
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1987

Planar Linear Arrangements of Outerplanar Graphs Planar Linear Arrangements of Outerplanar Graphs

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Report Number:
87-671

Frederickson, Greg N. and Hambrusch, Susanne E., "Planar Linear Arrangements of Outerplanar Graphs"
(1987). Department of Computer Science Technical Reports. Paper 582.
https://docs.lib.purdue.edu/cstech/582

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PLANAR LINEAR ARRANGEMENTS
OF OUTERPLANAR GRAPHS

Greg N. Frederickson
Susanne E. Hambrusch

CSD-1R-671
March 1987

Planar Linear Arrangements of Outerplanar Graphs

Greg N. Frederickson* and Susanne E. Hambrusch~*

Department of Computer Sciences"
Purdue University

West Lafayette, IN 47907, USA.

March 1987

Abstract
Given an n -vertex outerplanar graph G I we consider the problem of arranging the vertices of G
on a line such that no two edges cross and various cost measures are minimized. We present
efficient algorithms for generating layouts in which every edge (i ,j) of G does not exceed a
given bandwidth b (i ,n, the total edge length and the cutwidth of the layout is minimized. respec
tively. We present characterizations of oplimallayollts which are used by the algorithms. Our
algorithms combine sublayouts by solving two processor scheduling problems. Although these
scheduling problems are NP-complete in general. the insrances generated by our algorithms are
polynomial in n.

Keywords
Analysis of algorithms, bandwidth. cutwidth. layout problems. outerplanar graphs. scheduling
problems.

• This work was supported by the Office of Naval Research under Contract NOOOl4-86-K-0689 and by the
National Science Foundation under Grant DCR-83-20124.
*" This work was supponed by the Office of Naval Research under Contracts NOOO14-84-K-0502 and
NOOOl4-S6-K·0689. md by the National Science Foundation under Grunt DMC·84-13496.

-2-

1. Introduclion

The problem of arranging the vertices of an n-vertex, COIUleeted graph G = (V ,E) on a line

subject to minimizing various cost measures is an interesting combinatorial problem arising in

the area of VLSI layout design [F, 01\1KF, PDS, T). Commonly considered COSt measures are.the

bandwidth, the IOtal edge length, and the cutwidth [el, CZ, CM5T, L, 51, Yl]. In Ibis paper we

consider linear arrangement problems when no two edges of G are allowed to cross in the layout.

The graphs that can be laid out under this assumption are exactly the outerplanar graphs [Y2].

We present efficient algorithms that minimize the bandwidth, the total edge length, and the

cutwidth of a layout, respectively. A layout of G is a one-to-one mapping f of the vertices of G

to the set [0,1, ...• n-l}. We next give the definition of the problems considered.

In the Constant Bandwidth (CB) Problem we are given G and an integer b and must deter

mine if there exists a layout such that for every edge (i ,j)eE If (i)-f U) I'5b. In the Variable

Bandwidth (VB) Problem every edge (i ,j) has its own bandwidth b(i ,j) and we must determine

if there exists a layout such that for every edge Ci,j) If(i}-fU)I'5b(i,j). In both problems a

layout should be generated if one exists. In the Total-Edge-Length (TEL) Problem we must

determine the layout ofG minimizing L IjCirfU)I. In the Minimum Cutwidth (MC)Prob-
(ij)eE

lem we must determine a layout of G that minimizes the cutwidth. The cutwidth is defined as the

maximum number of edges crossing any position X +.5 on the line, x e {O,l," . ,n-I}.

In this paper we present an algorithm that solves the CB problem in 0 (n 2) time using 0 (n)

space. For the VB and TEL problems we present algorithms that run in time 0 (fin + n 2) using

o(n) space, respectively, where S is the number of biconnected components containing a central

articulation point a"'. For the MC problem we present two algorithms: one running in time

o(n 3) and using 0 (n) space, and one running in time 0 (dn2) and using 0 (n 2) space, where d is

maximwn degree of any vertex representing an articulation point in the block-culpOint tree of G.

The algorithms for all four problems are of a similar structure and they determine an

optimal layout by sweeping through the block-cutpOint tree H of graph G. The block-culpoiru

tree H = (VH.EH) is defined as follows [HI]. Let B I, ... ,Bk be the biconnected components of

G and let a 10 .•• Q/ be the articulation points in G. Then, VH = {x It ... 'xk' G10 ••• G/] and EH

= {(Xj,Gj) I Gj is a venex in the biconnected component Bj }. The algorithms differ in how they

-3-

combine sublayout5 during the sweep and in how they select the root of the block-cutpoint ~.

Sublayouts are combined by solving two processor scheduling problems, with a different type of

scheduling problem for each of bandwidth. edge-length, and cutwidth. Each one of the three

scheduling problems that arises is NP-complete, but can be solved by a pseudo-polynomial time

general algorithm which in tum yields an algorithm polynomial in n for the instances generated

by our layout problems.

The selection of the root of the block-cutpoint tree for the CB, VB,. and Me problems is

closely related to the existence of a cenual biconnected component or a central articulation point

in G. A central biconnected component Cresp. articulation point) is a biconnected component

Crespo venex) for which the removal of its edges Crespo of the vertex) results in connected com

ponents with at most nl2 vertices each. The central biconnected component or articulation point

can be determined in 0 (n) time. For the CB problem we present a characterization of an optimal

layout that allows us to select either the central biconnected component or the central aIticulation

point. For the VB and TEL problems we present partial characterizations of an optimal layout. If

G has a central biconnected component, the both problems can be solved in 0 (n 2) time. Other

wise, the algorithms run in 0 (B2n + n2) time, where B is the number of biconnected components

containing the central vertex.

When considering non-planar layouts of general graphs all four problems are NP-complete

[GJ]. The bandwidth problems are already NP-complete for trees [GGJK], but the total edge

length and the minimum cut problem can be solved in polynomial time in the case of trees [CI,

S 1, Yl]. The TEL problem and the MC problem have recently shown to be NP-complete for 2

outerplanar graphs and outerplanar multigraphs in the case of non-planar layouts [MS, S2].

Planar layouts of trees minimizing the curwidth are described in [DT, YI].

The paper is organized as follows. In Section 2 we present layout characterizations for the

CB, VB, and TEL problems, respectively. These characterizations will be used by our algo

rithms. Section 3 discusses the scheduling problems arising in the four layout problems and

describes their solutions. Sections 4, 5, 6, and 7 present the algorithms for the CB, VB, TEL, and

MC problems, respectively.

-4-

2. Layout Characterizations

In this section we present characterizations of optima11ayouts for the CB, VB, and TEL

problems which will be used by the algorithms. We start with some definitions used throughout

the paper. We call a layolltfeasib/e if it satisfies the constraints imposed by the problem. A cen

tral biconnected componenr B* = (V* , E*) is a biconnected component for which the removal of

the edges in E* from G results in connected components of at most nl2 vertices each. A central

articulation point a* is an articulation point whose removal results in coIUlecled components of

size at most n /2 vertices each. It is easy to show that a graph that has no central biconnected

component has a central articulation point

Let L be a planar layout of G. Edge (.%,y) dominates edge (u;v) if (x,y):;t:(u,v) and

! (x)';'! (u)<! (v)';'! (y). LetE' be a set of edges. We say (x,y)dominatesE' if it dominates

every edge of E'. We call an edge a dominating edge if it is not dominated by any other edge.

We say that a vertex 11 is dominated by an edge (u,w) if f(u)<f(v)<f(w). A vertex that is not

dominated by any edge is called an exposed vertex.

The following lemma characterizes a feasible layout for the CE, VB, and TEL problems

when the graph contains a central biconnected component B* .

Lemma 2.1. Let G be an outerplanar graph that contains a central biconnected component B* .

If there exists a feasible layout for the ca, VB, and TEL problems, respectively, then there exists

one in which an edge of the central biconnected component B* is a dominating edge.

Proof. Let L be a feasible layout in which every edge of B* is dominated by a least e edges,

where e is a minimum among all feasible layouts. Suppose e >0. We show how to transform L

into another feasible layout L' such that one edge ofB* is dominated by at most e-l edges.

Among the e edges dominating B* , select the edge (u ,v) with f (u) a minimum. Note that

this implies that the remaining e-l edges dominating B* are also dominated by (u,v). LetB be

the biconnected component containing edge (u ,v). It is not hard to show that the removal of all

the edges of B that dominate B* results in two connected components. To obtain from L a lay

out L' with one edge of B* dominated by a most e-l edges, remove all the edges of B that dom

inate B* , interchange the layouts of the two resulting connected components, and restore the pre

viously removed edges.

- 5 -

The only edge lengths that can change by this operation are of those edges that are removed

and then restored. Since B* is a central biconnected component, any edge (II,v') of B that is

removed must have at least nl2 vertices between u' and v' in L. These vertices will not lie

between 11 and v' in L'. Thus there are at most nl2 vertices between z/ and y' in L' and the

length of any edge Cu' ,v') of B did not increase. Any edge that did not dominate B* in L will not

dominate B* in L'. Furthermore. at least one edge. namely (u ,v), that dominated B* in L will

not dominate B* in I:. Thus L' is another feasible layout in which one edge ofB* is dominated

by at most e-1 edges. a contradiction to the choice ofL. 0

The next lemma gives a partial characterization of a feasible layout for the CB, VB, TEL

problems when the graph contains no centr3l biconnected component, only a central articulation

pointa*. LetB I • 82>· ", Bli be the biconnected components containingvenex a*.

Lemma 2.2. Let G be an outerplanar graph that contains a central articulation point a*. If there

exists a feasible layout for the CB, VB, and TEL problems, respectively, then there exists one in

which an edge ofBi, for some i .1~::;;O, is a dominating edge.

Proof. Let L be a feasible layout and letB j = (Vi,Ei) be a biconnected component containing an

edge (x ,y) such that (x,y) dominates every edge in Ej for all rt:i. Assume edge (x.y) is dom

inated by e edges. where e is a minimum. Suppose e>0. Then a layout I.: can be obtained from

L in a fashion analogous to that in the proof of Lemma 2.1. Layout L' will be feasible, and have

at most e-1 edges that dominate a*. TIlis yields a contradiction. 0

The following three lemmas fully characterize an optimal layout for the CB problem. TIlis

.full characterization allows us to generate an 0 (n 2) time algorithm for the CB problem. For the

CB problem we do not need to work with graph G, but can consider the reduced graph Gr which

is defined as follows. Let B = (V' ,Ej be a bicormecred component of G, let IV'l=k.. and let

L (B) be a layout of B . The reduced biconnected component of B is defined as Br = (V' .Er ')

where E/ = {(Xi.xCi+I)mDdk) I !(Xj). =f(X(i+l)mDdk}+-I}. Note that Br is obtained from B by

deleting all the edges except for a cycle of length k. The reduced graph G, is !.hen obtained by

replacing every biconnected component of G by its reduced biconnected component. The fol

lowing lemma holds trivially for the CB problem.

-6-

Lemma 23. If there exists a feasible layout for the CB problem on graph Gr. then this larou[is

a feasible layout for the CB problem on graph G.

For the remainder of this section, we assume that G is a reduced graph. We next show that.

if G does Dot contain a centtal biconnected component. only a central articulation point a* , then

a* is exposed.

Lemma 2.4. Let G be an outerplanar graph that contains a central articulation point a*. If there

exists a feasible layout for the CB problem on G I then there exists one in which a* is exposed.

Proof. Let L be a feasible layout in which a* is dominated by e edges. where e is minimum

among all feasible layouts. Suppose e>0.

Because of Lemma 22 all edges iliat dominate a* belong to a biconnected component B

that contains a*. Let (u ItUV be the longest edge of B in layout L. Let V be all vertices in the

same connected component as uland "2 when a* is removed from G. Note that V' contains all

vertices of B except a*. Let TI' be the cardinality of V. Since a* is a central aniculation point,

n' S nl2. Thus the length of (Ul'UV is at least n-,(+1 > n12. Now consider any layout L: in

which all vertices in V are to the left of a* , and all vertices in V --(V" u{a* }) are to the right of

a*. Since no edge dominates a* in L' I every edge will be of length at most max{n' ,n -n' -I}

< n-n' +1. Thus L' is a feasible layout in which a* is dominated by no edge, a contradiction. 0

From Lemma 2.1 we know that if G contains a central biconnected component

B* = (V* ,E*), then one edge of B* is dominating. The following lemma identifies this edge for

the CB problem. Let V* = {Xo.· .. ,x£l-d and E* = {(Xi Xi+l) I Qg <Cl}. ('The addition in the

subscripts is done moda.) Let n(xi) be the number of vertices in the connected component con

taining vertex Xi after the edges (Xi_l.xi) and (Xi.xi+l) have been deleted from G, OSi5:cx-l.

Lemma 25. Let G be an outerplanar graph with a central biconnected component B* and let

n(xc) + n (Xc+l) ~ n(x;) + n (Xi+l) for all i. If there exists a feasible layout for the CB problem

on G, then there exists one in which the edge (xc .xc+l) of B* is dominating.

Proof. Let L be a solution in which the edge (Xi 'xi+l) of B* is dominating. Suppose i:#C. We

show how to transfonn L into another layout L' in which lhe edge (Xc'xc+l) is dominating.

-7-

We first obtain an intermediate layout C. C is obtained from L by deleting the edges

(Xc 'xc+l) and (Xi,xi+I), interchanging the layouts of the two resulting connected components. and

restoring the two previously removed edges. In layout i edge (xc 'xc+l) is dominating, but the

length of the edge may exceed bandwidth b. Such a situation is shown in Figure 2.1, where lay

outs L 10 L 2, L s•and L 6 consist of n/8 - 1 vertices, and layouts L 3 and L 4 consist of nl4 - 1 ver

tices each. In C the edge (Xc+I'xc) violates the bandwidth b = 3n/4. Note that the edge (Xc "xc+l)

is the only edge in i for which the length could have increased. (By an argument similar to the

one given in the proof of Lemma 2.1, it can be shown that the length of the edge (Xi ,xi+l) did not

increase.)

In order to obtain L' we perform the following operation on C. W.l.o.g. assume that in L

f (Xi+l)<!exc)<! (Xc+l)<! (Xi)' Move every layout of a subgraph of G formed by the removal of

vertex Xc+l and whose layout is between f (xc+l) and f (xc+:V to the left of Xc+l. Analogously,

move every layout of a subgraph of G formed by the removal of vertex Xc and whose layout is

between! (Xc_I) and f (Xc) to the right of Xc. The length of the edge (Xi 'xi+l) in L was at least

L n(xj) and the length of the edge (xc.xc+l) in L' is L n(xj).
j'#,i+l ju,c+l

> n(Xj}+n(xi+l), the edge (xc'xc+l) does not violate the bandwidIh in L'. Funhermore, none of

the other edges incident to Xc (resp. xc+l) has a length of more Ihan n (xc) (resp. n (Xc+l» in L'. 0

3. The Scheduling Problems

Our algorithms for all four layout problems will make use of algorithms for several schedul

ing problems. These involve scheduling tasks nonpreemptively on two processors, and are in

general NP-hard, but all have pseudo-polynomial time algorithms when the relevant input values

are integers. In the case of the particular scheduling problem instances generated by our layout

problems, lhe running time of the scheduling algorithms will be slricdy polynomial. In this sec

tion we present pseudo-polynomial time algorithms for !.he scheduling problems and show how to

reduce the space used over that required in an obvious implementation. We now identify the dif

ferent scheduling problems that we shall be considering.

In the Deadline Scheduling Problem we are given s tasks, with task i requiring time T(i)

and having a deadline D (i) by which time it must be complered. We must detennine if there is a

- 8 -

feasible schedule of the tasks, and if there is one, must find among all feasible schedules a

schedule that minimizes the total time on processor 1. One variation of this problem will be to

report the set of different times on processor 1 for the set of feasible schedules. A second varia

tion is to generate the schedule that realizes a panicuIar time on processor 1.

In the Cumulative Penalty Scheduling Problem we are given s tasks, with task i requiring

time T (i) and having a delay penalty value ofP (i), which is multiplied times the stan time of the

•
task. We must determine the schedule with the minimum total penalty, i.e.• LP (i)*A (i), where

j",1

A (i) is the start time of the i -th task in the schedule. Again we consider variations of the prob

lem. One variation is to repon the set of different times on processor 1, along with the smallest

cost for each. The second variation is, given a particular time on processor 1 realized by some

feasible schedule, generate the minimum cost schedule for that time.

In the Maximum Penalty Scheduling Problem we are given s tasks, each task requiring unit

time, an additive cost Wei) and a dominating cost G(l), where W(i)::;; G(i). A cost is deter

mined for each processor, with the cost c of a processor reset to max {G (i), c + W(i)} if task l

is added to the processor following the previously scheduled tasks. We must determine a

schedule that minimizes the maximum cost of the two processors. Once again we consider varia-

tions of the problem. One variation is to report the set of different costs on processor 1, along

with the corresponding smallest cost on processor 2. The second variation is, given a particular

cost on processor 1 realized by some feasible schedule, generate the minimum cost schedule for

that cost

As claimed, each of the above scheduling problems is NP-hard. The NP-completeness of

deadline scheduling and cumulative penalty scheduling follows from [GIl. problems SS8 and

SS13, respectively. The NP-haniness of maximum penalty scheduling follows from an easy

transformation from partition.

Each of the above three problems has a special property that can be used in genernting a

dynamic programming algorithm. For the deadline scheduling problem, if there is a feasible

schedule, then there is a feasible schedule in which the tasks on processor I are ordered in terms

of nondccreasing deadline, and similarly for processor 2. For the cumulative penalty scheduling

problem, an optimal schedule will have the tasks ordered on each processor by nondecreasing

-9-

value of T(i)/P(i). For the maximum penalty scheduling problem, an optimal schedule will

have the tasks ordered on each processor by nondecreasing value of C (i) - W(i). These proper

ties can be established inductively using a simple interchange argument.

Thus a straightforward dynamic programming algorithm that solves anyone of these prob·

lerns need only consider the tasks in order of nondecreasing value of the relevant expression. For

tasks i = I, - ..• s so ordered. we determine a list K j of different partial schedules of the first i

tasks. with clearly inferior partial schedules eliminated. This list is typically ordered by a crucial

value of a schedule, such as !.he time used so far on processor 1. List K 0 has one entry on it,

representing the empty schedule. To generate list Kj given list Ki - 1• do the following. Generate

list K' I the list of schedules created by taking each schedule in Ki_1 and scheduling task i at the

next available time on processor 1. Delete any schedule that is not feasible. Similarly, generate

list K 1 by scheduling task i at the next available time on processor 2 for each schedule in list

K i _ 1• and deleting any infeasible schedules. Then merge X' and!C' ordered on the crucial value,

pruning any partial schedule that is clearly inferior to another partial schedule.

We now indicate how this strategy is instantiated for each of the scheduling problems. For

deadline scheduling, we represent a partial schedule on list K j by a pair (t. j) where t is the time

scheduled on processor 1, and j is the highest indexed task on processor 1. If j ;!: 0, then the

preceding tasks on processor I can be detennined by finding a pair (t-TU), l) on list Kj _1,

resetting j to l, and repeating this until j = O. Each list is ordered by value t. Let,
S (i) = :ET(k). To generate list K j , for each pair (t , j) on list Ki_ l , place pair (t+T (i), i) on list

'.1
K' if I + T (i) ~ D (i), and place pair (I, j) on list K" ifS (i) - I ~ D (i). When lists K' and K"

are merged to yield K j , prune any pair (t, j) if there is a pair «(,l) preceding it with (= t .

•
Let N = :ET(i). If the T(i)'s are integers, then the preceding algorithm runs in O(sN)

i=1

time and space. TItis approach solves all three versions of the deadline scheduling problem. We

now discuss how to reduce the space. We handle the first variation of deadline scheduling, in

which we are interested in determining only the set of different times on processor I for the sct of

feasible schedules, as follows. We do not keep the j values in the pairs, and do not maintain list

Ki _ 1 once list K j is fonned. Thus we can detennine this set in 0 (sN) time and 0 (N) space.

-10 -

Note that the above methods work in the claimed time and space bounds even if there are addi

tional consttainrs to the problem that allow no task to be scheduled on processor 1 before a cer

tain time, and no task to be scheduled on processor 2 before a certain time.

We can also solve the second variation of deadline scheduling, determining a feasible

schedule that realizes any given time in the set of times on processor 1, using just 0 (N) space.

This is accomplished as follows. Use pairs (t. th) in the lists. where th is the time on processor 1

that is accounted for by tasks indexed i = 1, 2, ...• lsl2J. In 0 (sN) time and 0 (N) space one

can thus find the set of different times on processor 1 for the set of feasible schedules, and for

each such time t a conesponding time th which is the portion of I accounted for by tasks indexed

up to Lsl2J in some feasible schedule with time t on processor 1. The problem then reduces to

solving two subproblems. First, use the approach recursively to identify a feasible schedule of

L.l'flJ
the first lsl2J tasks with time Ih on processor 1. Let Nh = L T(i). Then use the approach

i=l

recursively to identify a feasible schedule of the remaining rs /21 tasks with time 1 on processor

I, given that no task on processor 1 can be scheduled before time Ih' and no task on processor 2

can be scheduled before time Nh - th' The approach used for achieving 0 (N) space is reminis

cent to the one used in [HZ].

Lemma 3.1. The deadline scheduling problem and its two variations can be solved in 0 (sN)

time and 0 (N) space.

Proof. By arguments presented above, the first variation can be solved in the claimed time and

space bounds.

The algorithm for the second variation can be shown to take 0 (N) space, by a simple

inductive argument. The time can be shown to be 0 (sN) as follows. Let T(s, N) be the time to

solve a deadline schedule problem of s tasks with [oral processing time N by the above melhod.

Then for s = I, T(s IN) ::;; C I and for s > I,

T(s, N)" csN + T(LSl2J ,Nh) + T(rsl21 ,N - Nh)

It follows that T(s, N) " c (Zs-I)N.

The original version of the problem can be solved by solving lhe first variation, selecting

-11-

the smallest time on processor I, and then solving the second variation. 0

We next discuss how the space-saving strategy is instantiated for cumulative penalty

scheduling. We represent a partial schedule on list Ki by a triple (t Ie, j) where t is the time

scheduled on processor 1, c is the cost of the partial schedule. and j is the highest indexed task

on processor 1. Each list is ordered by value t. Recall that S (i) = LT(k). To generate list K i •

.1:=1

for each triple (t. C. j) on list Ki _ lo place triple (r+T(i), c + P(i)*r, i) on listK' I and place tri

ple (t. c + P (i)* (S (i)-t), j) on list K". When lists K' and KU are merged to yield K i I prune

any triple (t. c. j) if there is a triple «(.c' , l) preceding it with (= t and c' :::;; c.

As in deadline scheduling, there is a good pseudopolynomial time implementation of the

•
algorithm for cumulative penalty scheduling. Again let N = :L.T(i). If the T(i)'s are integers,

i=1

then the algorithm as stated runs in 0 (sN) time and space. We handle the first variation of

cumulative penalty scheduling, in which we are interested in determining only the set of different

times on processor 1 for the set of feasible schedules, along with the smallest cost for each time,

as follows. We do not keep the j values in the triples, and do not maintain list Ki _ 1 once list Kj

is formed. Thus we can determine this set in 0 (sN) time and 0 (N) space. Note that the above

methods work. even if there are additional constraints to the problem that allow no task. to be

scheduled on processor 1 before a certain time, and no task to be scheduled on processor 2 before

a cenain time.

We can also solve the second variation of cumulative penalty scheduling, determining a

feasible schedule that realizes any given time in the set of times on processor I, and is of

minimum cost for that time, using just 0 (N) space. TI1is is accomplished by using the divide

and-conquer technique discussed for deadline scheduling. Use triples (t, th' c) in the lists, where

th is the time on processor 1 that is accounted for by tasks indexed i = 1, 2, ... , Ls /2J .

Lemma 3.2. The cumulative penalty scheduling problem and its two variations can be solved in

o (sN) lime and 0 (N) space.

Proof. The proof is similar [0 that ofLemma 3.1. 0

-12 -

We next discuss how the space·saving strategy is instantiated for maximum penalty

scheduling. We represent a partial schedule on list Ki by a triple (c I. e2. j) where c 1 is the cost

for processor 1. C2 is the cost for processor 2, and j is the highest indexed task on processor 1.

Each list is ordered by value Cl. To generate list K j , for each triple (c I. C2. j) on list Ki - i • place

triple (max [C(i). W(i) + cd. C2. i) on list K' • and place triple (c,. max [C(i), W(i) + C2), j)

on list K
U

• When lists K' and K" are merged to yield K i • prune any triple (el. e2. j) if there is a

triple (c{. C2', l) preceding it with c{ SCI and e2' S C2.

,
For maximum penalty scheduling we do the following. Let C = Leei). Iftbe Cei)'s are

i=l

integers, then the algorithm as stated runs in 0 (sC) time and space. We handle the first variation

of maximum penalty scheduling, in which we are interested in determining only the set of dif

ferent costs on processor 1. along with the corresponding smallest cost on processor 2. as follows.

We do not keep the j values in the triples. and do not maintain list Ki_ 1 once list K j is formed.

Thus we can determine this set in o(sC) time and O(C) space. Note that the above methods

work even if there are additional constraints to the problem such as an initial nonzero cost on pro-

cesser I, and an initial nonzero cost on processor 2.

We can also solve the second variation of maximum penalty scheduling, determining a

feasible schedule that realizes any given co~t in the set of costs on processor 1, and is of

minimum cost on processor 2, using just 0 (N) space. This is accomplished by using the divide~

and-conquer technique discussed for deadline scheduling. Use triples (c I' c 1.11' ci) in the lists,

where c 1.h is the cost on processor 1 that is accounted for by tasks indexed i = 1, 2, ... , ls12J.

Lemma 3.3. The maximum penalty scheduling problem and its two variations can be solved in

O(sC) time and O(C) space.

Proof. The proof is similar to that ofLemma 3.1. 0

4. The Constant Bandwidth Problem

In this section we present an algorithm that solves the CB problem for a given outerplanar

graph G in 0 (n 2) time using 0 (n) space. We assume that G has been reduced; i.e., every bicon

nected component consisting of a. vertices, 0.>2, contains exactly a. edges. The algorithm stans

-13 -

by constructing the block-cutpoint tree H of G. It then determines whether G contains a central

biconnected component B* or only a central articulation point a* I and roolS H at either B* or

a*. The layout of G is determined by sweeping up through H from the leaves towards the root

During the sweep. at every vertex x representing a bicOIUlected component B~. sublayouts ofx 's

grand-children are combined with the layout of the vertices in Ex. The order of the sublayouts is

determined by solving a deadline scheduling problem.

We first describe the algorithm for the case when G contains a central biconnected com

ponent B*. For every vertex x in the block-curpoint tree H let p ex) be its parent For every ver

tex x representing a biconnected component BJ: let L(x) be the layout of the subgraph of G

induced by the vertices represented in the subtree rooted at vertex x. If B):;t:B*, vertex p (x),

which is an articulation point, is also included in L (x) since it is represented in the biconnected

component Bx' Note that all the edges between vertex p (x) and another vertex in Lex) are edges

in Bx • Since L(x) will, at some later step, be combined with other sublayouts containing vertex

p (x) and an edge encountered later has to be dominating, it is necessary to have vertex p (x)

assigned to a comer position in layout L (x). W.l.o.g., we assign p (x) to the rigtumost position.

Hence, in layout L (x), one edge incident to p (x) will be a dominating edge in L (x). Two values,

length (x) and slack(x), are associated with L(x). Let length (x) be the number of vertices in the

layout L(x) minus 1, and let slack(x) be the maximum distance the length of the dominating

edge incident to p(x) can be increased in future steps (which equals the maximum number of

additional vertices that can be dominated).

We call a biconnected component trivial if it consists of a single edge. When sweeping up

through the block-cutpomt tree no action is taken for any vertex corresponding to an articulation

point unless it is the root. When vertex x corresponds to a biconnected components one of 4

cases can occur:

(1) Vertex x is a leaf

(2) Venex x is neither a leaf nor the root, and corresponds to a trivial biconnected component Bx

(3) Vertex x is neither a leaf nor the roOE, and corresponds to a non-trivial biconnected component Ex

(4) Vertex x is the root

Throughout, let the children of x in H be aI,··· ,ak' and the children of aj be Xj,"'" 'xj.m;'

-14 -

1~.j~. Let the vertices in the biconnected componentB~ in G be Yo•... oYa-l' See Figure 4.1.

Case (1). Ifvertex x is a Ic;af, it is handled as follows. We set length ex) to the number of

vertices in B;~ minus 1, slack (x) to the bandwidth b minus length (x). and L (x) to any layout that

has one of the two edges incident to vertex p (x) as a dominating edge.

Case (2). If x is neither a leaf nor the root, and corresponds to a trivial biconnected com

ponent B;p then k=l and Bx consists of me edge (at. p(x» with at=Yo and p (XAt. We set up

and solve a deadline scheduling problem to determine which sublayouts will be dominated by the

edge (al'p(x», where venex p(x) will be at the rightmost position. The deadline scheduling

problem consists of m 1 tasks, where Tei) = length(xl,i) and D (i) = length (Xl,i) + slack (x l,i)' for

i = 1,' .. ,mI. In the solution to the deadline scheduling problem, which minimizes the total

time on processor I. let the tasks scheduled on processor I be i 1.· . -. iq and the ones on proces-

m,
sor 2 be h.···. in q+r=m1· Let t1 be the time on processor 1. Set lenglh(x) = L.

i=l

length(X1,i) - mj + 2andslack(x)=b -tl. LetL-(X1,i) be the layout obtained fromL(xI,i)

by removing vertex Yo (i.e., the righbnost vertex). Let U-(XI,i) be lhe layout obtained from

L(X1,i) by reversing the order of the vertices and removing vertex Yo. Then. layout L(x) is

formed by the concatenation of

Ll'-(xIJ,) •...• Ll'-(XIJl)' Yo, L -(x I,i,) •... , L -(x I.i.r)' Y 1·

Case (3). If x is neither a leaf nor a root. and it corresponds to a non-trivial biconnected

component H:r.. then vertexp (x) is assigned the rightmost position and there are two choices for a

dominating edge. Both choices are considered, and lhe one resulting in a larger slack is chosen.

Assume p (x) corresponds to articulation point Yc in the biconnected component B:r.. First deter

mine the slack of the layout L' that has the edge (Yc+IoYc) as a dominating edge. If vertex Yc+1 is

an articulation point in G. let irs corresponding vertex in H be Qj. In this case a deadline

scheduling problem on mj tasks is set up. where T(i) = length(xj,i) and D(i) =

lengrh(xj,i) + slack (Xj.i) for i=I.2.··· ,mj. Note that in L' it does not matter whether the lay

oms associated with the children of vertex Ql' in H, r*-i, are placed to the left or to the right of

vertex al'. We determine the slack of layout L' from t (. !he minimum time needed on processor 1

for the deadline scheduling problem set up for aj. and !.he lengths of lhe layours associated with

- 15 -

the other grand-children ofx.

In a similar fashion determine the slack of the layout L n that has edge (Y.:-1oYc) as a dom

inating edge. From L' and L" choose the layout that yields a larger slack, and detennine

length (x), s[lUk(x), and L(x).

Case (4). When x is the root of H (i.e.• B;r=B*) we detennine the final layout Instead of

choosing p (x) as the rightmost vertex of L (x), the rightmost vertex in this case is determined by

Lemma 2.5. Let Yc and Y.:+1 be the vertices satisfying n(yc)+n(yc+t) 2:: n(yj}+n(yi+l) for all

O~i <0:. The layout L(x) is obtained by solving two deadline scheduling problems, one for Yc

and one for Ye+I' Assume w.1.o.g. that Yc is made the rightmost vertex in L (x). Then the layouts

ofYe 's grand·children corresponding to the tasks scheduled on processor 1 Crespo 2) are placed to

the left Crespo right) of Ye' The positioning of layouts of Ye+I'S grand-children is done in the

reverse order. Layout L (x) is returned as the final layout.

This completes the description of the algorithm for the CB problem when G contains a cen

tral biconnected component. Its correctness follows from the lemmas of Section 2 and the discus

sion Assume now that H is rooted at the central articulation point a*. Let Xl,' . " X o be the

children of a* in H which represent the biconnected components B I •··· I Eo containing vertex

a*. Cases (1) to (3) remain as described above and Case (4) is handled as follows. We set up

and solve a deadline scheduling problem on 0 tasks using length (Xj) and slack (Xi), 19$3. Any

feasible solution to the scheduling problem represents a final layout of graph G.

Theorem 4.1. The algorithm determining a feasible layout for the CB problem runs in 0 (n 2)

time and uses 0 (n) space.

Proof. All the preprocessing steps (i.e., reducing G, creating the block-cutpoint tree H I deter

mining B* or a*) can be done in 0 (n) time. Consider a vertex x in H representing a bicon

nected component Let n' be length(x), i.e., it is the number of vertices in bicormected com

ponents represented by vertices in the subtree rooted at x. For case (1), the algorithm takes 0 (n')

time. For cases (2), (3) and (4), the algoritlun takes 0 (n) time plus the time to solve at most [wO

scheduling problems. By Lemma 3.1, solving one deadline scheduling problem for s sublayouts

which COntain a total of N vertices of G uses 0 (sN) time. Thus a scheduling problem at an arti

culation point aj takes 0 (d(aj)n (OJ)) time. where d(oj) is the in-degree of aj in H and n (OJ) is

-16 -

the number of vertices in the biconnected components represented by vertices in the subtree

rooted at aj. Let T (n') be the time used by our algorithm for computing the layout Lex). Recall

that vertex Xj,i is the i-th child of the j-lh child of vertex x inH .Then, Ten) is described by the

k mj

recurrence relation: Ten')::; c(n' +m~ d(aj)n(aj» + L LT(n(Xj,i», where c is a constant.
ISJSk" i""'l i=l

The last term reflects the time to solve subproblems for the grandchildren of .::t. It is easy to see

that Ten') ::; en' (1 + L dea», where AH(x) is the set of articulation points in the subtree of
aeAH(A)

H rooted at x. Since the total degree of all articulation points in H is Den), the OCn 2) time

bound follows. The 0 en) space bound follows from Lemma 3. I. 0

S. The Variable Bandwidth Problem

In this section we describe how to modify and extend the algorithm given for the CB prob

lem to solve the variable bandwidth problem. The algorithm for the VB problem can no longer

work with the reduced graph G, since the bandwidth of a removed edge can have an influence on

the layout. We call an edge (i ,j) of G an inner edge if (i ,neG7I and an outer edge if (i ,neG,.

If G contains a central biconnected component B* , then Lemma 2.1 states that an outer edge of

B* will be a dominating edge. Unlike the CB problem, every outer edge of B* is now a potential

candidate. If a B* exists, our algorithm determines a feasible layout in D(n 2) time using D(n)

space. If only a central articulation point a* exists, our algorithm determines a feasible layout in

D(c')2n + n2) time using D(n) space, where c'5 is the number of biconnected components contain

ing a*. From Lemma 2.2 we know that an outer edge of a biconnected component containing a*

will be dominating, and considering all c'5 biconnected components causes the increase in the

time.

We first describe the algorithm for the case when a central biconnected component B*

exists. As is done for the CB problem, the algorithm constructs the block-culpoint tree H, finds

B* , and makes B* the root ofH. Let b (i ,j) be the bandwidth of edge (i ,j). Ifedge (i ,j)!l: G, we

set b(i,j)= 00. The layout of G is constructed by sweeping up through H. Every vertex: x of H

corresponding to a biconnected component Bx has the three entries, length(x), slack(x), and

L(x) as defined in the previous section, associated with it Let the vertices of Bx in G be

-17 -

Yo•...•Ya.-I such that edges (Yi ,Yi+l) are the outer edges.

Case (1). The leaves of H are handled as follows. As in the in the CB algorithm. we set

length ex) to the number of vertices in B x minus 1 (i.e.• to a-I). If Bx is a trivial biconnected

component consisting of the vertices Yo and Y I with Y I = P ex), set slack (x) to b(YO,Yl) - 1 and

Lex) [0 the layout consisting ofvenex Yo followed by Y I = Pex).

IfBx is a non-trivial biconnected componem,let P ex) correspond to articulation point Yc in

G. We now have two choices for the dominating edge. (Ye-bYe) or (Yc+l'Y':)' If either layout

contains an edge whose length exceeds its bandwidth, the layout is discarded. If both layouts are

feasible. then let

slack' = min {b(yc-':,yc) -lengrh(x) + i -1 I l::Q:::;;cx-l) ,

slack" = min [b(Yc+i,yc) -lengrh(x) + i -lll::;;i:::;;a-IJ,

and sJack(x) = max {slack', slack"}. Set Lex) to the layout yielding the maximum value of

slack(x).

Case (2). Ifx is neither a leaf nor the root, and conesponds to a trivial biconnected com

ponent. we proceed in a fashion similar to that in case (2) of the algorithm for the CB problem.

The one exception is that slack (x) is set to b (yooY 1) - tl'

Case (3), Assume x is neither a leaf nor the root, and corresponds to a non-trivial bicon

nected component Bx ' Recall that aI' _., ,ak are the children of x in H and Yo,·· . Ya:-1 are the

vertices in Bx ' k <oc For every child aj of x we solve a deadline scheduling problem of the first

variation, choose a particular feasible time on processor I, and solve a deadline scheduling prob

lem of the second variation for it. The main idea is to construct L (x) in a left to right fashion and

to position the sublayouts ofevery vertex Yi as much as possible to the left ofYi.

As in case (3) of the algorithm for the CB problem, we have two choices for the dominating

edge. We discuss how to deteIIDine only layout L', the layout that has the edge (Yc+loYc) as the

dominating edge, since determining the layout L N that has the edge (Ye-l,Yc) dominating is analo

gous. Asswne w.1.o.g. that vertex p ex) corresponds to vertex Ya-l in G. Hence, the venices of

Bx will be positioned in the orderyo, YI>" " Ya-l=PeX) and when generating layout L' the ver

tices of Bx are considered in this order. If vertex Yo corresponds to an articulation point, set up

- 18 -

and solve a deadline scheduling problem minimizing the time on processor 1 as done for the CB

problem.

Assume we have handled vertices Yo, ...• Yi-l of 8;>;. Let vertex Yi correspond to vertex Qj

in H. We set up and solve a deadline scheduling problem of the first variation for Qj using the

length and slnck values of Qj 's children. We next determine, maxleftj, the maximum number of

additional vertices that can be placed betweenYi_l and Yi. Max/eft; is computed by first determin

ing for every edge (yr oJj) with r <i the number of additional vertices that can be dominated by

this edge without exceeding its bandwidth. Let this value be eslack (yr ,Yi)' Let L (x) be the lay

out that is being built incrementally, let f be the mapping for layout Lex), and let vertex u be the

most recently placed vertex in L (x); i.e.• u was placed when Yi -1 was handled and f (u) is max

imum. Then, eslack(ypYi) is set to b(Y,oYi) - feu) + l(Yr) - 1, and maxleft; is set to the

minimum over all eslack (yr ,Yi) values. Knowing maxie/Ii, we choose among all feasible solu

tions to the scheduling problem for aj the one using time I1 on processor 1 such that II is a

minimum and tl";Zn(Yj)-moxlefti. Recall that n(yjFn (aj) is the number of vertices in the con

nected component containing vertex Yj=aj after the edges of Bx have been deleted. We obtain

the schedule associated with tl by solving a deadline scheduling problem of the second variation,

and place all the sublayoulS corresponding to tasks scheduled on processor 2 to the left of vertex

Yi' and all the ones scheduled on processor 1 to the right ofvertex Yi.

Case (4). When the root of H is considered the algorithm tries every outer edge in tum as

the dominating edge. In order to do so, we first solve for every vertex in B* corresponding to an

•articulation point a deadline scheduling problem of the first variation. This takes O(Lmjn(ai»
i=I

•= O(n 2) time and the k lists obtained use a total of o (Ln(ai» = O(n) space. Detennining
;=1

whether a feasible layout with edge (yc ,Yc+l) as a dominating edge exists is done in

•o (a + Ln(aj» time similar as in case (3). If a feasible layout exists, we obtain the fmallayout
j=!

by solving k deadline scheduling problems of the second variation. If no feasible layout exists,

the edge (Yc+!,Yc+v is considered next. In the worst case all a edges have to considered as dom

•inaring edges and O(a (ex + Ln(aj») = o (n 2) time is used.
j=l

-19 -

When G contains no central biconnected component B*, we first root the block-cutpoint

tree H at the central articulation point a*. We determine whether a feasible layout with a* as an

exposed exists and while doing so we also compute results to scheduling problems used again at a

later step. Let Xl • ••• , X o be the children of a* in H which correspond to the IS biconnected

components B 1•..• ,Bs containing a*. The sweep through the tree towards a* keeps at every Xi

the lists generated when deadline scheduling problems of the first variation are solved at Xi. IfBi

contains ki articulation points, then ki-llists are generated for Xi_ The total space needed to,
store all "Lkj lists is 0 (n). Assume no feasible layout with a* as an exposed vertex exists. We

j=l

then try every vertex Xj as the IOot of the block-cutpoint tree. 19::;3. Obviously, no action needs

to be taken if Xj corresponds to a trivial biconnected component Assume we have unsuccessfully

tried Xl.' .. 'xi-I. Then Xi is handled as follows. We solve one scheduling problem on &-1 tasks

using length (Xj) and slack(xj), g):::;5, j':t:i. We then tty every outer edge of the biconnected

component Bi as a dominating edge as done in Case (4). This step makes use of the kj -llists

stored at Xj. Let <Ii be the number of vertices in Bi , a;~i. Then, trying one edge of Hi as dom

inating rakes 0 (a; + n) time and all edges take 0 (ar + CLjn) time.

In the worst case we need to consider (5 non-trivial biconnected components. We have then,
spent 0 (52n) time on solving a total of 5 scheduling problems and 0 (L.ex. + nai) = 0 (n2) time

,:01

on trying edges as dominating edges. Hence. if G contains only a central articulation point a* , a

feasible layout can be determined in time T(n) + 0 (52n + n2), where T(n) is the time for initial

solution with a* exposed.

Theorem 5.1. The algorithm determining a feasible layout for the VB problem runs in 0 (n 2
)

time if G contains a central biconnected component B* and in 0 (52n + n2) time if G contains

no B* , and it uses 0 (n) space.

Proof. Let x be a non-root venex in H representing a biconnected component, let n' be

length(x), and let aI, ... ,ak be the children of x. For case (I), the algorithm takes 0 (n') lime.

For cases (2) and (3) the algorithm takes O(n') time plus the time to solve k scheduling prob

lems, where a scheduling problem at an articulation point aj takes O(d(a)n(aj» time. Le[

T (n') be the time used by our algorithm for computing the layout L (x). Then. T(n') is described

-20 -

k " m,
by the recurrence relation: T(n) S c(rf + ::Ed(aj)n(aj» + I: ::ET(n(Xj,i»' where c is a con-

j=l j""l i=l

stant. It is easy to see that Ten') :5 en' (l + L d(a», where AH(x) is the set of articulation
oeAII (J:)

points in the subtree of H rooted at x. Since the total degree of all articulation points in H is

Den) and case (4) takes Oenz) time, the algorithm takes Den2) time when G contains a central

biconnected component. The time bound of o(B2n + nZ) for the case when G contains only a

central articulation point a* also follows from the above discussion. The 0 en) space bounds fol

lows from Lemma 3.1. 0

6. The Total-Edge-Length Problem

In this section we show how to obtain in 0 (fln + n2) time a layout minimizing the total

edge length, where 8 is tl,te number of bicOIUlected components containing the central vertex a*.

The algorithm will again sweep up tluough the block-cutpoint tree H towards the root, either B*

or a*. In the case when a* is the root, the algoruthm will consider, as done in the VB problem,

all children of a* as possible roots. Every vertex x of H corresponding to a bicormected com

ponent has two enbies, length (x) and L (x), associated with it Sublayouts are combined during

the sweep by solving cwnulative penalty scheduling problems. Consider, for example, case (2).

To determine which sublayouts to place to the left and to the right of vertex al' the degree ofver

tex a I in any biconnected component corresponding to a child of a 1 in H is the delay penalty for

the corresponding task. Minimizing the total edge length corresponds to minimizing the penalty

in the scheduling problem. The four cases encountered in the sweep when B* is the root are now

as follows.

Case (1). For every leaf x of H we set length (x) to the number of vertices in the bicon-

nected component Bx minus 1. If Bx is a non-trivial biconnected component, there are two

choices for the layout Lex) and we choose lhe one with the smaller total edge length.

Case (2). For every non-leaf, non-root vertex x corresponding to a trivial biconnected com

ponem we set up and solve a cumulative penalty scheduling problem of the first variation. We

set TCi) to length (XI,i) and P (i) to the degree of vertex a 1 in the biconnected component 8X, .,·

The list returned by the algorithm consists of the pairx (t ,e), with every pair representing a

- 21-

solution of cost c using time r on processor 1. From this list, which is of length at most n 10 we

select the entry (tI,c) such that C+Cl is a minimum. The term tl added corresponds to the length

the edge (ar,P(x» is stretched. We then obtain the schedule associated with entry (tbe). The

schedule determines which of the layouts L(xl,i), i=1,2, ...• mi. will be dominated by the edge

(a liP (x» and !:he order of the sublayouts.

Case (3). For every non-leaf, non-root verrex x corresponding to a non-trivial bicOIlllected

component there are again two choices for the dominating edge. As done in case (3) in the algo

rithm for the VB problem. we assume p ex) = y (I-I and describe how to obtain the layout that has

edge (YO.Yn-I) as the dominating edge. Assume vertices Yo.' ..• Yi-I have been considered and a

cumulative penalty scheduling problem has been solved if lhey correspond to an aniculation

point Let vertex Yi of Hz correspond to articulation point aj. Then a scheduling problem of the

first variation is set up and solved where T (i) is set to lenglh (Xj ~) and P (8) to the degree of ver

tex aj in Bxl.. , s = 1, ... ,mj' Letp I be equal to the number of edges (y; ,Yr) in Bx with r >i, and

P2 equal to the number of edges (yr ,Yi) in Bz with r <i. From the list generated by the schedul

ing algorithm we determine, in o (nj) time, the entry (tIle) such that c +PIll +P2(nj-tl) is a

minimum. The schedule associated with this entry determines L (x).

Case (4). For the root of H we consider every outer edge in tum as a dominating edge and

choose lhe one resulting in the smallest total edge length. In order to determine this edge we first

set up and solve k scheduling problems of the first variation, one for every articulation point in

B*. Using the k lists generated by the scheduling problems, the time needed for determining the
,

total edge length of the layout that has edge (yc ,yc+l) as a dominating edge is 0 (n + Ln,) with
;=1,

Hence. step (4) runs in time 0 (e< (e< + Ln,)) = 0 (n 2).
;=1

When graph G contains no central biconnected component B* , we root H at a* •determine

the minimum total edge length for any layout that has a* exposed, and then try every non-uivial

biconnected component containing a* as a root. The 0 (02n + n2) time bound for this step is

obtained as in lhe VB problem.

It can be shown that in cenain situations nm all non-trivial biconnected components con-

- 22-

taining vertex a* need to be considered as a root. Let B be a non-mvial biconnected component

containing k articulation points, a* =a 1> az• ... ,ak. and let the degree of vertex a* in B be two.

Then an optimal layout having an edge of B dominating has either vertex a* exposed or a vertex

aj exposed. where n (aj)~/8. Recall that n(aj) is the number of vertices in the cormected com

ponent containing aj after all edges ofB have been removed. TIlis implies that. if the degree of

a* is three or more in a constant number of biconnected components, then the running time of

our algorithm is 0 (n2). The proof of this layout characterization is along the lines of the proofs

given in Section 2. Since it does not improve the worst case time complexity, it is omitted.

Theorem 6.1. The algorithm determining a feasible layout for the TEL problem runs in 0 (n 2)

time if G contains a central biconnected component B* and in 0 ([}n + n2) lime if G contains

no B* I and it uses 0 en) space.

7. The Minimum Cutwidth Problem

In this section we present two algorithms for determining a layout of G minimizing the

cutwidth. The first one runs in 0 (12 3) time and uses 0 (12) space, and the second one runs in

o(d12 2) time and uses 0 (12 2) space, where d is the maximum degree of a vertex representing an

articulation point in the block-cutpoint tree H of G. Both algorithms for the Me problem work

again with the block-eutpoint tree H. The scheduling problem solved when determining how to

combine sublayouts is the maximum penalty scheduling problem.

Assume the block-cutpoint tree H is rooted at some vertex r which corresponds to a bicon

nected componem Br • Using an algorithm similar to the ones described in the previous section,

we can determine in 0 (12 2) time the minimum cutwidth achieved by a layout that has one edge of

Br dominating. When sweeping up through H towards r, every venex x corresponding to a

biconnected component has. in addition to layout L(x), a weight entry w(x) and a cutwidth entry

c (x) associated with it. The entry w (x) corresponds to the degree of vertex p (x) in the bicon

nected component Bz and represents the additive cost in the scheduling problem. Entry c(x)

corresponds to the maximum cutwidth in layout L(x) and it represents the dominating cost

Obviously, C (x);<w (x).

-23 -

Assume vertex Yi of biconnected component Bz is handled in step (3) of the algorithm and

Yi corresponds to articulation point aj in H. We set up and solve a maximum penalty scheduling

problem of the first variation using the weight and the cutwidth eomes of aj 's children. The list

returned by the scheduling algorithm contains the pairs (CI,C:i) as discussed in Section 2. LetpI

(resp. pi) be the number of edges (Yr,Yi) in B;r with r>i (resp. r <i). Then the schedule deter

mining the layout is the one associated with me entry (c loCi) in the list for which the maximum

of c l+P I and C2+PZ is a minimum. The other steps of the algorithm are modified accordingly.

Considering every biconnected component as the root of H results in an Den3) time algorithm

which uses 0 (n) space.

We next describe an algorithm that solves the Me problem in 0 (dn2) time using 0 (n 2)

space. The algorithm first chooses an arbiuary vertex r corresponding to a biconnected com

ponent as the root We then run the 0 (n 1) time algorithm described above, saving the lists gen

erated for every instance of a scheduling problem and not detennining the actual layout (Le., no

scheduling problems of the second variation are solved). We obtain the optimal layout of G by

traversing H rooted at r and computing at every node x the minimum cutwidth of any layout

having an edge of Bz dominating. This strategy corresponds to rerooting H at every vertex and

taking advantage of previously computed sublayouts. Once we know the vertex r* of H such

that one edge of B~ is dominating in the optimal layout, the finallayollt is obtained by solving

the problem rooted at r* .

Assume that vertex x has been just been considered as the root and vertex xl,I> a grandchild

of x, is considered next (See Figure 4.1 for the naming of the vertices.) From the computations

already done for vertex x we obtain the new w(x) and C(x). The new layout L(x) (which is actu

ally not determined) has articulation point al at the righonost position and does not contain lay

outs Lex l;U' ... , Lex 1,1711). We next solve one maximum penalty scheduling problem of the first

variation; namely the one set up from the entries w(x), W(Xl.:z), "., w(Xl.ml) and

m,
c(x), C(Xl;U• ...• C(XI,ml)' Solving this problem costs o(d(l:C(Xlj)+C(X))) time. The list

j=2

obtained from this scheduling problem and lhe ml-llists associated with venices XI;!, . , .• X l,ml

contain a total of 0 (n) entries. From these m 1 lists we detcnnine !.he best layout that has one

edge of Bzl,l as a dominating edge. Asswning BZl" consists of au veItices, [his step can be done

- 24-

in 0 en (Xu) time. When vertices x 1,2. "',X 1,m1 are considered as roolS at some later lime in the

algorilhm. a scheduling problem consisting ofm1tasks is set up and solved each lime.

The total time spent on solving scheduling problems is Oen L. d(a)2) = OCdn2), where
••An

AH is the set of articulation points in H and d is the maximum degree of any vertex representing

an articulation point The lime spent on determining the best layout that has one edge of a bicon

nected component B~ as a dominating edge is 0 (n Ct:r), where CX:::t in the number of vertices in Bz.

Hence, the total time spent on this part of the algorithm is 0 (n L.Cl:r) = 0 (n2). We conclude
z

with the following theorem.

Theorem 7.1. The minimum cutwidth problem can be solved in o (n 3) time using D(n) space or

in 0 (dn2) time using 0 (n 2) space, where d is the maximum degree of any vertex representing an

articulation point in the block-cutpoint cree H of G.

References

[ell F.R.K. Chung, 'On Optimal Linear Arrangements of Trees', Camp. & Maths. with
Appls., Vol. 10, No. I, pp 43-60, 1984.

[C2] F.R.K. Chung, 'On the Cutwidth and the Topological Bandwidth of a Tree', SIAM J.
Alg. Discr. Meth., Vol. 6, pp 268-277, 1985.

[CMST] M.-J. Chung, F. Makedon, I.H. Sudborough, 1. Turner, 'Polynomial Time Algorilhms
for the Min Cut Problem on Degree Restricted Trees', SIAM J. Comput., Vol. 14, pp
158-177, 1985.

[DT] D. Do1ev, H. Trickey, 'Embedding a Tree on a Line', ffiM Techn. Report, RJ3368,
IBM San Jose, 1982.

[F] A. Feller, 'Automatic Layout of Low-cost Quick Turnaround Random-logic Custom
LSI Devices', Proc. of13-th Design Auromation Can!, pp 79-85, 1976.

[GGJK] M.R Garey, RL. Graham, D.S. Johnson, DE. Knuth, 'Complexity Results for
Bandwidth Minimization',SIAM J. on Appl. Marh., Vol. 34, pp 477-495, 1978.

[GJ] M.R Garey, R.L. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman, 1979.

[HI] F. Harary, Graph Theory, Addison-Wesley, 1969.

[H2] D.S. Hirschberg, 'A Linear Space Algorithm for Computing Maximal Commom Subse
quences', CACM, Vol. 18, pp 341-344,1975.

[L] T. Lengauer, 'Upper and Lower BoUnds on the Complexity of the Min-Cut Linear
ArrnngementProblem on Trees', SIAM f.Alg. Discr. Meth., Vol. 3, pp 99- 113, 1982.

- 25-

[MS] B. Monien, I.H. Sudborough, 'Min Cut is NP-Complete for Edge Weighted Trees.
Proceedings of13-th ICAlP Corrf.. 1986.

[OMKFJ T. Ohtsuki, H. Mori. E.S. Kuh. T. Kashiwabara, T. Fujisawa, 'One-dimensional Logic
Gate Assignments and Interval Graphs', IEEE Trans. on Circuits and Systems, pp 675
684,1979.

[FDS] G. Persky, D. Deutsch, D. Schweikert, 'A Minicomputer-based System for Automated
LSI Layout',J. Des. Aut. and Fault Tol. Comp., pp 217-255,1977.

[SI] Y. Shiloach, 'A Minimum Linear Arrangement Algorilhms for Undirected Trees',
SIAM J. on Computing, Nr. 8, pp 15-32, 1979.

[82] I.H. SUdborough, personal communication, 1986.

[T] S. Trimberg, •Automating Chip Layout', IEEE Spectrum, pp 3845, 1982.

[Yl] M. Yannakakis, 'A Polynomial Algorithm for the Min Cut Linear Arrangement on
Trees', JACM, Vol. 32, pp 950-988, 1985.

[Y2] M. Yannakakis, 'Four Pages are necessary and Sufficient for Planar Graphs', Proceed
ings of18-IhSTOC, pp 104-108, 1986.

(a) layout L

Xc +l Xi

Xc +l

Xi

Xi

A

(b) layoutL

(e) layoutL'

A

Edge (xc+l.Xc) violates bandwidth b = 3n/4 in L.
Layouts L I, L 2. L5. andL 6 consist of n/8 - 1 vertices, L3 andL4 of nl4 - 1 vertices each.

Figure 2,1

p (x)

x

Xl,ml x~ 1

Vertex x, its parentp ex), its children Gi and grandchildrenxi,j in tree H
Figure 4.1

•

	Planar Linear Arrangements of Outerplanar Graphs
	Report Number:
	

	tmp.1307986960.pdf.Zq1QJ

