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Abstract

We show that any n -net 2-terminal channel routing problem of density d can be wired on a two­
layer grid of width w = d + 0 (d1J3

) when vertical wire segments are allowed to overlap for a dis­
tance of length 1. TItis is a considerable asymptotic improvement over the best known, and
optimal, channel width of 2d-l for models in which no vertical overlap is allowed [RBM, PL].
OUf result also improves the 3d12 + 0(1) channel width achieved by a recent algorilhm [0] for
the same vertical overlap model. The algorithm presented in this paper produces at most 4 over­
laps of unit length between any two nets, uses 0 (n) contacts, and can be implemented to run in
O(nd2l3

) time. We also generalize the algorithm to multi-terminal channel routing problems for
which our algorithm uses a width ofw = 2d + 0 (d 2J3).
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1. Introduction

The Channel Routing Problem (CRP) is the problem of connecting terminals belonging to

signal nets and located on two opposite sides of a rectangular channel so that the wiring uses

minimum area. Ideally, other cost measures (e.g., the number of contacts) should also be minim­

ized in the routing process. More formally, in a CRP we are given a channel of length I and n

nets. N 1.' .. ,Nn.. where net Nj = (Til Bi ) and Tj (resp. Bi ) contains the positions of the terminals

of net Nj on the top (resp. bottom) row of the channel, Ti • Bj~{l.· .. ,l}, Tjr"'\Tr=0 and

Bj nBj =0 for i:l:j. If ITj I=18j 1=1. 1:s:i:in, we call the problem a 2-terminal CRP, otherwise a

multi-terminal CRP.

Because of the importance of channel routing in the design of layout systems [lIS, R],

numerous heuristics and approximation algorithms have been proposed for a number of wiring

models [BBL, D, H, 0, PL, RBM, RF, SP, YK]. In the 2-1ayer knock-knee model (in which two

wires on different layers are allowed to share a comer [KM, MP, PL, RBM]) any 2-terminal

(resp. multi-tennina!) CRP can be solved using a channel width of2d-l (resp. 4d-l), where dis

the density of the CRP which will be defined later. Leighton has shown that there exists a class

of2-terminal CRPs that require a width of2d-l [L].

The wiring model used in this paper differs slightly from the knock-knee model. Instead of

allowing knock-knees, we allow two wires on different layers to run on top of each other for one

vertical unit. The two layers are used in a qUllSi-direclional fashion (which is stricter than in the

knock-knee model): All the horizontal wire segments lie in layer I, and all the vertical wire seg­

ments. except the ones that could participate in a vertical overlap, lie in layer 2. We describe an

algorithm that solves any n-net 2-terminal CRP using a channel width ofd + 0 (dUJ), 0 (n) vert­

ical unit overlaps, and 0 (n) contacts. Our results is actually more general: We show that for any

integer k, a channel width of rk;1 (d+4k2+2)1+1 can be achieved, which is minimized for

k = d l13l2. Our algorithm generalizes the one presented in [G]. For the case of multi-teoninal

CRPs we show how to achieve a width of2d + 0 (d2l3).

The channel width required by our algorithms does only depend on the density, which is the

maximum over the number of all nets that have to cross from column i to column i +1. It is

defined as
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d = max {I{N[N isanetwithmin(TuB)~iandmax(TuB)"i+l}lj
i

It is easy to see that even when vertical unit overlap is allowed, the density is a lower bound on

the channel width. In the directional wiring model [BR, BBLl, which is also called the Manhat­

tan Model. the width does not only depend on the density and could be n 112 for a CRP of deru>ity

2 [BR].

We next describe our 2-layer grid wiring model in more detail. The veItica1 lines of the

grid are called the columns. and the horizontal lines are called the tracks. The tracks (resp.

columns) are numbered 0,· .. ,w+l (resp. 1,·· . ,i) from top to bottom (resp. from left to right),

and w is the width of the channel. Every intersection of a track and a column forms a grid poim.

A solution to a 2-terminal CRP contains for every net Ni of a wire Wi starting at the terminal on

track 0, consisting of horizontal and vertical wire segments (whose end points are grid points),

and ending at the tenninal on track w+l. (A solution to a multi-terminal CRP is defined analo­

gously.) Horizontal wire segments are assigned to layer 1. and vertical segments (except one of

the two of a vertical overlap) are assigned to layer 2. In order to change from layer 1 to layer 2 at

a grid point (x ,y). which is on track x in column y, the wire makes a contact at (x ,y). No two

wires are allowed to run through the same grid point in the same layer (such a situation is called a

short circuit). Two wire segments on different layers can cross each other at a grid point (in a

right angle) and can share a vertical segment oflength 1; i.e., wires Wi and Wj can both contain

the vertical segment ((x,y),(x+l,y)) provided one uses it on layer 1 and the other on layer 2, and

the vertical segments «x+I,y),(x+2,y» and (x-l,y ),(x ,y» contain no overlap.

Section 2 describes the routing algorithm for 2-tenninal CRPs, and in Section 3 we present

its analysis. In Section 4 we discuss the modifications to be done for multi-lenninal CRPs.

2. The Algorithm for the 2-Terminal Problem

In this section we show how to solve any 2-tenninal CRP of density d on a channel of

width w = gk+g+l, where k:::l and g = rd
;2 + 4k1. The algorithm divides the channel into g

groups, each group consisting of k consecutive tracks, also called layout tracks. The groups

(resp. tracks in a group) are numbered 1,'" ,g (resp. 1.' .. ,k) with 1 being the top-most group

(resp. top-most track in a group). We refer to track x in group i as track (i .x), lSi'Sg, I:5xSk.
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Between tracks (i,k) and (i+l,l), I:!;"i<g, above track (1.1), and below track (g,k) there is one

additional track, track ai. fr:;'i ~g. Let (i .x) and U,y) be two layout tracks. Then (i oX)<U.y) if

either i <j or, if i=j I then x<y.

The algorithm determines the wires of lhe nets by scaruting the channel once, from left to

right Before describing the algorithm we define some additional terminology. Let Nj = (lj ,bi).

l$i5:n I be the 2-terrninal nets of the CRP. A net No is called extended in column c if both termi­

nals are to the left of column c (i.e., max(lj,bi)<c) and net Ni still occupies tracks between

columns c -1 and c. An extended net Ni is closed in column c if the algorithm makes a vertical

wire segment in column c that connects the tracks occupied by net Nj (an extended net occupies

exactly two tracks). A net Ni is called active ifit has exactly one terminal to the left of column c

(Le.• min(tj,bj)<c and max(ti,bi)~C). Ifmax(lj,bi)<c and net N j is not extended, then we say

that net N j has been completed.

Assume that the input consists of two sorted lists: one containing the n nets sorted accord­

ing to their top tenninals ti, and one containing the nets sorted according to their bottom termi­

nals b j • The algorithm. scans, simultaneously, these two input lists and the channel, in a left-to­

right, column-by-column manner. Assume the scan is currently at column c. Then the wires to

be placed in columns 1," . ,c-l and on the tracks up to column c have already been detennined.

The horizontal wires going from column c-l to column c belong either to active or extended

nets. Extended nets are divided into two categories: closable and non-closable ones. The precise

definition of a closable and a non-closable net will be given after the informal outline of the algo­

rithm. We will also show in the next section that if there are 2k2+1 extended nets present in any

column, then at least one of them is closable.

We now give the overall outline of the algorithm. We assume that every column c contains

an upper and a lower terminal (if this is not the case, the modifications to be done are slraightfor-

ward).

Outline of the AlgoritJun

(I) for column c= I, 2, do

(2) if there exists a closable extended net, say net a
(3) then close net (x, and handle the wiring of the nets containing the upper

(resp. lower) terminal; this will be described in detail below
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(* in this case no previously empty layout tracks are used; the
wiring done in this step changes the status of some extended nets
(i.e., from closable to non-closable and vice-versa) *)

(4) else Choose two available layout tracks (s.p) and (t .g). (s.p )«t .g).
and place the net containing the upper terminal on track (s ,p)
and the net containing the lower tenninal on track (I ,q)

('" there are at most 2k2 extended nets present and thus at most
d-+4k2 layout tracks are occupied; since the algorithm has a total
ofd+4k2+21ayout tracks, at least two of them are available *)

fi
ad.

The definition and the purpose of a closable net will become apparent after describing line

(3) in more detail, which is done next. Assume net ex occupies the layout tracks (i ,x) and U,y),

(i ,x)<(j ,y). We close Det a by making a vertical segment in layer 2 which requires two contacts

in column c. See Figure 2.1. ,

"
group 1 {

Qi_1

group i t

groupj I

,.,,
: octo:,,,,,
•

" ------------------

Figure 2.1

Let the upper terminal in column c belong to net p. Ifnet pis an active net and on a track above

track (i ,x), the algorithm completes net p. Olherwise (i.e., net pis either active on a track below

track (i,x) or not yet active), the algorithm shifts the nets currently on tracks (i ,1),' .. ,O,x-I)

onto tracks (i ,2), ... ,(i.x) by letting the net originally on track (i ,t) make its vertical unit seg-

ment in column c+x-l, l:5lSx-l. The wire from the upper terminal in column c (which belongs

to net P) is brought onto track (i ,I) by using the additional track Qi-l up to column c+x. We say

that the algorithm creates a right knock-knee region in column c on track (i oX), which consists of

all the tracks in group i and the additional track Qi-l in columns c, c+I, ... , c+x. See Figure
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... c+(k-y)+l

OJ

"""Pi·1

0';' -----i----- L' ---+_, 1---,-_
"':'" x , 1__---+_

-net cr.

(a) right

"""Pj

"""Pj+1

__-""'0"._---<
' --'-JI 1'-------'--
• ----'_-.JI

, ~

(b) efl

knock-knee region (indicated by .....)
Figure 2.2

Analogously, if column c contains a lower tenninal we may need to create a left knock-knee

region. In such a case the nets on tracks (j,k),'" .U,y+l) are shifted onto tracks

(j Ik-I).·· . t(j ,y) and the additional track used in the knock-knee region is aj+l' See Figure

2.2(b). The rules shown in Figure 2.2 are the basic wiring rules. If, for example, a right knock­

knee region is created in column c on track (l.x). then no other knock-knee region that overlaps

this one can be created. This motivates the definition of a closable net. An extended net a occu-

pying tracks (i,X) and U,y) is called closable if the two knock-knee regions created in line (3)

(i.e., in the process of closing net a and placing the wires of other nets onto the layout tracks used

by net a), do not overlap with any previously created knock-knee regions in groups i and j. If

such an overlap exists, net a is called non-closable.

The definition of a closable net has one exception: A region created in a group i can over­

lap with a region in an adjacent group; i.e., two such regions can share the same additional track.

The wiring in this situation is done as follows. Assume we want to form a left knock-knee region

on track U,y) in column c, and a right knock-knee region has been created on track U+I,j) in

column c-l, lSi. See Figure 2.3(a). Both knock-knee regions share track aj' The lower wire of

the right knock-knee region created in column c-l and the upper wire of the left knock-knee

region both belong to closed nets. The algorithm rewires as shown in Figure 2.3(b): It puts the
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lower wire creating the left knock-knee region on track U+l,j). The upper wire of the right

knock-knee region runs first on the additional track Qj and. from column c on, is handled like the

lower wire of the left knock-knee region. In column c we thus create a left knock-knee region and

the right knock-knee region is no longer valid.
~-i ... <:

grtIupj group j

y y

I rr:"i • "i

~
j , L j , 9

groupj+l groupj+l ,

(a) righLknock-kn~e region created aI &",-1) Figure 2.3 (b) rewiring

This completes the description of the algorithm. Before analyzing its performance. we

briefly describe an improvement to the wiring rules. (Although this does not improve the asymp­

totic performance, it may be useful for practical purposes.) It is easy to see that the definition of a

closable net is rather strict, and we now modify the wiring rules so that two knock-knee regions

of different type (i.e.• left and right) are allowed to overlap. In order to do so, the algorithm has

lo, as done in the rule shown in Figure 2.3, 'look back' at previous columns and to possibly

change the wiring already done. But doing so does not increase the time complexity. We only

discuss the modification to be done when a right knock-knee region was created in column c-/

on track (i .x); the case for left knock-knee regions is handled analogously. Assume we want to

create a left knock-knee region in column c on track (i ,z), which overlaps with the right knock­

knee region.

(A) If z>x. then we can create a left knock-knee region according to the rule shown in Figure

2.2(b),

(B) Ifz:Sx, we distinguish 3 cases:
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(i) x-z>l. In this case the upper wire creating the left-knock knee region did already move

onto track z+1. The algorithm can form the left knock-knee region according to the basic

rule.

(ii) x-z=l. In this second case we place the lower wire creating the left knock-knee region

on the track z+l (which is the track the upper wire of the left mock-knee region would

have used). The algorithm creates no left knock-knee region and the right knock-knee

region remains as before. See Figure 2.4(a).

,-I ,
, ,-< ,., ,, ,

<Ii_l • L <1;_1 • L
I , I

I •,
•

group i
I
, groupi,

I
,

, , , , ,, , ,., , ,,, .,,,,
(a) ;r-: .. ,

(b) x-::> I
Figure 2.4

(iii) x-z>l. In this case we wire as shown in Figure 2.4(b): The wires on tracks

x+l,' .. ,z-l do not change track (Le., we 'undo' the wiring). The lower wire of the left

knock-knee region is put on crack (i ,x). No left knock-knee region is created and the right

knock-knee region may now be smaller.

This concludes the discussion of the modifications and in the next section we analyze the

performance of the algorithm..

3. Analysis of the Algorithm

The algorithm. described in the previous section uses k+l 2fT (d+4k +2)1+1 tracks and we

now show that it successfully wires any n-net 2-terrninal CRP of density d. We also discuss the

amount of overlap used and the number of contacts made during the algorithm, and how to imple­

ment the algorithm to run in 0 (00 213) time.
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In order to prove correctness of the algorithm we need to show that, when processing

column c. the algorithm either finds a closable net or that there are two available layout tracks.

Recall that an active net occupies onc and an extended net occupies two tracks. Thus, between

columns c-1 and c. there are at most d tracks occupied by active nets. and the remaining 4k2+2

layout tracks are either available or occupied by extended nets. In every column the algorithm

constructs at most two knock-knee regions. The knock-knee regioIl'> created in columns

c-k.· _. ,c-l were formed in at most 2k distinct groups (recalllhat knock-knee regions in adja­

cent groups can overlap), and these 2k groups can contain at most 2k2 extended nets (all of which

are slill present in column c). If. in column C I the 4k2+2 layout tracks contain more that 2k 2

extended nets, then line (2) of the algorithm. finds a closable extended net. If there are fewer than

(or exactly) 2k2 extended nets each of which is non-closable, then there are at least 2 available

layout tracks in the channel and line (4) of the algorithm can be executed. Thus, column c of the

algorithm can always be wired and correclness follows.

It is obvious from the wiring rules given in Figures 2.2, 2.3, and 2.4 that the algorithm pro­

duces overlap only in the vertical direction. Once a net occupies a track in a group (or, in the

case of an extended net, two tracks in possibly two groups) the net does not change groups,

although it may change tracks within a group. Whenever a wire changes track it may produce

vertical overlap of length one with a wire of another net. Since every net contains at most 3 verti­

cal segments in layer 2 (which is the layer exclusively used for vertical connections), two nets

can overlap with each other for at most 6 vertical units. One can actually show that two nets can

only overlap with each other at most 4 times. TItis comes from the fact that wires do not change

their group and that they remain in the same relative order to each other within this group.

Hence, the total number of vertical unit overlap segments produced by lhe algorithm is 0 (n).

NOle that the wire segment of a net on layer I can possibly overlap with a wire segment of a dif­

ferent net every k columns. It is furthermore clear from the wiring rules that our algorithm uses

O(n) contacts: Every net uses either 0, 2, or4 contacts.

While the algorithm works for arbitrary values of k, the number of tracks is minimized for

k= d l13/2. In this case the channel width w = d + 4d213 + o(d l13) which, in the asymptotic

sense is better than the channel width required by other known algorithms. For the case of

k= d l/3I2, we show how to implement the algorithm so that it runs in 0 (nd'2J'3) time. Observe
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that this time is optimal in the sense that there are CRPs whose explicit description of the wiring

produced by the algorithm (Le.• in the wiring every change in a track of a net is explicitly stated)

is of length 0 (nd1J3).

During the scan the algorithm keeps the extended nets in a list For every extended net a

we record (<<,(i ,X ),U ,y)) with (i ,X)<U.y) in this list. In order to achieve 0 (nd1J3) lime, the list

does not need to be kept sorted and thus a newly created extended net is added in constant time.

The algorithm also keeps two arrays LR and RR. both of size g = r2(dl~2) + 2dl~, where
d

LR (i) (resp. RR (i» contains the column and track number afthe last left (resp. right) knock-knee

region created in group i.

When processing column c the algorithm. scans through the list of extended nets until it

either finds a closable net or the list is exhausted. Since there are at most 2k2 closable nets, line

(2) of the algorithm lakes 0 (dV3) time. The algorithm has to record the shifts in the tracks for

the nets involved in the knock-knee region, which can be done in o(d 1f3) time. Note lhat 'un­

doing' the wiring and updating the information about knock~knee regions when necessary can

also be done in O(d1f3
) time. Since we only need to consider columns that contain terminals

and/or close extended nets, the total running time of the algorithm is 0 (nd2J3).

We are now ready for the main result about 2-terminal CRPs:

Theorem 1. Any n-net 2-terminal CRP of density d can be wired on a channel of width w =

d + 0 (d'1f3). The wiring contains at most 4 vertical overlaps of length I between any two nets,

uses 0 (n) contact points, and can be determined in 0 (nd2J3) time.

4. Multi-Terminal Nets

The basic idea of the algorithm described in Section 2 can be extended to handle multi­

terminal CRPs. In order to do so we divide the channel into two vertical strips, the upper and the

lower strip. Each strip consists of rk
;l (d+4k2+2)1+1 tracks and is organized as the channel for

the 2-terminal CRP. A wire segment originating at a terminal on the top row of the channel is

always placed on a track in the upper strip, and a wire segment originating at a terminal on the
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bottom row is always placed on a track in the lower strip.

The algorithm also scans the channel from right to left, column by column. During the

algorithm a net can occupy two or more tracks in a strip (such a net is called a collapsible net).

When processing column c the algorithm first determines if there exists an extended net which

uses tracks in both the upper and the lower strip. Ifsuch a net exists and knock-knee regions can

be created without violating the wiring rules (which are as in Section 2), the algorithm closes this

net. If no such net exists. the algorithm considers the upper and the lower strip separately. In

each strip it either finds a collapsible net for which it can make a vertical wire segment that frees

up some of the tracks occupied by this net, or it finds an available track which is then used for the

wire segment originating at the terminal on the same side. The algorithm thus uses

2 crk
;1 (d+4k 2+2)1+1) tracks for a multi-tenninal CRP of density d. The proof of correctness

of the algorithm is similar to the one for 2-terminal CRPs and is omitted. Again. k = d 1rJ/2

minimizes the channel width, and we can thus state the following theorem.

Theorem 2. Any n-net multi-terminal CRP of density d can be wired on a channel of width

2d + o(d 2J3). The algorithm makes O(m+l) contacts and O(m+l) unit length overlaps, where

m (resp. I) is the total nwnbcr of terminals positioned on the top (resp. bottom) row of the chan-

neI.

s. Conclusions

We presented a new two-layer channel routing algorithm for the quasi·directional model

with vertical unit overlap. We showed that wilhin this model any 2-terminal CRP can be solved

in a channel of width d + 0 (d 2l3 ). TIlls algorithm does not only achieve a smaller channel width

than previously known algorithms t. it also uses fewer contacts (0 (n) compared to Q(dn) for the

knock-knee model [RBM]). We described how to generalize the algorithm for the case of multi­

terminal CRPs for which it achieves a channel width of 2d + 0 (d2l3
).

t Berger el a1 [BBBL] have recently developed lIIl algorithm that achieves a channel density of
d + 0 (d 112) for the same model.



-12 -

References

[BBBL]B. Berger, M. Brady, D. Brown, F.T. Leighton, personal communication.

[BBL] B.S. Baker, S.N. Bhatt, P.T. Leighton, 'An Approximation Algorithm for Manhatten
Routing'. Proceedings of the 15th Annual ACM Symp. on Theory of Computing, pp 477­
486,1983.

[BR] D.l. Brown, R.L. Rivest, 'New Lower Bounds for Channel Width', Proceedings oj the
CMU Conf on VLSI Syslems and Camp., pp 153-159, 1981.

[D] D.N. Deutsch, .A Dogleg Charmcl Router', Proceedings of the 13th IEEE Design Auto­
mation Conf, pp425-433,1976.

[G] S. Gao. 'An Algorithm for Two-layer Channel Routing'. Proceedings 012-00 Ann. Symp.
on Theoretical AspeclS in Compo Sc" pp 151-160. 1985.

[H] S.E. Hambrusch. 'Channel Routing Algoritluns for Overlap Models', IEEE Trans. on
CAD, Vol. cad-4, pp 23-31, Jan. 1985.

[HS] A. Hashimoto. 1. Stevens, 'Wire Routing by Optimizing Channel Assignment within
Large Apertures', Proc. of8-th Design Aut. Con!, pp 155-169, 1971.

[KM] M Kaufmann, K. Mehlhorn, 'Routing TIuuugh a Generalized Switehbox', Lecture Notes
in Computer Science, Nr. 194 (lCALP 85), Springer Verlag, pp 328-333, 1985.

[L] F.T. Leighton, 'New Lower Bounds for Channel Routing', unpublished manuscript, 1981.

[MP] K. Mehlhorn, F.P. Prep.tara, 'Routing Thrnugh • Rectangle', JACM, Vol. 33, Nr. I, pp
60-85,1986.

[PL] F.P. Preparata, W. Lipski, 'Three Layers are enough', Proceedings of the 23rd Annual
IEEE Foundations ofCamp. Sc. Conf-, pp 350-357,1982.

[R] RL. Rivest, 'The PI - Placement and Interconnect - System', Proc. of19-1h Design Auto­
mation Conf-, pp 475-481, 1982.

[RBM]RL. Rivest, A.E. Baratz, G. Miller, 'Provably Good Channel Routing Algorithms',
Proceedings of the CMU Con! on VLSI Systems and Compulations, pp 153-159, 1981.

[RF] RL. Rivest, C.M. Fiduccia, 'A "Greedy" Channel Router', Proceedings of the 19t-lh
IEEE Design Automation Conf, pp418-424, 1982.

[SP] M. Sarrafzadeh, F.P. Prepatara, 'Compact Channel Routing of Multi-terminal Nets', to
appear in Annals ofDiscrete Mathematics.

[YK] T. Yoshimurn, E.S. Kuh, 'Efficient Algorithms for Channel Routing', IEEE Trans. on
CAD, pp 25-35, 1982.


	Two-Layer Channel Routing with Vertical Unit-Length Overlap
	Report Number:
	

	tmp.1307986960.pdf.TklFs

