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Abstract. We consider the problem of detecting lines in an nxn image on an nXn mesh of pro­

ceSSOI'S. We present two new and efficient algorithms which perform a Hough transform by pm­

jectioIL Our.fust algorithm runs in time 0 (k..r,n+n), where k and m are the number of 6- and

p-vaIues in the panunetric representation of the lines in the Hough transfonn, respectively. The

second algorithm runs in O(n+k) time. Both algorithms perform only simple data movement

operations over relatively shan distances.

Keywords. Hough trnnsform. image processing, line detection, meshes. parallel processing.

• 11lis work was supported by die Office of Naval Rese:uch under Conlrncts NOOOI4.84-K-0502 and
NOOO14-86.K-0689. and by lhe NaLioru:J1 Science Foundation under GrnnL DMC-S4-13496.



-2-

1. Introduction

The detection of lines and curves in an image is a fundamental problem in image process­

ing. The problem is often solved by a Hough transform [BA. DH. HHl. a melhod based on a rela­

tion between points lying on a line or curve in the image space and the parameters of that curve.

A line is parnmererized by twO values B and p according to the following expression:

P = xcosB + y sinB (1)

where a is the angle of the normal line and P is the distance of the line from the origin. The

transformation associates a point (x.y) of the image space with a line of the parameter space and

has the following property: Points lying on a line are transformed into lines intersecting at the

same point in the parameter space. This property allows us to convert the line detection problem

into an intersection problem in the parameter space. This latter problem is solved as follows [HR,

DR}. The parameter space is quantized into k B-values, Bo, '.', B.I:_I , and m p-values.

Po•...• Pm-I. and an accumulator array of size kxm with each entry corresponding to a pair

We assume that all the edge points of the nxn image have been determined. In order to

solve the line detection problem each edge point (x ,y) in the image space "votes" for the parame­

ter values of possible lines passing trough it; i.e.• for every Bi the p-values of the lines passing

th!Ough (xJ') are derived from (1) and the corresponding entries in the accumulator array are

incremented. After all edge points have been treated, the enU)' with the maximum number of

votes is found. The sequential implementation of this procedure uses 0 (lan+bmin{m,k}) time.

whereb is the number of edge points in the image, b~2.

In this paper we present two new and efficient parallel algorithms for perfollDing the HOUgh

transform. on an n xn mesh of processors. Our first algorithm, which we call the block algorithm.

runs in 0 (k,J;;;+n) time, and our second algorithm. called the tracing algorithm. runs in 0 (n+k)

time. The algorithms assume that the mesh contains an n xn binary image with one image point

per processor. Both algorithms use projections of the image along different directions to deter­

mine the number of edge points lying on every line (ai.pj), l)gQ-l, lli;j5m-l. It is well

known that the Hough transform can be viewed in terms of projections [SD]. The projection of a

picture in a direction B is obtained by adding up the edge points of the image along the family of
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lino::s perp::ndicular to 8.

The block algorithm panitions the mesh in 5ubmeshes of appropriate sizes and combines
the partial results accwnulated in the submeshes in k stages. The time bound of 0 (k..r,n+n) can
also be achieved by taking voteS, but the accompanying constant is larger. The second algorithm
performs projections by tracing lines through the image in a pipelined fashion. '\Vhile the tracing
algorithm is asymptotically optimal and superior to the block algorithm for k,r,n = .O:(n), we
expect the block algorithm to outperform the tracing algorithm in an actual implementation (e.g.,
on the:MPP [BTJ). While many mesh algorithms [AH, MS, NS] rely heavily on sorting as a sub­
routine for performing arbitrary data movement, both of our algorithms do not use sorting. Both
algorithms perform only simple data movement operations over relatively shan distances in the

mesh.

We briefly review some of the previously reponed parallel implementations for the Hough
uansfocm. An implementation for an nxn mesh running in time 0 (nk) is described in [51]. In
this algorithm the accumulation process for every 9-value is carried out by first accumulating
along t:he rows of the mesh and dIen along the columns in a manner similar to histogramming

[KR]. AlgoritlIms for linear systolic arrays are described in [CL. KW]. An implementation for a
tree machine consisling of bk processors is proposed in [IK]. An O(n 2k) time implementation of

the HOUgh transform. based on projections of lines along differern directions. is presenred in [SD]
for a linear pipeline. A similar idea is used in [FH] on a scanline army processor.

2. Preliminaries

Throughout the paper we assume mat processor (0.0) is the top-left processor of an nxn
mesh. and processor (ex.ry) is the processor at column ex and row ry. This unusual indexing is

done to have the indexing in the mesh agree widI the indexing of the image points in the .r-y­
plane. We thus assume that the image is in the lower-right quadrant of the x-y plane with the
positive y-axis as shown in Figure 2.1. Every image point has integer coordinates and the image

point at (ex.ry) is smred at processor (cz,ry) in the mesh. From now on we refer to the image
points as pixels and to an edge point as a I -pixel.

The line"S to be considered by our algorithms are given by k e·values.
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The image in the x -y plane; line I has a positive p value
Figure 2.1

OSSo<81<··· <8.1:_1S180• k~. and n p-values. -n.J1 S Po<··· <P",-l S n..J1. The

modifications to be done for m:;:n p-values are either straightforward or are described when

necessary. Our algorithms make no assumptions about the distribution of the a-values and in

many praetica;I applications the k a-values will be spaced equally. We do. however. make the

following reasonable assumption about the p-values. Let cell (c,r) be the square of unit size

associated to pixel (c .r); i.e.• the square [hat has point (c ,r) in the x-y plane as the bottom-left

corner. We say a line I crosses cell (c ,r) if I and cell (c ,r) have a non-empty intersection. The

assumption we make with respeCt to the p-values is that Ipj-Pi+II"2...fl for any i. lbis guarantees

that no two parallel lines cross a common cell.

Our algorilhms can be modified to handle the case when a larger number of B- and p-values

are to be considered. As long as k=O (n), the claimed time bounds of 0 (n...Jm + n) and 0 (n)

hold, respectively. With respect [0 the number of p-values. our algorithms can easily handle up

to 2n p-values as long as no two parallel lines cross the same cell. If more [han 2n p-values are

[0 be considered, the routing routines of the algorithms need to be adjusted to [he handle the

larger number of paralIellines crossing a cell



. 5 -

We represem a line (S,P) in !.he image plane as the sequence of cells (c .r) crossed by lhe

line and we refer 10 it as a digiLalline. This is a standard representation and its propcnies have

been widely studied in image processing [FR. RW]. Thus, when counting the number of I-pixels

on a line our algorithms coum the numrer of cells (c .r) associared wilh a I-pixel and crossed by

the line.

3. The Block-Algorithm

We first describe the block-algorithm for the case when k=m=n. In this case we partition

the nxn mesh into n blocks, Bo•B I•... .B1I - 1 with each block being a submesh of size .fiIx..m.

Let the blocks be indexed in snake-like row-major order as shown in Figure 3.1(a). The proces­

sors in block Bi are numbered from 0 to n-l in row-major order as shown in Figure 3.1(b).

n
•

n

• •

! Bo B, B, B,

B, B, B, B,

B. B, B IO B n

B" B" B" BIZ

<a) partitioning into blocks

Figure 3.1
(b) distribution of p-values in block B

i

The algorilbm starts by providing the j·th processor of"every block with a copy of Pj'

OSjSn-I, as shown in Figure 3.I(b). It tlJ.en executes n iteration steps. Every iteration step

consists of two phases, tlJ.e line computation and tlJ.e shift phase. The line computation proceeds

on each block independently and simultaneously. During the line computation every block B
j

has a WIique value e associated with it. For every line represented by (e,pj), OSjSn-I, the line

computation determines the number of l~pixels in block Bj that lie on the line. This value is

added to a variable SUM in processor j of Bj (which is initially set to 0). In the shift phase,
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which follows the line compuLaLion, block Bj receives the SUM entries and !.he associated 8­

value from block B (i+l)modJl. After n iteration steps. evel')' onc of the n a-values has been con­

sidered in every block and the SUM entries represent the solution. We describe solutions [0 the

line computation and shift phase that nut in 0(...[;) time. respectively. and thus me O(nvn)

overall time of the block-algorithm for k=m=n follows.

3.1 The Line Computation in a Block B.

We now tum to the implementation of the line computation done in every block B. We

first describe an 0 (..fii) time solution for the line computation that is conceptually simple. but is

expensive from a practical point-of view since it uses sorting as a subroutine [RE, RM]. Lel pro­

cessor j of block B contain a I-pixel. Since processor j knows e. it can compute Pi such thal the

line represented by (a,Pj) contains the I-pixeL After every processor of B has computed a possi­

ble p-value, we determine how many processors have the same p-value and add the resulting

values to the appropriate SUM entries in the block.. This can be done in 0 (..m) time by soning

the Pi '5, performing the summation, followed by a simple routing Step and the final addition. We

next describe an implementation of the line computaIion that does no.t use sorting, only simple

routing steps.

In this implementation we fim mark processor j if the line represented by (S,Pj) crosses at

least one cell of block B. There can be at most 2.fii-1 marked processors and they occupy con­

secutive processor locations (Le., if s processors have been marked and processor i is the one

with smallest index, processors i+l.··· ,i+s-1 are also marlc.ed). Every marked processor j

determines the two cells on the border ofB crossed by the line (S,pi). This is done by computing

the intersection of the line Pj =..t cosS + y sinS wilh the two horizontal and vertical border lines

of B. respectively. Let (c l.rl) and (c2,rV be the two cells on the border, rls2. Note that a line

may cross more than two cells on the border ofB. How to handle such a situation and which two

cells to select will become apparent from the algorithm.

We denote the four sides ofB as side 0,1,2, and 3 (as shown in Figure 3.2(a», and classify

the lines into the following eight types. A line represented by (B,pj) is a line of type Hi+ 1) if one

border ccUlies on side i and the other one on side 0+1). (TIle additions are all done modulo 4.)



· 7 -

3

o

(a) the sides of B

I

Figure 3.2

,~2. c:.=c}'I

f\
I

1\

'\ I
1\

I I
f\

(b) interior-te-border routing path

A line is of type i (i+2),. Cresp. i (i+2)1) if one border cell lies on side i. the other one on side

(;+2), and CtScz (resp. cl>CV· Note that the type of lines that can Occur in block B can be

described easily. For example, if the block contains a line of type 01. it can possibly contain lines

of type 31, or 02,. (but DOt both), and possibly lines of type 32.

After the border squares have been determined, every marked processor creates a packet

U,pj oS) wil:h s=O. nus packet is sent to the border processor (c Itr I)' Once all the packets have

reached the border, processors (c l,rl) initiate the "trace". In the trace the packers visit all the pro­

cessors associated with cells crossed by the line (B,pj). The number of I-pixels encounters are

accumulated in the entry s of each packet The final step is to send the packet from processor

(rz.C,) back to processor j. We give below a more detailed description of the line computation

and then show that all the routing steps are congestion-free.

The marking step executes only a constant number of internal computations. The interior­

lo-border routing consists of lwo pans, each one requiring no more than WI-I data movements.

See Figure 3.2(b) for an example. In the implementation all packets complete the first pan of the

routing before staning the second part. A packet that has completed the first pan of the routing,

is slored at a processor and other packets may still 'trnveI' l.hrough this processor in order to com.

plete their fiTS[ pan of the routing. Once all p<lckets have completed the firsl pan, a processor
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Procedure Lll'JE_COlvfP;

(1)

(2)

Marking Step
COO< evelJ' processor contains an emry (B.p) "')
if the line (B,Pj) crosses at least one cell in block B
then MARK = 1; compute (c hTI) and (cz,r,); create packet U,PjIO)
else MARK =0

Rowe lnterior·lo-border
ClI< send packet U,Pi IS) to processor (c 1""]) *)
Let j be a marked processor in row rj and column cj.
case of
c 1:5:c2 and (c I,T1) is on side 0:

send packet (j ,Pj.s) to column c1by performing Ic l-ej I horizontal rnovemems;
send packet (J ,Pj"s) [Q (c ],Tl) by performing Irl-rj I vertical movements;

Cl$cZ and (c I,Tl) is on side 3:
send packet U,p j oS) to row r 1 by performing Ir I-rj I vertical movements;
send packet U,pj's) to (c ],TI) by performing ICl-ej I horizontal movements;

cI>czand (CltTI) is on side 0:
send packet U,Pj's) ro column CI by performing Ie I--cj I horizontal movements;
send packet U.Pj's) to (c I,Tl) by performing Irl-rj I vertical movements;

cl>cZ and (clorl) is on side 1:
send packet (j ,pj.s) to row r I by performing Ir I-rj I venical movements;
send packet U,pj.s) to (c l,r I) by performing Ic l-ej I horizontal movements;

endcase .

(3) Tracing Step
set (c.r) = (c I,rl)
while processor (cz,ri) has not been reached do

Packet U.pj oS) is at processor (c ,r) and the line (B,Pj) crosses cell (c ,r); assume the
line is of type 01, 23, 02,... or 13,.. (the situation for the other four types is symmetrically).

if processor (c ,r) contains a I-pixel then s=s+1
e= position where the line (B,pj) crosses row r+1
if eSc then send packet to processor (c .r+1)

else send packet to processor (c+l,r)
endwhile

(4) Route Border-to-interior
Similar to step (2);
SUM=SUM+s

end.

may contain O. I or 2 packets. If it contains [Wo packets, these packets will leave this processor

in 'different directions'. Hence, the interior-to-border routing is congestion-free and completed

after 2..m-2 data. movement steps. Note that it is crucial whether the horizontal or the vertical

movement is done first. The tracing step visits, for every line (a,Pj). the cells crossed by this
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line. Since no two parallel lines cross the same cell, every processor is visiled by onJy one

packcL After at most 2.[,1-1 data movements, all the packets have reached processor (C2,":0.

Srep (4) is similar 10 step (2), and thus Lil'lE_COMP runs in 0 (-Jfi) time.

3.2. The Shift-Phase.

When snake-like row-major indexing is used for the blocks, block B; receives new SUM

values and a new evalue from block B (i+l)modll' Hence, n en -1) blocks receive the new entries

from blocks within the same row (using horizontal connections), n-l blocks receive them from

blocks within lhe same colwnn (using the venical connections), and block 8,._1 receives its new

entries from B 0 (using the wrap-around connections). When performing the shifu in this order,

block Bi considers 8/(1,0' where f (l,l) = O+/)mod n. at the I-th iteration, ~$n-1. While the

running time of a single shift phase in obviously 0 (~). our planned:MPP implementation will

consider the indexing resulting in the running time with the smallest constant Nme that the use

of the wrap-amund connections is not necessary for achieving o (Wi') Lime. Using the shuffled

row-major indexing (shown in Figure 3.3), O({;j) lime can be achieved using horizontal and

vertical connections only.

• • •

B, B, B, B,

B, B, B, B,

B, B, B12 B13

BIO BII B" B"

Shufffled row-major indexing
Figure 3.3

- •

I.. Mo M, M,

• M, M• M,

M, M, M.

Partitioning into submeshes when k <n
Figure 3.4
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3.3. Generalizing the Block-Algorithm.

When k <n and m=n we modify the algorilhm in the following way_ Panition the nxn

mesh imo nIt submeshes of size ..[,if x..[,jf each. LeI Mo.' .. Mll1k_l be the resulting submcshcs

(as shown in Figure 3.4). Within every submcsh run the algorithm as described for k=n by creal­

ing k blocks of size ..fiix..fri each. The final step campUles the swn of the corresponding SUM

entries in the submeshes. 1bis step is done in D(n) time and thus the total time is O(k*i + n).

When we are given k a-values and m p-values. kSn I mSn. the number of l-pixels on each

of the km lines can be determined in O(k..Jii1 + n) time. 1bis algorithm works simply with

blocks of size~x.Jm instead ..r,;x..fi1.

4. A Linear Time Tracing Algorithm

!bis section presents the tracing algorithm which performs line detection on k a-values and

n p-values in o(n+k) time. In the block-algorithm presen[ed in the previous section the accu­

mulation of I-piXelS lying on a line (S,p) is obtained by tracing part of the line in a unique sub­

mesh B j at every iteration step. Recall that in every block Bj only parallel line segments are

traced simultaneously and thus no collision:> can occur. In the tracing algorithm described in this

section we staIt tracing a line (B,p) at one border processor of the mesh and move towards the

second borderprocessor (which is either on the opposite or an adjacent side of the mesh).

The algorithm initiates a total of eight rroce sequenr:es. In the 2i -th and 2i+l-st trace

sequence a subset of the lines crossing side i of the mesh is traced. 0Sig. The numbering of the

sides is as shown in Figure 3.2(a). During a trace sequence lines with the same B~value (i.e.•

parallel lines) stan their trace from a border processor at the same time. When a trace is staned at

a border processor, a packet CB,p.s) with s=O is created. Recall that the entry s counts the

number of I-pixels on the line (B,p). Traces move through the mesh in a pipelined fashion and at

some point during a trace sequence 0 (kn) lines are traced simultaneously. Parallel lines can

again cause no congestion. But non-parallel lines originating at the same border from different

processors at different times could cause congestion. Their packets (B,p.s) could reach the same

processor at the same time and may want to leave on the same link. We next describe how to

organize the eight trace sequences such that the overall 0 (n +k) time bound is obtained.
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o 0-1

\

o-lL- ---.J

The lines in the tracing sequence sraning from side 3 with 90595135;
arrow indicates order in which trace of lines is started

Figure 4.1

discussions will apply, with minor changes. to the other three sides. Let (O,r) be any processor on

side 3. The first trace sequence staning from side 3 considers all the lines (S,p) crossing cells

(O,r), ~:9J-l. with 9OS:SS135. These lines are shown in Figure 4.1. The second trace

sequence staning from side 3 considers the lines crossing cells (O,r) with 45Se~O. Intuitively,

the traces corresponding to lines (S,p) with 45S85135 move away from side 3 "fast enough" and

do thus not collide with the traces of other lines. Traces corresponding to lines (S,p) with

135<6<180 or 0<6<45. "stay closer" to side 3 and this can cause collisions. Consider, for exam­

ple, Figure 4.2 which shows the nine lines formed by 9i • 8i +!. 6i +2• and p, p' and p",

135<9j<8j+I<8i+2<180. Assuming thal parallel lines stan their trace at the same time and the

trace of the lines corresponding lo ej is initiated eilher right before or right after the trace for

aj+l, collisions cannot be avoided.
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The lines crossing side 3 which are not traced in one of the two trace sequences~starting

from side 3 correspond thus to lines wilh a a-value in the range (135-180) or (0-45). These lines

will be traced in trace sequences originating from other sides. For a·values in the range

(135-180) it is side 0, and for a-values.in the range (Q.,-45) it is side 2. The a-values considered

in the trace sequences for each side are as follows.

side ranges of aconsidered

o
1

2

3

[0,45J and [135,180J

[45.90J and [90,135J

[0,45J and [135,180J

[45,90J and [90,135J
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11 is easy to see that every line (ai,Pj), O::;i5k-l. ~j$n-l, is tr.J.ccd in at least one afme lmee

sequences. (Some lines are actually traced by two diffcrcm trace sequences.) In the next section

we show that the lines originating from side 3 can be traced in 0 (n-:-k) time without congestion.

Section 4.2 describes the overall algorithm and lhe accumulation of the panial resuhs generated

by each trace sequence.

4.1. Tracing Lines from Side 3

Let BiD. Bn •· .. ,Biq be the B-values in the range [90,135J ordered such that

9(}.:;;BiO <Bj1 <··· <eiq~135. Ass1,Jme the traces of the parallel lines with a-value Bio stan from

side 3 at time lj. Then the traces of the paraIlellines with a-value ejj stan at time lj+j, where

one time step is SUfficiently large to perform the necessary computations outlined below.

Assume filsl that the a-values and the p-values are equally spaced and that sa and sp is their

step-size, respectively. Let 1 be an arbitrary time during the trace sequence and let a be the 8­

value considered for initiating a trace at time t. The value ais known to all processors (O,r). AI

the beginning of time step t every processor (O,r) determines whether it needs to set up a packet

for a trace. 1bis is done by every processor computing the value p = r rsinB 1. If !.he line (B,p)
s,

crosses cell (O,r), processor (O,r) creates a packet (B,p,s) wilh s=O. Line (S,P) crosses cell (O,r)

if r-l<y$r, wherey = plsinS.

When the 8- and p-values are not spaced OUI equally, the values need to be "fed" to the pro­

cessors in column O. Supplying every processor (O,r) at time step 1 with B
il

is straightforward.

The organization of the p-values is more involved. Note that processor (O,r) needs the p-values

in the order PII-I, ... ,Po and that some p-vaIues might be skipped over. The packets can still be

set up within the same time bound, but with some overhead. Since this situation is not likely to

arise in practise, we will not discuss it any funher.

After the processors in colwnn 0 have generated new packets, if necessary. every processor

currently conlaining a packet determines where to send the packet next Assume processor (c ,r)

contains a packet (S,p.s). This packet may have been generated at time step t (in which C:l$C

c=O) or at some earlier time. If processor (c ,r) comaim a I-pixel, set s to 5+1. The packel is

then sem to a neighboring processor. If line (S,p) crosses cell (c+l,r), then the packel is sem lO
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processor (c+l,r). Ol.hcrwisc the P:lCkCl is scm to processor (c ,r-l).

We need to show that routing the packcL<; in this fashion is free of collisions. We do so by

showing that, if twO packcL<; amvc at the same processor at the same lime. the)' leave the proccs-

SOT using differem links. Suppose packclS CB,p.s) and C6',p'oS ') reach processor (i.j) at the same

time and that, if they did meet at a processor at an earlier time. they did leave this processor on

different links. Let (O,r) and (0,,') be the two processors that originated the two packers. We

assume, w.lo.g.• that r>r'. We first state two simple propenies about two lines. Recall that,

9OSS,S'';135.

Q(x,y)/ ___

,,,,,,,,,,

,,,,,,,,,,
\. (0,,'),,,,,

(OJ)

Lines (a,p) and C9',p') crossing in the image
Figure 4.3

Property 1. Let (S',p') and (S,p) be two lines that cross cell (O,r') and (O,r), respectively, with

r>r'. The two lines intersect at a point Q ex ;y),.r ,y >0, in the plane if and only if 6'<6. (See Fig-

we 4.3.)

Property 2. A line (S,p) C3IU1ot cross three consecutive vertically adjacent cells.

Consider again the two packers (S,poS) and (S',p'oS) that arrive at processor (j,j) at the

same time. Since the length of the path (in ManhalIan dislance) from (O,T) to (i ,j) is smaller

than the length of the path from (O,r) to (i ,j), packet (S',P',S) was gener.ued before packet

(S,p~). Since our algorithm gener::ues packelS on colwnn 0 with increasing S-values. we have

9'>S. Then, from Propeny 1, we can conclude that the two lines (S,p) and (S',p') do nOl cross in
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the image. The SiIUaLion looks similar to IDlnlnc shown in Fif!llrc 4.4. By assumption !..he two

packets reach processor (i ,j) coming from different proCCSS015. Since we know that the two lines

do not cross. packet (B',p'.s') must come from the horizomally adjacent processor (i-IJ") and

pa:kcI (S,p.s) must come from the vertically adjacent processor (i ,j+I).

I i ~.p)
I l I I I I I I 1/1' IYI

I I I I IIYI IA I I
I I I I I A" I YI I I I
I I I 1/ IAIIIII
I I V VIII I I I I

, I /' 1/ I I I I I I I I,,

I I I I I I I I
,
1/ /1' ,.' .\

" I
,
1/ I I I I I I I I I,,,

I I I I I I I I I
I I I I I I I I I

,,
, ', ', ', ', ', ' ,, ,, ,,,,,

J

The trace of line (9,p) is initiated at time " the trace of(9',p) at time ,'=<+I,
and the two lines meet at processor (i j) at time 1+2

Figure 4.4

We show next that the two packets leave processor (i ,j) using different links. Because of

Property 2, packet (S,p,s) has [0 move to cell (i+lJ). Suppose packet (S',p',s') also wants to

move to processor (i+l,j). In this case line (B',p') crosses the three cells (i-l,j), (i J"), and

(i +l,j). The angIe a' = 6'-90 must then satisfy each of the three following ineqUalities:

1 i I i-I
CDlg- ,......-; S a' S CDlg- , .

,. -J ,. -J+l

-I i+I -I i
CDlg -,-• .s a: S CDlg ,.

,. -; ,. -;+1

_I i+2 _I i+l
Calg -,- . .s a: S CDlg ,.

,. -; r -;+1
By combining lhe above three relations, we obtain:

-I i < I... _I i +1
CDlg -,-. _ a. .::. corg I. •

r -} r -]+1

(I)

(2)

(3)
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LeI a = 8-90. Since line (S.p.! crosses cell (i ,j) wc also have:

i -1-1
cOlg-1-"-. :5 a.

r-J

Since r ~ r'+1. it follows that:

, _I i+l
a. :5 corg ,.

r -)+1
_I i+l

:5 COlg --.:5 a.
r-J

Thus 0.':5a., a contradiction, and packet (S',p',.5') leaves processor (i ,j) using the vertical link to

processor (i .j-1).

We observe that the collision of two packers at the same processor occurs rather infre­

quently. In fact, for two packets initiated from processors (O,r) and (0,7'), 7>r', and reaching

processor (i ,j) at the same time, the following relation holds:

r :5 r'+2
The inequality (4) is derived as follows. From (1) and (2) we have:

_I i < '" _I iCOlg -,-. _ a. .;:, cOlg ,. 1
r -) r -J+

Similarly, for line (e,p) we have:

, i+l -1 icotg- --. :5 a :5 cotg --.
r-) r-J

Since a<a' then:

_11+1 _I i
cotg --. < cotg ,. 1.

r-J r -)+

Let r = r'+k. Then,

-I i -1 i
cotg r'-j > cotg i(k-l}-l

Thus for k~ we have -:-;,,--:;i:;-;-'< 1 and
i(k-l}-l

cotg-l+ > cotg-11 = 45
r -J

and 0:'>45. This implies 8'>135. a contradiction. and inequality (5) follows.

(4)

The second trace sequence starting from side 3 considers lines with a-values in the range

[45-90J. The Irace is similar lO the previous one, excepl that packers are generated from side 3

with decre:lSing e·values. Since all the lines imersecting the remaining three sides can be

thought of as obtained by rotations of lhe lines intersecting side 3. similar trace algorithms ex.ist

for the other three sides.
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4.2. Accumulation of Partial Results

In 1.h.is sccLion we describe ho\\' the tracing: algoritlun places the packets (Bi,pj.s). where s

is the number of I-pixels on line (Bi,Pj). OSi$k-l, OSjSn-l, at processor (i,). In a tracing

sequence SLaning from side u, (f.:;u $3, a packet (8; 'PJ oS) reaches the opposite or an adjacent side

of side u with the final value of s and needs to be routed to iL<.: processor (i ,j). We assume !hat

the mesh has vertical and horizontal wrap-around connections as available on the MPP. This

assumption holds without loss of generality, since a mesh with wrap-around is. in the asymptotic

sense, no more powerful that one without WTap-around cOIUlections.

Consider the trace sequence which starts at side 3 and traces the lines wi!.h 90$9:5:;135. Let

(n.-l,r) be any processor on side 1. Since no two packets reaching processor (n-Itr) have the

same a-value, at most n packers can reach processor en-l,r) during the trace sequence. Assume

packer (B;,pj's) reaches processor (n-l,r). The algorithm firsr roures the packer to processor

(i ,r) which is called its inrermediate processor. When routing to the intermediare processor the

packet srays on row r. If i~n-l, the packet uses the horizomal wrap-around connection ro pro.

cessor (O,r) and moves righr until it reaches column i. TItis movement is shown in Figure 4.5(a).

We call a packet that has re3ched its intermediate processor in this fashion an i-packet.

oO;.- -..:i~ ::.,n-l

r4=====~_-f;

j

n-lL --!

/

c ,.

(a) (i ,r) is the intermediate processor
Figure 4.5

(b) (c,() is the intermediate processor

Consider next a processor (c ,0) on side O. In the trace, the packets reaching processor (c ,0)

have again distinct a-values (and hence there can be ar most n of them). Ir is easy [Q see th'H the
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p-valucs of the packeLS reaching (c ,0) need no! be distincl. Hence, routing a packet (Si',Pr-~')

reaching processor (c .0) to processor (c ,j') can lead to congestions. We solve this problem hy

miling processor (c ,j') Ute imcrmcdial.C processor of the packet. It is reached by venica} move­

ments after using the vcnicaJ wrap-around of column c. Sec Figure ":::.5(bl. We call a packet thal

has reached its intermediate processor (c ,i') a r-i-packet _ The 'L' stands for 'transpose'. The t­

j·packet will later be routed to processor U'.i') and a transpose operation will send the packet to

its final processor.

The routing of packets to their intermediate processor occurs simultaneously with the uac­

ing of the lines. After all lines have been traced, the algorithm completes the touting to inter­

mediate processors which takes at most n additional time steps. At this point a processor in the

mesh may contain up to two packets, one i-packet received from side I and one l-i-packel

received from side O. These packets remain in this processor until all eight traces have been com.

pleted. ]t is easy to see thal when performing the all eight trace sequences a processor can receive

at. most one i-packet and one t-i-packet Consider, for example, the trace sequence from starting

from side 3 with 9fr';9Sl35. An i-packet (9; ,Pj.s) finished its trace at some processor (n-l,r) on

side 1. The lines parallel to line (9 j ,pj) that do not cross side 3 are traced in a trace sequence

start:ing from side 1. After the packets of these lines reach side 2, they are routed to intermediate

processors and stored as t-i-packets.

After all eight traces have been completed, the algorithm performs the final routing steps.

Consider .fiIst the i-packers. Column i contains i-packets with a a-value of a;, but not ordered

according to p-values. Ordering the p-values can easily be done in n time steps. Similarly, the

(-i-packets are arranged so that row i' contains all the packers with a 9-value of ai' ordered by p_

values. The final operation is to perform a transpose on the t-i-packers which can be done in 2n

time steps [U]. lbis completes the description of our linear time tracing algorithm.

s. Conclusions

We presented two algorithms. the block and me tracing algorithm. which perform the

Hough transform for an n xn image on an nxn mesh of processors. While the asymptotic run­

ning time of the I:r.lcing algorilhm. is better than the one of the block algorithm, the constant asso-
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cimcd wilh the block algorithm appears to be smaller. We plan lO implement and compare the

pcrfonnance ofboth algori1hms on !.he .MFP, a mesh of size 128x128.

The algorithms can easil)' be generalized to handle numbers of 8· and p-vaJucs diffcn:m

from the ones used in our description. The al,gorilhms can also be aduplcd La coum the number of

I-pixels on a line (S,P) of widlh w, where a line (S.p) of width w consists of all the cells at mosl

dislance w /2 away from the cells crossed by the line (S.p).
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