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Abstract

In the channel routing problem two rows of terminals, which are opposite
each other, have to be connected. We study what effect the rotation of one row
of terminals has on the cost measures of the routing phase. The cost measures
we consider are the crossing number, which is closely related to the number of
crossings between two wires on different layers, the density, which determines
the width of the channel, and the length of nets, which is related to the wire
length needed in the routing of the channel routing preoblem. We present
efficient algorithms for determlning the rotation which minimizes each of these
cost measure.



1. Introduction

Conventional design systems for t.hé layout of VLSI chips consist of two
Interrelated phases: placement and routing. The placement phase arranges ter-
minals, which are connection points for wires, on the chip, and the routing phase
determines the necessary Interconnectlons. A common way to cope with the
inherently diflicult combinatorial problems arlslné In placement and routing is
to partition them into smaller, independent subproblems which can be solved
more efliciently [R]. One important subproblem is the channel routing problem
(CRP) in which two rows of terminals are positioned o;;pcslt.e each other ([D].
[PL]. [RBM]). While some placement conditions are determined by technological
congtraints, placement, in general, contains a certain amount of freedom
([DKSSU]. [GCW], [LL). [LeP]). Using this freedom so that it makes routing

easier is often a difficult problem.

In this paper we show how the freedom to rofaie one row of terminals can
efliciently be used to minimize some cost measures of the routing phase. Let
the two rows of terminals be of length m, and assume we are given n pairs of
terminals (p;.g¢). called nets, in which no two nets share a cormmon terminal.
We need to connect p;, which is on the upper row, with g, which is on the lower
row, 1=p;.qy=m. The lower. row of terminals can be circularly roteted before the
routing, where a rotation of size p results in every ¢; moving p positions to the
right (position 1 is the successor of position m). An example of the eflect of a
rotation can be seen tn Figure 1.1, where (@) shows- the initial situation and (b)
the situation after a rotation of size 3. The problem we consider is that of choos-
ing a value of rotation which minimizes any of a number of cost measures. Since
the cost measures to be minimlzed are closely related to the wiring model used

in the routing phase, we briefly describe the model.
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Qur wiring model is the rectilinear knock-knee model ([H]. [PL]. [RBM]) with
at least 2 layers. A number of results also hold in polygonal or curvilinear
models, The channel (i.e., the space between the two rows) consists of a rec-
tangular grid, and wires have to run along grid lines. Each layer can contain
horizontal and vertical wires, and two different wires are allowed to cross or
form a knock-knee at a grid-point (as net 2 and net 4 in Figure 1.2), but are not

allowed to run on top of each other.

One of our cost measures is the crossing number of a CRP. The crossing-
pumber of the i-th net (p;,g;) is the number of nets which have their entry ter-
minal to the right of p; while their exit terminal is to the left of gy, or their entry
terminal is to the left of p; while their exit terminal is to the right of g;. The
crossing number of the CRP is the largest crossing number of any net. For
example, net.s'l 1,2,3, and 4 of Figure 1.1(a) have a crossing number of 2.2,3, and
3, respectively, and thus the CRP has a crossing number of 3. Note that in an
actual wif'ing the number of wires that cross the wire joinlng p; to g; has to be at
least as large as the crossing number of net i. We giv;a an O(nlogn) time algo-
rithm that determines the rotation which minimizes the crossing number of the
resulting CRP. The solution involves an interesting variant of 2-3 trees, one in
which an integer key is not stored in any particular node but 15 “distributed" on
a path trom the root to a leaf, and is equal to the sum of the data items stored in
the nodes of this path. We also outline an O(nlogn) time algorithm for the

easier problem of minimizing the sum of the crossing numbers of all nets.

Another.'cost measure we consider is the density of the CRP, which is the
maximum over all z of the number of nets (p,.¢;) for which p(<z <q; or p(>z2q;,
i.e., it is the number of nets that have to cross from column z to column z+1.
For example, the CRP of Figure 1.1(a) has density -.3. which 18 achieved between

colurmns 3 and 4, 4 and 5. and 5 and B, respectively. Every efficient routing
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algorithm tries to minimize the width of the channel, and the width is at least as
large as the density of the CRP. We show how to determine the rotation achiev-
ing minimum density in O(n2logn) time. The third cost measure considered lg
the length of nets, where the length of net i equals the channel width plus the
horizontal distance separating py and gy (the length of net 1 is therefore a lower
bound on the length of the wire needed to connect p; and g;}. Note that the run-
ning times of our algorithms depend only on n, not on m (we thus place no
bound on how large m can be).

A problem of a similar nature as the rotation problem is the offset problem
in which the lower row of terminels can slide right or.left. The offset problem
with an underlying 1-layer medel (i.e., no crossings are allowed) has been stu-
died in [DKSSU). Our bounds achieved for determining the rotation minimizing
the density and the length of nets also hold for the offset problem. In fact, our
algorithm for the density becomes simpler when modified to solve the optimal
offset problem. In addition, some of our algorithms for mlnimizing the length of
nets are faster for the optimal offset problem than for the optimal rotation
problem. In some sense the optimal offset problem is easier than the optimal
rotation problem because it does not have the discontinuities introduced by the
gs's jumping from position m to position 1. Note that the ecrossing numbers are

independent of the offset.

The paper is organized as follows. Section 2 contains the algorithms con-
cerning the crossing number. In Sectlon 3 we discuss how to determine the
rotation minimizing the density, and Section 4 contains results about the length -

of nets. Section 5 briefly sketches our results for the optimal offset problem.



2. Minimizing the Crossing Number

In this Section we first consider the problem of finding a rotation which
minimizes the crossing number of the resulting CRP, and give an O(nlogn) time
algorithm for solving this problem. Since a net with a large crbssing number ig
more vulnerable to electrical interference caused by electrical signals traveling
on the other nets, it is important to select a rotation which minimizes the larg-
est crossing number. Furthermore, our algorithm can be uzsed to determine
whether there exists a retation that results In a 1-layer wirable CRP (lL.e., a CRP
with no erossings}.

Throughout this paper we assume that the input consists of the nets (p;.q:).
1=i=n, where j:1<p2< ++ <p,. Two nets i and j cross each other if j<i and
g5 >g¢, and the crossing number of a net is the number of nets which cross it. Let

ci(p) be the crossing number of net i at rotation p. We want to minimize ¢ (p),

where c(p) = M:u: c:(p).

Lemmea 2.1 The initial crossing numbers ¢,{0), - - - .c,(0) can be computed in
time O(nlogn).

Proof: Let r; be the rank of ¢; among the g;'s at zero rotation. First we com-
pute the 7;'s in time O(nlogn). by sorting the g;'s. We now use a modifled 2-3
tree structure T whose leaves contain nets crdered according to their r; values.
Aleaf containing net i is called leafi. We start vrith' T empty and insert in it the
nets 1,2, - - ,n in that order, updating it in time O(logn) for each insertion.
Every node v of T conlains, in addition te the information usually stored in 2-3
trees, (i) NR{v), the number of leaves in v's subtree, and (ii) a number A(v).
The signiflcance of the A's iz that for every leaf i, the sum of the A's on the path
from the root to i equals the number of intersections between net i and the

other nets that are currently stored in 7. Once the flnal tree has been -
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constructed, the ¢((0)"s can easily be computed.

The updates required when net i is inserted are guided by the following
observation: The number of intersectlons between net ¢ and the nets already in
T is the number of leaves of T that are to the right of leaf . Every such leaf §
has j<i and g;>g:, and net j is therefore involv;ed l'..D. a crossing with net i,
Hence we have to record that the sum of the A's on the path from the root to
every leaf to the right of i is incremented by 1. We do this by adding 1 to the A's
of the nodes on the right fringe of the path from the root to leaf i. The Tight
Jringe of a path is the sequence of nodes obtained when going down the path and
listing the siblings to the right of the current node (the concept of left fringe 1s
defined in a similar way). More precisely, inserting net i into T is done as fol-
lowa:

(-i) Use 7y to find the location of 7 where net i will be inserted. This traces a
path F Irom the root to the place of insertion.

{(i1) Set A(i) to the sum of the NR's of the nodes on the right fringe of £ minus
the sum of the A's on P. (Note that this ensures that the sum of the A's on

P plus A(Z) equals the number of leaves to the right of 1.)

(iii) Add 1 to the A of every node on the right fringe of P
() Insert net i Into the 2-3 tree. Maintaining the correct ¥R and A values as
nodes get split can easily be done with minor modlfications to the standard
insertion procedure described in [AHU].
Correctness of the above Steps (i)—(iv) follows from the preceding discussion.
The @{logn) time per insertion follows from the fact that the height of a 2-3 tree
"(and hence the number of nodes on P and on its fringes) 13 O(logn). Since there
are n insertions, thelr total cost is O(nlogn). After the n nets have been

inserted, ¢,(0), - - - .c,(0) can computed in time O(n) by a preorder traversal of
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Let p,= ' - =p, be the rotations at wh[;:h the ¢;'s have changed from posi-
- tion m (at py—1) to position 1 (at p;). For example, in Figure 1.1, we have p,=2,
p2=3, pg=5. and p,=B. We want to select the p; which minimlzes c¢.
Thecrem 2.2 It is possible to compute, in time O(nlogn), the minimum crossing
number and a value of rotation which achieves it. .
Prool: It is sufficient te show that c(p,). - -.c{pn) can be computed in
O(nlogn) time. First we compute c¢,(0), - - - .ca(0) in time O(nlogn) (Lemnma
2.1). At rotation p, the tree ??(p) is defined as follows. f(p) is a modified 2-3
tree whose leaves contain the n nets. Neti is stored in the i** leftmost leat of
f(p). which is referred to as leaf i. (Note that f(p) differs substantiaelly from T
of Lemma 2.1's proof). Every node v of 'f(p) has two additional fields: |
(i) A A{v) fleld, whose significance is that for every leaf i, ¢¢(p) equals the sum
of the A’s of the nodes on the path from the root to.
(it) A MAX(v) fleld, which contains A(z) plus the largest of the MAX"s of v's chil-
dren.
Initially (i.e.. at rotation zero), leaf i of 7(0) has A(i)=c,(0) (1=i<n), and the A
of every internal node is zero. Given the c.(0)'s, building 'f(O) and computing
HMAX(v) for every node v can be done in O{r) time.

The MAX value at the root of f(p) is equal to c(p). This can be seen by
observing that for every v, the definition of MAX(v) implies that it is the max-
imum, over all leaves 4 in the subtree of v, of the sum of the A’s on the v-to-i
path. Hence, MAX at the root is the largest of ¢ ,(p). * - - .c(p). Which is ¢ (p).

Starting with 7(0). we compute the sequence f(pl).'f(pg). -+« Tlpn). Every
time we chaﬁge T':(pi._l) inte i"‘.(p;). we examine the YAX value at the root (which

is equal to c(p,)). and at the end we select the rotatlon p; for which the c(p() is

b
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gmallest. In order to complete the proof, it suffices to show how Lo obtaln ﬁp;)
from f:(Pi.—l) in O(logn) time. Assume p( cauges gs to move from position m to
1. The effect on the £,'s caused by g; moving from position m to position 1 is -
that net j switches from crossing nets j+1,-' - ,n (Figu_,.ire 2.1(a)) to crossing
nets 1, -+ - ;7-1 (Figure 2.1(b)). The update should therefore add 27 —n—1 to ¢4,
increment (resp. decrement) by one ¢, for every leaf k which is to the left (resp.
right) of 7, and update the appropriate MAX values. This is implemented in time
O(logn ) as follows:
(1) Trace a path P from the root to leaf § and add 2F-n—-1to A(j)
{(14) add 1 to the A's of the nodes on the left fringe of P, and add —1 to the A's of
the nodes on the right fringe of P
(i) update the HAX value of the nodes on path P and its left and right fringes

{these are the only nodes whose MAX needs updatig_g)

Hence. T(p;) can be obtained from T{p.,) in time O(logn), which concludes the

preef of Theorem 2.2, =

The fotal crossing numbar of a CRP is half the sum of the crossing numbers
of all nets. The algorithm for determining the rotation p that minimizes the
total crossing number is similar to the one outlined above, The initial total
crossing number is computed in O(nlogn) time (Lemma 2.1), and the optimal p
can be determined in O(n) time. Since we do not need to keep track of the
number of nets crossing each individual net, only the total number, the algo-
rithm requires less bookk-eeping.

We now briefly sketeh a proof that the O(nlogﬁ) bound for the total cross-
ing number is optimal. We do this by reducing te this problem, in O(n) time, the
problem of computing the total number of inversions in a permutation. In a

comparison-based model, O(nlogn) comparisons are needed for computing the
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total number of inversions in an n-element permutation [K].

Let 2, az ' ' - a, be a permutation of {1,2, - - - =|. Let the CRP consisting of the
nets (a;. 7 +1), 1=<i=n, be the basic CRP. It ls easy to see that the total crogsing
number in the basic CRP is equal to the total number of inversions in the given
permutation. Next embed the basic CﬁP in an 4n-net CRP as shown in Figure
2.2. The total crossing number of the new CRP (at rotation zero) ia 2n2+2c,
where ¢ ig the total erossing number in the basic CRP. Neo rotation can achieve
a total crossing number less than 2n®+2c. Hence, the total number of inver-

sions can be obtained by solving the crossing number problem.



8. Minimizing the Density

We give an O(n?logn) time elgorithm for computing the rotation which
riinimizes the density. Minimizing the density & will also minimize the channel
width required in the routing phase. When 2 layérs are available, 2d—1 is both
an upper ([RBM]} and a lower ([L]) bound on the channel width. When 3 or more
layers are availdble. the channel width equals the density ([PL]).

The algorithm keeps track of the density as the rotation increases from
zéro to m—1 and remembers which rotation achieves lowest density. We use
dp(i,p) (resp. dg(i.p)) to denote the "local” density just to the right of terminal
p: (resp. g;) at rotation p. For example, in Figure 1.1(z) the dp's are 1,3,1.0 and
the dg’s are 3.1,3,2. In addition, for Osi=n, we deflne c(i,p) as the number of
dp(j.p)'s and dq(j.p)'s whose value is i. More formally:

e(ip) = Hildp(i.p)=i}| + 117 1dq(§.p)=t}|.
For example, in Figure 1.1(e) the c's are 1,3,1,3,0. The denslty at rotation p,
d(p), 1s the largest of the dp(i.p)'s and dg({.p)'s, and it can equivalently be

thought of as the largest j for which ¢ (j,p) is nonzero, l.e.:

d(p) = Max Maz{dp(ip).dg(i.p)} = Mazij|c(j.p)>0}.

When the value of the rotation is clear from the context, we no longer explicltly
include the dependence on p in the sbove functions (e.g., we say dp(i) rather
than dp (.0)).

Let By be the rotation in which p; and gy coincide. For example, in Figure
1.1 we have 9,;=3, %,2=2. and ¥23=2. As in Sectlon 2, p,< ' - ' €p, are the rota-
tions at which the g;'s change from position m (at p;—1) to position 1 (at py).
The density changes at no more than 2n?+n distinguished values of the rotation, '
namely as the rotation increases (i) from some p;—1 to py, or (i¢) from some

%;—1 to By, or (iii) from some dy to By+1. We assume that those 2nt+n dis-
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tinguished values of the rotation are all distinet (thjs- is agsumed to make the

exposition simpler, and the algorithm can easily be modified to handle the gen-

eral case).

We now examine the above cases more carefully.

Case (i) corresponds to g; moving from position m (Figure 2.2(a)) to position 1
(Figure 2.2(8)). This motion decreases by 1 each dp(k) with Pp=p; and
each dg (k) with g,>p;, and it increases by 1 each dp (k) with p; <p; and
each dg (k) with g, <p;.

Case (i) corresponds to g; moving from being one unit to the left of p, (Figure
3.1(a)) to being in the same column as p; (Figure 3.1(b}). The only
change due to this motion is in dg () It increases by 1 if g,>g, (as in

Figure 3.1), and decreases by 1 if g;<q;.

Case (iii) corresponds to g; moving from being in the same column as p; (Figure
3.2(a)) to being one unlt to the right of p; (Figure 3.2(b)). The only
change due to this motion is in dp(i): It increases by 1 if py=p, (as in
Figure 3.2), and it decreases by 1 if p;<py.

Whenever we change dp (i) or dg (i) we also update the appropriate ¢ (j)'s and d,

the current density. If dp(i) or dg(i) increases from k to k£+1 then we must

decrement ¢ (k) by one, Increment c (k+1) by one, and if d was equal to k we set
it equal to k+1. If dp(i) or dg({) decreases from k to k—1 then we increment

e(k-1) by one, decrement ¢ (k) by one, and if this causes ¢ (k) to become zero

and d was equal to k then we set d equal to k -1,

The following is an informat outline of the algorithrn.

1.} Compute, at zero rotation, all the dp(¢)'s, dg(¢)'s, c(i)'s, and d. This can

be done in time O(nlogn).
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2) Complte the ;tfl“'s and the p¢'s, and then sort, in time O{n?logn), the
sequence of 2n?+n values of rotations corresponding to the 9y’s. (By—-1)s.
and (p;—1)'s.

) Scan the sorted sequence obtained in the previous step. For each entry,
lipdate the appropriate dp's and/or dg’s, in the fianner outlined above.
There are 2n? occurrences of Cases (i) and (iil), each of which requires
O(1) time for updating. There are n cecurrences of Case (i), each of which
requires O(n) time for updating. Therefore this Step takes O(n?) time,

The above algorithm produces 2n2+n values of d, one for each of the dis-

tinguished values of the rotation. Therefore it is poséible to find the smallest

possible density together with a rotation which achieves it In timé O(n? logn ).

&
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4. Minimizing the Net Length

In this Section our cost measure ia the length of the nets. Recall that the
length of net i equals the channel width (i.e. the distance between entry and
exit track) plus the horizontal distance separating p; and q;. For example, in
Figure 1.2 the length of net 2-1s 2+3=5. In an actual wirlng the wire length
needed to connect p; and g; is at least as large as the length- of net i. In some
situations the channel width will already be fixed and only the rotation can be
varied. This causes the vertical portions of the lengths of all nets to be the

same. and we need only consider the horizontal portion. Hence, we distinguish

the following 3 cases.

Cage (i) The channel width is fixed and large enough to wire the CRP generated
by every rotaticn.

Case (ii) The channel width is fixed, and the only CRP's to be considered are
those with a density not exceeding a given value s.

Case (iii} The channel width can be varied and thus the vertical portions of the
lengths of nets must be taken into account.

For each of Cases (i) to (iii}, we consider the two problems of determining a
rotation that minimizes the total length of all nets, and determining a rotation
that minimizes the maximum length of any net. For Case (1). these two prob-
lems can be solved in O(n logn) and 0(n?®) time, respectively. and for Cases (ii)
and (iii) both problems can be solved in O(n? logn} time.

We first describe the solutions for the problem of minimlzing the fofal nat
length (i.e., the sum of the lengths of all nets). For Casel(i). the vertical portions
of the lengths of all nets are the same and are fixed. Therefore we need only
consider the horizontal portions. Let L(p) be the horizontal portion of the
length of nlet i at rotation p. How L varies as a function of p can be described by

a list of length O(1), and therefore L(p)=))k(p) can be described by a list of
1

length O(n). The list describing L can be obtained in time O(n logn) as follows:



-14 -

Recursively compute the list describing nf:al‘ and the list describing i L.
i=} . i=n/2+1

then from these two lists obtain in time O(n) that describing L. (The last step is
done in a manner reminiscent of the way two gsorted sequences are merged, and
we leave Its detalls to the reader.) Once we have the list describing L, we can
determine in O(n) time the minimum value of L as weli as a rotation which
minimizes it.

We now briefly describe how to cbtain the optimal rotation minimlzing the
total-net length in Case (ii). when a maximum allowable density s is given. As in
Case (i), we need only consider the horizontal portions of the le'ngths of nets, but
riow we must lgnore rotations which result in e density exceeding s. Observe
that we need only consider the rotations at position 8y—-1, 9y. and py—1 (these
quantitles are defined as in Section 3). Use the algorithm given in Section 3 to
obtain the sorted sequence of 2n2+n values of density corresponding to the
2n?+n distingnished values of rotation. Scan the sequence from left to right
and determine for each rotation b, the total horizontal net length =i,
1=k=2n+n. Let d; be the density corresponding to rotation b;. After an initial
computation of nl, in time O(n), we car obtain ni; from ni,_, in constant time.
From the nl,'s obtained, we discard those for which dy >s. >From the surviving
nly’s, we choose the smallest. Hence the problem can be solved in O(n®logn)
time.

The optimal rotation that minimizes the total net length when the channel
width is not fixed can also be obtained in time O(n? logn), in & manner similar to
the one outlined above (we omit the details).

We now turn our attention to the problem of finding a rotation which minim-
izes the mezimum length of any nef. For Case (i), we want to minimize {{p),

where I(p) = ;E&:n L(p) . We show that a rotation which minimizes ! can be
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ecomputed in time O(n?). First, ‘we note that the list describing how ¢ varies as a
function of p has a length of O(n?). This means that, if we recursively compute

the list describing uﬁu,ﬁzl‘ and the list describing Mar L, then We can

n/2+isisn

obtain from these two lists the list describing 1 in time 0(n?%). Therelore, if we
let T(n) denote the worst-case time needed to compute the ilst describing ¢,
then we have T(n)=RT(n/2)+cn® which implies Ithai T(n)=0(n?). Once we
have the list describing ¢, we scan thia llst and get the minimum value of I as
well ag a value of rotation which achieves it. {We conjecture that the length of
the list describing { is actually O(n) rather than O(n?), which would imply that
T(n)=0(nlogr).)

The problem of minimizing the largeat length of any net for Cases (ii) and

(iii) can be scived in time O(nflogn), in a manner similar to that used for

minimizing total net length.



1

5. Optimal Offset Problems

In this Section we briefly sketch algorithms for ¢hoosing the offset which
milnimlzes the density, the total net length, and the length of the longest net,
respectively. Throughout this Sectlon, we assume that zero offset corresponds
"to a situation where all the g;'s are to the left of p,.

The problem of choosing the offset which minimizes the densify can be
solved in time O(n?logn) by an algorithm similar to the one given in Sectlon 3
for the rotation problem. The details are omitted, but it [s worth noting that the
algorithm for the offset problem is simpler than the one for the rotation prob-
lem. We no longer have e;tit terminals jumping from position m to position 1.
The sarne result for minimizing the density in the offset problem has been
reported in [LaP].

We next consider the problem of finding the offset which minimizes the fotal
riat length. We again distinguish between the 3 cases described in Section 4. In
Case (1), when the channel width is fixed and large enough to wire any CRP, the
optimal offset can be found in time O(n), as follows. Let 4(8) be the length of
thie horizontal portion of net i at offset ¥, and let B, be the offset at which net 7

ia trivial (ie. L(®)=0). Note that 4(®)= |98 |. Let L{®) = Y 4(B), and
:

observe that £ is continuous and is piecewisé linear. Since L is the sum of con-
vex functions, it is also convex. An offset which minimlzes L can be computed in
time O(n) by noting that 'L has a local minimum at the median of the 9;’s. Since
L is convex this is also & global minimum. Finding the ¥’s (not sorted) can be
done in time O(n)., after which finding thelr medlan also takes time O(n)
[BFPﬁT]. For Cases (ii) and (iit). an argument stmilar to that given in Section 4

shows that the time bounds are O(n®logn).

Minimizing the length I of the longest net in Case (i), can now be done in
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O(n) time (compared to O(n logn) for the rotation problem). Recall that

B = ﬁi? L(8). Find i (resp. ) such that 4{0) (resp. {(0)) is smallest (resp.
1]

largest), and compute the value of 8 for which 4(®)=L;(8). Note that the value of

# thus computed minimizes {. For Cases (ii) and (iii), an argument similar to

that given in Section 4 shows that the time bounds are O(ntlogn).
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