A Lower Bound on Embedding Tree Machines with Balanced Processor Utilization

Ajay K. Gupta
Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu
Report Number:
88-794

Gupta, Ajay K. and Hambrusch, Susanne E., "A Lower Bound on Embedding Tree Machines with Balanced Processor Utilization" (1988). Department of Computer Science Technical Reports. Paper 680.
https://docs.lib.purdue.edu/cstech/680

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

A LOWER BOUND ON EMBEDDING TREE MACHINES WITH BALANCED PROCESSOR UTILIZATION

Ajay K. Gupta
Susanne E. Hambrusch
CSD-TR-794
July 1988

A Lower Bound on Embedding Tree Machines with Balanced Processor Utilization *

Ajay K. Gupta
Susanne E. Hambrusch
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907, USA

August 30, 1988

Abstract

In this paper we show that any embedding of a $2 m+1$-node complete binary tree T into an m-node complete binary tree H requires a dilation of at least 3 when every node of H is assigned one interior and one leaf node of T, except one node which is assigned one interior and two leaf nodes of T.

[^0]
1. Introduction

The problem of embedding a guest graph T into a host graph H is an interesting and well-studied graph-theoretic problem [AR, CGC, JMR, R] with applications to parallel processing and parallel computing [BCJLR, BCLR, BSM, FF, GH, KA]. In [GH] we studied embeddings for the case when both T and H are complete binary tress with n and m nodes, respectively, and $n \geq m$. When the guest graph T has more nodes than the host graph H, a node of H is assigned a number of nodes of T. Thus an embedding $<f, g\rangle$ of T into H is a surjective mapping f from the nodes of T to the nodes of H together with a mapping g that maps every edge $e=(v, w)$ of T onto a path $g(e)$ connecting $f(v)$ and $f(w)$. We say an embedding $\langle f, g\rangle$ achieves a balanced utilization if every node of H has at most $\lceil n / m\rceil$ nodes of T assigned to it. Embeddings with a balanced utilization are of practical importance since they make every node of H share an equal load. Since the leaves of a tree network may be of a different type than the interior nodes [B], we also considered in [GH] embeddings that achieve a balanced leaf and interior utilization (i.e., every node of H has at most $\left\lceil\frac{n+1}{2 m}\right\rceil$ leaf and at most $\left\lceil\frac{n-1}{2 m}\right\rceil$ interior nodes assigned to it). Another important cost measure in graph embeddings is the dilation which measures the maximum distance in H between any two adjacent nodes in T.

In [GH] we presented two embeddings: one with balanced utilization and a dilation of 2 and another one writh a balanced leaf and interior utilization and a dilation of $2 \log \log m \div 1$. Both embeddings minimize other cost measures which are not discussed in this paper. From the techniques used in these two embeddings it is apparent that achieving a balanced leaf and interior utilization is harder than just achieving a balanced utilization. However, this does not hold for all values of n and m. If $n=(m+1)^{d}-1$, for some non-negative integer d, then a dilation of 2 and a balanced leaf and interior utilization are achieved by an embedding in [GH]. It appears that $n=2 m+1$ (i.e., the two trees differ in height by one) is the "hardest" case. In this paper we show if $n=2 m+1$, any embedding achieving a balanced leaf and interior utilization requires a dilation of at least 3.

The lower bound is obtained by assuming that a dilation of 2 is possible and considering the assignments made to the leaves of H. Note that when $n=2 m+1$ every node of H
has one leaf and one interior node of T assigned to it, with the exception of one node which has two leaves and one interior node assigned to it. We obtain a characterization for the leaf and interior nodes assigned to every leaf of H. We then characterize the relationships between sibling leaves, leaves in a common subtree of height 3 , and leaves in a common subtree of height 4 in H. These characterizations lead to contradictions with respect to the balanced leaf and interior utilization. In the next section we give the details of this lower bound.

2. Lower Bound Proof

In this section we show that any embedding of a $2 m+1$-node tree T into an m-node tree H must have a dilation of at least 3 if it achieves a balanced leaf and interior utilization. We first give some definitions and notations used throughout this paper. We then give a simple argument showing that a dilation of 1 is not possible and which gives the flavor of the techniques used. We then generalize these techniques to show that a dilation of 2 is also not possible.

Let T be a $2 m+1$-node complete binary tree of height k and H be an m-node complete binary tree of height $k-1$. For clarity reasons, we will refer to the nodes of T as processing elements (PEs) and to the nodes of H simply as nodes. Let $\langle f, g\rangle$ be an embedding of T into H with a balanced leaf and interior utilization. In such an embedding every node of H is assigned 1 interior and I leaf PE of T, except one node which is assigned 1 interior and 2 leaf PEs. When leaf PE l and interior PE u are assigned to a node v of H, we denote (l, u) as the assignment of v. The path between l and u is denoted by $P(l, u)$. If the path $P(l, u)$ contains 2 PEs that are on the same level in T, we say that the path $P(l, u)$ is a bent path. If, in a bent path, the children of the interior PE u are leaf PEs (i.e., u is on level $k-2$ in T), we say that $P(l, u)$ is a bpl path (bent path with leaves). See Figure 1 for an example of a bpl path. If the path $P(l, u)$ is a non-bent path, we say that it is a straight path. In an embedding with dilation δ the PEs that are adjacent to l or u have to be assigned to nodes that are at a distance of at most δ from v. We refer to these PEs as boundary PEs. Precisely, PE u_{1} is called a boundary PE if it is adjacent to either l or u.

If u_{1} is a leaf PE, then we say it is a leaf boundary PE. If u_{1} is an interior PE, we say it is an interior boundaty PE. In Figure $1, u_{1}$ and u_{2} are interior boundary PEs and l_{1} and l_{2} are leaf boundary PEs. We now show that an embedding $\langle f, g\rangle$ can not achieve a dilation of I if it has a balanced leaf and interior utilization.

Figure 1: A subtree of T with path $P(l, u)$ shown in bold.

Lemma 1: A dilation of 1 is not possible in an embedding $\langle f, g\rangle$ with balanced leaf and interior utilization.

Proof: Let (l, u) be the assignment of a leaf node v. Assume, without loss of generality, that both the parent and the sibling of v have 1 leaf PE assigned to them. If $P(l, u)$, the path from l to u, has length 2 or more, then it has at least 2 interior boundary PEs. These 2 interior PEs have to be assigned to the parent of v which is not possible in a balanced interior utilization. Thus, $P(l, u)$ must have length 1 . Let $\left(l_{s}, u_{s}\right)$ be the assignment of v_{s}, the sibling of v. Because of above argument, $P\left(l_{s}, u_{s}\right)$ must also be a path of length 1 . $P(l, u)$ and $P\left(l_{s}, u_{s}\right)$ together have 2 leaf boundary PEs and at least 1 interior boundary PE. In order for the dilation to be 1 , both leaf boundary PEs need to be assigned to the parent of v and v_{s} which is not possible in a balanced leaf utilization.

For the remainder of this paper, let $\langle f, g\rangle$ be an embedding of T into H with a dilation of 2 and a balanced leaf and interior utilization. Let (l, u) be the assignment of any leaf node v in H. Then, Lemmas 2 and 3 partially characterize $P(l, u)$, the path from l to u in T.

Lemma 2: If the path $P(l, u)$ is a bent path, then it is a bpl path.
Proof: Assume that $P(l, u)$ is bent path, but not a bpl path. Then, $P(l, u)$ has a total of 4 interior boundary PEs: one adjacent to l and 3 adjacent to u. These four PEs have to be assigned to either the sibling, the parent, or the grand-parent of v. This is not possible, since each node is assigned only one interior PE in the embedding $\langle f, g\rangle$. I

Lemma 3: If the path $P(l, u)$ is a straight path, then it has length at most 2.
Proof: Assume that $P(l, u)$ is a straight path having length at least 3. Then $P(l, u)$ has 4 interior boundary PEs and the situation is as in Lemma 2.

Throughout this paper, whenever we refer to a subtree H_{i} of H (resp. T_{j} of T) we mean the subtree of height i (resp. j) whose leaves are leaves in H (resp. T). Let H_{3} be a subtree of height 3 in H whose nodes are indexed as shown in Figure 2. Assume, without loss of generality, that no node of H_{3} has two leaf PEs of T assigned to it. Let $\left(l_{i}, u_{i}\right)$ be the assignment of leaf node $h_{i}, 0 \leq i \leq 3$. We will refer to the path $P\left(l_{i}, u_{i}\right)$ simply as the path P_{i}. We now describe a lemma that partially characterizes the assignments of sibling leaves in H_{3}.

Figure 2: Subtree H_{3} and its indexing.

Lemma 4: Let $\left(l_{0}, u_{0}\right)$ and $\left(l_{1}, u_{1}\right)$ be the assignment of h_{0} and h_{1}, respectively. Then, l_{0}, l_{1}, u_{0}, and u_{1} come from a common subtree of height 3 in T.

Proof: Assume that l_{0}, l_{1}, u_{0}, and u_{1} do not come from a common subtree of height 3 . Let $T_{r}, r \geq 4$, be the smallest subtree of T that contains l_{0}, l_{1}, u_{0}, and u_{1}. There are only two nodes, namely h_{6} and h_{4}, at a distance of at most 2 from h_{0} and h_{1}. Since each node of H_{3} is assigned 1 leaf and 1 interior PE, a balanced leaf or interior utilization is not
possible when P_{0} and P_{1} together have more than 2 leaf or more than 2 interior boundary PEs. The proof given below considers all possible assignments of l_{0}, u_{0}, l_{1}, and u_{1} in T_{r}.

Because of Lemmas 2 and 3, each of P_{0} and P_{1} is either a bpl path or a straight path of length at most 2. We first show that neither P_{0} nor P_{1} can be a straight path of length 2. Assume without loss of generality that P_{0} is a straight path of length 2. Then, if u_{1} is not a child of u_{0}, path P_{0} has 3 interior boundary PEs which is not possible in an embedding with balanced interior utilization. Hence, assume that u_{1} is a child of u_{0}. Since l_{1} can not be in a common subtree of height 3 containing l_{0}, u_{0}, and u_{1}, P_{0} and P_{1} together have 3 interior boundary PEs not yet assigned: two from P_{0} and one from P_{1}, namely the parent of l_{1}. It thus follows that neither P_{0} nor P_{1} can be a straight path of length 2 . In the remainder of this proof we consider the remaining combinations in which P_{0} and P_{1} can be bpl paths or straight paths of length 1. We distinguish between two cases depending on whether l_{0} and l_{1} come from different subtrees of height 3 in T_{r} or not.

Case 1: l_{0} and l_{1} come from a common subtree of height 3 in T_{r}.
Let T_{3} be the subtree of height 3 containing l_{0} and l_{1}. Since we assumed that l_{0}, u_{0}, l_{1}, and u_{1} come from T_{r}, at least one of u_{0} or u_{1} must come from $T_{r}-T_{3}$, where $T_{r}-T_{3}$ denotes the subtree after the PEs from T_{3} have been removed from T_{r}. If both u_{0} and u_{1} come from $T_{r}-T_{3}$, then P_{0} and P_{1} together have 4 leaf boundary PEs which is not possible in a balanced leaf utilization. Hence, assume that exactly one of u_{0} or u_{1} comes from $T_{r}-T_{3}$. Without loss of generality let u_{0} come from T_{3} and u_{1} come from $T_{r}-T_{3}$. There are now two cases depending on whether l_{0} and l_{1} are siblings or not.

If l_{0} and l_{1} are not siblings, then u_{0} is the parent of l_{0} or l_{1}. We depict one such situation in Figure 3(a). In this case P_{0} and P_{1} together have 3 leaf boundary PEs and hence balanced leaf utilization is not possible. Consider the case when l_{0} and l_{1} are siblings. If u_{0} is not the parent of l_{0} and l_{1}, then P_{0} and P_{1} have a total of 4 leaf boundary PEs which is not possible. Thus assume that u_{0} is the parent of l_{0} and l_{1}. Then P_{0} and P_{1} have 2 interior boundary PEs, say x_{1} and x_{2}, and 2 leaf boundary PEs, say y_{1} and y_{2}, as shown in Figure $3(b)$. These boundary PEs have to be assigned to h_{6} and h_{4}. Without loss of generality, let x_{1} and y_{1} be assigned to h_{6} and the other two PEs be assigned to h_{4}. In
order to obtain a contradiction we consider the assignments to leaf nodes h_{2} and h_{3}. Let $\left(l_{2}, u_{2}\right)$ and $\left(l_{3}, u_{3}\right)$ be these assignments, respectively. Because of Lemmas 2 and 3 , paths P_{2} and P_{3} have to be either bpl paths or straight paths of length at most 2.

We first show that neither P_{2} nor P_{3} can be a straight path of length 2 . We can assume that l_{2}, u_{2}, l_{3}, and u_{3} come from a common subtree of height 3 , since if they do not, an argument as given earlier for P_{0} and P_{1} applies. Since there is only one node at a distance of 2 from the leaves in a subtree of height 3 , only one of P_{2} or P_{3} can be a straight path of length 2. Assume, without loss of generality, that P_{3} has length 2 (P_{2} is either a bpl path or has length 1). Since the dilation is $2, u_{3}$ can not coincide with either x_{1} or x_{2} and hence path P_{3} has 2 interior boundary PEs that are distinct from x_{1} and x_{2}. Since h_{6} already has an interior PE, namely x_{1}, assigned to it, only h_{5} is available. Two interior PEs are now required to be assigned to h_{5} which is not possible in a balanced interior utilization.

Consider now the case when P_{2} and P_{3} are bpl paths or straight paths of length 1 . PEs u_{2} and u_{3} together have 4 children as leaf PEs two of which may coincide with l_{2} and l_{3}. Even when u_{2} (or u_{3}) is a sibling of u_{0} or u_{1}, paths P_{2} and P_{3} together have at least 2 leaf boundary PEs which are required to be assigned to h_{5} or h_{6}. Since h_{6} already has a leaf PE, namely y_{1}, assigned to it, we have a contradiction of balanced leaf utilization. This concludes Case 1 in which we assumed that l_{0} and l_{1} come from a common subtree of height 3 .

Case 2: l_{0} and l_{1} come from different subtrees of height 3 in T_{r}.
Let T_{3} be the subtree of height 3 containing l_{0}. Then, $T_{r}-T_{3}$ contains l_{1}. Recall that PEs u_{0} and u_{1} are on level $k-2$ in T. If at least one of u_{0} and u_{1} is not the parent of either l_{0} or l_{1}, then P_{0} and P_{1} together have at least 3 leaf boundary PEs. These 3 leaf PEs have to be assigned to h_{6} or h_{4} which is not possible in a balanced leaf utilization. It now follows that u_{0} and u_{1} are parents of l_{0} and l_{1}. In this case P_{0} and P_{1} together have 2 interior boundary PEs, say x_{1} and x_{2}, and have 2 leaf boundary PEs, say y_{1} and y_{2}. This situation is as in Figure $3(b)$ with l_{1} and y_{1} switching their positions. Thus, the argument is identical to the one given for the situation of Figure $3(b)$ and is therefore omitted. This concludes Case 2 and Lemma 4 follows.

Since there is only one node at a distance of 2 from the leaves in a subtree of height 3 , and because of Lemma 4 we have the following corollary.

Corollary 5: Let $\left(l_{0}, u_{0}\right)$ and $\left(l_{1}, u_{1}\right)$ be the assignment of two leaf nodes in H that are siblings. Then, paths P_{0} and P_{1} can not both be of length 2 .

We now consider the assignments of 4 consecutive leaf nodes in a common subtree of height 3 in H. From Lemmas 2 and 3 we know that the path of the assignment of a leaf node has to be either a bpl path or a straight path of length at most 2. Because of symmetry in complete binary trees we need not consider all the possible combinations of such paths in an assignment of 4 leaf nodes. We next describe how to exploit this symmetry. We say a path (resp. a leaf of H) is of type b if it is a bpl path and it is of type 2 (resp. 1) if it is a straight path of length 2 (resp. 1). Let $\left(l_{0}, u_{0}\right)$ and (l_{1}, u_{1}) be the assignments of two sibling leaf nodes in H. We say that paths P_{0} and P_{1} have a type assignment $q \tau$, when P_{0} is of type q and P_{1} is of type $\tau ; q, r \in\{b, 2,1\}$. Let P_{0} and P_{1} have a type assignment $q r$, and assume that P_{0} and P_{1} together have b_{l} leaf and b_{i} interior boundary PEs. If P_{0} and P_{1} have a type assignment $r q$ and the number of leaf and interior boundary PEs is as before, then the two type assignments are considered identical because of symmetry. Obviously, symmetric type assignments do not need to be considered separately. We now examine symmetric situations for sibling leaves in more detail.

From Corollary 5 we know that two sibling leaves cannot have a type assignment
22. This leaves type assignments $11, b 1, b b, b 2$, and 21 . Each one of $11, b 1$, and $b b$ has one interior and two leaf boundary PEs and the possible positions of l_{0}, u_{0}, l_{1} and u_{1} are shown in Figure 4(a) - (c). Note that there is some freedom in how l_{0}, u_{0}, l_{1} and u_{1} are chosen in T, but cases not shown in Figure 4 are all identical because of symmetry in complete binary trees. Because of symmetry in type assignments, as an example, $b 1$ is identical to 16.

(a) Type assignment 11.

(b) Type assignment $b 1$.

(c) Type assignment $b b$.

Figure 4: Positions of PEs in T of type assignments having 1 interior and 2 leaf boundary PEs.

Assume now that two sibling leaves in H have a type assignment $b 2$. Then there are two possibilities depending on whether or not l_{0} and l_{1} are siblings in T. If they are, $b 2$ has two interior and two leaf boundary PEs (see Figure $5(a)$); if they are not, $b 2$ has two interior and one leaf boundary PEs (see Figure 5(b)). We refer to the first possibility as (b2) and to the second one as (62$)^{\prime \prime}$. The last type assignment to be considered is 21 for which we also have two possibilities (again depending on whether l_{0} and l_{1} are siblings in T). One, (21)', has no leaf and two interior boundary PEs, and the second one, (21)", has one leaf and two interior boundary PEs. Both are shown in Figure 6.

(a) Type assignment ($b 2)^{\prime}$.

(b) Type assignment ($b 2)^{\prime \prime}$.

Figure 5: Positions of PEs in T of type assignment $b 2$.

Figure 6: Positions of PEs in T of type assignment 21.

We now take symmetry in type assigoments one step further. Let $S=\{11, b 1, b b$, $\left.(b 2)^{\prime},(b 2)^{\prime \prime},(21)^{\prime},(21)^{\prime \prime}\right\}$. Consider four consecutive leaves in H belonging to a common subtree of height 3. Let H_{3} be such a tree. Let Q be the type assignment of the first two leaves in H_{3}, R be the type assignment of the other two leaves, $Q, R \in S$. Then, the requirements on the interior and leaf boundary PEs for $Q R$ are the same as for $R Q$.

Without taking into account any symmetry, there are a total of 12 possible type assignments to two sibling leaves in H_{3}, namely the type assignments $11, b 1,1 b, b b,(b 2)^{\prime}$, $(2 b)^{\prime},(62)^{\prime \prime},(2 b)^{\prime \prime},(21)^{\prime},(12)^{\prime},(21)^{\prime \prime}$, and (12)". Since sibling leaf nodes can have any one of these 12 type assignments, we have a total of $12 * 12=1 \Delta 4$ possible type assignments to the 4 leaf nodes of H_{3}. Making use of symmetric assignments in two sibling leaf nodes and in the pair of two sibling leaf nodes, there are 28 different type assignments to the leaves of H_{3} to be considered. They are listed in Table 1. The next lemma will reduce this number to 18. Let A be the set of all type assignments in S that have two leaf boundary PEs; i.e., $A=\left\{11, b 1, b b,(b 2)^{\prime}\right\}$.

Lemma 6: If two sibling leaves in H_{3} have a type assignment that is in set A, then the other two sibling leaves cannot have a type assignment which is in A.
Proof: We show the assignments from set A in Figures $4(a)-(c)$ and $5(a)$. Every one of these has 2 leaf boundary PEs. Let Q (resp. R), $Q, R \in A$, be the type assignment of the leaves h_{0}, and h_{I} (resp. h_{2} and h_{3}). The PEs in Q (resp. R) must come from a common subtree of height 3 , and hence the two subtrees are disjoint. Let y_{1} and y_{2} be the two
leaf boundary PEs of type assignment Q and assume without loss of generality that y_{1} is assigned to h_{6} and y_{2} is assigned to h_{4}. Since neither y_{1} nor y_{2} can coincide with the 2 leaf boundary PEs of R and y_{1} is already assigned to h_{6}, h_{5} must accommodate the 2 leaf boundary PEs of R. This is not possible in a balanced utilization and hence the lemma follows. :

1111	$11(\mathrm{~b} 2)^{\prime \prime}$	b 1 bb	$\mathrm{b} 1(21)^{\prime \prime}$	$\mathrm{bb}(21)^{\prime}$	$(\mathrm{b} 2)^{\prime}(21)^{\prime}$	$(\mathrm{b} 2)^{\prime \prime}(21)^{\prime \prime}$
11 b 1	$11(21)^{\prime}$	$\mathrm{b} 1(\mathrm{~b} 2)^{\prime}$	bbbb	$\mathrm{bb}(21)^{\prime \prime}$	$(\mathrm{b} 2)^{\prime}(21)^{\prime \prime}$	$(21)^{\prime}(21)^{\prime}$
11 bb	$11(21)^{\prime \prime}$	$\mathrm{b1(b2)}^{\prime \prime}$	$\mathrm{bb}(\mathrm{b} 2)^{\prime}$	$(\mathrm{b} 2)^{\prime}(\mathrm{b} 2)^{\prime}$	$(\mathrm{b} 2)^{\prime \prime}(\mathrm{b} 2)^{\prime \prime}$	$(21)^{\prime}(21)^{\prime \prime}$
$11(\mathrm{~b} 2)^{\prime}$	$\mathrm{blb1}$	$\mathrm{b1(21)}^{\prime}$	$\mathrm{bb}(\mathrm{b} 2)^{\prime \prime}$	$(\mathrm{b} 2)^{\prime}(\mathrm{b} 2)^{\prime \prime}$	$(\mathrm{b} 2)^{\prime \prime}(21)^{\prime}$	$(21)^{\prime \prime}(21)^{\prime \prime}$

Table 1: Possible type assignments to the 4 leaves in H_{3} after removing the symmetric ones (type assignments not in bold are eliminated by Lemma 6).

From Lemma 6 it follows that the 4 leaves of H_{3} can not have a type assignment which is either $1111,11 b 1,11 b b, 11(b 2)^{\prime}, b 1 b 1, b 1 b b, b 1(b 2)^{\prime}, b b b b, b b(b 2)^{\prime}$, or $(b 2)^{\prime}(b 2)^{\prime}$. We thus are left with $28-10=18$ possible type assignments to the 4 leaves of H_{3} which are shown in bold in Table 1. Theorem 7 considers these remaining type assignments and shows that all of them are not possible.

Theorem 7: A dilation of 2 is not possible in an embedding $\langle f, g\rangle$ with balanced leaf and interior utilization.
Proof: Let H_{5} be the subtree of height 5 in H whose leaves are leaves of H and whose leftmost subtree of height 3 is the subtree H_{3}. Throughout this proof nodes of H_{5} are indexed as shown in Figure 7. We assume, without loss of generality, that no node in H_{5} has 2 leaf PEs assigned to it.

Figure 7: Subtree H_{5} and its indexing.
Assume that the four leaves in H_{3} have a type assignment shown in bold in Table 1. We partition these 18 type assignments into two sets, set B and set C. Set B has the following 9 type assignments : $(b 2)^{\prime}(b 2)^{\prime \prime},(b 2)^{\prime}(21)^{\prime},(b 2)^{\prime}(21)^{\prime \prime},(b 2)^{\prime \prime}(b 2)^{\prime \prime},(b 2)^{\prime \prime}(21)^{\prime}$, $(b 2)^{\prime \prime}(21)^{\prime \prime},(21)^{\prime}(21)^{\prime},(21)^{\prime}(21)^{\prime \prime}$, and $(21)^{\prime \prime}(21)^{\prime \prime}$. We first show that a type assignment in this set requires a leaf PE to be assigned to h_{8}. Set C consists of the remaining 9 type assignments and we will show that a type assignment in this set requires a leaf PE to be assigned either to h_{8} or to one of the 3 nodes from set $\left\{h_{10}, h_{8}, h_{7}\right\}$.

Let $\left(l_{i}, u_{i}\right)$ be again the assignment of leaf node $h_{i}, 0 \leq i \leq 3$. We first show that in any type assignment from set B, the PEs l_{i} and $u_{i}, 0 \leq i \leq 3$, have to come from a common subtree of height 4 in T. We know from Lemma 4 that l_{0}, u_{0}, l_{1}, and u_{1} (resp. l_{2}, u_{2}, l_{3}, and u_{3}) come from a common subtree of height 3 . We also know that these two subtrees are disjoint. Let T_{4} be the subtree of height 4 that contains l_{0}, u_{0}, l_{1}, and u_{1}. Assume without loss of generality that these 4 PEs are in the left subtree of \mathcal{T}_{4}. We now show that l_{2}, u_{2}, l_{3}, and u_{3} must be in the right subtree of T_{4}. Assume for the sake of contradiction that they are not. As before, let P_{i} denote the path $P\left(l_{i}, u_{i}\right), 0 \leq i \leq 3$. Paths P_{0}, P_{1}, P_{2}, and P_{3} have a type assignment from set B. Since P_{0} and P_{1} have a type assignment which is either $(b 2)^{\prime},(b 2)^{\prime \prime},(21)^{\prime}$, or (2I)", paths P_{0} and P_{1} together have 2
interior boundary PEs, as can also be seen in Figures 5 and 6. Paths P_{2} and P_{3} have a type assignment which is either (b2) ${ }^{\prime \prime},(21)^{\prime}$, or $(21)^{\prime \prime}$ and hence paths P_{2} and P_{3} together also have 2 interior boundary PEs. Since I_{0}, u_{0}, l_{1} and u_{1} are in the left subtree of T_{4} and l_{2}, u_{2}, l_{3} and u_{3} are not in the right subtree of T_{4}, the 2 interior boundary PEs of paths P_{0} and P_{1} are distinct from the 2 interior boundary PEs of P_{2} and P_{3}. Thus, a total of 4 interior PEs are required to be assigned to 3 nodes h_{4}, h_{5}, or h_{6}. This is not possible in a balanced interior utilization. Hence, l_{2}, u_{2}, l_{3} and u_{3} have to be in the right subtree of T_{4}.

We next show that when the PEs l_{i} and u_{i} come from a common subtree of height 4 in T and when the paths P_{i} have a type assignment from set $B, 0 \leq i \leq 3$, one leaf PE is required to be assigned to h_{8}. We show the positions of l_{i} and u_{i} for the type assignments from set B in Figures $8(a)-(e)$. To be consistent with the labelings, we show in Figure $8(d)$ the symmetric type assignment $(21)^{\prime \prime}(21)^{\prime}$ instead of $(21)^{\prime}(21)^{\prime \prime}$. Note that there is some freedom in how l_{i} and $u_{i}, 0 \leq i \leq 3$, are chosen but cases not shown are all identical because of symmetry in binary trees. Paths P_{0} and P_{1} together have x and y as interior boundary PEs. Paths P_{2} and P_{3} together have x and z as interior boundary PEs. Since x is the common interior boundary PE, x is required to be assigned to h_{6}. This implies that the interior PE y (resp. z) has to be assigned to h_{4} (resp. h_{5}). It is now easy to see that a total of 4 leaf PEs, labeled as $l f_{1}, l f_{2}, l f_{3}$, and $l f_{4}$ in Figure 8 , have to be assigned to 4 nodes h_{4}, h_{5}, h_{6}, and h_{8}. Thus, h_{8} is required to be assigned one leaf PE. This completes the description of set B.

Having a leaf requirement on h_{8} implies the following. Let H_{4} be a subtree of height 4 in which no node has 2 leaf PEs assigned to it. If the 4 leaves in the left subtree of H_{4} have type assignment $Q, Q \in B$, then the four leaves in the right subtree of H_{4} can not have a type assignment in B since that would require 2 leaf P Es to be assigned to the root of H_{4} which is not possible in a balanced leaf utilization.

We now consider type assignments from set C. Recall that set C contains the following 9 type assignments: $11(b 2)^{\prime \prime}, 11(21)^{\prime}, 11(21)^{\prime \prime}, b 1(b 2)^{\prime \prime}, b 1(21)^{\prime}, b 1(21)^{\prime \prime}, b b(b 2)^{\prime \prime}, b b(21)^{\prime}$, and $b b(21)^{\prime \prime}$. We show the positions of the PEs in T for these type assignments in Figures $9(a)-(f)$. Once again note that there is some freedom in how PEs l_{i} and $u_{i}, 0 \leq i \leq 3$, are chosen but cases not shown are all identical because of symmetry in binary trees. Observe

$\begin{array}{lllllllllll}\ell_{0} & \ell_{1} & \ell_{1} & \ell_{\sigma_{2}} & \ell_{2} & \ell_{\sigma_{3}} & \ell_{3} & \ell_{\sigma_{4}}\end{array}$
(a) Type assigrment (b2)'(b2)".
[for type assignment $(b 2)^{\prime}(21)^{\prime \prime}$ switch positions of μ_{2} and $\mu_{3 .}$]

(b) Type assignment (b2)'(21)'.

(c) Type assignment (b2)" $(b 2)^{\prime \prime}$. [for type assignment (b2)"(21)" swich positions of u_{2} and u_{3}, and for type assigrment (21)"(21)" switch positions of u_{0} and u_{1} and of u_{2} and u_{3}.]

(d) Type assignment (b2)"'(21)'.
[for type assignment (21)" (21)" switch positions of u_{0} and $u_{\mathrm{I} .}$ J

Figure 8: Positions of PEs in T for the type assignments in set B.
that for a type assignment in C the PEs l_{i} and $u_{i}, 0 \leq i \leq 3$, may or may not come from a common subtree of height 4 in T. We indicate this by showing disjoint subtrees in Figure 9. We now show that any type assignment from set C requires a leaf PE to be assigned either to h_{8} or to one of the 3 nodes from set $\left\{h_{10}, h_{8}, h_{7}\right\}$. Since P_{0} and P_{1} have a type assignment which is either $11, b 1$, or $b b$, paths P_{0} and P_{1} together have 1 interior boundary PE. Let y be this PE. Furthermore, P_{0} and P_{1} have 2 leaf boundary PEs which we refer : to as $l f_{1}$ and $l f_{2}$. Paths P_{2} and P_{3} have a type assignment which is either $(b 2)^{\prime \prime},(21)^{\prime}$, or (21)" and they together have 2 interior boundary PEs. Let x and z be these PEs.

The leaf PEs $l f_{1}$ and $l f_{2}$ are required to be assigned to h_{6} or h_{4}. Without loss of generality let $l f_{1}$ be assigned to h_{6} and $l f_{2}$ be assigned to h_{4} as shown in Figure 10. The interior PEs x and z have to be assigned to h_{6} and h_{5} and thus node h_{6} is required to have an interior PE assigned to it. The interior PE y has to be assigned to either h_{6} or h_{4}, but since h_{6} already has an interior PE (either x or z) assigned to it, y has to be assigned to h_{4}. There are two possibilities for x and z. In the first possibility x is assigned to h_{6} and z is assigned to h_{5}. In the second possibility x is assigned to h_{5} and z is assigned to h_{6}. Both situations are shown in Figure 10, where the assignments of the second possibility are shown in brackets. We thus divide the type assignments from set C into two sets $C^{\prime \prime}$ and $C^{\prime \prime}$. Set C^{\prime} consists of all type assignments from set C in which x is assigned to h_{6}. Set $C^{\prime \prime}$ consists of all type assignments from set C in which x is assigned to h_{5}. We now consider sets C^{\prime} and $C^{\prime \prime}$ in more detail and show that a type assignment in C^{\prime} requires a leaf PE to be assigned to h_{8} and that a type assignment in $C^{\prime \prime}$ requires a leaf PE to be assigned to one of the nodes from set $\left\{h_{10}, h_{8}, h_{7}\right\}$.

Set $C^{\prime}:$ In Figures $9(a),(c)$, and (e) paths P_{2} and P_{3} together have 1 leaf boundary PE $l f_{4}$ which has to be assigned to either h_{6} or h_{5}. Since h_{6} already has leaf PE $l f_{1}$ assigned to it, leaf PE $l f_{4}$ is assigned to h_{5}. In set C^{\prime} interior $\mathrm{PE} z$ is assigned to h_{5}. Since z has leaf PE $l f_{3}$ as its child and since every node at a distance of at most 2 from h_{5}, except h_{8}, already has a leaf PE assigned to it, $l f_{3}$ has to be assigned to h_{8}. In Figures $9(b),(d)$, and (f) one of $l f_{3}$ or $l f_{4}$, say $l f_{4}$, has to be assigned to h_{5}, and the other leaf, say $l f_{3}$, has to be assigned to h_{8}.

Set $C^{\prime \prime}$: Since h_{6} already has a leaf PE , namely $l f_{1}$, assigned to it, leaf boundary PE

(a) Type assignment 11(b2)".
[for type assignment 11(21)" switch positions of u_{2} and u_{3}.]

(c) Type assignment $b 1(b 2)^{\prime \prime}$.
[for type assignment $b 1$ (21)" switch positions of u_{2} and u_{3}.]

(e) Type assignment $b b(b 2)^{\prime \prime}$.
[for type assignment $b b$ (21)" switch positions of u_{2} and u_{3}.]

$\begin{array}{llllllll}l_{0} & l_{\sigma_{1}} & l_{1} & l_{\sigma_{2}} & l_{2} & l_{3} & l_{f_{3}} & \ell f_{4}\end{array}$
(b) Type assignment 11(21)'.

(d) Type assignment bl(21)'.

Figure 9: Positions of PEs in T for the type assignments in set C.
$l f_{4}$ in Figures $9(a),(c)$, and (e) has to be assigned to h_{5}. In Figures $9(b),(d)$, and (f) the 2 leaf PEs $l f_{3}$ and $l f_{4}$ have to be assigned to 2 nodes from the set $\left\{h_{10}, h_{8}, h_{7}, h_{5}\right\}$. We show that either $l f_{3}$ or $l f_{4}$ has to be assigned to h_{5}. Assume the contrary, i.e., h_{5} is assigned a leaf $\mathrm{PE} l f$ that is neither $l f_{3}$ nor $l f_{4}$. But now the parent of $l f$, which is distinct frorn u_{2}, u_{3}, x, y, z, and the parent of x, has to be assigned to a node at a distance of at most 2 from h_{5}. Since every one of these nodes already has an interior PE assigned to it, h_{5} has to be assigned either $l f_{3}$ or $l f_{4}$. Say that h_{5} is assigned $l f_{4}$. It now follows easily that $l f_{3}$ has to be assigned to either h_{10}, h_{8}, or h_{7}. This completes the description of set $C^{\prime \prime}$.

Figure 10: Subtree H_{5} showing the assignments of PEs to nodes as in set $C^{\prime}\left[C^{\prime \prime}\right]$.
In order to complete proof, we now consider the assignments of 8 consecutive leaf nodes in a common subtree of height 4 in H and then consider the assignments of 16 consecutive leaf nodes in a common subtree of height 5 . Let H_{4} be the left subtree of H_{5}. Recall that H_{3} (resp. H_{3}^{\prime}) is the left (resp. right) subtree of H_{4} as shown in Figure 7. Furthermore, we assume that no node in H_{4} has 2 leaf PEs assigned to it. Let Q be the type assignment of the 4 leaf nodes in H_{3}. We know that Q has to be in set B, C^{\prime}, or $C^{\prime \prime}$. Let R be the type assignment of the 4 leaf nodes in H_{3}^{\prime}. Then, R has to be in the set B, C^{\prime}, or $C^{\prime \prime}$. We already showed that when Q is in the set B, then R can not be in the set B. This leaves R to be in the set C^{\prime} or $C^{\prime \prime}$, and Q to be in the set B, C^{\prime}, or $C^{\prime \prime}$ (not considering the symmetric type assignments).

First consider the case when $R \in C^{\prime}$ and $Q \in B$ or C^{\prime}. Type assignment R requires

1 leaf PE , say $l f$, to be assigned to h_{8}. Type assignment Q also requires I leaf PE, say $l f^{\prime}$, to be assigned to h_{8}. Since $l f^{\prime}$ can not coincide with $l f, 2$ leaf PEs are required to be assigned to h_{8} which is not possible in balanced leaf utilization.

Next consider the remaining 3 combinations, namely $R \in C^{\prime \prime}$ and $Q \in B, C^{\prime}$, or $C^{\prime \prime}$. We show that a leaf PE is required to be assigned to h_{10}. Since $R \epsilon C^{\prime \prime}$, one of the nodes from set $\left\{h_{10}, h_{8}, h_{6}\right\}$ is required to be assigned a leaf PE. Let If be this PE. But since h_{6} already has a leaf PE assigned from type assignment Q, If has to be assigned to either h_{10} or h_{8}. When $Q \in B$ or $Q \epsilon C^{\prime}$, type assignment Q requires a leaf $P E$, which is distinct from $l f$, to be assigned to h_{8} and hence leaf PE lf has to be assigned to h_{10}. When $Q \in C^{\prime \prime}$, type assignment Q requires a leaf PE , say $l f^{\prime}$ that is distinct from $l f$, to be assigned to one of the nodes from set $\left\{h_{10}, h_{8}, h_{7}\right\}$. But since h_{7}, the root of H_{3}^{\prime}, already has a leaf PE assigned from type assignment $R, l f^{\prime}$ has to be assigned to either h_{10} or h_{8}. Thus, we have 2 leaf PEs $l f$ and $l f^{\prime}$ that have to be assigned to h_{10} and h_{8}. Without loss of generality let $l f$ be assigned to h_{10} and thus $l f$ ' is assigned to h_{8}.

In order to get a contradiction we consider the assignments to the 8 leaf nodes in H_{4}^{\prime}, the right subtree of H_{5}. Let Q^{\prime} (resp. R^{\prime}) be the type assignment of leaf nodes in the left (resp. right) subtree of H_{4}^{\prime}. From our previous discussion it follows that the only possible assignment for the leaves of H_{4}^{\prime} is $R^{\prime} \in C^{\prime \prime}$ and $Q^{\prime} \in B, C^{\prime}$, or $C^{\prime \prime}$. In each of these 3 cases a leaf PE, say $l f^{\prime \prime}$, is required to be assigned to h_{10}. Since h_{10} already has a leaf PE, namely $l f$, assigned to it and since $l f^{\prime \prime}$ is distinct from $l f$, we have a requirement of 2 leaf PEs on h_{10}. This is not possible since we assumed that only 1 leaf PE is assigned to h_{10}. Theorem 7 now follows.

3. Conclusions

We have shown that any embedding of a $2 m+1-\mathrm{PE}$ complete binary tree T into an m-node complete binary tree H with a balanced leaf and interior utilization requires a dilation of at least 3. The best known upper bound on the dilation for such an embedding is $2 \log \log m+1[\mathrm{GH}]$ and we conjecture that this is optimal within a constant factor. Note that if we require every node of H to be assigned 2 arbitrary PEs of T (and one node to be assigned 3 PEs), then it is easy to achieve a dilation of 1 . We consider it unlikely that the
techniques used in this paper generalize so that the gap between 3 and $2 \log \log m+1$ can be closed. The main reasons appear to be the inability to easily classify the paths $P(l, u)$ and the resulting exponential growth in the number of cases to be considered.

4. References

[AR] R. Aleliunas, A. Rosenberg, "On Embedding Rectangular Grids into Square Grids," IEEE Trans. on Comp., Vol. V-31, pp. 907-913, 1982.
[B] S. A. Browning, "The Tree Machine: A Highly Concurrent Computing Environment," Ph.D. Thesis, Computer Science Dept., Caltech, 1980.
[BCJLR] S. Bhatt, F. Chung, H. Jai-Wei, F. T. Leighton, and A. L. Rosenberg, "Optimal Simulations by Butterfly Networks," Proc. of $23^{\text {rd }}$ STOC, pp. 192-204, 1988.
[BCLR] S. Bhatt, F. Chung, F. T. Leighton, A. Rosenberg, "Optimal Simulations of Tree Machines," Proc. of $27^{\text {th }}$ FOCS, pp. 274-282, 1986.
[BSM] S. Bettayeb, I. H. Sudborough, and Z. miller, "Embedding Grids into Hypercubes," Proc. of $3^{\text {rd }}$ Aegean Workshop on Computing, 1988.
[CGC] F. R. K. Chung, R. L. Graham, and D. Coppersmith, "On Graphs Containing All Small Trees, ${ }^{\text {" }}$ The Theory and Applications of Graphs, (G. Chartand, Ed.), pp. 255264, Wiley, 1981.
[FF] J. P. Fishburn and R. A. Finkel, "Quotient Networks," IEEE Transactions on Computers, Vol. C-31, No. 4, April 1982, pp. 288-295.
[GH] A. K. Gupta and S. E. Hambrusch, "Embedding Large Tree Machines into Small Ones," Proceedings of the $5^{\text {th }}$ MIT Conference on Advanced Research in VLSI, pp. 179-199, March 1988.
[JMR] H. Jai-Wei, K. Mehlhorn, A. Rosenberg, "Cost Trade-offs in Graph Embeddings, with Applications," JA CM, pp. 709-728, 1983.
[KA] S. R. Kosaraju, M. Atallah, "Optimal Simulations between Mesh Connected Array of Processors," Journal of the Association of Computing Machinery, Vol. 35, No. 3, pp. 635-650, July 1988.
[R] A. L. Rosenberg, "Preserving Proximity in Arrays," SIAM J. on Computing, pp. 443-460, 1979.

[^0]: *This work was supported by the Office of Naval Research under Contracts N00014-$84-\mathrm{K}-0502$ and N00014-86-K-0689, and by the National Science Foundation under Grant MIP-87-15652.

