.sity

We give an O(n210gn) time algorithm for 'coinputini; the rotation which

riiinimizee the density. Minimizing the density it will elso mtn.iniize the cha.n.nel

Width required in the routing phase. When 2 layers are available, 2d -1 is both

an upper ([RBM]) and Ii lower ({L]) bound on the channel width. When 3 or more

layers are availa.ble, the channel width equals the density ([PL]).

The algorithm keeps track of the densIty as the rota.tlon increases from

zero to m -1 aild remembers which rotation acli1eves lowest density. We use

dp(i.p) (resp. dq(i,p» to denote the "local" density just to the right of terminal

Pi. (resp. q,) at rotation p. For example, in Figure 1.1(a) the dp's are 1.3,1.0 and

the dq's are 3,1.3,2. In addition, for OSi:sn, we define c(i,p) as the number of

clp (; ,p)'s and r:l.q (j ,p)'s whose value is i. More formally:

c(i.p) = IIi Idp(i.p)=il I + lIil dq(i.p)=ill·

For example. in Figure 1.1(0.) the c's are 1,3,1.3.0. The density at rotationp,

d(P), is the largest of the dp(i,p)'s and dq(i,p)'s, and it can equivalently be

thought of as the largest i for which c (; ,p) is nonzero, I.e.:

d(P) = M=Maz !d;> (i,p).dq (i.p)1 = M=li Ic(;.p»ol·
1S:'''n

When the value of the rotation is clear trom the context, we no longer explicitly

1nclude the dependence on p in the above functions (e.g., we say dp(i) rather

than dp(i,p».

Let '8fJ be the rotation in which Pi and qJ coincide. For example, in Figure

1.1 we have '8u =3, '012=2, and '823=2. As in Section 2, PI'S:' . 'spn are the rota-

lions at which the qj'S change from position m (at p,-l) to position 1 (at p,).

The density changes at no more than 2n 2+n distinguished velues of the rotation, '

namely as the rotation increases (i) from some Pi-1 t~ Pi. or (ti) from some

'6.ij-l to~, or (iii) from some 1J..(j to "6.v+1. We assume that those 2n2+n dis-
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tlnguished values of the rotation are all distinct (this is assumed to make the

exposition simpler, and the algoritbm can easily be mod.1fted to handle the gen~

erat case).

We now examine the above cases more carefully.

Case (i) corresponds to qJ moving from pOBition m (Figure 2.2(a.» to position 1

(Figure 2.2(b». This motion decreases by 1 each lip (k) with P.t~j and

each dq (k) with q.t~pi' and it increases by ~ each dp (k) with p~<Pi and

each ctq (k) with qot <Pi'

Case (ii) corresponds to qj moving from being one unit to the left of:A. (Figure

3.1(0» to being in the same column as P, (Figure 3.1(b». The only

change due to this motion is in dq (j): It increases by 1 if q,>ql (as in

Figure 3.1). and decreases by 1 if q,=Sqj'

Case (iii) corresponds to ql moving from being in the same column BSPc (Figure

3.2(0» to being one unit to the right 01 p< (Figure 3.2(b)). The only

change due to this motion is in IIp(i}: It increases by 1 it PI.~PI (as in

Figure 3.2), and it decreases by 1 it P, <PI'

Whenever we change rip (i) or d.q (i) we also update the appropriate c (i)'s and d,

the current densLty. It dp(i) or dq(i) increases from I: to 1:+1 then we must

decrement c (k) by one, increment c (I: +1) by one. and tt d was equal to k we set

it equal to 1:+1. It dp(i) or dq(i) decreases from k to k-1 then we increment

c(k-l) by one, decrement c(k) by one, and it thiB causes c(k) to become zero

and d was equal to k then we set d equal to k -1.

The following is an informal outline of the algorithm.

1.) Compute, at zero rotation, all the dp(i)'s, dq(i)'s. c(i)'s, and d. This can

be done in time O(nlogn).
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2.) Compute the """'s and the Pi'S, and then Bort. ii::l. time 0('71.2 iogn), the

sequence of 2n2+n values of rotations corresponding to the '6'.1'8. ("tJ-1)'B.

and (p,-i)'•.

3.) Scan the sorted sequence obtained in the previous step. For each entry,

upda.t.e the appropriate dp'g and/or d'l's, iIi the manner oullined above.

There are 2n2 occurrences of Cases (it) and (iii), each of which requires

D( 1) t1me for updating. There are n occurrences of Case til. each of which

requires O(n) time for updating. Therefore tills Step takes O(n 2
) time.

The above algorithm produces 2'71.2+'71. values of d, one for each of the dis

tlngli1shed values of the rotation. Therefore it is possible to find the smallest

possible density top;ether with a rotation which achieves it Ln tline 0('71.2 iop;n) .
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4. lIinimizing the Net Length

In this Section our cost measure is the ~fmgth of the nets. Recall that the

length of net i equals the channel wtdth (i.e. the dlErtance between entry and

exit track) plus tbe horizontal distance separating Pi and qi' For example. in

Figure 1.2 the length of net 2 'Is 2+3=5. ]n an actual wiring the wire length

needed to connect Pi and q, is at least as large as the length of net i. In some

situations the channel width will already be fixed and only the rotation can be

varied. This cBuses the vertical portions of the lengths of aU nets to be the

same. and we need only consider the horizontal portion. Hence, we distinguish

the following 3 cases.

Case (i) The channel width is fixed and large enough to wire the CRP generated
by every rotation.

Case (ti) The channel width is fixed. and the only CRP's to be considered are
those with a denslty not exceeding a given value s.

Case (iii) The channel width can be varied and thus the vertical portions of the
lengths of nets must be taken into account.

For each of Cases (i) to (iii), we consider the two problems of determining a

rotation that mlnimtzes the lotallec.gth of all nets, and determining a rotation

that minimizes the maximum length of any net. For Case (l), these two prob·

lems can be solved in 0(71. logn) and 0(71.2) time, respectively, and for Cases (ii)

and (iii) both problems can be solved in 0(n2 Iogn) time.

We first describe the solutions for the problem of minimizing the totrzl nst

length (Le., the Bum of the lengths of all nets). For Case (l), the vertlcal portions

of the lengths of all nets are the same and are fixed. Therefore we need only

consider the horizontal portions. Let l.t(P) be the horizontal portion of the

length of net i at rotation p. How l.t varies as a function of p can be described by

a Hst of length 0(1), and therefore L(P)=I;lt,(P) can be described by a list of,
length 0(71.). The list describing L can be obtained in time 0(71. logn) 8S follows:
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Recursively compute the list describing nt24
(=1

•
and the list describing E 4,

(=n1'2+1

_, .1

then from these two lists obtain in time 0(71.) that describing L. (The last step is

done in a maDDer remiIuscent 01 the way two sorted sequences are merged, and

we leave Its details to the reader.) Once we have the list describing L, we can

determine in 0(71.) time the minimum value 01 L as well as a rotation which

minimizes it.

We now briefly describe how to obtain the optim8.l rotation minimizing the

total net length in Case (ii), when a maximum allowable density 8 is given. As in

Case (i), we need only consider the horizontal portions of the lengths 01 nets. but

now we must ignore rotations which result in a density exceeding 8. Observe

that we need only consider the rotations at position 'llu-l. TJ.u, and p, -1 (these

quantities are defined as in Section 3). Use the algorithm. given in Section 3 to

obtain the sorted sequence of 2n 2+'71. values 01 density corresponding to the

2'71. 2+71. distinguished values of rotation. Scan the sequence from lett to f[ght

and determine for each rotation bl: the total horizontlil net length 7U1:.

lS~2n.2+n. Let til: be the density correspondlng to rotation b.t. Alter an initial

computation of nl l in time O(n), we can obtain 'TIll: from nl.t-l in constant time.

From the 'TIll: 's obtained, we discard those for which Ii., >8. >From the surviving

nl.. 's, we choose the smallest. Hence the problem can be solved in O(n 2 10gn)

time.

The optimal rotation that minimizes the total Det length when the channel

Width is not fixed can also be obtained in time O(na lop), in a manner similar to

the one outlined above (we omit the details).

We now turn our attention to the problem 01 finding a rotation which minim~

[zes the m.a:cim.um. length 0/ any net. For Case (i), we want to minimize l(p),

where l (P) = Mru "(p) . We show that a rotation which minimizes l can be
I",t-a:n
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computed in time O(n2). First, we note that the list describing how l varies as a

function of p has a length of O(n2). This means that, it we recursively compute

the Hst describing Mru ~ and the list describing Mru ~,then we can
1"""n/2 "/2+1"''',, ~

obtain from these two lists the list describing l in lime O(ne). Therefore. it we

let T(n) denole the worst-case time needed to compute the lLat descrIbing l,

then we have T(n)=2T(n/2)+cn2, which implies that T(n):O(n2). Once we

have the list describing l, we scan this Hst and get th~ minimum value of l as

well as a value of rotation which achieves it. (We conjecture that the length of

the Hst describing l is actually O(n) rather than O(n2), which would imply that

T(n)' O(nlogn ).)

The problem of minimizing the largest length of any net tor Cases (ii) and

(iii) can be solved in time O(ne logn), in a manner similar to that used tor

minimizing total net length.
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5. opumal. Oft'Bet· Problems

In this Section we brietly sketch algorithms for cb.oosiilg tbe otrset wblch

mlninilzes the density. the total net leng~h, and the length ot the longest ~et,

respectively. througho.ut this Section, we assume that zero ollset corresponds

. to a situation where all the q~'s are to the lett of P l'

The problem of chOOSing the ctl'set which minimizes the dsftsity can be

solved in time O(n2 10gn) by an algorithm similar to the one given iIi Section 3

for the rotation problem. The details are omitted, but it Is worth noling thal the

algorithm for the offset problem is simpler than the one for the rotation prob-

lem. We no longer have exit terminals jumping tram .position m to position 1.

The same result tor minimizing the density in the otl'set problem has been

reported in [LaP].

We next consider the problem of flnding the otrset which minimizes the tatal

'riiJt length. We again distinguish between the 3 cases described in Section 4. In

Case (i), when the channel width is fixed and large enough to wire any CRP, the

optimal offset can be found In tlme O(n), as follows. Let td") be the length or

the horizontal portion of net i at offset ", and let"~ be the offset at which oet i

" trlvl.l (l.e. ~(",)=O). Note tb.t ~(") = I"""", I. Let L(") = I;~("), and,
oJ:)serve that L is continuous and is piecewise linear. Since L is the sum at con-

vex functions, it is also convex. An offset which minimizes L can be computed ib.

time O(n) by noting that L has a local minimum. at the median or the '6~·s. Since

L is convex this is also a global minimum.. Finding the ~·s (not sorted) can be

done in time O(n), after which finding their median also takes time O(n)

[BFPRT]. For Cases (n) and (iii). an argument similar to that given in Section 4

shows that the time bounds are O(n210gn ).

MinimiZing the length t al the langest net in Case (i), can now be done in
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D(n) time (compared to 0(1'1. logn) tor the rotation problem). Recall that

1(1\1) = IJ= ~(1\1), Find i (resp, ;) such that ~(O) (resp, 1,(0» is smellest (resp,
I"''isn

largest), and compute the value or '6 for which !tC")=lj("8). Note that the value of

." thus computed m1nlm.lzes t. For Cases (ti) and (iii), an argument similar to

that ~iven in Section 4 shows that the time bounds are O(n21o~n).
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