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I-D Compaction in the Presence of Forbidden
Regions
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Abstract

In this paper we consider the one-dimensional compaction prob·
lem when the layout area contains forbidden regions and the layout
components are allowed to move across these regions. Given n lay
out components and k forbidden regions, each of rectangular shape,
we show how to solve this compaction problem in O(A) time with
O(Cn + k) log k + 0 logo) preprocessing, where 6. and 6 are measures
for the interaction between layout components and forbidden regions,
A < n:2k, 0 :$ nk. We also consider special cases of the forbidden re
gions. For example, when every forbidden region is of length h, where
h is the hei~ht of the layout, the compaction problem can be solved in

O(p log r"/:'1 +p) time, with O(p+n log n + k) preprocessing, where p
is the number of edges in transitive closure of visibility graph induced
by the layout components, p < n2 .

"Research supported in part by ONR under contracts NOOOl4-84-K-0502 and N00014
86-K-0689, and by NSF under Grant MIP-87-15652.

1Research supported in part by NSF under Grant MIP·87·15652 and ONR under con·
tract NOOOl4-84-K·0502.
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1 Introduction

A one-dimensional (I-D) compacter takes as an input a VLSI layout and

generates a layout of smaller area by sliding the layout components in one

direction [1, 2, 4]. W.l.o.g., let it be the horizontal direction. Early com

paction algorithms have not been used as widely as expected. One of the

reasons given attributes it to the limitations inherent to these compaction

systems; e.g., they could not handle additional constraints on where to place

or not to place certain layout components [5]. In this paper we take a step

towards incorporating additional constraints into the compaction process.

We consider compaction when the layout area contains forbidden regions.

The forbidden regions can represent, for example, pre-positioned layout com

ponents or holes in the layout area. The positions of the forbidden regions

cannot be altered during the compaction process, but layout components

are allowed to "slide over" the forbidden regions. We assume that both

forbidden regions and layout components are of rectangular shape.

Given are n rectangles, R1 ,R2 ,••• ,Rn, and k forbidden regions, B1 ,B2 ,

... ,Bk, with the edges of the rectangles and forbidden regions parallel to

the coordinate axes. A configuration of the layout assigns to every lower left

corner of a rectangle a position of the layout area. A coIrliguration is called

feasible if it keeps the relative order of the rectangles in the horizontal direc~

tion and no two rectangles and no rectangle and forbidden region overlap. A

feasible configuration of minimum area is called a minimum configuration.

Let h be the height of the layout. Since compaction is done in the hor

izontal direction, h is determined by the forbidden regions and the rectan

gles, and is not altered during compaction. We first consider the compaction
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problem when every forbidden region has height h. We refer to this prob

lem as the k-partition problem. We develop characterizations of a minimum

configuxation that allow us to determine a minimum configuration of the

k-partition problem in O(plog rnpl:1+ p + nlogn + k) time, where p is the

number of edges in transitive closure of visibility graph induced by the n

rectangles, p < n2
• We then generalize the approach used for the k-partition

problem to handle the general problem., the forbidden region problem. Let b

be the number of pairs (i,j) such that rectangle R. could overlap with for

bidden region Bj (if we slid Ri horizontally), 0 S nk. We again characterize

a set of feasible configurations and show that a minimum connguration is

among them. The number of feasible configurations considered is at most

n+ 1 for the k-partition problem and at most 0 for the forbidden region prob

lem. In both algorithms we generate the configurations in an order that al

lows us to update changes in the positions of the layout (and thus the width

of the layout associated with each configuration) efficiently. The running

time for the forbidden region problem is 0(.6.) with 0((n + k) log k +b 10gb)

preprocessing, where 6. is another measure for the interaction between the

layout components and the forbidden regions, 6. < n 2k.

The k forbidden regions in the k-partition problem can be viewed as a

position in the layout where a vertical cut can be made. In certain envi

ronments one may need to make k cuts, but does not have the positions of

the cuts pre-determined. Rather, the vertical cuts should be made so that

the maximum distance between two consecutive cuts is a minimum. For

example, in a multi-layer environment minimizing the maximum space be

tween two cuts corresponds to minimizing the volume of the 3-dimensional
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layout. This is the objective in the minmax k-partition problem. For the

case when only three cuts are made (i.e., the rectangles are compacted onto

2 layers) we present an O(n) time algorithm. For arbitrary k we present an

O(p + nlogn) time algorithm, where p equals the number of edges in the

transitive closure of the visibility graph. In this algorithm we also identify a

set offeasible configurations. However, it is now possible to employ a binary

search technique for identifying a minimum configuration.

This paper is structured as follows. In Section 2 we describe our algo

rithm for the k-partition problem. Section 3 addresses the forbidden region

problem. In Section 4 we consider the minmax k-partition problem.

2 k-partition problem

In this section we present our algorithm for the k-partition problem. Re

call that in this problem the height of every forbidden region is equal to the

height of the layout area. We first present an O(n2 log k +k) time algorithm.

Using properties of minimum configurations and relationships between con

figurations, we then reduce the time to O(p log r~k1+p+ k +n logn), where

p is the number of edges in the transitive closure of the visibility graph of

the rectangles.

Assume that the width of every forbidden region is zero. Straightforward

modifications to the algorithm can handle forbidden regions with arbitrary

widths. For convenience we introduce two fictitious rectangles Ro and Rn+l

of height h and width zero, which are initially positioned to the left and

to the right of the other rectangles and the forbidden regions, respectively.

Figure l(a) shows an initial configuration of a 7-partition problem for n = 8.
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Let X(Bi) be the position (l.e., the x-coordinate of the left side) offorbidden

region B;. Let Sj denote the area of width d;, called the slot, between Bj and

B;+1 for 1 ::; i ,::; k-l. For i = 0, S; is the area available to the left of B1 , and

for i :::: k, S; is the area to the right of B k • respectively. In any configuration

C, let (xc (Ri), yc(Ri)) be the position of the lower left corner of rectangle

Ri. Since the width of any minimum configuration is at least X(Bk) - x(Bt},

we only consider feasible configurations in which Ro is to the left of position

x(B1) and R n+! is to the right of position x(Bk). The width of configuration

C is then the distance between Ro and R n+1 ; i.e., xc(Rn+1 ) - xc(Ro). A

feasible configuration C is called left-compressed if for any other feasible

configuration C' in which xc,(Ro) :::: xc(Ro) we have Xc(Ri) ::; XC,(Ri)

for 1 ::; i ::; n. Intuitively, in a left-compressed configuration all rectangles

are positioned as far to the left as possible. Figure l(b) shows the left

compressed version of the configuration shown in Figure l(a). It is easy to

see that performing a left-compression on a configuration cannot increase

its width.

Two rectangles Ri and Ri are visible from each other if one can draw a

horizontal line segment connecting Rj and Ri without intersecting any other

rectangles. The visibility graph induced by the rectangles is the directed

graph G :::: (V, E) in which each vertex corresponds to a rectangle and

the edges reflect the visibility between the rectangles. More precisely, an

edge is directed from i to j if rectangle Ri is to the right of Ri and Ri

and Ri are visible from each other. Throughout this paper the vertices

of the visibility graph have a weight associated with them. The weight of

the vertex corresponding to RJ is Wi, the width of Ri. Figure 2 shows the
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visibility graph for the rectangles of Figure l(a). The length of a path from

Ri to Rj is the sum of the weights of the vertices on this path. The length

of the longest path from Ro to Ri in a visibility graph G 1s denoted by Ii.

Depending on the layout system used to generate the initial layout, the

visibility information between rectangles mayor may not be available [6]. If

it is not available, it can e3l>ily be determined in O(nlogn) time. Through

out the paper we assume that the visibility graph G is available. Further

more, we assume that the forbidden regions B l , B 2 , ••• ,BJ; have been sorted

in increasing order according to the x-coordinate, and that the rectangles

Ro, Rl , ... ,Rn+t are arranged in a topological order induced by G. All these

pre-processing steps can be accomplished in O(nlogn + klogk) time and

their running time will no longer be explicitly stated. The following prop

erty of a left-compressed minimum configuration relates some longest path

Lo the position of Ro as follows.

Property 2.1 Let C be a left-compressed minimum configuration. Then,

there exists a rectangle Ri, 0 ::; i ::; n, such that

xc(Ro) + I; = x(BI).

There are at most n+ lleft-compressed fe3l>ible configurations satisfying

Property 2.1. An immediate algorithm for the k-partition problem is to

generate these n+1 configurations and to determine the minimum one among

them as follows. Let Cj be the left-compressed configuration in which the

width of slot So is Ii, 0 ::; i ::; n. The width of configuration Ci 1s determined

by first setting xGi(Ro) =: x(Bt) -Ii' Then, process the rectangles in order

Rl ,R2 ,···, Rn+1' Recall that the rectangles are sorted in a topological order
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induced by G. When processing rectangle Rj we determine the rectangle

Rma:z: which is a predecessor of Rj in G and whose value xc;(Rmaz )+ W maz

is a maximum among all such values. Assume that R maz is in slot S,. In

order to determine the position of Rj, the following query is answered. Let

d; be the width still available in slot S/; i.e., dE = x(B/+d - (xc;(Rmaz ) +
wma:z:). Given slots Sf, 8/+1,' .. , 8k_l, Sk with widths di, d/+1, ... ,dk_l, +00,

respectively, and rectangle Rj with width Wj, determine the smallest index

a such that da. ~ Wj_ Ifa = 1, we set x(Ri) to xc; (Rma.",) +Wma.",i otherwise,

we set x(Rj) to x(Ba).

By using a balanced tree, which we call the space tree, this query can

easily be answered in G(log k) time. Thus, configuration C; can be gener

ated in O(n log k) time and the minimum configuration can be determined in

O(n2 Iogh) time. The generation of the space tree costs O(k) preprocessing

time. We briefly describe the operations performed on the space tree. The

space tree initially stores in the leaves the entries (+00,0), (dl, 1) ... ,(dk_t, h-

I), and (+00, k). Every interior node v records a pair of entries (va1ue(v), index(v)).

In this pair va1ue(v) records the largest leaf entry found in the subtree rooted

at v and index(v) records the index of the slot with width value(v). As-

sume we access v's left child and right child through 1chi1d(v) and Tchi1d(v) ,

respectively. To answer a query we first check whether Wi ~ dE' If yes, we

put rectangle Rj into slot Sf. Otherwise, from the leaf containlng dE, we

search upwards for the first interior node v with va1ue(Tchild(v)) ~ Wi and

index(Tchild(v)) > 1. When this node v has been found, we search down-

wards for the desired index a in the subtree rooted at Tchi1d(v). Figure 3(a)

shows the space tree for the 7-partition problem of Figure l(a). The dashed
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lines indicate the searching for determining the position of rectangle R7 . For

R7 we have Rm(l.;I; = Rs and 1 = 2. Since the remaining space in slot S2 is

not wide enough for R7 (W7 = 4 and d~ = 3), R7 ends up in slot S4.

We now show how to improve the running time to O(p log r~k1+ P +
k + nlogn). Since p = O(n2), we not only make the running time input-

sensitive, but also improve its worst-case performance. Assume now that

the rectangles are topologically ordered so that 10 S; 11 S; ... S; In+l and

that the configurations are generated in the order Cn, Cn_1 , ... , C17 Co. In

configuration Cn every rectangle is assigned a position in slot So and is to

the left of forbidden region B1 . Obviously, if we generate the configura-

tions in this order, the positions assigned to rectangles cannot decrease; i.e.,

xCi(Ri)::; xCi_I(Ri) for aU j. In order to efficiently determine the correct

slots for rectangles, we change the space tree from a basic balanced binary

tree to a level-linked finger tree [3], which we call finger space tree. A finger

tree aUows fast searching in the vicinity of a finger. Figure 3(b) shows the

finger space tree for the 7-partition problem of Figure lea).

While generating the configurations we maintain for every rectangle R p

a variable x'(Rp) which contains the correct position of Rp in configuration

Ci when R p is to the right of B1 • When R p is to the left of B17 we have

x'(Rp) = -00 and Rp's position is determined by the longest path; i.e.,

xc;(Rp) = x(B1 ) -lj+ lp- wp. Assume now that the width of configuration

Ct has been determined. In order to generate Ci-l, the rectangles in slot So

are pushed l; -li_1 positions to the right. This pushing leaves all rectangles,

except Rj, to the left of B 1 in slot So. Rectangle Ri is pushed to across

B1 • During this process a rectangle Rp finds itself in one of three possible
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situations.

Case 1. Rectangle Rp is reachable from rectangle Ri. Since Rj moves from

being immediately to the left of forbidden region B 1 in Ci to being to the

rjght of B1 in C._I, rectangle R p may need a new position. We use the finger

space tree to determine its new position and we record it in entry x'(Rp ).

Case 2. Rectangle R p is to the left of forbidden region B 1 in C. and p f:. i.

Then, in configuration Ci-I, Rp is shifted Ii -li - 1 positions to the right (l.e"

XCi_l(Rp) = xc;(Rp) + (i, -ii_I)). Since configurations are generated by

decreasing longest paths from R o, no rectangle for which Case 2 applies can

overlap with forbidden region B 1 •

Case 3. Rectangle Rp is to the right of forbidden region B 1 in Cj and it

is not reachable from Ri in visibility graph G. Then, the position of Rp in

C'-1 is as in configuration Ci.

For rectangles for which Case 1 applies (including rectangle Ri) we use

the finger space tree as follows. Assume we are determining a new position

for rectangle IIp in configuration Ci_l. Assume Rp is assigned a position

in slot 5m in configuration Ci. Let Rmc.~ be defined for rectangle Rp in

configuration C'_ 1 as before. Assume Rma~ is in slot 5/. If l < m, then

Rp remains in slot Sm' lIenee, assume that l 2: m and let dE be again the

width available in slot 5, for Rp in configuration C'-I. Assume wp > dj

(i.e., 5, now is not big enough for Rp .) From the leaf containing d,. we start

traversing the path towards the root. Let v be the first node we meet on this

path, and rneighbor(v) be v's right neighbor. If wp ~ value(rneighbor(v)),

we perform a downward searching in the subtree rooted at rneighbor(v) to
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determine the slot for rectangle R p ; otherwise, we continue with 'V's parent.

Figure 3(b) shows how the new position for R7 is determined (the dashed

lines indicate the links traversed.) Assume Rp's new position is in slot Sa..

Then, it takes 0(1 + log (a -I)) time to determine this slot. We point out

that for the rectangles for which Case 2 applies no updating is done and

necessary. Their actual position can be, when needed, determined in 0(1)

time.

We summarize the main steps of our improved algorithm. The prepro

cessing includes building the finger space tree, generating the topological

order with 10 :::; II ::; ... :::; in +!, and constructing for each rectangle Ri

list L i containing the rectangles reachable from Ri (in a topological order).

This requires O(k + nlogn + p) time. We then generate the configurations

en, Cn _ lo '" ,C1 .CO• We generate the width of Ci_l from Cj by comput

ing new positions for only the rectangles reachable from Ri' as described

above. Once we have the index i resulting in the left-compressed minimum

configuration, we re-build configuration C; in O(nlogk) time by setting

xc;(Ro) = x(B1 ) -Ii and left-compressing the n rectangles.

We now show that this algorithm achieves the claimed time bound. Let

Ti be the number of rectangles that can reach rectangle Rj (we assume that

a rectangle can reach itself.) Initially, rectangle R; is to the left of B1 • At

some point Ri moves across Bl and is assigned a new position in a slot to

the right of B1 . From this point on, every time a rectangle that can reach

Ri moves across B1 , rectangle Ri may get re-positioned. Its new position

is always to the right of its old position. Let h,i be the number of slots

rectangle R; moves to the right when R; is re-positioned for the j-th time,
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1 $ j :-; rio By using the finger space tree to determine the new slots, the

total time needed to re-position rectangle Ri is

"L(1+ log!;,;)
j=l

which is less than
k

ri log - + T;.
r;

Let Tp be the total time needed to re-position all rectangles. Then,

Tp ~ ~(r;IOg~+T;)
n n n

< Lr;logk - Lr;logr;+ Lr;
i=O ;=0 ;=0

n

< plogk-LTilogTi+P,
;=0

where L:7=0 rj = p. A straightforward computation shows that

n

Lr;logr; > plog!!....
;=0 n

Using this lower bound on L:i=oTilogri' we get

Tp < plog rn:l +p.

Hence, it takes O(plog rnpk1+p) time to compute the widths of configura

tions Cn, Cn- i , ... ,Co. Note that the O(n log k) time needed for re-building

the minimum configuration is bounded by O(plog rnpk1+ p). We conclude

this section with the following result.

Theorem 2.1 Given n rectangles and k forbidden regions, the k-partition

problem can be solved in O(plog r~k1+ p) time with O(k + nlogn + p)

preprocessing time.
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3 Forbidden region problem

In this section we generalize the approach developed in the previous section

to solve the forbidden region problem. We again use two fictitious rectan

gles R o and Rn+11 each being of width 0 and of height h. Rectangle Ro

is always positioned to the left and Rn+l always to the right of all forbid

den regions, respectively. OUf algorithm will only generate left-compressed

configurations. Clearly, left-compressing a configuration cannot increase its

width.

Every rectangle Ri has now a set of slots, Si, associated with it. Set

5i is determined as follows. We say forbidden region B j and rectangle Ri

are related if we can draw a horizontal line intersecting both Bi and Rio

Assume rectangle Hi and forbidden region Bj are related and let bj be the

width of Bj. Consider the rectangular region of maximal width that has

position (x(Bj) +bj, y(Rj)) as its lower left corner, has a height equal to the

helght of Rj and does not intersect any other forbidden region. If the width

of this region is at least Wi (Le., Rj can be placed into it), then this region

represents a slot in set Si. "We also include into set Sj two special slots

of infinite width. Namely, the slot whose right border coincides with the

left border of the leftmost forbidden region and the slot whose left border

coincides with the right border of the rightmost forbidden region related to

Ri.

Our first property is a generalization of Property 2.1 of the k-partition

problem.

Property 3.1 Let C be a left-compressed minimum configuration. Then,
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there exists a rectangle Ri, 0 ::; i ::; n, and a forbidden region Hj, 1 ::; j::; k,

such that

xc(Ro) +I, = x(Hj) and xc(R,) +w, = x(Hj).

Let qi be the number of forbidden region rectangle R. is related to (i.e.,

qi = IS;!), and let 6 = L:?=o q; ::; kn. Property 3.1 states that the minimum

configuration is one among 6 configurations. Property 3.1 can easily be

proven by contradiction and its proof is omitted. Observe that the require

ment that Ro gets positioned to the left of all forbidden regions is necessary

to make Property 3.1 true. It is possible that i = 0 is the only index in the

minimum left-compressed configuration for which the property hDlds.

Our algorithm generates the 6 configuratiDns in an order that allows us

to update the necessary informatiDn about new positions of the rectangles

efficiently. The positions of rectangle Ro in the 6 configurations are de

termined in 0(6) time (by using the ii'S and the x(Bj)'s). We then order

these positions of rectangle Ro by increasing x-values. At this time we a1SD

discard any configurations in which x(Ro) is greater than the x-position Df

the leftmost forbidden region (obviously, these configurations are nDt fea

sible). Let C1 ,C2 ,···,Gs_lo Gs be the left-cDmpressed configurations with

xc,,(Ro) < xC,,+I(Ro). Not every Dne of these 6 configurations represents

necessarjly a feasible configuration. Let Ga. be a configuratiDn in which the

position of Ro is dictated by Rj and Bj. If Ga. is feasible, then every rectan

gle R t on the longest path from Ro to Rj is positioned at xc" (Eo) + it - Wt.

We say that the path from Ro to Rj is tight. Configuration Ga. is not feasi

ble when forbidden regions block the tight path from Ro to Ri. The test of

whether configuration Ga. is indeed feasible is done during the algorjthm.
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We next describe how to generate the configurations. It is clear that,

when generating the configurations in the order of increasing x-value of the

position of rectangle Ro, a rectangle can only move to the right. Recall

that set S .. contains the possible slots rectangle Ri can be positioned in.

Our algorithm organizes set S; as a linear list containing the slots with

increasing x-positions. Each list S .. will be traversed at most once during

the algorithm. The initial configuration C t is generated by positioning Ro

at the associated position and performing a left-compression. Assume now

that we have decided whether configuration COl is feasible and, if it is, have

determined its width. While generating the configurations we maintain for

every rectangle Ri again a variable X'(Ri). Unlike to the k-partition problem,

x'(R;) may contain the correct position of Ri in some configuration COl' but

not in a later one. The actual position of Ri in COl can be, when needed,

determined as follows.

XC.(Ri) ~ max{x'(Ri),Xc.(Ro) + Ii - w;}

In some sense, X'(Ri) contains the correct position of Ri whenever the path

from R o to R; in Ca. is not tight.

Let rectangle Rit and forbidden region Bjt be the pair that dictates the

position of Ro in COl (i.e., xc,,(Ro) = x(Bjd -lid. Let Ri2 and Bj2 be the

pair that dictates the position of Ro in Ca+!. Let E= XC"+l (Ro) - xc,,(Ro)_

We check in 0(1) time whether having rectangle Ri2 at position X(Bj2) -Wi2

results in a feasible configuration as follows. We compute XC,,(Ri2), the

position of R;2 in configuration Ca. If XC" (Ri2) +£ = X(Bj2) - Wi2, then the

path from Ro to Ri2 in Cn+! is tight and Col+! is feasible. We next describe

how to compute the width of configuration Ca+!. The crucial insight into
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computing the width of C~+1 efficiently lies in the fact that, in order to

compute the width, we only need to explicitly re-position the rectangles

reachable from Ril. When going from configuration Ca to configuration

C~+l' a rectangle Rp finds itself in one of four possible situations.

Case 1. Rectangle R p is reachable from rectangle Ril. Since Ril moves from

being immediately to the left of forbidden region Bjl to being to the right of

it, rectangle R p may need a new position. Using the example shown in Figure

4, rectangle R pl is reachable from Ril and gets a new position assigned while

rectangle R p2 keeps its position. We determine the new position by using

set Sp and we record the new position in entry x/(Rp).

Case 2. Rectangle R p is not reachable from Ril and the path from Ro to R p

in configuration Ca is tight. Then, in configuration Ca+1 rectangle R p moves

E positioIlB to the right. This situation applies to rectangle Rp3 of Figure

4. The change in position is not explicitly recorded since doing so would be

too time consuming. Recall that we are able to compute the position of any

rectangle on a tight path on 0(1) time. It remaiIlB to be shown that moving

rectangle R p E positions to the right always results in a feasible configuration

(i.e., this does not cause R p to overlap with any other rectangle or forbidden

region). Since we are considering left-compressed configurations, R p can

obviously not overlap with another rectangle. Assume now that R p overlaps

with a forbidden region B/. If there exists more than one rectangle with

this property, choose Rp such that no predecessor of R p that was moved

€ positioIlB overlapped with a forbidden region. The distance between the

right side of R p in Ca and x(B/) is less than £. This implies that there exists
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a configuration C dictated by Rp and B t with xc(Ro) = x(B t ) - lp such

that xc" (Ro) < xc(Ro) < xC"+l(Ro). Such a configuration C cannot exist

and thus R p cannot overlap with a forbidden region.

Case 3. Rectangle Rp is not reachable from Ril, the path from Ro to Rp in

Ca is not tight, and the path from Ro to R p in Ca+1 is tight. The amount

Rp moves to the right is now determined by E: minus the amount of "non

tightness" on the path from R o to Rp in configuration Ca. This situation

applies to rectangle R p1 of Figure 4. Note that in configuration Ca x/(Rp )

contained the correct position of R p , while in Ca+! the correct position is

determined by XC"+l (Ro) + lp - w p. The argument that moving Rp to the

right results in a feasible configuration is as given for Case 2.

Case 4. Rectangle R p is not reachable from Ril and the path from Ro to

R p in neither tight in Ca nor Ga+!. In this situation rectangle R p does not

change its position when going from configuration Ga to configuration CaH .

An example for this situation is rectangle Rps in Figure 4.

We are now ready to give a complete description of our algorithm. The

preprocessing step includes computing the x-position of rectangle R o in the 6

configurations, arranging the configurations according to increasing x-value

of Ro, and constmcting the set Si for every rectangle Rill :s; i :s; n. These

steps take O(610g6 +(n+k) log k) time. We then generate the configurations

Cl,···,Cfj_l,Cfj. When generating Ga.H from Ca we determine the new

positions for rectangles reachable from Ril as follows. Let Rp be a rectangle

reachable from Ril so that all predecessors of Rp for which Case 1 applies

have been handled. Let Rm be the immediate predecessor of Rp for which
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Case 1 applies (there exists at least one) and for which xCa+1 (Rm ) + Wm is

a maximum. This index m is determined while the immediate predecessors

of Rp are re4positioned. Rectangle R p needs a new position if the condition

xCa+1(Rm ) + Wm > max{x'(Rp),xca +1 (Ro ) + Ip - w p}

is satisfied. Note that the right-hand side of the condition does not corre

spond to the position of Rp in Co.' The quantity xCa+1 (Ro)+ lp - wp already

takes the shift to the right from position xca(Ro) to xCa+1 (Ro) into account.

If the condition is true, rectangle R p overlaps with another rectangle (not

necessarily Rm ). In order to determine Rp's new position, we locate, using

Sp, the leftmost position ~ xCo.+1(Rm ) + W m • This position is located by a

linear scan which starts at the slot containing the old position of Rp . When

all rectangles reachable from Rit have been handled, we compute the width

of configuration Ca.+1' This width is determined by :l:C"+l (R n+1)-xc
l1
+1(Ro)

and is hence computed in 0(1) time. After the widths of all configurations

have been computed, we re-build the left-compressed configuration giving

minimum width in 0(6) time.

We now establish the claimed time bound and start with the time re

quired for re-positioning the rectangles. Let r~ be the number of rectangles

which can be reached by rectangle Ri. Each time rectangle Ri is pushed

across a forbidden region, we may have to re-position all the rectangles

which can be reached from Ri. Rectangle Ri. is pushed across at most q.

forbidden regions and in each time we may re-position r~ rectangles. Hence

the total number of times Ri causes a re-positioning is at most qir~. Over

all, we re-position at most l:!. = :Li=t qiT~ rectangles. In order to find new

positions for all rectangles the lists Si, 1 $ i ::; n, are traversed. This costs
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an additional 00=;=1 qi) = 0(6) time. Since T~ ~ 1 (i.e., a rectangle can be

reached by itself), we have.6. ~ 6. We can thus state the following theorem.

Theorem 3.1 Given n rectangles and k forbidden regions, the forbidden

region problem can be solved in 0(.6.) time with O((n + k) logk + 610go)

preprocessing time.

vVe conclude this section by observing that the algorithm we presented

can also be used to solve a slightly different, somewhat more general problem.

Assume every rectangle Ri has its own set of forbidden regions associated

with it. A minimum configurations is now a configuration in which no

rectangles overlaps with its own forbidden regions and the area induced

by the rectangles and all the forbidden regions is a minimum. Since our

algorithm associates with every rectangle its own list of slots the rectangle

can be placed in, changing how the lists are generated results in an algorithm

solving this problem.

4 Minmax k-partition problem

When each of the k forbidden regions has height h, the forbidden regions

model positions in the layout area where a vertical cut can be made. In

certain environments one may need to make k cuts, but does not have the

positions of the cuts pre·determined. Rather, the cuts should be made so

that the maximum distance between two consecutive cuts is minimized. We

refer to this problem as the minmax k-partition problem and present an

algorithm to solve it in O(p+ n logn) for arbitrary k, where p represents the

number of edges in the transitive closure of the visibility graph induced by
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the rectangles. For the case when the layout components get separated by

only one cut we present an O(n) time algorithm.

We start by giving a more formal definition of the minmax k-partition

problem. Given are again n rectangles, R1 , R2 , •.. ,Rn, where R; has width

Wi. We are to determine the position of k vertical cuts so that all rectangles

are to the right of the first cut and to the left of the k-th cut, respectively,

and no rectangle intersects a cut (i.e., the rectangles are partitioned into

k-lgroups). Let B 1 ,B2 , ••• ,B" be the cuts, Sl,S2, ... ,Sk_l be the slots

(i.e., the area between two consecutive cuts), and let d1 ,d2 , ••. ,d"_l be the

distances between two consecutive cuts. Let d- = max1:Si<k-l d;. A mini·

mum configuration for the rnlnmax k-partition problem is one in which d- is

a minimum. We also refer to do. as the width of the partition. Observe that

the statement of the problem requires k ~ 2. For k = 2, it corresponds to the

standard compaction problem and for k = 3 it corresponds to compacting

the rectangles onto 2 layers.

The following property characterizes a relationship between the width

of a minimum configuration and the length of the longest path between

two rectangles. It is the basis for reducing the search space containing the

minimum configuration.

Property 4.1 Let C be a minimum configuration of width do.. Then, there

exist rectangles Rj and Rj and two consecutive cuts BB and BB+l such that

d" = dB = 1;,i

where li,i is the length of the longest path from Ri to Rj in G.

This property states that the width of a partition is equal to the length
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of the longest path between two rectangles. Our algorithm first generates

the necessary l;,;'s. For every rectangle Rj we determine the length of the

longest paths from Rj to all rectangles reachable from Ri. Using G, these

values are generated in 0 (p) time.

We then employ a binary search strategy to find d·. OUf algorithm uses

as a procedure that, given a value d, determines the minimum number of

cuts needed to achieve a partition of width d. Let MIN _CUT(d) be this

procedure. Using G, MIN_CUT(d) generates the number of cuts needed in

O(n) time as follows. Assume we have an infinite number of cuts B1 , B2 , ...

with the distance between two consecutive cuts being d. We now process

the rectangles in a topological order induced by G. Let Rj be the rectangle

currently being processed, and Rma:c be the rectangle that is a predecessor

of R; in G and for which x(Rma.,} + Wmao: is a maximum. Assume Rmaz. is

located in slot Sf. IT x(Rmaz.)+wmaz.+w; ::; J·d, then Ri is assigned position

x(Rmaz.) +Wmaz. in slot Sf. Otherwise it is assigned position x(B/+1 ) in slot

B/+1. It is straightforward to see that MIN_CUT(d) generates the number

of cuts needed for" a given d in O(n) time. Note that when d is less than the

width of one of n rectangles, MIN_CUT(d) returns zero.

Assume now that some Ii,; is the input for MIN_CUT. If the minimum

number of cuts returned is larger than k, a larger width is needed in a

configuration making k cut. Otherwise, a minimum configuration making k

cuts can possibly achieve a smaller width. Hence, using a binary search, we

can find the optimal d· in 0 (p + n log n) time.

We next describe an algorithm that solves the minmax: problem in O(n)

time for k = 3. In this case we only have two slots available and a rectangle
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Rj is either assigned to slot 81 or slot 8 2 . The minimum width d· is now

determined by either 10,j or Ij,n+1 for some j. We thus only determine 10 ,j

and Ij,n+1 for every j. This is done in D(n) time. An obvious lower bound on

the width of a minimum configuration is tlo,n+!. Let dopt = t10,n+l and let

Rj be any rectangle. If10 ,j ~ dopt , then any left-compressed configuration of

minimum width assigns Rj to slot 8 1 . Otherwise, the decision on where to

put Rj is based on the following rule: If10,j ~ Ij,n+I, rectangle Rj is assigned

to slot SI; otherwise Rj is assigned to slot S2. Using these conditions, it is

straightforward to develop an D(n) time algorithm. First, we compute LO,j

and Lj,n+l for each rectangle Rj. We divide the n rectangles into two sets

according to the rules stated above and then compute the resulting width

d·. The following theorem is a consequence of the above discussion.

Theorem 4.1 The minmax k-partition problem can be solved in D(n) time

for k = 3 and in D(p+ nlogn) time for k;:::: 4.
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The upper number and lower number in each node are its index and value. respectively.
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