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Abstract. We consider the problem of detecting lines in an nxn image on an nxn mesh of pro-
cessors. We present two new and efficient algorithms which perform a Hough transform by pro-
Jection. Our first algorithm runs in time O (kv +n), where k and m are the number of 6- and
p-values in the parametric representation of the lines in the Hough transform, respectively. The
second algorithm runs in O (n+k) time. Both algorithms perform only simple data movement

operations over relatively short distances.
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1. Introduction

The detection of lines and curves in an image is a fundamental problem in image process-
ing. The problem is often solved by a Hough transform [BA, DH, HH)], a method based on a rela-
tion between points lying on a line or curve in the image space and the parameters of that curve.

A line is parameterized by two values 8 and p according to the following expression:

p = xcos@ + ysind (1)
where 9 is the angle of the normal line and p is the distance of the line from the origin. The
transformation associates a point (x.y) of the image space with a line of the parameter space and
has the following property: Points lying on a line are transformed into lines intersecting at the
same point in the parameter space. This property allows us to convert the line detection problem

into an intersecton problem in the parameter space. This latter problem is solved as follows [HH,

DH]. The parameter space is quandzed into & O-values, Bp, -~ -, 8-, and m p-values,
Pos """+ Pm—1» and an accumulator array of size kxm with each entry comesponding to a pair
9;.p5)-

We assume that all the edge points of the nxa image have been determined. In order to
solve the line detection problem each edge point (x,y) in the image space "votes” for the parame-
ter values of possible lines passing trough it; i.e., for every 8; the p-values of the lines passing
through (x.y) are derived from (1) and the corresponding entries in the accumulator array are
incremented. After all edge points have been treated, the entry with the maximum number of
voles is found. The sequential implementation of this procedure uses O (fn+bmin{n .k }) tme,

where b is the number of edge points in the image, b<n2.

In this paper we present two new and efficient parallel algorithms for performing the Hough
transform on an nx»z mesh of processors. Our first algorithm, which we call the block algorithm,
mns in O (k Jn_:+n) time, and our second algorithm, called the tracing algorithm, runs in O (n+k)
time. The algorithms assume that the mesh contains an nxn binary image with one image point
per processor. Both algorithms use projections of the image along different directions to deter-
mine the number of edge points lying on every line (8;,p;), 0<i<k—1, 0<j<m-1. It is well
known that the Hough transform can be viewed in terms of projections [SD]. The projection of a

picture in a directon @ is obtained by adding up the edge points of the image along the family of



lines perpendicular to 6.

The block algorithm pantitions the mesh in submeshes of appropriate sizes and combines
the partial results accurnulated in the submeshes in & stages. The tme bound of O (k Vi +n) can
also be achieved by taking votes, but the accompanying constant is larger. The second atgorithm
performs projections by tracing lines through the image in a pipelined fashion. While the tracing
algorithm is asymptotically optimal and superior 1o the block algorithm for kv = Q(n), we
expect the block algorithm to outperform the tracing algorithm in an actual implementation {e.g.,
on the MPP [BT]). While many mesh algorithms [AH, MS, NS) rely heavily on sorting as a sub-
routine for performing arbitrary data movement, both of our algorithms do not use soring. Both
algorithms perform only simple data movement operations over relatively short distances in the

mesh.

We briefly review some of the previously reported paralle] implementations for the Hough
transform. An implementation for an nxn mesh running in time O (nk) is described in [SI]. In
this algorithm the accumulation process for every B-value is carried out by first accumulating
along the rows of the mesh and then along the columns in a2 manner similar to histogramming
[KR]. Algorithms for linear systolic arrays are described in [CL, KW]. An implementation for a
tree machine consisting of bk processors is proposed in [IK]. An Ofn 21.:) time implementation of
the Hough transform, based on projections of lines along different directions, is presented in [SD]

for a linear pipeline. A similar idea is used in (FH] on a scanline array processor.

2. Preliminaries

Throughout the paper we assume that processor (0,0) is the top-left processor of an nxn
mesh, and processor (cx,ry) is the processor at column cx and row ry. This unusual indexing is
done to have the indexing in the mesh agree with the indexing of the image points in the x—y-
plane. We thus assume that the image is in the lower-right quadrant of the x—p plane with the
positive y -axis as shown in Figure 2.1. Every image point has integer coordinates and the image
point at (cx,ry) is stored at processor (cx,ry) in the mesh. From now on we refer 1o the image

points as pixels and to an edge point as a 1-pixel.

The lines 10 be considered by our algorithms are given by & B-values,
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The image in the x =y plane; line / has a positive p value
Figure 2.1

0sBp<;<--- <6 <180, k<n, and n p-values, -2 Spo< - - <P, <nvl The
modifications to be done for m=n p-values are either straightforward or are described when
necessary. QOur algorithms make no assumptions about the distribution of the §-values and in
many practical applications the ¥ 6-values will be spaced equally. We do, however, make the
following reasonable assumption about the p-values. Let cell (c.r) be the square of unit size
associated to pixel (c.r); i.e., the square that has point (¢ ) in the x~y plane as the botrom-left
comer. We say a line / crosses cell (¢,r) if I and cell (¢ ,r) have a non-empty intersection. The
assumption we make with respect to the p-values is that | p;—p;,, 12VZ for any i. This guarantees

that no two parallel lines cross a common cell.

Our algorithms can be modified to handle the case when 2 larger number of 8- and p-values
are to be considered. As long as =0 (n), the claimed time bounds of O (n¥m + n) and 0(n)
hold, respectively. With respect to the number of p-values, our algorithms can easily handle up
to 2n p-values as long as no two parallel lines cross the same cell. If more than 2n p-values are
to be considered, the routing routines of the algorithms need to be adjusted to the handle the

larger number of parallel lines crossing a cell.
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We represent a line (8,p) in the image plane as the sequence of cells (c.r) crossed by the
line and we refer to it as a digital line. This is a standard representation and its properies have
been widely studied in image processing [FR, RW). Thus, when counting the number of 1-pixels
on a line our algorithms count the number of cells (¢ ) associated with a 1-pixel and crosssd by

the line,

3. The Block-Algorithm.

We first describe the block-algorithm for the case when k=m=n. In this case we partition
the nxn mesh into # blocks, By, B, - - - ,B,_, with each block being a submesh of size v xv7 .
Let the blocks be indexed in snake-like row-major order as shown in Figure 3.1(a). The proces-

sors in block B; are numbered from 0to n—1 in row-major order as shown in Figure 3.1(b).

n

A
]

A Po—Pr P2 P
\’EI By B, B, B, {
’ Pa Ps Ps [ P7

n Pz Py Pio M P11

Piz P13 Pua 1 Pis

(a) partitioning into blocks (b) distribution of p-values in block B;
Figure 3.1

The algorithm starts by providing the J-th processor of -every block with a copy of p;,
0=j<n-1, as shown in Figure 3.1(b). It then executes r iteration steps. Every iteration Step
consists of two phases, the line computation and the shift phase. The line computation proceeds
on each block independently and simultaneously. During the line computation every block B;
has a unique value € associated with it. For ¢very line represented by (8,p i), 0<j<n—1, the line
computation determines the number of l-pixels in block B; that lie on the line. This value is

added to 2 variable SUM in processor J of B; (which is initially set 10 0). In the shift phase,



-6-

which follows the line computation, block B; reccives the SUM entrics and the associaed 0-
value from block B (. 1ymoan. Afier n iteration steps, every one of the n 6-values has been con-
sidered in every block and the SUM entries represent the solution. We describe solutions to the
line computation and shift phase that run in O (¥r') time, respectively, and thus the O (1 vn )}

overall time of the block-algorithm for k=m=n follows.

3.1 The Line Computation in a Block B.

We now tum to the implementation of the line computation done in every block B. We
first describe an O (¥r') time solution for the line computation that is conceptually simple, but is
expensive from a practical point of view since it uses sorting as a subrountine [RE, RM]. Lel pro-
cessor j of block B contain a 1-pixel. Since processor j knows 8, it can compute ﬁ ; such that the
line represented by (6,p ;) contains the 1-pixel. After every processor of B has computed a possi-
ble ﬁ-value. we determine how many processors have the same p-value and add the resulting
values to the appropriate SUM entries in the block. This can be done in O (¥ ) time by soring
the p ; 'S, performing the summation, followed by a simple routing step and the final addition. We
next describe an implementation of the line computation that does not use sorting, only simple

routing steps.

In this implementation we first mark processor J if the line represented by (6.p;) crosses at
least one cell of block B. There can be at most 2+ —1 marked processors and they occupy con-
secutive processor locations (i.e., if s processors have been marked and processor ¢ is the one
with smallest index, processors i+1,---,i+s—1 are also marked). Every marked processor j
determines the two cells on the border of B crossed by the line (8.p;). This is done by computing
the intersection of the line p; = xcos6 + ysin® with the two horizontal and vertical border lines
of B, respectively. Let (c,,7() and (c4.7,) be the two cells on the border, ri1=r;. Note that a line
may cross more than two cells on the border of B. How 1o handle such a situation and which two

cells to select will become apparent from the algorithm.
We denote the four sides of B as side 0,1,2, and 3 (as shown in Figure 3.2(a)), and classify
the lines into the following eight types. A line represented by (8,p;) is a line of type i (i +1) if one

border cell Lies on side i and the other one on side (i+1). (The additions are all done modulo 4.)
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(a) the sides of B {(b) interior-to-border routin 2 path
Figure 3.2

A line is of type i(i+2), (resp. i (i+2);) if one border cell Kes on side [, the other one on side
(i+2), and ¢<c, (resp. c;>c,). Note that the type of lines that can occur in block B can be
described easily. For example, if the block contains a line of type 01, it can possibly contain lines

of type 31, or 02, (but not both), and possibly lines of type 32.

Afier the border squares have been determined, every marked processor creates a packet
(J.p; ) with s=0. This packet is sent to the border processor (¢,r1). Once all the packets have
reached the border, processors (¢ 1»'1) iniiate the “race”. In the trace the packets visit all the pro-
cessors associated with ceﬁs crossed by the line (9.p;). The number of 1-pixels encounters are
accumulated in the entry s of each packet The final step is (o send the packet from processor
(r2,¢2) back to processor j. We give below a more detailed description of the line computation

and then show that all the routing steps are congestion-free.

The marking step executes only a constant number of internal computations. The interior-
to-border routing consists of two parts, each one requiring no more than vn —1 data movements.
See Figure 3.2(b) for an example. In the implementation all packets complete the first part of the
routing before starting the second part. A packet that has completed the first part of the routing,
is stored at a processor and other packets may still 'travel” through this processor in order to com-

plete their first part of the routing. Once all packets have completed the first part, a processor



Procedure LINE_COMP;

¢y

@)

3

@)

end.

Marking Step

(* every processor contains an entry (8.p;) *)

if the line (B,p;) crosses at least one cell in biock B

then MARK = 1; compute (¢),ry) and (c,,72); create packet (§,p;,0)
else MARK =0

Rouze Interior-to-border

(* send packet (f.,p,.s ) to processor (¢,71) *)

Let j be amarked processor in row rj and column ¢j.

case of

c15c4 and (¢y.ry) is on side O:
send packet (j,p;5) to column ¢ by performing 1c—c/ | horizontal movements;
send packet (f,p; 5} W {c3,r1) by performing Iry—rj | vemical movements;

C15c2 and (¢4,ry) is on side 3:
send packet (j,p;.5) 10 row ry by performing |r,—rj | verical movements;
send packet (f,p;.5) 0 (¢y.7}) by performing [¢,—¢;j | horizontal movements;

¢1>cp and (¢1,r1) is on side O:
send packet (J.p;,5) to column ¢ by performing 1¢—¢j | horizontal movements;
send packet (j.p;.5) to (¢1.r1) by performing |7~ | vertical movements;

c1>cpand (¢,,ry) is onside 1:

send packet (j,p;,5) 10 row r| by performing |r—rj | vertical movements;
send packet (f.p;.5) 1o (cy,r 1) by performing |c~¢j | horizontal movements;
endcase '

Tracing Step

set{c.7)=(cpry)

while processor (¢ 2,7) has not been reached do
Packet (j,p;,5) is at processor (¢ ,r) and the line (8.p;) crosses cell (c,r); assume the
Iine is of type 01, 23, 02,, or 13, (the situation for the other four types is symmetrically).

if processor (¢ ,r) contains a 1-pixel then s=s+1
¢’ = position where the line (6,p;) crosses row r+1
iff=c then send packet to processor (¢ ,7+1)
else send packet to processor (c+1,r)
endwhile

Route Border-to-interior
Similar to step (2);
SUM=SUM +¢

may contain @, 1 or 2 packets. If it conains two packets, these packets will leave this processor

in 'different directions’. Hence, the interior-to-border routing is congestion-free and completed

after 2+ -2 data movement steps. Note that it is crucial whether the horizontal or the vertical

movement is done first, The tracing step visits, for every line (8.p;). the cells crossed by this
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linc. Sincc no two paralle] lines cross the same cell, every processor is visited by only onc
packet. Afier at most 2vn —1 daiz movements, all the packets have reached processor (¢ 2.r3),

Step (4) is similar to step (2), and thus LINE_COMP runs in ¢ (¥n) time.

3.2. The Shift-Phase,

When snake-like row-major indexing is used for the blocks, block B; receives new SUM
values and a new 0 value from block B tymodn. Hence, n(n —1) blocks receive the new entries
from blocks within the same row (using horizontal connections), n—1 blocks receive them from
blocks within the same column (using the vertical connections}, and block B,_, receives its new
entries from By (using the wrap-around connections). When performing the shifts in this order,
block B; considers 8 iy, where f (1,i) = (i+!)mod £, at the I-th iteration, 0<I<A—1. While the
running time of a single shifi phase in obviously O (vn'), our planned MPP implementation will
consider the indexing resulting in the running time with the smallest constant. Note that the use
of the wrap-around connections is not necessary for achieving O (V¥a' ) time. Using the shuffled

row-major indexing (shown in Figure 3.3), O (Vi ) time can be achieved using horizomtal and

vertical connections only.

~aE
e
B, B, B, B i My M, My
Bz .83 BG B7
n M: H. MS
B, By | By | By3
By B, B4 Bis
My My My
¥
Shufffled row-major indexing Partitioning into submeshes when k <n
Figure 3.3 Figure 3.4
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3.3. Generalizing the Block-Algorithm.

When 4 <n and m=n we modify the algorithm in the following way. Pariton the nxn
mesh into n/k submeshes of size Vrk x¥ik each. Let My, - - - M,y be the resulting submeshes
(as shown in Figure 3.4). Within every submesh run the algorithm as described for k=n by c¢reat-
ing & blocks of size ¥ Xvn each. The final step computes the sum of the corresponding SUM

entries in the submeshes. This step is done in O () time and thus the total time is O (k~n + n).

When we are given & 6-values and m p-values, k<n, m<n, the number of 1-pixels on each
of the km lines can be determined in O(kvm + r) time. This algorithm works simply with
blocks of size ¥m xv¥m insiead Vi xv .

4. A Linear Time Tracing Algorithm

This section presents the tracing algorithm which performs line detection on k ©-values and
n p-values in O (n+k) lime. In the block-algorithm presented in the previous section the accu-
mulation of 1-pixels lying on a line (8,p) is obtained by tracing part of the line in 2 unique sub-
mesh B; at every iteration step. Recall that in every block B; onty parallel line segments are
traced simultaneously and thus no collisions can occur. In the tracing algorithm described in this
section we start tracing 2 line (6,p) at one border processor of the mesh and move towands the

second border processor (which is either on the opposite or an adjacent side of the mesh).

The algorithm initates a total of eight trace sequences. In the 2i-th and 2i+1-st trace
sequence a subset of the lines crossing side 7 of the mesh is traced, 0</ <3. The numbering of the
sides is as shown in Figure 3.2(a). During a trace sequence lines with the same 6-value (ie.,
parallel lines} start their trace from a border processor at the same time. When a trace is started at
a border processor, a packet (8.p.5) with s=0 is created. Recall that the entry s counts the
number of 1-pixels on the line (8,p). Traces move through the mesh in a pipelined fashion and at
some point during 2 trace sequence O (kn) lines are traced simultaneously. Parallel lines can
again cause no congestion. But non-parallel lines originating at the same border from different
processors at different times could cause congestion. Their packets (8,p.5) could reach the same
processor at the same time and may want to leave on the same link. We next describe how 10

organize the eight race sequences such that the overall O (n+k) time bound is obtained.
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The lines in the tracing sequence starting from side 3 with 90<8<135;
arrow indicates order in which trace of lines is started
Figure 4.1

discussions will apply, with minor changes, to the other three sides. Let (0,7) be any processor on
side 3. The first trace sequence starting from side 3 considers all the lines (8,p) crossing cells
(0r), 0<r<n-1, with 90<6<135. These lines are shown in Figure 4.1. The second trace
sequence starting from side 3 considers the lines crossing cells (0,r) with 45<6<90. Inmitively,
the traces corresponding 1o lines (8,p) with 45<8<135 move away from side 3 "fast enough" and
do thus not collide with the traces of other lines. Traces comresponding to lines (6.p) with
135<8<180 or 0«68«45, "stay closer” to side 3 and this can cause collisions. Consider, for exam-
ple, Figure 4.2 which shows the nine lines formed by 6;, 8iv1s 8542, and p, p” and p”,
135<8; <0;.1<0;42<180. Assuming that parallel lines start their ace at the same time and the
trace of the lines corresponding to B; is initiated either right before or right after the trace for

8,41, collisions cannot be avoided.
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Dotted lines have direction 6;
Dashed lines have direcrion 6.

i+l

All other lines have direction Bii2

Figure 4.2

The lines crossing side 3 which are not traced in one of the two trace sequences starting
from side 3 correspond thus to lines with a 8-value in the range (135-180) or (0—45). These lines
will be traced in trace sequences originating from other sides. For 8-values in the range
(135-180) it is side 0, and for B-values.in the range (0—45) it is side 2. The 8-values considered

in the trace sequences for each side are as follows.

side ranges of 0 considered
0 [0,45] and [135,180]
1 [45.90] and [90,135]
2 [0,45] and [135,180)
3 (45,90] and {90,135]
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It is easy 10 sce that cvery line (8; D) Osish—1. 0<j<n-1, is traced in al lcast one of the Lrice
scquenc.cs. (Some lines are actually iraced by two different race sequences.) In the nexi section
we show that the lines originating from side 3 can be traced in O (n+k) tme without congestion.
Section 4.2 describes the overall algorithm and the accurmulation of the panial results generatcd

by each trace sequence.

4.1. Tracing Lines from Side 3

Let 6, 6;7,--- 0;; be the B-values in the range [90,135] ordered such that
90<0;0<8;1< - - - <B;,<135. Assyme the traces of the parallel lines with 8-value 6;, stant from
side 3 at time ;. Then the traces of the paralle] lines with 6-value B;; stant at time ¢;+/, where

one tme step is sufficiently large to perform the necessary computations outlined below.

Assume first that the 8-values and the p-values are equally spaced and that 54 and s p is their
step-size, respectively. Let ¢ be an arbitrary time during the trace sequence and let 8 be the 6-
value considered for initiating a trace at time ¢. The value 8 is known to all processors (©,r). Al
the beginning of time step ¢ every processor (O,r) determines whether it needs to set up a packet

for a trace. This is done by every processor computing the value p=T rsind

1. If the line (8,p)
p

crosses cell (0,r), processor (0,r) creates a packet (6,p,5) with s=0. Line (8.p) crosses cell (0,r)
if r=1<y<r, where y = p/sin®.

When the 6- and p-values are not spaced out equally, the values ne-ed to be "fed” to the pro-
cessors in column Q. Supplying every processor (O,r) at time step ¢ with 6, is straightforward.
The organization of the p-values is more involved. Note that processor (0,r) needs the p-values
in the orderp,_y, - + - ,pg and that some p-values might be skipped over. The packets can still be
set up within the same time bound, but with some overhead. Since this situation is not likely 1o

arise in practise, we will not discuss it any further.

After the processors in column O have generated new packets, if necessary, eVery processor
currently containing a packet determines where to send the packet next. Assume processor (c,r)
contains a packet (6,p.5). This packet may have been generated at time step ¢ (in which case
c=0) or at some earlier time. If processor (¢ ,r) containz a 1-pixel, set 5 to s+1. The packel is

then sent to a neighboring processor. If line {0.p) crosses cell (c+1,r), then the packet is sent to
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processor (c+1,r). Otherwise the packel is semt 1o processor (¢ ,r—1).

We need to show that rouuing the packets in this fashion 1s free of collisions. We do so by
showing that, if two packets arrive at the same processor at the same time, they leave the proces-
sor using different links. Supposc packets (8,p.s) and (8',p’,5 ") reach processor (i ,/) at the samc
time and that, if they did meet at a processor at an earlier time, they did leave this processor on

different links. Let (0,r) and (0,’) be the two processors that originated the two packers. We

assume, w.Lo.g., that r>r’. We first state two simple properties about two lines. Recall that

90<6,6'<135.

Lines (8,p) and (8",p") crossing in the image
Figure 4.3

Property 1. Let (8°,p") and (8,p) be two lines that cross cell (0,r") and (0,r), respectively, with
r>r’. The two lines intersect at a point @ (x,y), x,y >0, in the plane if and only if 8'<8. (See Fig-

ure 4.3.)

Property 2. A line (8,p) cannot cross three consecutive vertically adjacent cells.

Consider again the two packets (8,p.5) and (¢.p’,5”) that arrive ar processor (i, J) at the
same time. Since the length of the path (in Manharan distance) from (0r") w0 (i,j) is smaller
than the length of the path from (0.,r) to (i,j), packet (8".p".5") was generated before packet
(8.p5). Since our algorithm generales packets on column O with increasing 6-values, we have

6°>0. Then, from Propenty 1, we can conclude that the two lines (6.p) and (8’,p") do not cross in
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the image. The situation looks similar 10 the-one shown in Figure 4.4. By assumption the two
packets reach processor (i ,/) coming from different processors. Since we know that the two lines

do not cross, packet (8’,p°,5") must come from the horizonally adjacent processor (-1} and

packet (8,p.s ) must come from the verically adjacent processor (i ,j+1).
®p)

A.p)

Y

The mrace of line (8,p) is initiated at time ¢, the trace of (8',p) at time =t+1,
and the two lines meet at processor (i ,j) at time 7+2
Figure 4.4

We show next that the two packets leave processor (i,f) using different links. Because of
Property 2, packet (8,p,s) has 1o move to cell (i+1,j). Suppose packet (8",p".s”) also wants to
h:ove to processor (i+1,j). In this case line (8’,p") crosses the three cells (-1.7), (i /), and
(i+1,/). The angle &’ = 6"~90 must then satisfy each of the three following inequalities:

-1 i r -1 i_']- .
!, sSa Scor 1
cotg™ —— o A D
-1 I+1 <o -1
cotg P o < = cotg Py 2
- P2 . 41
colg” —— <o L copg Tl ——— (3)

r'—j r'—j+1
By combining the above three rclations, we obtain:
[+
r'i—j+1’

i -
- <o < corg™!

-1
Coi
8
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Ler @ = 8-90. Since line (8.p) crosses cell (7,/) we also have:

i+
corg 'l — < o
r=i

Since r = r’+1, it follows that;

’ < -]
¢ =coig r—j+1 " r—j

i+l
<corgl—=<u

Thus o'<a, a contradiction, and packet (8”,p",5 ") leaves processor (f,/) using the vertical Enk to

processor ({,j—1).

We observe that the collision of two packets at the same processor occurs rather infre-

quently. In fact, for two packets initated frém processors (0,r) and (0,r), r>r’, and reaching

processor ({,)) at the same time, the following relation holds:

rere2

The inequality (4) is derived as follows. From (1) and (2) we have:

i -
—— < o S corg”!
r'~j

corg™!

Similarly, for line (8,p) we have:

r'—j+1
corg'l—l-!-l_ o= Cﬂfg-l_—l -
r—j r—j
Since o<’ then:

cot; -1+l < cotg™
g r—f & r'—j+1°

Letr = r’+k. Then,

cotg™ —— > cotg™!
r'-j

i
P(k—1)-1"

Thus for k23 we have ‘< 1and

i
i (k—1)-1

cotg"r,;j > cotg™!1 = 45

and o/>45. This implies 8”>135, a contradiction, and inequality (5) follows.

“)

The second trace sequence starting from side 3 considers lines with 8-values in the range

[45-90]. The trace is similar to the previous one, except that packets are generated from side 3

with decreasing 9-values. Since all the lines intersecting the remaining three sides can be

thought of as obained by rotations of the lines intersecting side 3, similar trace algorithms exist

for the other three sides.




-17-

4.2. Accumnulation of Partial Resulis

In this section we describe how the tracing algorithm places the packers (8;,p;.5), where s
1s the number of I-pixels on line (8:.p;). O<i<k~1, 0<j<n-1, al processor ({,j). In a wracing
scquence staring from side u, 0<u <3, 2 packet (8;.p, 5 ) reaches the opposite or an adjacent side
of side u with the final value of s and needs to be routed 1o its processor (i ./ ). We assume (hat
the mesh has vertical and horizontal wrap-around connections as available on the MPP. This

assumption holds without loss of generality, since a mesh with wrap-around is, in the asymptotic

Sense, no more powerful that one without wrap-around connections.

Consider the trace sequence which starts at side 3 and traces the lines with 50<0<135. Let
(n-1,r) be any processor on side 1. Since no two packets reaching processor (n —1,r) have the
same 6-value, at most n packets can reach processor (n—1.r) during the trace sequence. Assume
packet (6;.p;,5) reaches processor (n—i,r). The algorithm first routes the packet 10 processor
(¢,r) which is called its intermediate processor. When routing to the intermediate processor the
packet stays on row . If i#n—1, the packet uses the horizontal wrap-around connection 10 pro-
cessor (0,r) and moves right until it reaches column ;. This movement is shown in Figure 4.5(a).

We call a packet that has reached its intermediate processor in this fashion an i —packer.

00 i n-1 {' <. i
r ey 0) j'u
J i

ie T
ﬂ_l L

(a) (i,r) is the intermediate processor (b)Y, ') is the intermediate processor

Figure 4.5

Consider next a processor (¢ 0) on side 0. In the trace, the packets reaching processor (¢ .0)

have again distinct 8-values (and hence there can be at most n of them), It is easy 1o see thar the
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p-values of the packets reaching (¢,0) need not be disunct. Hence, routing 2 packet (8;-p i)
rcaching processor (¢ ,0) 10 processor (¢,j) can lead to congestions. We solve this problem by
making processor (¢.i") the inicrmediale processor of the packet. It is reached by vertical move-
ments afier using the vertical wrap-around of column ¢. See Figure 4.5(b). We call a packet that
has reached its intermediate processor {c.i’) a t—i—packer. The 'l stands for ‘transpose’. The t-
i-packet will later be routed to processor (f°,i”) and a ranspose operation will send the packel to

its final processor.

The routing of packets 1o their intermediate processor occurs simultaneously with the trac-
ing of the Iines. Afier all lines have been traced, the algorithm completes the rfouting to inter-
mediate processors which takes at most n additional time steps. AL this point a processor in the
mesh may contain up to two packets, one i-packet received from side 1 and one t-i-packet
received from side 0. These packets remain in this processor until all eight traces have been com-
pleted. Itis easy to see that when performing the all eight trace sequences a processor can receive
at most one i-packet and one t-i-packet. Consider, for example, the trace sequence from starting
from side 3 with 50=8<135. An i-packet (8;,p;.s) finished its trace at some processor (z -1,r)on
side 1. The lines parallel to line (8;,p ;) that do not cross side 3 are traced in a trace sequence
starting from side 1. After the packets of these lines reach side 2, they are routed to intermediate

processors and stored as t-i-packets.

After all eight traces have been completed, the algorithm performs the final routing steps.
Consider first the i-packets. Column i contains i-packets with a 6-value of 6;, but not ordered
according to p-values. Ordering the p-values can easily be done in » time steps. Similarly, the
t-i-packets are arranged so that row i contains all the packets with a 8-value of 0;- ordered by p-
values. The final operation is 1o perform 2 transpose on the t-i-packets which can be done in 2n

time steps [U). This completes the description of our linear time tracing algorithm,

5. Conclusions

We presented two aigerithms, the block and the tracing algorithm, which perform the
Hough transform for an nxn image on an nxnz mesh of processors. While the asymptotic run-

ning time of the tracing algorithm is better than the one of the block algorithm, the constant asso-



-19-

ciated with the block algorithm appears 1o be smaller. We plan to implement and comparc the

performance of both algorithms on the MPP, 2 mesh of size 128x128.

The algorithms can easily be generalized to handle numbers of 8- and p-values different
from the ones used in our description. The aigorithms can also be adapted to count the number of
1-pixels on a line (8,0) of width w, where a line (6.p) of width w consists of all the cells at most

distance w/2 away from the cells crossed by the line (8,p).
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