Purdue University

Purdue e-Pubs

Department of Computer Science Technical Reports

1990

1-D Compaction

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu
Hung-Yi Tu

Report Number:

90-999

Hambrusch, Susanne E. and Tu, Hung-Yi, "1-D Compaction" (1990). Department of Computer Science Technical Reports. Paper 849.
https://docs.lib.purdue.edu/cstech/849

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

1-D Compaction in the Presence of Forbidden Regions

Susanne Hambrusch *
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907
Hung -Ti Tu ${ }^{\dagger}$
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

October 18, 1990

Abstract

In this paper we consider the one-dimensional compaction problem when the layout area contains forbidden regions and the layout components are allowed to move across these regions. Given n layout components and k forbidden regions, each of rectangular shape, we show how to solve this compaction problem in $O(\Delta)$ time with $O((n+k) \log k+\delta \log \delta)$ preprocessing, where Δ and δ are measures for the interaction between layout components and forbidden regions, $\Delta<n^{2} k, \delta \leq n k$. We also consider special cases of the forbidden regions. For example, when every forbidden region is of length h, where h is the height of the layout, the compaction problem can be solved in $O\left(\rho \log \left\lceil\frac{n k}{\rho}\right\rceil+\rho\right)$ time, with $O(\rho+n \log n+k)$ preprocessing, where ρ is the number of edges in transitive closure of visibility graph induced by the layout components, $\rho<n^{2}$.

[^0]
1 Introduction

A one-dimensional (1-D) compacter takes as an input a VLSI layout and generates a layout of smaller area by sliding the layout components in one direction [1, 2, 4]. W.l.o.g., let it be the horizontal direction. Early compaction algorithms have not been used as widely as expected. One of the reasons given attributes it to the limitations inherent to these compaction systems; e.g., they could not handle additional constraints on where to place or not to place certain layout components [5]. In this paper we take a step towards incorporating additional constraints into the compaction process. We consider compaction when the layout area contains forbidden regions. The forbidden regions can represent, for example, pre-positioned layout components or holes in the layout area. The positions of the forbidden regions cannot be altered during the compaction process, but layout components are allowed to "slide over" the forbidden regions. We assume that both forbidden regions and layout components are of rectangular shape.

Given are n rectangles, $R_{1}, R_{2}, \ldots, R_{n}$, and k forbidden regions, B_{1}, B_{2}, \ldots, B_{k}, with the edges of the rectangles and forbidden regions parallel to the coordinate axes. A configuration of the layout assigns to every lower left corner of a rectangle a position of the layout area. A configuration is called feasible if it keeps the relative order of the rectangles in the horizontal direction and no two rectangles and no rectangle and forbidden region overlap. A feasible configuration of minimum area is called a minimum configuration.

Let h be the height of the layout. Since compaction is done in the horizontal direction, h is determined by the forbidden regions and the rectangles, and is not altered during compaction. We first consider the compaction
problem when every forbidden region has height h. We refer to this problem as the k-partition problem. We develop characterizations of a minimum configuration that allow us to determine a minimum configuration of the k-partition problem in $O\left(\rho \log \left\lceil\frac{n k}{\rho}\right\rceil+\rho+n \log n+k\right)$ time, where ρ is the number of edges in transitive closure of visibility graph induced by the n rectangles, $\rho<n^{2}$. We then generalize the approach used for the k-partition problem to handle the general problem, the forbidden region problem. Let δ be the number of pairs (i, j) such that rectangle R_{i} could overlap with forbidden region B_{j} (if we slid R_{i} horizontally), $\delta \leq n k$. We again characterize a set of feasible configurations and show that a minimum configuration is among them. The number of feasible configurations considered is at most $n+1$ for the k-partition problem and at most δ for the forbidden region problem. In both algorithms we generate the configurations in an order that allows us to update changes in the positions of the layout (and thus the width of the layout associated with each configuration) efficiently. The running time for the forbidden region problem is $O(\Delta)$ with $O((n+k) \log k+\delta \log \delta)$ preprocessing, where Δ is another measure for the interaction between the layout components and the forbidden regions, $\Delta<n^{2} k$.

The k forbidden regions in the k-partition problem can be viewed as a position in the layout where a vertical cut can be made. In certain environments one may need to make k cuts, but does not have the positions of the cuts pre-determined. Rather, the vertical cuts should be made so that the maximum distance between two consecutive cuts is a minimum. For example, in a multi-layer environment minimizing the maximum space between two cuts corresponds to minimizing the volume of the 3 -dimensional
layout. This is the objective in the minmax k-partition problem. For the case when only three cuts are made (i.e., the rectangles are compacted onto 2 layers) we present an $O(n)$ time algorithm. For arbitrary k we present an $O(\rho+n \log n)$ time algorithm, where ρ equals the number of edges in the transitive closure of the visibility graph. In this algorithm we also identify a set of feasible configurations. However, it is now possible to employ a binary search technique for identifying a minimum configuration.

This paper is structured as follows. In Section 2 we describe our algorithm for the k-partition problem. Section 3 addresses the forbidden region problem. In Section 4 we consider the minmax k-partition problem.

$2 k$-partition problem

In this section we present our algorithm for the k-partition problem. Recall that in this problem the height of every forbidden region is equal to the height of the layout area. We first present an $O\left(n^{2} \log k+k\right)$ time algorithm. Using properties of minimum configurations and relationships between configurations, we then reduce the time to $O\left(\rho \log \left\lceil\frac{n k}{\rho}\right\rceil+\rho+k+n \log n\right)$, where ρ is the number of edges in the transitive closure of the visibility graph of the rectangles.

Assume that the width of every forbidden region is zero. Straightforward modifications to the algorithm can handle forbidden regions with arbitrary widths. For convenience we introduce two fictitious rectangles R_{0} and R_{n+1} of height h and width zero, which are initially positioned to the left and to the right of the other rectangles and the forbidden regions, respectively. Figure 1(a) shows an initial configuration of a 7 -partition problem for $n=8$.

Let $x\left(B_{i}\right)$ be the position (i.e., the x-coordinate of the left side) of forbidden region B_{i}. Let S_{i} denote the area of width d_{i}, called the slot, between B_{i} and B_{i+1} for $1 \leq i \leq k-1$. For $i=0, S_{i}$ is the area available to the left of B_{1}, and for $i=k, S_{i}$ is the area to the right of B_{k}, respectively. In any configuration C, let $\left(x_{C}\left(R_{\mathrm{i}}\right), y_{C}\left(R_{\mathrm{i}}\right)\right)$ be the position of the lower left corner of rectangle R_{i}. Since the width of any minimum configuration is at least $x\left(B_{k}\right)-x\left(B_{1}\right)$, we only consider feasible configurations in which R_{0} is to the left of position $x\left(B_{1}\right)$ and R_{n+1} is to the right of position $x\left(B_{k}\right)$. The width of configuration C is then the distance between R_{0} and R_{n+1}; i.e., $x_{C}\left(R_{n+1}\right)-x_{C}\left(R_{0}\right)$. A feasible configuration C is called lefi-compressed if for any other feasible configuration C^{\prime} in which $x_{C^{\prime}}\left(R_{0}\right)=x_{C}\left(R_{0}\right)$ we have $x_{C}\left(R_{i}\right) \leq x_{C^{\prime}}\left(R_{i}\right)$ for $1 \leq i \leq n$. Intuitively, in a left-compressed configuration all rectangles are positioned as far to the left as possible. Figure 1 (b) shows the leftcompressed version of the configuration shown in Figure 1(a). It is easy to see that performing a left-compression on a configuration cannot increase its width.

Two rectangles $R_{\mathbf{i}}$ and R_{j} are visible from each other if one can draw a horizontal line segment connecting R_{i} and R_{j} without intersecting any other rectangles. The visibility graph induced by the rectangles is the directed graph $G=(V, E)$ in which each vertex corresponds to a rectangle and the edges reflect the visibility between the rectangles. More precisely, an edge is directed from i to j if rectangle R_{j} is to the right of R_{i} and R_{i} and R_{j} are visible from each other. Throughout this paper the vertices of the visibility graph have a weight associated with them. The weight of the vertex corresponding to R_{i} is w_{i}, the width of R_{i}. Figure 2 shows the
visibility graph for the rectangles of Figure $1(a)$. The length of a path from R_{i} to R_{j} is the sum of the weights of the vertices on this path. The length of the longest path from R_{0} to R_{i} in a visibility graph G is denoted by l_{i}.

Depending on the layout system used to generate the initial layout, the visibility information between rectangles may or may not be available [6]. If it is not available, it can easily be determined in $O(n \log n)$ time. Throughout the paper we assume that the visibility graph G is available. Furthermore, we assume that the forbidden regions $B_{1}, B_{2}, \ldots, B_{k}$ have been sorted in increasing order according to the x-coordinate, and that the rectangles $R_{0}, R_{1}, \ldots, R_{n+1}$ are arranged in a topological order induced by G. All these pre-processing steps can be accomplished in $O(n \log n+k \log k)$ time and their running time will no longer be explicitly stated. The following property of a left-compressed minimum configuration relates some longest path to the position of R_{0} as follows.

Property 2.1 Let C be a lefl-compressed minimum configuration. Then, there exists a rectangle $R_{i}, 0 \leq i \leq n$, such that

$$
x_{C}\left(R_{0}\right)+l_{i}=x\left(B_{1}\right) .
$$

There are at most $n+1$ left-compressed feasible configurations satisfying Property 2.1. An immediate algorithm for the k-partition problem is to generate these $n+1$ configurations and to determine the minimum one among them as follows. Let C_{i} be the left-compressed configuration in which the width of slot S_{0} is $l_{i}, 0 \leq i \leq n$. The width of configuration C_{i} is determined by first setting $x_{G_{i}}\left(R_{0}\right)=x\left(B_{1}\right)-l_{i}$. Then, process the rectangles in order $R_{1}, R_{2}, \ldots, R_{n+1}$. Recall that the rectangles are sorted in a topological order
induced by G. When processing rectangle R_{j} we determine the rectangle $R_{\text {max }}$ which is a predecessor of R_{j} in G and whose value $x_{C_{i}}\left(R_{\max }\right)+w_{\max }$ is a maximum among all such values. Assume that $R_{\max }$ is in slot S_{1}. In order to determine the position of R_{j}, the following query is answered. Let d_{l}^{\prime} be the width still available in slot S_{i}; i.e., $d_{l}^{\prime}=x\left(B_{1+1}\right)-\left(x_{C_{i}}\left(R_{\max }\right)+\right.$ $w_{\text {max }}$). Given slots $S_{l}, S_{l+1}, \ldots, S_{k-1}, S_{k}$ with widths $d_{l}^{\prime}, d_{l+1}, \ldots, d_{k-1},+\infty$, respectively, and rectangle R_{j} with width w_{j}, determine the smallest index a such that $d_{a} \geq w_{j}$. If $a=l$, we set $x\left(R_{j}\right)$ to $x_{C_{i}}\left(R_{\max }\right)+w_{\max }$; otherwise, we set $x\left(R_{j}\right)$ to $x\left(B_{a}\right)$.

By using a balanced tree, which we call the space tree, this query can easily be answered in $O(\log k)$ time. Thus, configuration C_{i} can be generated in $O(n \log k)$ time and the minimum configuration can be determined in $O\left(n^{2} \log k\right)$ time. The generation of the space tree costs $O(k)$ preprocessing time. We briefly describe the operations performed on the space tree. The space tree initially stores in the leaves the entries $(+\infty, 0),\left(d_{1}, 1\right) \ldots,\left(d_{k-1}, k-\right.$ 1), and ($+\infty, k$). Every interior node v records a pair of entries (value(v), index(v)). In this pair value (v) records the largest leaf entry found in the subtree rooted at v and index (v) records the index of the slot with width value(v). Assume we access v 's left child and right child through lchild(v) and $\tau c h i l d(v)$, respectively. To answer a query we first check whether $w_{j} \leq d_{l}^{\prime}$. If yes, we put rectangle R_{j} into slot S_{l}. Otherwise, from the leaf containing d_{l}, we search upwards for the first interior node v with value $($ rchild $(v)) \geq w_{j}$ and index $(\operatorname{rchild}(v))>l$. When this node v has been found, we search downwards for the desired index a in the subtree rooted at rchild(v). Figure 3(a) shows the space tree for the 7-partition problem of Figure 1(a). The dashed
lines indicate the searching for determining the position of rectangle R_{7}. For R_{7} we have $R_{\max }=R_{5}$ and $l=2$. Since the remaining space in slot S_{2} is not wide enough for $R_{7}\left(w_{7}=4\right.$ and $d_{2}^{\prime}=3$), R_{7} ends up in slot S_{4}.

We now show how to improve the running time to $O\left(\rho \log \left\lceil\frac{n k}{\rho}\right\rceil+\rho+\right.$ $k+n \log n$). Since $\rho=O\left(n^{2}\right)$, we not only make the running time inputsensitive, but also improve its worst-case performance. Assume now that the rectangles are topologically ordered so that $l_{0} \leq l_{1} \leq \ldots \leq l_{n+1}$ and that the configurations are generated in the order $C_{n}, C_{n-1}, \ldots, C_{1}, C_{0}$. In configuration C_{n} every rectangle is assigned a position in slot S_{0} and is to the left of forbidden region B_{1}. Obviously, if we generate the configurations in this order, the positions assigned to rectangles cannot decrease; i.e., $x_{C_{i}}\left(R_{j}\right) \leq x_{C_{i-1}}\left(R_{j}\right)$ for all j. In order to efficiently determine the correct slots for rectangles, we change the space tree from a basic balanced binary tree to a level-linked finger tree [3], which we call finger space tree. A finger tree allows fast searching in the vicinity of a finger. Figure 3 (b) shows the finger space tree for the 7-partition problem of Figure 1(a).

While generating the configurations we maintain for every rectangle R_{p} a variable $x^{\prime}\left(R_{p}\right)$ which contains the correct position of R_{p} in configuration C_{i} when R_{p} is to the right of B_{1}. When R_{p} is to the left of B_{1}, we have $x^{\prime}\left(R_{p}\right)=-\infty$ and R_{p} 's position is determined by the longest path; i.e., $x_{\mathcal{C}_{i}}\left(R_{p}\right)=x\left(B_{1}\right)-l_{i}+l_{p}-w_{p}$. Assume now that the width of configuration C_{i} has been determined. In order to generate C_{i-1}, the rectangles in slot S_{0} are pushed $l_{\mathrm{i}}-l_{\mathrm{i}-1}$ positions to the right. This pushing leaves all rectangles, except R_{i}, to the left of B_{1} in slot S_{0}. Rectangle R_{i} is pushed to across B_{1}. During this process a rectangle R_{p} finds itself in one of three possible
situations.

Case 1. Rectangle R_{p} is reachable from rectangle R_{i}. Since R_{i} moves from being immediately to the left of forbidden region B_{1} in C_{i} to being to the right of B_{1} in C_{i-1}, rectangle R_{p} may need a new position. We use the finger space tree to determine its new position and we record it in entry $x^{\prime}\left(R_{p}\right)$.

Case 2. Rectangle R_{p} is to the left of forbidden region B_{1} in C_{i} and $p \neq i$. Then, in configuration C_{i-1}, R_{p} is shifted $l_{i}-l_{i-1}$ positions to the right (i.e., $\left.x_{C_{i-1}}\left(R_{p}\right)=x_{C_{i}}\left(R_{p}\right)+\left(l_{i}-l_{i-1}\right)\right)$. Since configurations are generated by decreasing longest paths from R_{0}, no rectangle for which Case 2 applies can overlap with forbidden region B_{1}.

Case 3. Rectangle R_{p} is to the right of forbidden region B_{1} in C_{i} and it is not reachable from R_{i} in visibility graph G. Then, the position of R_{p} in C_{i-1} is as in configuration C_{i}.

For rectangles for which Case 1 applies (including rectangle R_{i}) we use the finger space tree as follows. Assume we are determining a new position for rectangle R_{p} in configuration C_{i-1}. Assume R_{p} is assigned a position in slot S_{m} in configuration C_{i}. Let $R_{\text {max }}$ be defined for rectangle R_{p} in configuration C_{i-1} as before. Assume $R_{\text {max }}$ is in slot S_{l}. If $l<m$, then R_{p} remains in slot S_{m}. Hence, assume that $l \geq m$ and let d_{l}^{\prime} be again the width available in slot S_{l} for R_{p} in configuration C_{i-1}. Assume $w_{p}>d_{l}^{\prime}$ (i.e., S_{t} now is not big enough for R_{p}.) From the leaf containing d_{l}, we start traversing the path towards the root. Let v be the first gode we meet on this path, and rneighbor (v) be v 's right neighbor. If $w_{p} \leq v a l u e(r n e i g h b o r(v)$), we perform a downward searching in the subtree rooted at rneighbor (v) to
determine the slot for rectangle R_{p}; otherwise, we continue with v 's parent. Figure 3(b) shows how the new position for R_{7} is determined (the dashed lines indicate the links traversed.) Assume R_{p} 's new position is in slot S_{a}. Then, it takes $O(1+\log (a-l))$ time to determine this slot. We point out that for the rectangles for which Case 2 applies no updating is done and necessary. Their actual position can be, when needed, determined in $O(1)$ time.

We summarize the main steps of our improved algorithm. The preprocessing includes building the finger space tree, generating the topological order with $l_{0} \leq l_{1} \leq \ldots \leq l_{n+1}$, and constructing for each rectangle R_{i} list L_{i} containing the rectangles reachable from R_{i} (in a topological order). This requires $O(k+n \log n+\rho)$ time. We then generate the configurations $C_{n}, C_{n-1}, \ldots, C_{1}, C_{0}$. We generate the width of C_{i-1} from C_{i} by computing new positions for only the rectangles reachable from R_{i}, as described above. Once we have the index i resulting in the left-compressed minimum configuration, we re-build configuration C_{i} in $O(n \log k)$ time by setting $x_{C_{i}}\left(R_{0}\right)=x\left(B_{1}\right)-l_{i}$ and left-compressing the n rectangles.

We now show that this algorithm achieves the claimed time bound. Let r_{i} be the number of rectangles that can reach rectangle R_{i} (we assume that a rectangle can reach itself.) Initially, rectangle R_{i} is to the left of B_{1}. At some point R_{i} moves across B_{1} and is assigned a new position in a slot to the right of B_{1}. From this point on, every time a rectangle that can reach R_{i} moves across B_{1}, rectangle R_{i} may get re-positioned. Its new position is always to the right of its old position. Let $f_{i, j}$ be the number of slots rectangle R_{i} moves to the right when R_{i} is re-positioned for the j-th time,
$1 \leq j \leq r_{i}$. By using the finger space tree to determine the new slots, the total time needed to re-position rectangle R_{i} is

$$
\sum_{j=1}^{r_{i}}\left(1+\log f_{i, j}\right)
$$

which is less than

$$
\tau_{i} \log \frac{k}{\tau_{i}}+\tau_{i} .
$$

Let T_{p} be the total time needed to re-position all rectangles. Then,

$$
\begin{aligned}
T_{p} & \leq \sum_{i=0}^{n}\left(r_{i} \log \frac{k}{r_{i}}+r_{i}\right) \\
& \leq \sum_{i=0}^{n} r_{i} \log k-\sum_{i=0}^{n} \tau_{i} \log r_{i}+\sum_{i=0}^{n} \tau_{i} \\
& \leq \rho \log k-\sum_{i=0}^{n} r_{i} \log r_{i}+\rho,
\end{aligned}
$$

where $\sum_{i=0}^{n} r_{i}=\rho$. A straightforward computation shows that

$$
\sum_{i=0}^{n} r_{i} \log r_{i}>\rho \log \frac{\rho}{n} .
$$

Using this lower bound on $\sum_{i=0}^{n} r_{i} \log r_{i}$, we get

$$
T_{p}<\rho \log \left\lceil\frac{n k}{\rho}\right\rceil+\rho
$$

Hence, it takes $O\left(\rho \log \left\lceil\frac{n k}{\rho}\right\rceil+\rho\right)$ time to compute the widths of configurations $C_{n}, C_{n-1}, \ldots, C_{0}$. Note that the $O(n \log k)$ time needed for re-building the minimum configuration is bounded by $O\left(\rho \log \left[\frac{n k}{\rho}\right]+\rho\right)$. We conclude this section with the following result.

Theorem 2.1 Given n rectangles and k forbidden regions, the k-partition problem can be solved in $O\left(\rho \log \left\lceil\frac{n k}{\rho}\right\rceil+\rho\right)$ time with $O(k+n \log n+\rho)$ preprocessing time.

3 Forbidden region problem

In this section we generalize the approach developed in the previous section to solve the forbidden region problem. We again use two fictitious rectangles R_{0} and R_{n+1}, each being of width 0 and of height h. Rectangle R_{0} is always positioned to the left and R_{n+1} always to the right of all forbidden regions, respectively. Our algorithm will only generate left-compressed configurations. Clearly, left-compressing a configuration cannot increase its width.

Every rectangle R_{i} has now a set of slots, \mathcal{S}_{i}, associated with it. Set \mathcal{S}_{i} is determined as follows. We say forbidden region B_{j} and rectangle R_{i} are related if we can draw a horizontal line intersecting both B_{j} and R_{i}. Assume rectangle R_{i} and forbidden region B_{j} are related and let b_{j} be the width of B_{j}. Consider the rectangular region of maximal width that has position $\left(x\left(B_{j}\right)+b_{j}, y\left(R_{i}\right)\right)$ as its lower left corner, has a height equal to the height of R_{i} and does not intersect any other forbidden region. If the width of this region is at least w_{i} (i.e., R_{i} can be placed into it), then this region represents a slot in set $\mathcal{S}_{\mathbf{i}}$. We also include into set $\mathcal{S}_{\boldsymbol{i}}$ two special slots of infinite width. Namely, the slot whose right border coincides with the left border of the leftmost forbidden region and the slot whose left border coincides with the right border of the rightmost forbidden region related to R_{i}.

Our first property is a generalization of Property 2.1 of the k-partition problem.

Property 3.1 Let C be a left-compressed minimum configuration. Then,
there exists a rectangle $R_{i}, 0 \leq i \leq n$, and a forbidden region $B_{j}, 1 \leq j \leq k$, such that

$$
x_{C}\left(R_{0}\right)+l_{i}=x\left(B_{j}\right) \text { and } x_{C}\left(R_{i}\right)+w_{i}=x\left(B_{j}\right)
$$

Let q_{i} be the number of forbidden region rectangle R_{i} is related to (i.e., $\left.q_{i}=\left|\mathcal{S}_{i}\right|\right)$, and let $\delta=\sum_{i=0}^{n} q_{i} \leq k n$. Property 3.1 states that the minimum configuration is one among δ configurations. Property 3.1 can easily be proven by contradiction and its proof is omitted. Observe that the requirement that R_{0} gets positioned to the left of all forbidden regions is necessary to make Property 3.1 true. It is possible that $i=0$ is the only index in the minimum left-compressed configuration for which the property holds.

Our algorithm generates the δ configurations in an order that allows us to update the necessary information about new positions of the rectangles efficiently. The positions of rectangle R_{0} in the δ configurations are determined in $O(\delta)$ time (by using the l_{i} 's and the $x\left(B_{j}\right)$'s). We then order these positions of rectangle R_{0} by increasing x-values. At this time we also discard any configurations in which $x\left(R_{0}\right)$ is greater than the x-position of the leftmost forbidden region (obviously, these configurations are not feasible). Let $C_{1}, C_{2}, \cdots, C_{\delta-1}, C_{\delta}$ be the left-compressed configurations with $x_{C_{a}}\left(R_{0}\right)<x_{C_{a+1}}\left(R_{0}\right)$. Not every one of these δ configurations represents necessarily a feasible configuration. Let C_{a} be a configuration in which the position of R_{0} is dictated by R_{i} and B_{j}. If C_{a} is feasible, then every rectangle R_{t} on the longest path from R_{0} to R_{i} is positioned at $x_{C_{a}}\left(R_{0}\right)+l_{t}-w_{t}$. We say that the path from R_{0} to R_{i} is tight. Configuration C_{a} is not feasible when forbidden regions block the tight path from R_{0} to R_{i}. The test of whether configuration C_{a} is indeed feasible is done during the algorithm.

We next describe how to generate the configurations. It is clear that, when generating the configurations in the order of increasing x-value of the position of rectangle R_{0}, a rectangle can only move to the right. Recall that set \mathcal{S}_{i} contains the possible slots rectangle R_{i} can be positioned in. Our algorithm organizes set S_{i} as a linear list containing the slots with increasing x-positions. Each list \mathcal{S}_{i} will be traversed at most once during the algorithm. The initial configuration C_{1} is generated by positioning R_{0} at the associated position and performing a left-compression. Assume now that we have decided whether configuration C_{a} is feasible and, if it is, have determined its width. While generating the configurations we maintain for every rectangle R_{i} again a variable $x^{\prime}\left(R_{i}\right)$. Unlike to the k-partition problem, $x^{\prime}\left(R_{\mathrm{i}}\right)$ may contain the correct position of R_{i} in some configuration C_{a}, but not in a later one. The actual position of R_{i} in C_{a} can be, when needed, determined as follows.

$$
x_{C_{a}}\left(R_{i}\right)=\max \left\{x^{\prime}\left(R_{i}\right), x_{C_{a}}\left(R_{0}\right)+l_{i}-w_{i}\right\}
$$

In some sense, $x^{\prime}\left(R_{i}\right)$ contains the correct position of R_{i} whenever the path from R_{0} to R_{i} in C_{a} is not tight.

Let rectangle $R_{i 1}$ and forbidden region $B_{j 1}$ be the pair that dictates the position of R_{0} in C_{a} (i.e., $x_{C_{a}}\left(R_{0}\right)=x\left(B_{j 1}\right)-l_{i 1}$). Let $R_{i 2}$ and $B_{j 2}$ be the pair that dictates the position of R_{0} in C_{a+1}. Let $\epsilon=x_{C_{a+1}}\left(R_{0}\right)-x_{C_{a}}\left(R_{0}\right)$. We check in $O(1)$ time whether having rectangle $R_{i 2}$ at position $x\left(B_{j 2}\right)-w_{i 2}$ results in a feasible configuration as follows. We compute $x_{C_{a}}\left(R_{i 2}\right)$, the position of $R_{\mathrm{i} 2}$ in configuration C_{a}. If $x_{C_{a}}\left(R_{\mathrm{i} 2}\right)+\epsilon=x\left(B_{j 2}\right)-w_{i 2}$, then the path from R_{0} to $R_{i 2}$ in C_{a+1} is tight and C_{a+1} is feasible. We next describe how to compute the width of configuration C_{a+1}. The crucial insight into
computing the width of C_{a+1} efficiently lies in the fact that, in order to compute the width, we only need to explicitly re-position the rectangles reachable from $R_{i 1}$. When going from configuration C_{a} to configuration C_{a+1}, a rectangle R_{p} finds itself in one of four possible situations.

Case 1. Rectangle R_{p} is reachable from rectangle $R_{i 1}$. Since $R_{i 1}$ moves from being immediately to the left of forbidden region $B_{j 1}$ to being to the right of it, rectangle R_{p} may need a new position. Using the example shown in Figure 4, rectangle $R_{p 1}$ is reachable from $R_{i 1}$ and gets a new position assigned while rectangle $R_{p 2}$ keeps its position. We determine the new position by using set S_{p} and we record the new position in entry $x^{\prime}\left(R_{p}\right)$.

Case 2. Rectangle R_{p} is not reachable from $R_{i 1}$ and the path from R_{0} to R_{p} in configuration C_{a} is tight. Then, in configuration C_{a+1} rectangle R_{p} moves ϵ positions to the right. This situation applies to rectangle $R_{p 3}$ of Figure 4. The change in position is not explicitly recorded since doing so would be too time consuming. Recall that we are able to compute the position of any rectangle on a tight path on $O(1)$ time. It remains to be shown that moving rectangle $R_{p} \epsilon$ positions to the right always results in a feasible configuration (i.e., this does not cause R_{p} to overlap with any other rectangle or forbidden region). Since we are considering left-compressed configurations, R_{p} can obviously not overlap with another rectangle. Assume now that R_{p} overlaps with a forbidden region B_{t}. If there exists more than one rectangle with this property, choose R_{p} such that no predecessor of R_{p} that was moved ϵ positions overlapped with a forbidden region. The distance between the right side of R_{p} in C_{a} and $x\left(B_{t}\right)$ is less than ϵ. This implies that there exists
a configuration C dictated by R_{p} and B_{t} with $x_{C}\left(R_{0}\right)=x\left(B_{t}\right)-l_{p}$ such that $x_{C_{a}}\left(R_{0}\right)<x_{C}\left(R_{0}\right)<x_{C_{a+1}}\left(R_{0}\right)$. Such a configuration C cannot exist and thus R_{p} cannot overlap with a forbidden region.

Case 3. Rectangle R_{p} is not reachable from R_{iI}, the path from R_{0} to R_{p} in C_{a} is not tight, and the path from R_{0} to R_{p} in C_{a+1} is tight. The amount R_{p} moves to the right is now determined by ϵ minus the amount of "nontightness" on the path from R_{0} to R_{p} in configuration C_{a}. This situation applies to rectangle $R_{p 4}$ of Figure 4. Note that in configuration $C_{a} x^{\prime}\left(R_{p}\right)$ contained the correct position of R_{p}, while in C_{a+1} the correct position is determined by $x_{C_{a+1}}\left(R_{0}\right)+l_{p}-w_{p}$. The argument that moving R_{p} to the right results in a feasible configuration is as given for Case 2.

Case 4. Rectangle R_{p} is not reachable from $R_{i 1}$ and the path from R_{0} to R_{p} in neither tight in C_{a} nor C_{a+1}. In this situation rectangle R_{p} does not change its position when going from configuration C_{a} to configuration C_{a+1}. An example for this situation is rectangle $R_{p 5}$ in Figure 4.

We are now ready to give a complete description of our algorithm. The preprocessing step includes computing the x-position of rectangle R_{0} in the δ configurations, arranging the configurations according to increasing x-value of R_{0}, and constructing the set S_{i} for every rectangle $R_{i}, I \leq i \leq n$. These steps take $O(\delta \log \delta+(n+k) \log k)$ time. We then generate the configurations $C_{1}, \cdots, C_{\delta-1}, C_{\delta}$. When generating C_{a+1} from C_{a} we determine the new positions for rectangles reachable from $R_{\mathbf{i 1}}$ as follows. Let R_{p} be a rectangle reachable from $R_{i 1}$ so that all predecessors of R_{p} for which Case 1 applies have been handled. Let R_{m} be the immediate predecessor of R_{p} for which

Case 1 applies (there exists at least one) and for which $x_{C_{a+1}}\left(R_{m}\right)+w_{m}$ is a maximum. This index m is determined while the immediate predecessors of R_{p} are re-positioned. Rectangle R_{p} needs a new position if the condition

$$
x_{G_{a+1}}\left(R_{m}\right)+w_{m}>\max \left\{x^{\prime}\left(R_{p}\right), x_{C_{a+1}}\left(R_{0}\right)+l_{p}-w_{p}\right\}
$$

is satisfied. Note that the right-hand side of the condition does not correspond to the position of R_{p} in C_{a}. The quantity $x_{C_{a+1}}\left(R_{0}\right)+l_{p}-w_{p}$ already takes the shift to the right from position $x_{C_{a}}\left(R_{0}\right)$ to $x_{C_{a+1}}\left(R_{0}\right)$ into account. If the condition is true, rectangle R_{p} overlaps with another rectangle (not necessarily R_{m}). In order to determine R_{p} 's new position, we locate, using \mathcal{S}_{p}, the leftmost position $\geq x_{C a+1}\left(R_{m}\right)+w_{m}$. This position is located by a linear scan which starts at the slot containing the old position of R_{p}. When all rectangles reachable from $R_{i 1}$ have been handled, we compute the width of configuration C_{a+1}. This width is determined by $x_{C_{a+1}}\left(R_{n+1}\right)-x_{C_{a+1}}\left(R_{0}\right)$ and is hence computed in $O(1)$ time. After the widths of all configurations have been computed, we re-build the left-compressed configuration giving minimum width in $O(\delta)$ time.

We now establish the claimed time bound and start with the time required for re-positioning the rectangles. Let r_{i}^{\prime} be the number of rectangles which can be reached by rectangle R_{i}. Each time rectangle R_{i} is pushed across a forbidden region, we may have to re-position all the rectangles which can be reached from R_{i}. Rectangle R_{i} is pushed across at most g_{i} forbidden regions and in each time we may re-position τ_{i}^{\prime} rectangles. Hence the total number of times R_{i} causes a re-positioning is at most $q_{i} r_{i}^{\prime}$. Overall, we re-position at most $\Delta=\sum_{i=1}^{n} q_{i} \tau_{i}^{\prime}$ rectangles. In order to find new positions for all rectangles the lists $\mathcal{S}_{i}, 1 \leq i \leq n$, are traversed. This costs
an additional $O\left(\sum_{i=1}^{n} q_{i}\right)=O(\delta)$ time. Since $\tau_{i}^{\prime} \geq 1$ (i.e., a rectangle can be reached by itself), we have $\Delta \geq \delta$. We can thus state the following theorem.

Theorem 3.1 Given n rectangles and k forbidden regions, the forbidden region problem can be solved in $O(\Delta)$ time with $O((n+k) \log k+\delta \log \delta)$ preprocessing time.

We conclude this section by observing that the algorithm we presented can also be used to solve a slightly different, somewhat more general problem. Assume every rectangle R_{i} has its own set of forbidden regions associated with it. A minimum configurations is now a configuration in which no rectangles overlaps with its own forbidden regions and the area induced by the rectangles and all the forbidden regions is a minimum. Since our algorithm associates with every rectangle its own list of slots the rectangle can be placed in, changing how the lists are generated results in an algorithm solving this problem.

4 Minmax k-partition problem

When each of the k forbidden regions has height h, the forbidden regions model positions in the layout area where a vertical cut can be made. In certain environments one may need to make k cuts, but does not have the positions of the cuts pre-determined. Rather, the cuts should be made so that the maximum distance between two consecutive cuts is minimized. We refer to this problem as the minmax k-partition problem and present an algorithm to solve it in $O(\rho+\pi \log \pi)$ for arbitrary k, where ρ represents the number of edges in the transitive closure of the visibility graph induced by
the rectangles. For the case when the layout components get separated by only one cut we present an $O(n)$ time algorithm.

We start by giving a more formal definition of the minmax k-partition problem. Given are again n rectangles, $R_{1}, R_{2}, \ldots, R_{n}$, where R_{i} has width w_{i}. We are to determine the position of k vertical cuts so that all rectangles are to the right of the first cut and to the left of the k-th cut, respectively, and no rectangle intersects a cut (i.e., the rectangles are partitioned into $k-1$ groups). Let $B_{1}, B_{2}, \ldots, B_{k}$ be the cuts, $S_{1}, S_{2}, \ldots, S_{k-1}$ be the slots (i.e., the area between two consecutive cuts), and let $d_{1}, d_{2}, \ldots, d_{k-1}$ be the distances between two consecutive cuts. Let $d^{*}=\max _{1 \leq i<k-1} d_{i}$. A minimum configuration for the minmax k-partition problem is one in which $d^{=}$is a minimum. We also refer to d^{*} as the width of the partition. Observe that the statement of the problem requires $k \geq 2$. For $k=2$, it corresponds to the standard compaction problem and for $k=3$ it corresponds to compacting the rectangles onto 2 layers.

The following property characterizes a relationship between the width of a minimum configuration and the length of the longest path between two rectangles. It is the basis for reducing the search space containing the minimum configuration.

Property 4.1 Let C be a minimum configuration of width d^{*}. Then, there exist rectangles R_{i} and R_{j} and two consecutive cuts B_{a} and B_{a+1} such that

$$
d^{m}=d_{a}=l_{i, j}
$$

where $l_{i, j}$ is the length of the longest path from R_{i} to R_{j} in G.
This property states that the width of a partition is equal to the length
of the longest path between two rectangles. Our algorithm first generates the necessary $l_{i, j}$'s. For every rectangle R_{i} we determine the length of the longest paths from R_{i} to all rectangles reachable from R_{i}. Using G, these values are generated in $O(\rho)$ time.

We then employ a binary search strategy to find d^{*}. Our algorithm uses as a procedure that, given a value d, determines the minimum number of cuts needed to achieve a partition of width d. Let MIN_CUT(d) be this procedure. Using G, MIN_CUT(d) generates the number of cuts needed in $O(n)$ time as follows. Assume we have an infinite number of cuts B_{1}, B_{2}, \ldots with the distance between two consecutive cuts being d. We now process the rectangles in a topological order induced by G. Let R_{i} be the rectangle currently being processed, and $R_{\text {max }}$ be the rectangle that is a predecessor of R_{i} in G and for which $x\left(R_{\max }\right)+w_{\max }$ is a maximum. Assume $R_{\max }$ is located in slot $S_{l} . \amalg x\left(R_{\max }\right)+w_{\max }+w_{i} \leq l \cdot d$, then R_{i} is assigned position $x\left(R_{\max }\right)+w_{\text {max }}$ in slot S_{l}. Otherwise it is assigned position $x\left(B_{l+1}\right)$ in slot B_{l+1}. It is straightforward to see that MIN_CUT(d) generates the number of cuts needed for a given d in $O(n)$ time. Note that when d is less than the width of one of n rectangles, MIN_CUT(d) returns zero.

Assume now that some $l_{i, j}$ is the input for MNN_CUT. If the minimum number of cuts returned is larger than k, a larger width is needed in a configuration making k cut. Otherwise, a minimum configuration making k cuts can possibly achieve a smaller width. Hence, using a binary search, we can find the optimal d^{*} in $O(\rho+n \log n)$ time.

We next describe an algorithm that solves the minmax problem in $O(n)$ time for $k=3$. In this case we only have two slots available and a rectangle
R_{j} is either assigned to slot S_{1} or slot S_{2}. The minimum width d^{*} is now determined by either $l_{0, j}$ or $l_{j, n+1}$ for some j. We thus only determine $l_{0, j}$ and $l_{j, n+1}$ for every j. This is done in $O(n)$ time. An obvious lower bound on the width of a minimum configuration is $\frac{1}{2} l_{0, n+1}$. Let $d_{o p t}=\frac{1}{2} l_{0, n+1}$ and let R_{j} be any rectangle. If $l_{0, j} \leq d_{o p t}$, then any left-compressed configuration of minimum width assigns R_{j} to slot S_{I}. Otherwise, the decision on where to put R_{j} is based on the following rule: If $l_{0, j} \leq l_{j, n+1}$, rectangle R_{j} is assigned to slot S_{1}; otherwise R_{j} is assigned to slot S_{2}. Using these conditions, it is straightforward to develop an $O(n)$ time algorithm. First, we compute $l_{0, j}$ and $l_{j, n+1}$ for each rectangle R_{j}. We divide the n rectangles into two sets according to the rules stated above and then compute the resulting width d^{*}. The following theorem is a consequence of the above discussion.

Theorem 4.1 The minmax k-partition problem can be solved in $O(n)$ time for $k=3$ and in $O(\rho+n \log n)$ time for $k \geq 4$.

References

[1] D.G. Boyer. Symbolic layout compaction review. In Proceedings of 25th ACM/IEEE Design Automation Conference, pages 383-389, January 1988.
[2] Y.E. Cho. Subjective review of compaction. In Proceedings of 22th ACM/IEEE Design Automation Conference, pages 396-404, January 1985.
[3] K. Melhlhorn. Data Structures and Algorithm 1: Sorting and Searching. Springer-Verlag, 1984.
[4] D. A. Mlynski and C. H. Sung. Layout compaction. In T. Ohtsuki, editor, Layout Design and Verification, pages 199-235. Elsevier Science Publishers, 1986.
[5] A.R. Newton and A.L. Sangiovanni-Vincentelli. Computer-aided design for vlsi circuits. Computer, 19:38-63, 1986.
[6] M. Schlag, F Luccio, P. Maestrini, D. T. Lee, and C. K. Wong. A visibility problem in VLSI layout compaction. In F. P. Preparata, editor, Advances in Computing Research: VLSI Theory, pages 259-282, Greenwich, Connecticut, 1984. JAI Press.

Fig. 1(a) Initial configuration of a 7-partition problem with 8 rectangles.

Fig. 1(b) The left-compressed version of the configuration in Fig. l(a).

Fig. 3(a) The binary space tree for the forbidden region in Fig. 1(a)
The upper number and lower number in each node are its index and value, respectively.

Fig. 3(b) The finger space tree for the forbidden region in Fig. I (a).
The upper number and lower number in each node are its index and value, respectively.

Fig. 4 Four cases in generating configuration C_{2} from C_{a+1}
Ca is defined by R_{il} and $\mathrm{Bj}_{\mathrm{j} 1}$.
$\mathrm{C}_{\mathrm{a}+1}$ is defined by R i 2 and Bj_{j}.

[^0]: Research supported in part by ONR under contracts N00014-84-K-0502 and N00014-86-K-0689, and by NSF under Grant MIP-87-15652.
 ${ }^{1}$ Research supported in part by NSF under Grant MIP-87-15652 and ONR under contract N00014-84-K-0502.

