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Abstract

In this paper we show that any embedding of a 2m + I-node com
plete binary tree T into an m-node complete binary tree H requires
a dilation of at least 3 when every node of H is assigned one interior
and one leaf node of T, except one node which is assigned one interior
and two leaf nodes of T.
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1. Introduction

The problem of embedding a guest graph T into a host graph H is an interesting and

well-studied graph-theoretic problem [AR, CGC, JMR, R] with applications to parallel

processing aod parallel computing [BCJLR, BCLR, BSM, FF, GH, KA]. In [GH] we studied

embed.dings for the case when both T and H are complete binary tress with n and m nodes,

respectively, and n 2: m. When the guest graph T has more nodes than the host graph H,

a node of H is assigned a number of nodes of T. Thus an embedding < I, g > of T into H

is a surjective mapping I from the nodes of T to the nodes of H together with a mapping

g that maps every edge e = (v,w) of T onto a path gee) connecting f(v) aod few). We

sayan embedding < I, 9 > achieves a balanced utilization if every node of H has at most

rn/m1nodes of T assigned. to it. Embeddings with a balanced utilization are of practical

imporlance since they make every node of H share an equal load. Since the leaves of a tree

network may be of a different type than the interior nodes [El, we also considered in [GH]

embeddings that achieve a balanced leaf and interior utilization (i.e., every node of H has

at most r;~11Ieafand at most r~~11 interior nodes assigned. to it). Another important

cost measure in graph embeddings is the dilation which measures the maximum distance

in H between any two adjacent nodes in T.

In [GH] we presented two embeddings: one with balanced. utilization and a dilation of 2

and another one vti th a balanced leaf and interior utilization and a dilation of 2 log log m+1.

Both embeddings minimize other cost measures which are not discussed in this paper. From

the techniques used in these two embeddings it is apparent that achieving a balanced leaf

and interior utilization is harder than just achieving a balanced utilization. However, this

does not hold for all values of nand m. If n = (m + l)d -I, for some non-negative integer

d, then a ~lation of 2 and a balanced leaf and interior utilization are achieved by an

embedding in [GH]. It appears that n = 2m +1 (i.e., the two trees differ in height by one)

is the "hardest" case. In this paper we show if n = 2m + 1, any embedding achieving a

balanced leaf and interior utilization requires a dilation of at least 3.

The lower bOWld is obtained by assuming that a dilation of 2 is possible and consider

ing the assignments made to the leaves of H. Note that when n = 2m + 1 every node of H
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has one leaf and one interior node of T assigned to it, with the exception of one node which

has two leaves and one interior node assigned to it. We obtain a characterization for the

leaf and interior nodes assigned to every leal of H. We then characterize the relationships

between sibling leaves, leaves in a common subtree of height 3, and leaves in a common

subtree of height 4 in H. These characterizations lead to contradictions with respect to the

balanced leaf and interior utilization. In the next section we give the details of this lower

bound.

2. Lower Bound Proof

In this section we show that any embedding of a 2m + I-node tree T into an m-node

tree H must have a dilation of at least 3 if it achieves a balanced leaf and interior utilization.

We first give some definitions and notations used throughout this paper. We then give a

simple argument showing that a dilation of I is not possible and which gives the flavor of

the techniques used. We then generalize these techniques to show that a dilation of 2 is

also not possible.

Let T be a 2m+ I-node complete binary tree of height k and H be an m-node complete

binary tree of height k -1. For clarity reasons, we will refer to the nodes of T as processing

elements (PEs) and to the nodes of H simply as nodes. Let < f, 9 > be an embedding of

T into H with a balanced leaf and interior utilization. In such an embedding; every node

of H is assigned I interior and I leaf PE of T, except one node which is assigned I interior

and 2 leaf PEs. When leafPE 1and interior PE u are assigned to a node v of H, we denote

(I, u) as the assignment of v. The path between I and u is denoted by P(I, u). If the path

P(l,u) contains 2 PEs that are on the same level in T, we say that the path P(l,'lL) is a

bent pa.th. If, in a bent path, the children of the interior PE 'lL are leaf PEs (i.e., u is on

level k - 2 in T), we say that P(I, u) is a bpi path (bent path with leave,). See Figure 1

for an example of a bpI path. If the path P(l,u) is a non-bent path, we say that it is a

straight path. In an embedding with dilation athe PEs that are adjacent to I or u have to

be assigned to nodes that are at a distance of at most afrom v. We refer to these PEs as

bounda.ry PEs. Precisely, PE Ul is called a boundary PE if it is adjacent to either I or u.
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IT Ul is a leaf PE, then we say it is a leaf boundary PE. IT Ul is an interior PE, we say it

is an interior boundary PE. In Figure 1, Ul and U2 are interior boundary PEs and 11 and

12 are leaf boundary PEs. We now show that an embedding < I,g > can not achieve a

dilation of 1 if it has a balanced leaf and interior utilization.

Figure 1: A .mbtree ofT with path P(l,u) .'Jhown in bold.

Lemma 1: A dilation of 1 i8 not p088ible in an embedding < I, 9 > with balanced leaf a.nd

interior utilization.

Proof: Let (l,u) be the assignment of a leaf node v. Assume, without loss of generality,

that both the parent and the sibling of v have 1 leaf PE assigned to them. If P(I, u), the

path from 1 to u, has length 2 or more, then it has at least 2 interior boundary PEs. These

2: interior PEs have to be assigned to the parent of v which is not possible in a balanced

interior utilization. Thus, P(1, u) must have length 1. Let (1~, u~) be the assignment of v~,

the sibling of v. Because of above argument, P(l~,u~) must also be a path of length 1.

PCII u) and P(l3' u~) together have 2 leaf boundary PEs and at least 1 interior boundary

PE. In order for the dilation to be 1, both leaf boundary PEs need to be assigned to the

parent of v and v~ which is not possible in a balanced leaf utilization. I

For the remainder of this paper, let < I, g > be an embedding of T into H with a

dilation of 2 and a balanced leaf and interior utilization. Let (lIU) be the assignment of

any leaf node v in H. Then, Lemmas 2 and 3 partially characterize P(ll U)I the path from

1 to u in T.
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Lemma 2: If the path P(l, 11.) is a bent path, then it is a bpI path.

Proof: Assume that P(I, u) is bent path, but not a bpI path. Then, P(l, u) has a total of

4 interior boundary PEs: one adjacent to I and 3 adjacent to u. These four PEs have to

be assigned to either the sibling, the parent, or the grand-parent of v. This is not possible,

since each node is assigned only one interior PE in the embedding < I, g > . I

Lemma 3: If the path P(I, u) is a straight path, then it has length at most 2.

Proof: Assume that P(l,u) is a straight path having length at least 3. Then P(l,u) has

4 interior boundary PEs and the situation is as in Lemma 2. I

Throughout this paper, whenever we refer to a subtree Hi of H (resp. Tj of T) we

mean the subtree of height i (resp. j) whose leaves are leaves in H (resp. T). Let H 3 be a

subtree of height 3 in H whose nodes are indexed as sho>\-"Il in Figure 2. Assume, without

loss of generality, that no node of H3 has two leaf PEs of T assigned to it. Let (Ii, Ui) be

the assignment of leaf node hi, 0 ~ i < 3. We will refer to the path P(Ii , Ui) simply as the

path Pi. We now describe a lemma that partially characterizes the assignments of sibling

leaves in H 3 •

Figure 2: Subtree H 3 and its indexing.

Lemma 4: Let (lo,uo) and (h,Ul) be the assignment ofho and hI, respectively. Then,

101 II, Uo, and Ul come from a common subtree of height 3 in T.

Proof: Assume that 101 II, 11.0, and 11.1 do not come from a common subtree of height 3.

Let Tr , r ~ 41 be the smallest subtree of T that contains lo, II, Uo, and 11.1. There are

only two nodes, namely h6 and h41 at a distance of at most 2 from ho and hI. Since each

node of H 3 is assigned 1 leaf and 1 interior PE, a balanced leaf or interior utilization is not
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possible when Po and PI together have more than 2 leaf or more than 2 interior boundary

PEs. The proof given below considers all possible assignments of 10 , Uo, II. and UI in T r •

Because of Lemmas 2 and 3, each of Po and PI is either a bpI path or a straight path

of length at most 2. We first show that neither Po nor PI can be a straight path of length 2.

Assume without loss of generality that Po is a straight path of length 2. Then, if UI is not

a child of Uo, path Po has 3 interior boundary PEs which is not possible in an embedding

with balanced interior utilization. Hence, assume that UI is a child of Uo. Since II can not

be in a common subtree of height 3 containing la, Uo, and UI, Po and PI together have 3

interior boundary PEs not yet assigned: two from Po and one from Pll namely the parent

of h. It thus follows that neither Po nor PI can be a straight path of length 2. In the

remainder of this proof we consider the remaining combinations in which Po and PI can

be bpI paths or straight paths of length 1. We distinguish between two cases depending on

whether 10 and h come from different subtrees of height 3 in Tr or not.

Case 1: 10 and II come from a common subtree of height 3 in Tr.

Let T3 be the subtree of height 3 containing 10 and II. Since we assumed that 10 , 'lLo,

h, and 'ILl come from Tr , at least one of 'lLo or 'ILl must come from Tr - T3 • where Tr - T3

denotes the subtree after the PEs from T3 have been removed from Tr • If both Uo and

UI come from T r - T3 , then Po and PI together have 4 leaf boundary PEs which is not

possible in a balanced leaf utilization. Hence, assume that exactly one of Uo or UI comes

from Tr - T3 • Without loss of generality let Uo come from T3 and 'ILl come from Tr - T3 .

There are now two cases depending on whether 10 and II are siblings or not.

H 10 and II are not siblings, then Uo is the parent of 10 or II' We depict one such

situation in Figure 3(a). In this case Po and PI together have 3 leaf boundary PEs and

hence balanced leaf utilization is not possible. Consider the case when 10 and II are siblings.

IT Uo is not the parent of 10 and 11, then Po and PI have a total of 4 leaf boundary PEs

which is not possible. Thus assume that Uo is the parent of 10 and 11' Then Po and PI

have 2 interior boundary PEs, say Xl and X2. and 2 leaf boundary PEs, say YI and Y2, as

shown in Figure 3(b). These boundary PEs have to be assigned to h6 and h". \¥ithout loss

of generality, let Xl and YI be assigned to hG and the other two PEs be assigned to h4 . In
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order to obtain a contradiction we consider the assignments to leaf nodes h 2 and ha• Let

(121 U2) and (13 , ua) be these assignments, respectively. Because of Lemmas 2 and 3, paths

P2 and Pa have to be either bpI paths or straight paths of length at most 2.

(a) /0 and /, are not siblings. (b) /0 and /, ate siblings.

Figure 3: Assignments in Case 1 of Lemma 4.

We first show that neither P2 nor Pa can be a straight path of length 2. We can assume

that 12 , Uz, la, and Ua come from a common subtree of height 3, since if they do not, an

argument as given earlier for Po and p] applies. Since there is only one node at a distance

of 2 from the leaves in a subtree of height 3, only one <?f P2 or Pa can be a straight path of

length 2. Assume, without loss of generality, that Pa has length 2 (P2 is either a bpI path

or has length 1). Since the dilation is 2, ua can not coincide with either Xl or Xz and hence

path Pa has 2 interior boundary PEs that are distinct from Xl and X2. Since h6 already

has an interior PE, namely Xl, assigned to it, only hs is available. Two interior PEs are

now required to be assigned to hs which is not possible in a balanced interior utilization.

Consider now the case when P2 and P3 are bpI paths or straight paths of length 1.

PEs U2 and Ua together have 4 children as leaf PEs two of which may coincide with 12 and

la· Even when U2 (or ua) is a sibling of Uo or Ul, paths P2 and Pa together have at least

2 leaf boundary PEs which are required to be assigned to hs or h6 • Since h6 already has

a leaf PE, namely Yll assigned to it, we have a contradiction of balanced leaf utilization.

This concludes Case 1 in which we assumed that 10 and II come from a common subtree

of height 3.
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Case 2: 10 and 11 come from different subtrees of height 3 in Tr.

Let T3 be the subtree of height 3 containing 10 • Then, Tr - T3 contains h. Recall that

PEs 1..1.0 and 1..1.1 are on level k - 2 in T. If at least one of 1..1.0 and 1..1.1 is not the parent of

either 10 or 11, then Po and PI together have at least 3 leaf boundary PEs. These 3 leaf

PEs have to be assigned to h6 or h4, which is not possible in a balanced leaf utilization. It

now follows that 'Uo and 'U1 are parents of 10 and h. In this case Po and PI together have 2

interior boundary PEs, say Xl and X2, and have 2 leaf boundary PEs, say Y1 and Y2' This

situation is as in Figure 3(b) with h and Yl switching their positions. Thus, the argument

is identical to the one given for the situation of Figure 3(b) and is therefore omitted. This

concludes Case 2 and Lemma 4 follows. I

Since there is only one node at a distance of 2 from the leaves in a subtree of height

3, and because of Lemma 4 we have the following corollary.

Corollary 5: Let (10,1..1.0) and (h, 1..1.1) be the assignment of two leaf nodes in H that are

siblings. Then, path3 Po and PI can not both be of length. 2.

We now consider the assignments of 4 consecutive leaf nodes in a common subtree of

height 3 in H. From Lemmas 2 and 3 we know that the path of the assignment of a leaf node

has to be either a bpI path or a straight path of length at most 2. Because of symmetry

in complete binary trees we need not consider all the possible combinations of such paths

in an assignment of 4 leaf nodes. 1.,Ve next describe how to e>.."ploit this symmetry. "We say

a path (resp. a leaf of H) is of type b if it is a bpi path and it is of type 2 (resp. 1) if it

is a straight path of length 2 (resp. 1). Let (10,1..1.0) and (1111..1.1) be the assignments of two

sibling leaf nodes in H. We say that paths Po and PI have a type assignment qr, when

Po is of type q and PI is of type r; q,r e {b,2, I}. Let Po and PI have a type assignment

qr, and assume that Po and PI together have bl leaf and hi. interior boundary PEs. If Po

and PI have a type assignment rq and the number of leaf and interior boundary PEs is

as before, then the two type assignments are considered identical because of symmetry.

Obviously, symmetric type assignments do not need to be considered separately. We now

examine symmetric situations for sibling leaves in more detail.

From Corollary 5 we know that two sibling leaves cannot have a type assignment
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22. This leaves type assignments 11, bl, bb, b2, and 21. Each one of 11, bl, and bb has one

interior and two leaf boundary PEs and the possible positions of [0, uo,[! and Ul are shown

in Figure 4(a) - (c). Note that there is some freedom in how [O,UO,[l and Ul are chosen

in T, but cases not shown -in Figure 4 are all identical because of symmetry in complete

binary trees. Because of symmetry in type assignments, as an example, bl is identical to

lb.

'.1'.o

(a) Type assignment 11. (b) Type assignment b1. (c) Type assignment bb.

Figure 4: Positio~ of PEs in T of type assignments having 1 interior and 2 leaf boundary PEs.

Assume now that two sibling leaves in H have a type assignment b2. Then there are two

possibilities depending on whether or not 10 and lr are siblings in T. IT they are, b2 has two

interior and two leaf boundary PEs (see Figure 5(a))j if they are not, b2 has two interior

and one leaf boundary PEs (see Figure 5(b». We refer to the first possibility as (b2)' and

to the second one as (b2)". The last type assignment to be considered is 21 for which we

also have two possibilities (again depending on whether 10 and II are siblings in T). One,

(21)', has no leaf and two interior boundary PEs, and the second one, (21)", has one leaf

and two interior boundary PEs. Both are shown in Figure 6.

.1'.0 .1'.1 .1'.0.1'.1

(a) Type assignment (b2)'. (b) Type assignment (b2)".

Figure 5: Positio~ of PEs in T of type assignment b2.
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"0

(a) Type assignment (21)'.

"0

(b) Type assignment (21)".

Figure 6: P03iti0n3 of PE8 in T of type a38ignment 21.

We now take symmetry in type assignments one step further. Let S = {Il, bI, bb,

(b2)' I (b2)// I (21)', (21)"}. Consider fOUI consecutive leaves in H belonging to a common

subtree of height 3. Let H 3 be such a tree. Let Q be the type assignment of the first

two leaves in H 31 R be the type assignment of the other two leaves, Q, ReS. Then, the

requirements on the interior and leaf boundary PEs for QR are the same as for RQ.

Without taking into account any symmetry, there are a total of 12 possible type

assignments to two sibling leaves in H 31 namely the type assignments 11, bI, Ib, bb, (b2)',

(2b)', (b2)", (2b)", (21)', (12)', (21)", and (12)". Since sibling leaf nodes can have anyone

of these 12 type assignments, we have a. total of 12 * 12 = 144 possible type assignments

to the 4 leaf nodes of H 3 • Making use of symmetric assignments in two sibling leaf nodes

and in the pair of two sibling leaf nodes, there are 28 different type assignments to the

leaves of H3 to be considered. They are listed in Table 1. The ne.\:t lemma will reduce this

number to 18. Let A be the set of all type assignments in S that have two leaf bOWldary

PEs; i.e., A = {ll, b1, bb, (b2)').

Lemma 6: If two sibling leaves in H3 have a type assignment that iJ in set A, then the

other two sibling leaves cannot ha1Je a type lI3.'1ignment which is in A.

Proof: We show the assignments from set A in Figures 4(a) - (c) and 5(a). Everyone of

these has 2 leaf boundary PEs. Let Q (resp. R), Q, R , A, be the type assignment of the

leaves ho, and hI (resp. h2 and h3 ). The PEs in Q (resp. R) must come from a corrunon

subtree of height 3, and hence the two subtrees are disjoint. Let YI and Y2 be the two
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leaf boundary PEs of type assignment Q and assume without loss of generality that YI is

assigned to h 6 and yz is assigned to h4,. Since neither YI nor yz can coincide with the 2

leaf boundary PEs of Rand YI is already assigned to h 61 hs must accommodate the 2 leaf

boundary PEs of R. This is not possible in a balanced utilization and hence the lemma

follows. I

1111 l1(b2)" bIbb bl(21)" bb(21)' (b2)'(21)' (b2)"(21)"

UbI 11(21)' bl(b2)' bbbb bb(21)/1 (b2)'(21)" (21)'(21)'

llbb 11(21)" bl(b2)" bb(b2)' (b2):(b2)' (b2)"(b2)" (21)'(21)"

U(b2)' blbl b1(21)' bb(b2)" (b2)'(b2)" (b2)"(21)' (21)"(21)"

Table 1: Possible type aS3ignmenLs to tke 4 leaves in Ha after removing the

symmetric ones (type a.ssignments not in bold are eliminated by Lemma 6).

From Lemma 6 it follows that the 4 leaves of H 3 can not have a type assignment which

is either 1111, 11bl, 11bb, 11(b2)', blbl, bIbb, bl(b2)', bbbb, bb(b2)', or (b2)'(b2)'. We thus are

left with 28 -10 = 18 possible type assignments to the 4 leaves of H a which are shown in

bold in Table 1. Theorem 7 considers these remaining type assignments and shows that all

of them are not possible.

Theorem 7: A dilation of 2 iJ not possible in an embedding < I, g > with balanced leaf

and interior utilization.

Proof: Let Hs be the subtree of height 5 in H whose leaves are leaves of H and whose

leftmost subtree of height 3 is the subtree H a. Throughout this proof nodes of Hs are

indexed as shown in Figure 7. vVe assume, without loss of generality, that no node in H s

has 2 leaf PEs assigned to it.
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•, ,
('lis', ,, ,, ,, ', ', '

, ", , ,, ,, ,
, H3 \, ,, ,, ,, ,

/ 1 h3 \, ,, ,.. _- - --- -- ---- - ---- - - - - _.\

Figure 7: Subtree Hs and its inde."cing.

Assume that the four leaves in H 3 have a type assignment shown in bold in Table

1. We partition these 18 type assignments into two sets, set B and set C. Set B has

the following 9 type a.ssignments: (b2)'(b2)", (b2)'(21)', (b2)'(21)", (b2)"(b2)", (b2)"(21)',

(b2)"(21)", (21)'(21)', (21)'(21)", and (21)"(21)". We first show that a type a.ssignment in

this set requires a leaf PE to be assigned to hg _ Set C consists of the remaining 9 type

assignments and we will show that a type assignment in this set requires a leaf PE to be

assigned either to he or to one of the 3 nodes from set {hID I hs I h7 }.

Let (li,ui) be again the assignment of leaf node hi, a < i ::; 3. We first show that

in any type assignment from set B, the PEs Ii and 1Li, a $ i ::; 3, have to come from a

common subtree of height 4 in T. We know from Lemma 4 that lOI uo, II, and UI (resp.

121 u2, 131 and U3) come from a common subtree of height 3. We also know that these two

subtrees are disjoint. Let T4 be the subtree of height 4 that contains lo, HO, l1, and Ul.

Assume without loss of generality that these 4 PEs are in the left subtree of Tot. We now

show that l21 U2, l3, and U3 must be in the right subtree of T4 . Assume for the sake of

contradiction that they are not. As before, let Pi denote the path P(li,Ui), 0 :$ i :$ 3.

Paths Po, PlI P2 , and P3 have a t~'pe assignment from set B. Since Po and PI have a type

assignment which is either (b2)' I (b2)'/, (21)', or (21)11, paths Po and PI together have 2
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interior boundary PEs, as can also be seen in Figures 5 and 6. Paths Pz and P3 have a

type assignment which is either (b2)", (21)', or (21)" and hence paths Pz and P3 together

also have 2 interior boundary PEs. Since 10 , uo! II and UI are in the left subtree of T4 and

12l U2 , 13 and U3 are not in the right subtree of T4l the 2 interior boundary PEs of paths

Po and PI are distinct from the 2 interior bOWldary PEs of P2 and P3 • Thus, a total of 4

interior PEs are required to be assigned to 3 nodes h4l hs, or hG• This is not possible in a

balanced interior utilization. Hence, lz, uz, 13 and U3 have to be in the right subtree of T4 •

We ne:l\.--t show that when the PEs h and Ui come from a common subtree of height 4

in T and when the paths Pi have a type assignment from set B l 0 < i < 3, one leaf PE is

required to be assigned to hg. We show the positions of Ii and Ui for the type assignments

from set B in Figures Sea) - (e). To be consistent with the labelings, we show in Figure

Sed) the sy=etric type assignment (21)"(21)' instead of (21)'(21)". Note that there is

some freedom in how Ii and Ui, 0 ::; i < 3, are chosen but cases not shown are all identical

because of symmetry in binary trees. Paths Po and PI together have x and y as interior

boundary PEs. Paths P2 and P3 together have x and z as interior boundary PEs. Since x

is the common interior boundary PE, x is required to be assigned. to h6 • This implies that

the interior PE y (resp. z) has to be assigned to h4 (resp. h5 ). It is now easy to see that

a total of 4 leaf PEs, labeled as If1l1h,l!s, and 114 in Figure 8, have to be assigned to 4

nodes h 4 ! hs, h6 ! and hg. Thus, hg is required to be assigned. one leaf PE. This completes

the description of set B.

Having a leaf requirement on hg implies the following. Let H 4 be a subtree of height

4 in which no node has 2 leaf PEs assigned to it. If the 4 leaves in the left subtree of H 4

have type assignment Q, Q € B , then the four leaves in the right subtree of H 4 can not

have a type assignment in B since that would require 2 leaf PEs to be assigned to the root

of H4 which is not possible in a balanced. leaf utilization.

We now consider type assignments from set G. Recall that set C contains the following

9 type assignments: 11(b2)", 11(21)', 11(21)", b1(b2)", b1(21)', b1(21)", bb(b2)", bb(21)',

and bb(21)". We show the positions of the PEs in T for these type assignments in Figures

9(a) - (f)· Once again note that there is some freedom in how PEs Ii and Ui, 0 ::; i ::; 3, are

chosen but cases not shown are all identical because of symmetry in binary trees. Observe
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x

(a)

(c)

Type assignment (b2)'(b2)".
[for type assignment (b 2)'(21)" swilCh

positions of"2 and U3J

x

Type assignment (b2)"(b2)".

[for type assignment (b2)"(21)" swich

positions of "2 and u3. and for type

assignment (21)"(21)" switch positions

of"o and "1 and of"2 and U3.J

(b)

(d)

Type assignment (b 2)'(21)'.

x

Type as~gnmenl (b2)"(21)'.

[for type assignment (21)"(21)' switch

positions of"o and ud

Figure 8: Positions of PEs in T for the type assignments in set B.
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that for a type assignment in G the PEs hand Uj I 0 :5 i :5 3, mayor may not come from a

common subtree of height 4 in T. We indicate this by showing disjoint subtrees in Figure

9. We now show that any type assignment from set G requires a leaf PE to be assigned

either to ha or to one of the 3 nodes from set {hIo,ha,hd. Since Po and PI have a type

assignment which is either 11, b1, or ~?, paths Po and PI together have 1 interior boundary

PE. Let y be this PE. Furthermore, Po and PI have 2 leaf boundary PEs which we refer -.

to as 111 and 112. Paths P2 and P3 have a type assignment which is either (b2)", (21y, or

(21)" and they together have 2 interior boundary PEs. Let x and z be these PEs.

The leaf PEs IiI and 112 are required. to be assigned to ha or h4 • Without loss of

generality let If] be assigned to ha and 112 be assigned to h4 as shown in Figure 10. The

interior PEs x and z have to be assigned to ha and hs and thus node ha is required to have

an interior PE assigned to it. The interior PE y has to be assigned to either h6 or h4 , but

since h6 already has an interior PE (either x or z) assigned to it, y has to be assigned to

h4 • There are two possibilities for x and z. In the fust possibility x is assigned to h6 and

z is assigned to hs. In the second possibility x is assigned to hs and z is assigned to k6 •

Both situations are shown in Figure 10, where the assignments of the second possibility

are shown in brackets. We thus divide the type assignments from set G into two sets Gt

and G". Set Gr consists of all type assignments from set G in which x is assigned to k6 •

Set Gil consists of all type assignments from set G in which x is assigned to ks . We now

consider sets Gt and Gil in more detail and show that a type assignment in G' requires a

leaf PE to be assigned to ha and that a type assignment in Gft requires a leaf PE to be

assigned to one of the nodes from set {h]o, kg, h7 }.

Set C' : In Figures 9(a), (e), and (e) paths P, and P3 together have 1 leaf boundary

PE lf4 which has to be assigned to either k6 or hs . Since ha already has leaf FE IfJ assigned

to it, leaf PE 114 is assigned to hs. In set G' interior PE z is assigned to hs. Since z has

leaf FE lis as its child and since eveI1" node at a distance of at most 2 from hs, except kg,

already has a leaf FE assigned to it, 113 has to be assigned to hg • In FigUI'es 9(b), (d), and

(f) one of lh or If4' say If41 has to be assigned to hSl and the other leaf, say Ih, has to

be assigned to kg.

Set Gil : Since ha already has a leaf FE, namely IiI, assigned to it, leaf boundary PE

15



(a) Type assignment 11(b2)".

[for type assignment 11(21)'~ swhch

positions of U2 and U3']

x

(e) Type assignment b 1(b2)".

[for type assignment b 1(21)" swilCh

positions ofuz and U3']

(e) Type assignment bb(b2)".
[for type assignment bb (21)" switch

positions of U2 and U3.]

x

(b) Type assignment 11(21)'.

(d) Type assignment b 1(21)'.

(I) Type assignment bb(21)'.

Figure 9: Positions of PEs in T for the type assignments in set C.
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II. in Figures 9(a) , (c), and (e) has to be assigned to hs. In Figures 9(b), (d), and (J) the 2

leaf PEs 113 and lh have to be assigned to 2 nodes from the set {hIO' ha, hr, hs }. V'le show

that either lfa or lf4 has to be assigned to hso Assume the contrary, i.e., hs is assigned

a leaf PE If that is neither ·Zh nor 114. But" now· the parent of If, which is distinct from

U2, 'U3, X, y, z, and the parent of x, has to be assigned to a node at a distance of at most 2

from hs . Since every one of these nodes already has an interior PE assigned to it, hs has

to be assigned either lh or 114.. Say that hs is assigned 1/4 - It now follows easily that ifa

has to be assigned to either hIo, hal or h1 • This completes the description of set CIf
•

Figure 10; Subtree Hs showing the assignments of PEs to nodes as in set C' [C'1.

In order to complete proof, we now consider the assignments of 8 consecutive leaf

nodes in a common subtree of height 4 in H and then consider the assignments of 16

consecutive leaf nodes in a common subtree of height 5. Let H4, be the left subtree of Hs.

Recall that H3 (resp. H~) is the left (resp. right) subtree of H4 as shown in Figure 7.

Furthermore, we assume that no node in H 4 has 2 leaf PEs assigned to it. Let Q be the

type assignment of the 4 leaf nodes in H 3 • We know that Q has to be in set B, C t , or

CII. Let R be the type assignment of the 4 leaf nodes in H~. Then, R has to be in the set

B, G', or G". \Ve already showed that when Q is in the set B I then R can not be in the

set B. This leaves R to be in the set C' or Cit, and Q to be in the set B, Gt , or Gil (not

considering the symmetric type assignments).

First consider the case when R e C' and Q e B or Ct. Type assignment R requires
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1 leaf PE, say If, to be assigned to ha. Type assignment Q also requires 1 leaf PE, say

If', to be assigned to ha. Since If' can not coincide \vith If, 2 leaf PEs are required to be

assigned to hs which is not possible in balanced leaf utilization.

Next consider the remaining 3 combinations, namely ReG" and Q e B I G' , or C".

We show that a leaf PE is required to be assigned to hIO' Since R € Gil, one of the nodes

from set {h IO , ha, h6 } is required to be assigned a leaf PE. Let If be this PE. But since h6

already has a leaf PE assigned from type assignment Q, if has to be assigned to either hIO

or ha. "Vhen Q € B or Q e G' J type assignment Q requires a leaf PE, which is distinct from

If, to be assigned to hs and hence leaf PE if has to be assigned to hIO. ¥lhen Q e Gil,

type assignment Q requires a leaf PE, say If' that is distinct from if, to be assigned to

one of the nodes from set {hIo , ha, h7 }. But since h7J th~ root of H~, already has a leaf PE

assigned from type assignment R, If' has to be assigned to either hlo or ha. Thus, we have

2 leaf PEs If and If' that have to be assigned to hlo and hs. Without loss of generality

let If be assigned to hlo and thus If' is assigned to ha.

In order to get a contradiction we consider the assignments to the 8 leaf nodes in H~,

the right subtree of H s . Let Q' (resp. R' ) be the type assignment of leaf nodes in the left

(resp. right) subtree of Hi. From our previous discussion it follows that the only possible

assignment for the leaves of H~ is R' e Gil and Q' e B, G', or Gil. In each of these 3 cases

a leaf PE , say 1f", is required to be assigned. to hIo _ Since hIO already has a leaf PE,

namely if, assigned to it and since If" is distinct from if, we ha....e a requirement of 2 leaf

PEs on hIO' This is not possible since we assumed that only 1 leaf PE is assigned to hIO'

Theorem 7 now follows. I

3. Conclusions

We have shown that any embedding of a 2m + l-PE complete binary tree T into an

m-node complete binary tree H with a balanced leaf and interior utilization requires a

dilation of at least 3. The best known upper bound on the dilation for such an embedding

is .2 log log m +1 [GH] and we conjecture that this is optimal within a constant factor. Note

that if we require every node of H to be assigned 2 arbitrary PEs of T (and one node to be

assigned 3 PEs), then it is easy to achieve a dilation of 1. ':Ve consider it unlikely that the
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techniques used in this paper generalize so that the gap between 3 and 2 log log m + 1 can

be closed. The main reasons appear to be the inability to easily classify the paths P(l,u)

and the resulting exponential growth in the number of cases to be considered.
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