View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1987

Planar Linear Arrangements of Outerplanar Graphs

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Report Number:
87-671

Frederickson, Greg N. and Hambrusch, Susanne E., "Planar Linear Arrangements of Outerplanar Graphs"
(1987). Department of Computer Science Technical Reports. Paper 582.
https://docs.lib.purdue.edu/cstech/582

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://core.ac.uk/display/4971652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PLANAR LINEAR ARRANGEMENTS
OF OUTERPLANAR GRAPHS

Greg N. Frederickson
Susanne E. Hambrusch

CSD-TR-671
March 1987



Planar Linear Arrangements of Quterplanar Graphs

Greg N. Frederickson* and Susanne E. Hambn'tsch’f‘*

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907, USA.

March 1987

Abstract

Given an r-vertex outerplanar graph &, we consider the problem of arranging the vertices of G
on a line such that no two edges cross and various cost measures are minimized. We present
efficient algorithms for generating layouts in which every edge (f,j) of G does not exceed a
given bandwidth b (i ,J), the total edge length and the cutwidth of the layout is minimized, respec-
tvely. We present characterizations of optimal layouts which are used by the algorithms. Qur
algorithms combine sublayouts by solving two processor scheduling problems. Although these
scheduling problems are NP-complete in general, the instances generated by our algorithms are
polynomial in n.

Keywords
Analysis of algorithms, bandwidth, cutwidth, layout problems, outerplanar graphs, scheduling
problems.

* This work was supported by the Office of Naval Research under Contract N00014-86-K-0689 and by the
National Science Foundation under Grant DCR-83-20124.

** This work was supporied by the Office of Naval Research under Contracts N00014-84-K-0502 and
N00014-86-K-0689, and by the National Science Foundation under Grant DMC-84-13496.



1. Introduction

The problem of arranging the vertices of an n-vertex, connected graph G = (V,E) on a line
subject to minimizing various cost measures is an interesting combinatorial problem arising in
the area of VL3I layout design [FF, OMKF, PDS, T]. Commonly considered ¢ost measures are.the
bandwidth, the total edge length, and the cutwidth [Cl, C2, CMST, L, S1, Y1]. In this paper we
consider linear arrangement problems when no two edges of G are allowed to cross in the layout.
The graphs that can be laid out under this assumption are exactly the outerplanar graphs [Y2].
We present efficient algorithms that minimize the bandwidth, the total edge length, and the
cutwidth of a layout, respectively. A layout of G is a one-to-one mapping f of the vertices of G

to the set (0,1, - - -, n—1}. We next give the definiion of the problems considered.

In the Constant Bandwidth (CB) Problem we are given G and an integer b and must deter-
mine if there exists a layout such that for every edge (i ,j)eE 1f ({)—Ff (j)1<b. In the Variable
Bandwidth (VB) Problem every edge (i,j) has its own bandwidth b(i, J) and we must determine
if there exists a layout such that for every edge (i,j) If _(i = {)I<b(,j). In both problems a
layout should be generated if one exists. In the Total-Edge-Length (TEL) Problem we must

determine the layout of G minimizing ¥, 1f () ()|. Inthe Minimum Cutwidth (MC) Prob-
GJEE
lern we must determine a layout of G that minimizes the cutwidth. The cutwidth is defined as the

maximum number of edges crossing any position x+.5 on the line, x< {0,1,-- - ,n=1}.

In this paper we present an algorithm that solves the CB problem in O (n2) time using O (1)
space. For the VB and TEL problems we present algorithms that run in Gme O (8%z + n?) using
O (n) space, respectively, where & is the number of biconnected components containing a central
articulation point ¢*. For the MC problem we present two algorithms: one running in time
0 (n°) and using O (n) space, and one running in time O (dn2) and using O (n?) space, where 4 is
maximum degree of any vertex representing an articulation point in the block-cutpoint tree of G .

The algorithms for all four problems are of a similar structure and they determine an
optimal layout by sweeping through the block-cuipoint tree H of graph G. The block-cutpoins
tree H = (Vy ,Ey) is defined as follows [H1]. Let B, - - - B be the biconnected components of
G and let @y, ' - - a; be the articulation points in &. Then, Vg = {x, - X, @1, - - - a;} and Ey

= {(x;,a;) | a; is a vertex in the biconnected component B;}. The algorithms differ in how they



-3-

combine sublayouts during the sweep and in how they select the root of the block-cutpoint tree.
Sublayouts are combined by solving two processor scheduling problems, with a different type of
scheduling problem for each of bandwidth, edge-length, and cutwidth. Each one of the three
scheduling problems that arises is NP-complete, but can be solved by a pseudo-polynomial time
general algorithm which in tum yields an algorithm polynomial in 7 for the instances generated

by our layout problems.

The selection of the root of the block-cutpoint tree for the CB, VB, and MC problems is
closely related to the existence of a central biconnected component or a central articulation point
in G. A central biconnected component (resp. articuladon point) is a biconnected component
(resp. vertex) for which the removal of its edges (resp. of the vertex) resu]lts in connecied com-
ponents with at most n2/2 vertices each. The central biconnected component or articuiation point
can be determined in O (#) time. For the CB problem we present a characterization of an optimal
layout that allows us o select either the central biconnected component or the central articulation
point. For the VB and TEL problems we present partial characterizations of an optimal layout. If
G has a central biconnected component, the both problems can be solved in O (22) time. Other-
wise, the algorithms run in O (8% + n?) time, where § is the number of biconnected components

containing the central vertex,

When considering non-planar layouts of general graphs all four problems are NP-complete
[GJ]. The bandwidth problems are already NP-complete for trees [GGIX], but the total edge
length and the minimum cut problem can be solved in polynomial time in the case of trees [C1,
S1, Y1]. The TEL problem and the MC problem have recently shown to be NP-complete for 2-
outerplanar graphs and outerplanar multigraphs in the case of non-planar layouts [MS, S2].

Planar Iayouts of trees minimizing the cutwidth are described in (DT, Y1].

The paper is organized as follows. In Section 2 we present layout characterizations for the
CB, VB, and TEL problems, respectively. These characterizations will be used by our algo-
rithms. Section 3 discusses the scheduling problems arising in the four layout problems and
describes their solutions. Sections 4, 5, 6, and 7 present the algorithms for the CB, VB, TEL, and

MC problems, respectively.



2. Layout Characterizations

In this section we present characterizations of optimal layouts for the CB, VB, and TEL
problems which will be used by the algorithms. We start with some definitions used throughout
the paper. We call a layout feasible if it satisfies the constraints imposed by the problem. A cen-
tral biconnected component B* = (V*, E*) is a biconnected component for which the removal of
the edges in E* from G results in connected components of at most n/2 vertices each. A central
articulation point a* is an articulation point whose removal results in connected components of
size at most n/2 vertices each. It is easy to show that a graph that has no central biconnected

component has a central articulation point.

Let I be a planar layout of G. Edge (x.y) dominates edge (u.,v) if (x,y)=(z,v) and
FESFW)<f (VSF (). Let E' be a set of edges. We say (x,y) dominates E if it dominates
every edge of E’. We call an edge a dominating edge if it is not dominated by any other edge.
We say that a vertex v is dominated by an edge (u,w) if f (u)<f (v)<f (w). A vertex that is not

dominated by any edge is called an exposed vertex.

The following lemma characterizes a feasible layout for the CB, VB, and TEL problems

when the graph contains a central biconnected component B¥ .

Lemma 2.1. Let G be an outerplanar graph that contains a central biconnected component B* .
If there exists a feasible layout for the CB, VB, and TEL problems, respectively, then there exists
one in which an edge of the central biconnected component B* is a dominating edge.

Proof. Let L be a feasible layout in which every edge of B* is dominated by a least e edges,
where e is a minimum among all feasible layouts. Suppose ¢>0. We show how to transform L

into another feasible layout L’ such that one edge of B* is dominated by at most e—1 edges.

Among the e edges dominating B*, select the edge (u,v) with f (#) a minimum. Note that
this implies that the remaining ¢—1 edges dominating B* are also dominated by (u,v). Let B be
the biconnected component containing edge (u,v). It is not hard to show that the removal of all
the edges of B that dominate B* results in two connected components. To obtain from L a lay-
out L’ with one edge of B* dominated by a most ¢—1 edges, remove all the edges of B that dom-
inate B*, interchange the layouts of the two resulting connected components, and restore the pre-

viously removed edges.



-5-

The only edge lengths that can change by this operation are of those edges that are removed
and then restored. Since B* is a central biconnected component, any edge (& ,v') of B that is
removed must have at least n/2 vertices between &’ and v' in L, These vertices will not lie
between &’ and v in L'. Thus there are at most n/2 vertices between u” and v* in L’ and the
length of any edge (#',v") of B did not increase. Any edge that did not dominate B* in L will not
dominate B* in L’, Furthermore, at least one edge, namely (x,v), that dominated B* in L will
not dominate B* in L', Thus L’ is another feasible layout in which one edge of B* is dominated

by at most e—1 edges, a contradiction to the choice of L. [}

The next lemma gives a partial characterization of a feasible layout for the CB, VB, TEL
problems when the graph contains no central biconnected component, only a central ariculation

pointa*. Let B, B, - -, Bgbe the biconnected components containing vertex a*.

Lemma 2.2. Let G be an outerplanar graph that contains a central articulation point a*. If there
exists a feasible layout for the CB, VB, and TEL problems, respectively, then there exists one in
which an edge of B;, for some {, 1<i <9, is a dominating edge.

Proof. Let L be a feasible layout and let B; = (V;,E;) be a biconnected component containing an
edge (x,y) such that (x,y) dominates every edge in E; for all j#i. Assume edge (x,y) is dom-
inated by ¢ edges, where ¢ is a minimum. Suppose ¢>0. Then a layout L' can be obtained from
L in a fashion analogous to that in the proof of Lemma 2.1. Layout L” will be feasible, and have

at most ¢-1 edges that dominate a*. This yields a contradiction. [

The following three lemmas fuily characterize an optimal layout for the CB problem. This
full characterization allows us to generate an O (#%) time algorithm for the CB problem. For the
CB problem we do not need to work with graph G, but can consider the reduced graph G, which
is defined as follows. Let B = (V’,E") be a biconnected component of G, let |V’1=k, and let
L(B) be a layout of B. The reduced biconnected component of B is defined as B, = (V'.E,")
where E,” = {(x;i X(s1ymoar) | &) =F (X(ia1ymoae yr1}. Note that B, is obtained from B by
deleting all the edges except for a cycle of length £. The reduced graph G, is then obtained by
replacing every biconnected component of G by its reduced biconnected component. The fol-

lowing lemma holds mivially for the CB problem.



-6-

Lemma 2.3. If there exists a feasible layout for the CB problem on graph G,, then this layout is
a feasible layout for the CB problem on graph G .

For the remainder of this section, we assume that G is a reduced graph. We next show that,
if G does not contain a central biconnected component, only a central articulation point a*, then

a* is exposed.

Lemma 2.4. Let G be an outerplanar graph that contains a central articulation point a* . If there
exists a feasible layout for the CB problem on G, then there exists one in which a* is exposed.
Proof. Let L. be a feasible layout in which ¢* is dominated by e edges, where e is minimum

among all feasible layouts. Suppose e >0.

Because of Lemma 2.2 all edges that dominate ¢* belong to a biconnected component B
that contains a*. Let (1,42 be the longest edge of B in layout L. Let V’ be all vertices in the
same connected component as #; and u, when #* is removed from &. Note that V' contains all
vertices of B except a*. Let n’ be the cardinality of V. Since @* is a central articulation point,
n’ < nf2. Thus the length of (#,49) is at least a-n"+1 > n/2. Now consider any layout L in
which all vertices in V’ are to the left of g*, and all vertices in V—(V" U{a* }) are to the right of
a*. Since no edge dominates a* in L', every edge will be of length at most max{n’ ,n—n"—1}

< n-n’+1. Thus L’ is a feasible layout in which a* is dominated by no edge, a contradiction. £J

From Lemma 2.1 we know that if G contains a central biconnected component
B* = (V* ,E*), then one edge of B* is dominating. The following lemma identifies this edge for
the CB problem. Let V* = {xg, - - ,xq} and B* = {{x; x;4)) | 0<i <or}. (The addition in the
subscripts is done mod a.) Let n(x;) be the number of vertices in the connected component con-

taining vertex x; after the edges (x;_1,x;) and (x; ,x;,,) have been deleted from G, 0<i<o—1.

Lemma 25. Let & be an outerplanar graph with a central biconnected component B* and let
n(x.)+ n(x.e) 2 n{x;) + n(x;4y) forall i. If there exists a feasible layout for the CB problem

on G, then there exists one in which the edge (x, x.,;) of B* is dominating.

Proof. Let L be a solution in which the edge (x;,x;,1) of B* is dominating. Suppose i#c. We

show how to transform L into another layout L’ in which the edge (x_ x,,;) is dominating.



-7-

We first obtain an intermediate layout L. L is obtained from L by deleting the edges
(xz xz41) and (x;,x;41), interchanging the layouts of the two resulting connected components, and
restoring the two previously removed edges. In layout Lo edge (x. X1 is dominating, but the
length of the edge may exceed bandwidth . Such a situation is shown in Figure 2.1, where lay-
outs Ly, L9, L5, and L consist of n/8 — 1 vertices, and laym;ts L4 and L4 consist of n/4 — 1 ver-
tices each. In [ the edge (x.+1,x.) violates the bandwidth & = 3n/4. Note that the edge (x, x,.1)
is the only edge in L for which the length could have increased. (By an argument similar to the
one given in the proof of Lemma 2.1, it can be shown that the length of the edge (x; x;,{) did not

increase.)

In order to obtain L’ we perform the following operation on L. W.lo.g. assume that in L

T Can)<f (e )<f (o)< (x;). Move every layout of a subgraph of G formed by the removal of
veriex x.,; and whose layout is between f (x.,1) and f (x.,5) to the left of x_,,. Analogously,
move every layout of a subgraph of G formed by the removal of vertex x, and whose layout is
between f (x..1) and f (x.) to the right of x.. The length of the edge (x; x;;1) in L was at least
2, n(x;) and the length of the edge (x..x.4) in L' is 3 n(x;). Since rn{x. Hn(x..p)

JRi i+l jre o+l
> n(x;Hn(x;4), the edge (x;,x..1) does not violate the bandwidth in L. Furthermore, none of

the other edges incident to x, (resp. x.,;) has a length of more than n(x. ) (resp. n(x. ) In L’ O

3. The Scheduling Problems

Our algorithms for all four layout problems will make use of algorithms for several schedul-
ing problems. These involve scheduling tasks nonpreemptively on two processors, and are in
general NP-hard, but all have pseudo-polynomial time algorithms when the relevant input values
are integers. In the case of the particular scheduling problem instances generated by our layout
problems, the running time of the scheduling algorithms will be sirictly polynomial. In this sec-
tion we present pseudo-polynomial time algorithms for the scheduling problems and show how to
reduce the space used over that required in an obvious implementation. We now identify the dif-

ferent scheduling problems that we shall be considering.

In the Deadline Scheduling Problem we are given s tasks, with task { requiring time T(/)

and having a deadline D (i) by which time it must be completed. We must determine if there is a



-8-

feasible schedule of the tasks, and if there is one, must find among all feasible schedules a
schedule that minimizes the total time on processor 1. One variation of this problem will be to
report the set of different times on processor 1 for the set of feasible schedules. A second varia-

tion is to generate the schedule that realizes a particular time on processor 1.

In the Cumulative Penalty Scheduling Problem we are given s tasks, with task { requiring

time T'(i) and having a delay penalty value of P (¢), which is multiplied times the start time of the

J
task. We must determine the schedule with the minimum total penalty, i.e., > P (i )*A (i), where

i=l
A(i) is the start time of the /-th task in the schedule. Again we consider variations of the prob-
lem. One variation is to report the set of different times on processor 1, along with the smallest
cost for each. The second variation is, given a particular ime on processor 1 realized by some

feasible schedule, generate the minimum cost schedule for that time.

In the Maximum Penalty Scheduling Problem we are given s tasks, each task requiring unit
time, an additive cost W {{) and a dominating cost C ({), where W{i) £ C(i). A cost is deter-
mined for each pmcessor,‘with the cost ¢ of a processor reset to max {C (), ¢ + W(i)} if task {
is added to the processor following the previously scheduled tasks. We must determine a
schedule that minimizes the maximum cost of the two processors. Once again we consider varia-
tions of the problem. One variation is to report the set of different costs on processor 1, along
with the corresponding smallest cost on processor 2. The second variation is, given a particular
cost on processor 1 realized by some feasible schedule, generate the minimum cost schedule for

that cost.

As claimed, each of the above scheduling problems is NP-hard. The NP-completeness of
deadline scheduling and cumulative penalty scheduling follows from [GJ], problems SS& and
S813, respectively. The NP-hardness of maximum penalty scheduling follows from an easy

transformation from partition.

Each of the above three problems has a special property that can be used in generating a
dynamic programming algorithm. For the deadline scheduling problem, if there is a feasible
schedule, then there is a feasible schedule in which the tasks on processor 1 are ordered in terms
of nondecreasing deadline, and similarly for processor 2. For the cumulative penalty scheduling

problem, an optimal schedule will have the tasks ordered on each processor by nondecreasing



-9.-

value of T({)/P(¢). For the maximum penalty scheduling problem, an optimal schedule will
have the tasks ordered on each processor by nondecreasing value of C (f) ~ W({{). These proper-

ties can be established inductively using a simple interchange argument.

Thus a straightforward dynamic programming algorithm that solves any one of these prob-
lems need only consider the tasks in order of nondecreasing value of the relevant expression. For
tasks i =1, ---, 5 50 ordered, we determine a list K; of different partial schedules of the first ;
tasks, with clearly inferior partial schedules eliminated. This list is typically ordered by a crucial
value of a schedule, such as the time used so far on processor 1. List X has one entry on it,
representing the empty schedule. To generate list X; given list X;_;, do the following. Generate
list K, the list of schedules created by taking each schedule in X;_; and scheduling task i at the
next available time on processor 1. Delete any schedule that is not feasible. Similarly, generate
list K by scheduling task i at the next available time on processor 2 for each schedule in list
K;_,, and deleting any infeasible schedules. Then merge X' and X ordered on the crucial value,

pruning any partial schedule that is clearly inferior to another partial schedule.

We now indicate how this strategy is instantiated for each of the scheduling problems. For
deadline scheduling, we represent a partial schedule on list X; by a pair (z, j) where ¢ is the time
scheduled on processor 1, and j is the highest indexed task on processor 1. If j = 0, then the
preceding tasks on processor 1 can be determined by finding a pair (¢—T'(j), j°) on list K;_;,

reseting j to j/, and repeating this until j = 0. Each list is ordered by value ¢. Let

[
S({)= X,T(k). To generate list X;, for each pair (¢, j) on list X;_,, place pair (¢+T (), {) on list
k=l

K ift + T(@) € D(i), and place pair (¢, j)onlist X if S() — ¢t £ D({). When lists X* and X~
are merged to yield X, prune any pair (¢, j) if there is a pair (¢, ;') preceding it with £’ =.

5
Let N = > T(f). If the T({)'s are integers, then the preceding algerithm mns in O (sN)

i=l

time and space. This appmach solves all three versions of the deadline scheduling problem. We
now discuss how to reduce the space. We handle the first variation of deadline scheduling, in
which we are interested in determining only the set of different times on processor 1 for the set of
feasible schedules, as follows. We do not keep the j values in the pairs, and do not maintain list

K;_; once list K; is formed. Thus we can determine this set in Q (sN) time and O (V) space.



-10 -

Note that the above methods work in the claimed time and space bounds even if there are addi-
tional constraints to the problem that allow no task to be scheduled on processor 1 before a cer-

tain time, and no task to be scheduled on processor 2 before a certain time.

We can also solve the second varation of deadline scheduling, determining a feasible
schedule that realizes any given time in the set of times on processor 1, using just O (V) space.
This is accomplished as follows. Use pairs (¢, ;) in the lists, where ¢, is the time on processor 1
that is accounted for by tasks indexed i =1, 2,---,|s/2|. In O (sN) time and O (¥) space one
can thus find the set of different times on processor 1 for the set of feasible schedules, and for
each such time ¢ a corresponding time ¢, which is the portion of ¢ accounted for by tasks indexed
up to | s/2] in some feasible schedule with time ¢ on processor 1. The problem then reduces to

solving two subproblems. First, use the approach recursively to identify a feasible schedule of

Ls12]
the first| 5/2| tasks with time 7, on processor 1. Let Ny, = ¥ T({). Then use the approach

i=1
recursively to identify a feasible schedule of the remaining [ s/2] tasks with time ¢ on processor
1, given that no task on processor 1 can be scheduled before time z;,, and no task on processor 2
can be scheduled before time N, — ;. The approach used for achieving O (V) space is reminis-

cent to the one used in [H2].

Lemma 3.1. The deadline scheduling problem and its two variations can be solved in O (sN)

time and O (V) space.
Proof. By arguments presented above, the first variation can be solved in the ¢laimed time and

space bounds.

The algorithm for the second variation can be shown to take O(N) space, by a simple
inductive argument. The time can be shown to be O (sN') as follows. Let T(s, N) be the time to
solve a deadline schedule problem of s tasks with total processing time N by the above method.
Thenfors =1, T(s, N)<c¢,and fors > 1,

T(s,NY<esN +T(|s/2], Ny +T([5/2], N = Ny)
It follows that T'(s, N) < cRs—~1)N.

The original version of the problem can be solved by solving (he first variation, selecting



-11-

the smallest time on processor 1, and then solving the second variatdon, O

We next discuss how the space-saving strategy is instantiated for cumulative penalty
scheduling. We represent a partial schedule on list X; by a triple (¢, ¢, j) where ¢ is the time

scheduled on processor 1, ¢ is the cost of the partial schedule, and j is the highest indexed task

on processor 1. Each list is ordered by value ¢. Recall that S(f) = ) T (k). To generate list X;,
k=1

for each triple (¢, ¢, j) on list K;_;, place triple (¢+T (i), ¢ + P({)*z, i) on list X, and place tri-
ple (¢, ¢ + P(Y*(SE)-t), j)onlist X”. When lists K* and K are merged to yield X;, prune
any triple (¢, ¢, j) if there is a triple (", ¢/, j*) preceding it with 7/ =t and ¢’ < ¢.

As in deadline scheduling, there is a good pseudopolynomial time implementation of the

5
algorithm for cumulative penalty scheduling. Againlet N = 3 T(i). If the T({)'s are integers,

i=1
then the algorithm as stated runs in O (sN') time and space. We handle the first variation of
cumulative rpenalty scheduling, in which we are interested in determining only the set of different
times on processor 1 for the set of feasible schedules, along with the smallest cost for each time,
as follows. We do not keep the j values in the triples, and do not maintain list X;_; once list X;
is formed. Thus we can determine this set in O (sN') time and O (N) space. Note that the above
methods work even if there are additional constraints to the problem that allow no task to be
scheduled on processor 1 before a certain time, and no task to be scheduled on processor 2 before

a certain time.

We can also solve the second variation of cumulative penalty scheduling, determining a
feasible schedule that realizes any given time in the set of Hmes on processor 1, and is of
minimum cost for that time, using just O (N) space. This is accomplished by using the divide-
and-conquer technique discussed for deadline scheduling. Use triples (¢, £, ¢) in the lists, where

ty, is the time on processor 1 that is accounted for by tasks indexed i = 1,2, -, [ 5/2] .

4

Lemma 32. The cumulative penalty scheduling problem and its two variations can be solved in

0 (sN) ime and O (N') space.

Proof. The proof is similar to that of Lemma 3.1. O



-12-

We next discuss how the space-saving strategy is instantiated for maximum penaity
scheduling. We represent a partial schedule on list X; by a tripie (¢, ¢4, j) where ¢, is the cost
for processor 1, ¢ is the cost for processor 2, and j is the highest indexed task on processor 1.
Each Iist is ordered by value c,. To generate list X;, for each tiple (¢, ¢4, j) on list K;_,, place
triple { max{C (i), W{i) + ¢}, ¢, i) on list X, and place triple (c;, max{C (i), W() + ¢3), j)
on list X”. When lists X” and X" are merged to yield X, prune any triple (c,, ¢5, j) if there is a
triple (¢y’, ¢4’, j) preceding it withc{" < ¢y and ¢’ < ¢

For maximum penalty scheduling we do the following. Let C = 3.C(¢). If the C({)'s are

i=1
integers, then the algorithm as stated runs in O (sC) time and space. We handle the first variation
of maximum penalty scheduling, in which we are interested in determining only the set of dif-
ferent costs on processor 1, along with the corresponding smallest cost on processor 2, as follows.
We do not keep the j values in the triples, and do not maintain list X;_; once list X; is formed.
Thus we can determine this set in O (sC') time and O (C) space. Note that the above methods
work even if there are additional constraints to the problem such as an initial nonzero cost on pro-

cessor 1, and an initial nonzero cost on processor 2.

We can aiso solve the second variation of maximum penalty scheduling, determining a
feasible schedule that realizes any given cost in the set of costs on processor 1, and is of
minimum cost on processor 2, using just O (V) space. This is accomplished by using the divide-
and-conquer technique discussed for deadline scheduling. Use triples (¢, ¢4, ¢p) in the lists,

where ¢y  is the cost on processor 1 that is accounted for by tasks indexed { = 1,2, - -+, |5/2] .

Lemma 3.3. The maximum penalty scheduling problem and its two variations can be solved in

O (sC) time and @ (C) space.

Proof. The proof is similar to that of Lemma 3.1. O

4. The Constant Bandwidih Problem

In this section we present an algorithm that solves the CB problem for a given outerplanar
graph G in O (r?) time using O () space. We assume that G has been reduced; i.e., every bicon-

nected component consisting of & vertices, ¢>2, contains exactly o edges. The algorithm starts




-13-

by constructing the block-cutpoint tree H of G. It then determines whether G contains a central
biconnected component B* or only a central articulation point a*, and roots H at either B* or
a*. The layout of G is determined by sweeping up through A from the Ieaves towards the root.
During the sweep, at every vertex x representing a biconnected component B, sublayouts of x’s
grand-children are combined with the layout of the vertices in B,. The order of the sublayouts is

determined by solving a deadline scheduling problem.

We first describe the algorithm for the case when G contains a central biconnected com-
ponent B*. For every vertex x in the block-cutpoint tree A let p (x) be its parent. For every ver-
tex x representing a biconnected component B, let L(x) be the layout of the subgraph of G
induced by the vertices represented in the subtree rooted at vertex x. If B, =B*, vertex p(x),
which is an articulation point, is also included in L (x) since it is represented in the biconnected
component B, . Note that all the edges between vertex p (x) and another vertex in L (x) are edges
in B,. Since L(x) will, at some later step, be combined with other sublayouts containing vertex
p(x) and an edge encountered later has to be dominating, it is necessary to have vertex p(x)
assigned to a comner position in layout L(x). W.Lo.g., we assign p (x) to the rightmost position.
Hence, in layout L (x), one edge incident to p (x) will be a dominating edge in L (x). Two values,
length (x) and slack(x), are associated with L{(x). Let length (x) be the number of vertices in the
layout L(x) minus 1, and let slack(x) be the maximum distance the length of the dominating
F:dge incident to p(x) can be increased in future steps (which equals the maximum number of

additional vertices that can be dominated),

We call a biconnected component frivial if it consists of a single edge. When sweeping up
through the block-cutpoint tree no action is taken for any vertex corresponding to an articulation
point unless it is the root. When vertex x cormresponds to a biconnected components one of 4
cases can occur:

(1) Vertexx is aleaf

(2) Verex x is neither a Ieaf nor the root, and corresponds to a trivial biconnected component B,

(3) Vertex x is neither a leaf nor the root, and corresponds to a non-trivial biconnected component B,

@) Vertex x is the root

Throughout, let the children of x in H be ay, - - - ,ax, and the children of g; be x; 1, - * * Xj ;.



-14-
1=j<k. Let the vertices in the biconnected component B, in G be yq, - - - .,y 1. See Figure 4.1,

Case (1). If vertex x is a lgaf, it is handled as follows. We set length (x) to the number of
vertices in B, minus 1, slack (x) to the bandwidth b minus fength (x), and L (x) to any layout that

has one of the two edges incident to vertex p (x) as a dominating edge.

Case (2). If x is neither a leaf nor the root, and corresponds (o a trivial biconnected com-
ponent B, then k=1 and B, consists of the edge (a;, p(x)) with a;=yq and p (x)=y,. We setup
and solve a deadline scheduling problem to determine which sublayouts will be dominated by the
edge (a,p(x)), where vertex p(x) will be at the rightmost position. The deadline scheduling
problem consists of m tasks, where T (i) = length (ry;)and D (i) = length (x ;) + slack (x, i) for
i =1, ,my In the solution to the deadline scheduling problem, which minimizes the total

time on processor 1, let the tasks scheduled on processor 1 be iy, - - -, iy and the ones on proces-

mp
sor 2 be jy,' -, jry qtr=my. Let ry be the time on processor 1. Set length(x) = ¥,

i=1
length(x1;) — m; + 2andslack(x)=5b —t). Let L™(xy;) be the layout obtained from L)
by removing vertex yg (i.e., the rightmost vertex). Let L7"(xy;) be the layout obtained from
L(x,;) by reversing the order of the vertices and removing vertex yg. Then, layout L(x) is

formed by the concatenation of

Lr_(xl,f,) LI Lr—(xl.fl)! Yo L_(xl,il) L L_(x[.i,): Y1

Case (3). If x is neither a leaf nor a root, and it corresponds to a non-trivial biconnected
component B, then vertex p (x) is assigned the rightmost position and there are two choices for a
dominating edge. Both choices are considered, and the one resulting in a larger slack is chosen.
Assume p(x) corresponds to articulation point y, in the biconnected component B, . First deter-
mine the slack of the layout L’ that has the edge (y..1.y.) 2s a dominating edge. If vertex y_., is
an articulation point in G, let its corresponding vertex in H be a;. In this case a deadline
scheduling problem on m; tasks is set up, where T{(i) = length {x;;) and D(i) =
length (x; ;) + slack (x; ;) fori=1,2,--- Jn;. Note that in L” it does not matter whether the lay-
outs associated with the children of vertex @, in H, r=#f, are placed to the left or to the right of
vertex a,. We determine the slack of layout L” from ¢, the minimum time needed on processor 1

for the deadline scheduling problem set up for a;, and the lengths of the layouts associated with




-15-

the other grand-children of x.

In a similar fashion determine the slack of the layout L” that has edge (y,_;.y.) as a dom-
inating edge. From L’ and L” choose the layout that yields a larger slack, and determine
length (x), slack (x), and L(x).

Case (4). When x is the root of H (i.e., B,=B*) we determine the final layout. Instead of
choosing p (x) as the rightmost vertex of L (x), the rightmost vertex in this case is determined by
Lemma 2.5. Let y. and y.,, be the vertices satisfying n(y. Hn (er) = Ry Ha(3;4y) for all
O<i <o The Iayout L(x) is obtained by solving two deadline scheduling problems, one for y,
and one for y.,;. Assume w.l.0.g. that y, is made the rightmost vertex in L (x). Then the layouts
of y.'s grand-children corresponding to the tasks scheduled on processor 1 (resp. 2 ) are placed to
the left (resp. right) of y.. The positioning of layouts of y..;’s grand-children is done in the

reverse order. Layout L (x) is returned as the final layour.

This completes the description of the algorithm for the CB problem when G contains a cen-
tral biconnected component. Its correctness follows from the lemmas of Section 2 and the discus-
sion. Assume now that A is rooted at the central articulation point a*. Let x,,- - -, x5 be the
children of a* in H which represent the biconnected components By, - - -, B containing veriex
a*. Cases (1) to (3) remain as described above and Case (4) is handled as follows. We set up
and solve a deadline scheduling problem on & tasks using length (x;) and slack (x;), 1<i<3. Any
feasible solution to the scheduling problem represents a final layout of graph G

Theorem 4.1. The algorithm determining a feasible layout for the CB problem runs in O (r2)
time and uses O (n) space.

Proof. All the preprocessing steps (i.e., reducing G, creating the block-cutpoint tree H, deter-
mining B* or a*) can be done in O(n) time. Consider a vertex x in H representing a bicon-
nected component. Let n° be length(x), i.e., it is the number of vertices in biconnected com-
ponents represented by vertices in the subtree rooted at x. For case (1), the algorithm takes O (n')
time. For cases (2), (3) and (4), the algorithm takes O (n") time plus the time to solve at most two
scheduling problems. By Lemma 3.1, solving one deadline scheduling problem for s sublayouts
which contain a total of N vertices of G uses O (sN) time. Thus a scheduling problem at an arti-

culation point g; takes O (d{a;)n (g;)) time, where d(a;) is the in-degree of ¢; in A and n(g;) is




-16 -

the number of vertices in the biconnected components represented by vertices in the subtree
rooted at ;. Let T'(n") be the time used by our algorithm for computing the layout L (x). Recall
that vertex x; ; is the i-th child of the j-th child of vertex x in /. Then, T(»") is described by the

k m;
recurrence relatdon: T(n') < c(n’ + max d(a;)n{a;)) + 3, > T(n(x;;), where ¢ is a constant.
J j=l i=1

The last term reflects the time to solve subproblems for the grandchildren of x. It is easy to see

that T(n') < cn’(14+ Y, d(a)), where Ay (x) is the set of articulation points in the subtree of
acAu(x)

H rooted at x. Since the toral degree of all articulation points in A is O(n), the O (22) time
bound follows. The O (n) space bound follows from Lemma 3.1. O

5. The Variable Bandwidth Problem

In this section we describe how to modify and extend the algorithm given for the CB prob-
lem to solve the variable bandwidth problem. The algorithm for the VB problem can no longer
work with the reduced graph G, since the bandwidth of a removed edge can have an influence on
the layout. We call an edge ({,/) of G an inner edge if ({,j)¢ G, , and an outer edge if (i ,j )G, .
If G contains a central biconnected component B*, then Lemma 2.1 states that an outer edge of
B* will be a dominating edge. Unlike the CB problem, every outer edge of B* is now a potential
candidate. If a B* exists, our algorithm determines a feasible layout in O (r2) time using O ()
space. If only a central articulation point a* exists, our algorithm determines a feasible layout in
0 (8*n + n?) time using O (n) space, where § is the number of biconnected components contair-
ing a*. From Lemma 2.2 we know that an outer edge of a biconnected component containing a*
will be dominating, and considering all & biconnected components causes the increase in the
time.

We first describe the algorithm for the case when a central biconnected component B*
exists, As is done for the CB problem, the algorithm constructs the block-cutpoint tree H, finds
B*, and makes B* the root of H. Let &(i,;) be the bandwidth of edge (7 ,j). Ifedge ({,/)¢G, we
set b(i,j )= ==. The layout of & is constructed by sweeping up through H. Every vertex x of H
correspanding to a biconnected component B, has the three entries, length (x), slack(x), and

L(x) as defined in the previous section, associated with it. Let the vertices of B, in G be




-17-
Yo" ¥ a1 Such that edges (y;,y;.1) are the outer edges.

Case (1). The leaves of H are handled as follows. As in the in the CB algorithm, we set
Iength (x) to the number of vertices in B, minus 1 (i.e, to a—1). If B, is a trivial biconnected
component consisting of the vertices yg and y; with y, = p(x), set slack(x) to b(yqy) — 1 and

L (x) to the layout consisting of vertex y, followed by y; = p (x).

If B, is a non-trivial biconnected component, let p (x) correspond to articulation point y, in

G. We now have two choices for the dominating edge, (y.—1,y.) or (es1.¥.). If either layout
contains an edge whose length exceeds its bandwidth, the layout is discarded. If both layouts are
feasible, then et

slack’ = min {b(y._;.y.) — length(x) +i — 11 1<i<e-1},

slack” = min (b(y..;.y.) — length (x) + i — 111<i<o~1},
and slack(x) = max (slack, slack”}. Set L(x) to the layout yielding the maximum value of
slack (x).

Case (2). If x is neither a leaf nor the root, and corresponds to a trivial biconnected com-
ponent, we proceed in a fashion similar to that in case (2) of the algorithm for the CB problem.

The one exception is that slack (x) is set to b (yp,y1) — #1-

Case (3). Assume x is neither a leaf nor the root, and corresponds (0 a non-trivial bicon-
nected component B,. Recall that 4y, - - - ,4; are the children of x in H and yg, - * * y o are the
vertices in B,, k£ <o For every child g; of x we solve a deadline scheduling problem of the first
variation, choose a particular feasible time on processor 1, and solve a deadline scheduling prob-
lem of the second variation for it. The main idea is to construct L (x) int a left to right fashion and

to position the sublayouts of every vertex y; as much as possible to the left of y;.

As in case (3) of the algorithm for the CB problem, we have two choices for the dominating
edge. We discuss how to determine only layout L', the layout that has the edge (¥.41.Y;) as the
dominating edge, since determining the layout L” that has the edge (¥.-1.y.) dominating is analo-
gous. Assume w.lo.g. that vertex p(x) corresponds to vertex y,. in G. Hence, the vertices of
By will be positioned in the order yg, ¥y, " *, Yu—1=p (x) and when generating layout L’ the ver-

tices of B, are considered in this order. If vertex yg corresponds to an articulation point, set up




-18-

and solve a deadline scheduling problem minimizing the time on processor 1 as done for the CB

problem.

Assume we have handled vertices yq, * - *, ¥i—) of B;. Let vertex y; correspond to vertex a;
in H, We set up and solve a deadline scheduling problem of the first variation for a; using the
length and slack values of g;’s children. We next determine, maxleft;, the maximum number of
additional vertices that can be placed between y;_ and y;. Maxleft; is computed by first determin-
ing for every edge (y,,y;) with r </ the number of additional vertices that can be dominated by
this edge without exceeding its bandwidth. Let this value be eslack (¥, ,y;). Let L(x) be the lay-
out that is being built incrementally, let f be the mapping for layout L (x), and let vertex u be the
most recently placed vertex in L(x); i.e., # was placed when y;.; was handled and f (#) is max-
imum. Then, eslack(y,.y;) is set t0 b(y,.y;) — fF@) + f{&,) — 1, and maxlef; is set to the
minimum over all eslack(y,,y;) values. Knowing maxlefr;, we choose among all feasible solu-
tions to the scheduling problem for a; the one using time ¢, on processor 1 such that ¢, is a
minimum and ¢,2n(y;)-maxleft;. Recall that n(y;}=n {a;) is the number of vertices in the con-
nected component containing vertex y;=a; after the edges of B, have been deleted. We obtain
the schedule associated with t) by solving a deadline scheduling problem of the second variation,
and place all the sublayouts corresponding to tasks scheduled on processor 2 o the left of vertex

¥i, and all the ones scheduled on processor 1 to the right of vertex y;.

Case (4). When the root of H is considered the algorithm tries every outer edge in tumn as

the dominating edge. In order to do so, we first solve for every vertex in B* corresponding to an

£
articulation point a deadline scheduling problem of the first variation. This takes O (3. m;n(a;))

i=1
k
= 0(n? time and the & lists obtained use a total of O (3 n(a;)) = O(n) space. Determining
i=1
whether a feasible layout with edge (y..y.4) 2 a dominating edge exists is dome in

k
O (o + 3 n(a;)) time similar as in case (3). If a feasible layout exists, we obtain the final layout
j=l

by solving & deadline scheduling problems of the second variation. If no feasible Iayout exists,

the edge (¥e.1,¥:42) is considered next. In the worst case all o edges have to considered as dom-

k
inating edges and O (a (& + 3" n(a;))) = O (n?) time is used.
=l



-19-

When G contains no central biconnected component B*, we first root the block-cutpoint
tree H at the central articulation point a*. We determine whether a feasible Iayout with a* as an
exposed exists and while doing so we also compute results to scheduling problems used again at a
later step. Let xy, -+, x5 be the children of a* in H which correspond to the § biconnected
compornents B, - - - ,Bg containing g*. The sweep through the tree towards a* keeps at every x;
the lists generated when deadline scheduling problems of the first variation are solved at x;. If B;

contains k; articulation points, then &;—1 lists are generated for x;. The total space needed to
&

store all 3 k; lists is O (n). Assume no feasible layout with a* as an exposed vertex exists, We
j=t
then try every vertex x; as the root of the block-cutpoint tree, 1<i<3. QObviously, no action needs
to be taken if x; corresponds to a trivial biconnected component. Assume we have unsuccessfully
tried x4, - - - ,x;. Then x; is handled as follows. We solve one scheduling problem on 8—1 tasks
using length (x;) and slack(x;), 1<j<8, j#i. We then try every outer edge of the biconnected
component B; as a dominating edge as done in Case (4). This step makes use of the k;—1 lists
stored at x;. Let o; be the number of vertices in B;, 0;<k;. Then, trying one edge of B; as dom-

inating takes O (o; + ») time and all edges take O (0 + o n) time.
In the worst case we need to consider 8 non-trivial biconnected components. We have then

5
spent O (%) time on solving a total of § scheduling problems and O( ¥ o; + no;) = O (n?) time

i=1
on trying edges as dominating edges. Hence, if G contains only a central articulation point a*, a
feasible layout can be determined in ime T () + 0 (8%1 + n?), where T(n) is the time for initial

solution with a* exposed.

Theorem 5.1. The algorithm determining a feasible layout for the VB problem runs in O (n2)
time if G contains a cenrral biconnected component B* and in O (8%n + n2) time if G contains
no B*, and it uses O (n) space.

Proof. Let x be a non-root vertex in H representing a biconnected component, Iet n° be
length(x), and let @, - - - ,a; be the children of x. For case (1), the algorithm takes O (n”) time.
For cases (2) and (3) the algorithm takes O (n") time plus the time to solve & scheduling prob-
lems, where a scheduling problem at an articulation point @; takes O(d{(g;)n(a;)) ime. Let

T(n") be the time used by our algorithm for computing the layout L (x). Then, T(n’) is described




-20 -

k k
by the recurrence relation: T(n") S c(n” + Y d(a;)n @)+ 2 XT(n(x; ), where ¢ is a con-
j=1 j=1i=l

stant. It is easy to see that T(n') < cen'(1+ 3 d(a)), where Ay(x) is the set of articulation
’ aeAg(x)

points in the subtree of H moted at x. Since the total degree of all articulation points in A is
O(n) and case (4) takes O (n?) time, the algorithm takes O (n2) time when G contains a central
biconnected component. The time bound of O 8%z + n?) for the case when G contains only a
ceniral articulation point a* also follows from the above discussion. The O (r) space bounds fol-

lows from Lemma 3.1. O

6. The Total-Edge-Length Problem

In this section we show how to obtain in O (§%2 + n?) time a layout minimizing the total
edge length, where 8 is ﬂ:lﬁ number of biconnected components containing the central vertex a* .
The algorithm will again sweep up through the block-cutpoint tree H towards the root, either B*
or ¢*, In the case when g* is the root, the algoruthm will consider, as done in the VB problem,
all children of g* as possible roots. Every vertex x of H comresponding to a biconnected com-
ponent has two entries, length (x) and L (x), associated with it. Sublayouts are combined during
the sweep by solving cumulative penalty scheduling problems. Consider, for example, case (2).
To determine which sublayouts to place to the left and to the right of vertex a,, the degree of ver-
tex 2, in any biconnected component corresponding to a child of ) in H is the delay penalty for
the corresponding task. Minimizing the total edge length corresponds to minimizing the penalty
in the scheduling problem. The four cases encountered in the sweep when B* is the root are now

as follows.

Case (1). For every leaf x of H we set length (x) to the number of vertices in the bicon-
nected component B, minus 1. If B, is a non-trivial biconnected component, there are two

choices for the layout L (x) and we choose the one with the smaller total edge length.

Case (2). For every non-leaf, non-root vertex x corresponding to a trivial biconnected com-
ponent we set up and solve a cumularive penalty scheduling problem of the first variation. We
set T(i) to length(x,;) and P (i) to the degree of vertex &, in the biconnecied component By, ..

The list retumed by the algorithm consists of the pairs (¢,c), with every pair representing a




-21-

solution of cost ¢ using time ¢ on processor 1. From this list, which is of length at most n, we
select the entry (£1,c) such that ¢+, is a minimum. The term #; added corresponds to the length
the edge (a1, p(x)) is stretched. We then obtain the schedule associated with entry (#),c). The
schedule determines which of the layouts L (x, ), i=1,2, - - -, m,, will be dominated by the edge

(a1,p (x)) and the order of the sublayouts.

Case (3). For every non-leaf, non-root vertex x comesponding to a non-trivial biconnected
component there are again two choices for the dominating edge. As done in case (3) in the algo-
rithm for the VB problem, we assume p (x) =y, and describe how to obtain the Iayout that has
edge (Yo.¥a-1) s the dominating edge. Assume vertices yg, - - -+, ¥;_; have been considered and a
cumulative penaity scheduling problem has been solved if they correspond to an articulation
point. Let vertex y; of B, correspond to articulation point a;. Then a scheduling problem of the
first variation is set up and solved where T (i) is set to length (x; ;) and P (s) to the degree of ver-
texg; in By, 5 =1,--- m;. Let p be equal to the number of edges (y;,y,) in B, with r>i, and
P2 equal to the number of edges (y,,y;) in B, with r <i. From the list generated by the schedul-
ing algorithm we determine, in O (#;) time, the entry (¢),¢) such that ¢ + p ¢, + pami—t1) is a

minimum. The schedule associated with this entry determines L (x).

Case (4). For the root of H we consider every outer edge in tumn as a dominating edge and
choose the one resulting in the smallest total edge length. In order to determine this edge we first
set up and solve £ scheduling problems of the first variation, one for every articulation point in

B*. Using the & lists generated by the scheduling problems, the time needed for determining the

k
total edge length of the layout that has edge (¥, .,y.,1) as a dominating edge is O (ot + >.n;) with
i=l
k k
2. = n. Hence, step (4) runs in time O (o (e + ¥ 7)) = 0 (n?.

i=t i=l

When graph G contains no central biconnected component B*, we root H at a*, determine
the minimum total edge length for any layout that has a* exposed, and then try every non-trivial
biconnected component containing @* as a root. The O (8%r + n2) time bound for this step is

obtained as in the VB problem.

It can be shown that in certain situations not all non-trivial biconnected components con-




-22 -

taining vertex a* need to be considered as aroot. Let B be a non-trivial biconnected component
containing & articulation points, a*=a,, a,, - - * ,a;, and let the degree of vertex a* in B be two.
Then au optimal layout having an edge of B dominating has either vertex a* exposed or a vertex
a; exposed, where n(a;)2n/8. Recall that n(a;) is the number of vertices in the connected com-
ponent containing g; afier all edges of B have been removed. This implies that, if the degree of
a* is three or more in a constant number of biconnected components, then the running time of
our algorithm is O (n%). The proof of this layout characterization is along the lines of the proofs

given in Section 2. Since it does not improve the worst case time complexity, it is omitted.

Theorem 6.1. The algorithm determining a feasible layout for the TEL problem runs in O (n2)
time if G contains a central biconnected component B* and in O (8*n + n2) time if G contains

no B*, and it uses O (r) space.

7. The Minimum Cntwidth Problem

In this section we present two algorithms for determining a layout of G minimizing the
cutwidth. The first one runs in O (n3) time and uses O (r) space, and the second one runs in
0 (dn®) time and uses O (n?) space, where d is the maximum degree of a vertex representing an
articulation point in the block-cutpoint tree H of G. Both algorithms for the MC problem work
again with the block-cutpoint tree H. The scheduling problem solved when determining how to

combine sublayouts is the maximum penalty scheduling problem.

Assume the block-cutpoint tree A is rooted at some vertex r which corresponds to a bicon-
nected component B,. Using an algorithm similar to the ones described in the previous section,
we can determine in O (#2) time the minimum cutwidth achieved by a layout that has one edge of
B, dominating. When sweeping up through A towards r, every vertex x corresponding to a
biconnected component has, in addition to layout L (x), a weight entry w(x) and a cutwidth entry
¢ (x) associated with it. The enmy w(x) corresponds to the degree of vertex p(x) in the bicon-
nected component B; and represents the additive cost in the scheduling problem. Entry ¢(x)
corresponds to the maximum cutwidth in layout L(x) and it represents the dominating cost

Obviously, c (x)zw (x).




-23-

Assume vertex y; of biconnected component B, is handled in step (3) of the algorithm and
Yi corresponds to articulation point a; in /. We set up and solve a maximum penalty scheduling
problem of the first variation using the weight and the cutwidth entries of a;’s children. The list
returned by the scheduling algorithm contains the pairs (cq,¢5) as discussed in Section 2. Let P
(resp. p2) be the number of edges (¥,,y;) in B, with r>i (resp. r <i). Then the schedule deter-
mining the layout is the one associated with the entry (¢;,c5) in the list for which the maximum
of ¢tpy and cy+p; is a minimum. The other steps of the algorithm are modified accordingly.
Considering every biconnected component as the root of A results in an O (z°) time algorithm

which uses O (r) space.

We next describe an algorithm that solves the MC problem in O (dn?) time using O (n2)
space. The algorithm first chooses an arbitrary vertex r corresponding to a biconnected com-
ponent as the root. We then run the @ (2%) time algorithm described above, saving the lists gen-
erated for every instance of a scheduling problem and not determining the actual layout (i.e., no
scheduling problems of the second variation are solved). We obtain the optimal layout of G by
traversing # rooted at r and computing at every node x the minimum cutwidth of any layout
having an edge of B, dominating. This strategy corresponds to rerooting H at every vertex and
taking advantage of previously computed sublayouts. Once we know the vertex r* of H such
that one edge of B,» is dominating in the optimal layout, the final layour is obtained by solving

the problem rooted at r*,

Assume that vertex x has been just been considered as the root and vertex x1,1, @ grandchild
of x, is considered next. (See Figure 4.1 for the naming of the vertices.) From the computations
already done for vertex x we obtain the new w (x) and ¢ (x). The new layout L (x) (which is actu-
ally not determined) has articulation point @, at the rightmost position and does not contain lay-
outs L(x)9), - -, L(x1,,,). We next solve one maximum penalty scheduling problem of the first

variation; namely the one set up from the entries w(x), wix ), -, w(x,,) and

c{x), c(x12), ---, c(xy5,)- Solving this problem costs 0 d (3 clxy j)+c(x))) time. The list
j=2

obtained from this scheduling problem and the m,—1 lists associated with vertices x, 207y Xlm
contain a total of O(n) entries. From these m lists we determine the best layout that has one

edge of B,,, as a dominating edge. Assuming B, , consists of o ; vertices, this step can be done




-24 -

in O (n oy ,y) time. When vertices xy3, - -+ X 5, are considered as roots at some later time in the

algorithm, a scheduling problem consisting of 1 tasks is set up and solved each time.

The total time spent on solving scheduling problems is O(z ¥, d(a)®) = O (dn?), where
aedy

Ay 1s the set of articulation points in & and 4 is the maximum degree of any vertex representing
an articulation point. The ime spent on determining the best layout that has one edge of a bicon-
nected component B, as a dominating edge is O (r ¢, ), where o, in the number of veriices in B, .

Hence, the total time spent on this part of the algorithm is O (r Yor) = 0 (n%. We conclude
x

with the following theorem.

Theorem 7.1. The minimum cutwidth problem can be solved in O (°) time using O (r) space or

in O (dn?) time using O (n?) space, where 4 is the maximum degree of any veriex representing an

-

articulation point in the block-cutpoint tree H of G.

References

[C1] FRXK. Chung, 'On Optimal Linear Arrangements of Trees’, Comp. & Maths. with
Appis., Vol. 10, No. 1, pp 43-60, 1984.

[C2] F.R.K. Chung, 'On the Cutwidth and the Topological Bandwidth of a Tree’, SIAM J.
Alg. Discr. Meth., Vol. 6, pp 268-277, 1985.

[CMST] M.-I. Chung, F. Makedon, LH. Sudborough, I, Tumer, 'Polynomial Time Algorithms
for the Min Cut Problem on Degree Restricied Trees’, S/IAM J. Comput., Vol. 14, pp
158-177, 1985.

[DT) D. Dolev, H. Trickey, 'Embedding a Tree on a Line’, IBM Techn. Report, RT3368,
IBM San Jose, 1982.

[F] A, Feller, "Automatic Layout of Low-cost Quick Tumaround Random-logic Custom
LSI Devices', Proc. of 13-th Design Automation Conf., pp 79-85, 1976.

(GGJK] M.R. Garey, RL. Graham, D.S. Johnson, D.E. Knuth, 'Complexity Results for
Bandwidth Minimization’,SIAM J. on Appl. Math., Vol. 34, pp 477495, 1978.

[GNn M.R. Garey, R.L. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman, 1979.

[H1] F. Harary, Graph Theory, Addison-Wesley, 1965.

[H2] D.S. Hirschberg, "A Linear Space Algorithm for Computing Maximal Commom Subse-
quences’, CACM, Vol. 18, pp 341-344, 1975.

[L] T. Lengauer, 'Upper and Lower Bounds on the Complexity of the Min-Cut Linear
Arrangement Problem on Trees’, SIAM J. Alg. Discr. Meth., Vol. 3, pp 99- 113, 1982.




[MS]

-25-

B. Monien, L.H. Sudborough, 'Min Cut is NP-Complete for Edge Weighted Trees,
Proceedings of 13-th ICALP Conf., 1986.

(OMKF] T. Ohtsuki, H. Mori, E.S. Kuh, T. Kashiwabara, T. Fujisawa, "One-dimensional Logic

[PDS]
(S1]

(52]
[T]
[Y1]

[¥2]

Gate Assignments and Interval Graphs', IEEE Trans. on Circuits and Systems, pp 675-
684, 1979.

G. Persky, D. Deutsch, D. Schweikert, *A Minicomputer-based System for Automated
LSILayout', J. Des. Aut. and Fault Tol. Comp., pp 217-255, 1977.

Y. Shiloach, A Minimum Linear Arrangement Algorithms for Undirected Trees’,
SIAM J. on Computing, Nr. 8, pp 15-32, 1979.

L.H. Sudborough, personal communication, 1986.

S. Trimberg, *Automating Chip Layout’, /EEE Spectrum, pp 38-45, 1982.

M. Yannakakis, A Polynomial Algorithm for the Min Cut Linear Arrangement on
Trees’, JACM, Vol. 32, pp 950-988, 1985.

M. Yannakakis, "Four Pages are necessary and Sufficient for Planar Graphs’, Proceed-
ings of 18-th STOC, pp 104-108, 1986.




L >—Ly D (L3> CLad " Ls D=L

Xit1 X Xe+1 X

(a) layout L

CLa > CLs >
X,

c

CLaD @@@

Xe+l Xisl

(b) layout f,

Xexl i+l Xr

(c) layout L’

Edge (x..1,x.) violates bandwidth b = 3n/4 in L. _
Layouts Ly, L, L5, and L 5 consist of n/8 — 1 vertices, L4 and L4 of n/4 — 1 vertices each.
Figure 2.1



D x)

X1.1

X1,2 X1.m, Xk 1 Xe,my

Vertex x, its parent p (x), its children g; and grandchildren x; ; in tree H
Figure 4.1




	Planar Linear Arrangements of Outerplanar Graphs
	Report Number:
	

	tmp.1307986960.pdf.Zq1QJ

