
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1992

Shortest Path Computations in Source- deplanarized Graphs Shortest Path Computations in Source- deplanarized Graphs

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Hung-Yi Tu

Report Number:
92-100

Frederickson, Greg N.; Hambrusch, Susanne E.; and Tu, Hung-Yi, "Shortest Path Computations in Source-
deplanarized Graphs" (1992). Department of Computer Science Technical Reports. Paper 1019.
https://docs.lib.purdue.edu/cstech/1019

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SHORTEST PATH COMPUTATIONS IN
SOURCE-DEPLANARIZED GRAPHS

Greg N. Frederickson
Susanne E. Hambrusch

Hung-Yi Tu

CSD-TR·92-100
May 18, 1992

Greg N. Frederickson ~

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Shortest Path Computations in Source-deplanarized Graphs

Susanne E. Hambrusch t

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Hung-Yi Tu t
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

May 18, 1992

Abstract

We consider a class of non-planar graphs that arises in VLSI layout compaction and
show that a numuer of shortest path problems on these graphs can be solved in the same
time as the corresponding problem in a planar graph.

Keywords: Analysis of algorithms, shortest paths, planar graphs.

·Research supported in part by aNR under contract NOOOI4-B6-K-0689, and by NSF under Grant CCR
90-01241.

'Research supported in part by ONR under contracts NOOOl4-84-K-0502 and NOOOl4-86-K-0689, and by
NSF under Grant MIP·87-15652.

IResearch supported in part by NSF under Grant MIP-87·15652 and ONR under contract NOOOl4--84--K·
0502.

I

1 Introduction

Findin?; shortest paths is a fundamental problem in applied graph theory. Let G be an n

vertex. m-edge graph. For general graphs the single source shortest paths problem can be

solved in O(m +n log nJ time by using Dijkstra's algorithm with a Fibonacci heap implemen

tation [3]. A number of special classes of graphs, including planar graphs, are known to have

faster algorithms. In this note we consider source-deplanarized graphs, a class of non-planar

graphs that arises in VLSI layout compaction and job scheduling [4, 5]. In the compaction

application one solves single source IlToblems on a sequence of source-deplanarized graphs

where two consecutive graphs differ only in the weights associated with certain edges. We

show that a number of shortest path problems on source-deplanarized graphs can be solved

in the same time as the corresponding problem in a planar graph. The best bounds for planar

graphs are the following [2]. The single source problem can be solved in O(ny'logn) time.

At a one-time expense of an O(n log n) preprocessing time, the single source problem can be

solved in O(n) time.

A $ource-deplanarized gmph, or s-graph for short, G", is a directed graph obtained by taking

a direc.ted, planar graph G with nonnegative edge weights and adding a source s and edges

with nonnegative weights from s to vertices in G. Note that this operation can complicate

the pmbedding structure of the graph considerably; the genus of the resulting s-graph can be

B(n). We refer to the edges incident on the source s as the s-edges. These s-graphs are used

in the VLSI layout compaction algorithms of (4] in which single source problems are solved

in an on-line fashion on a sequence of s-graphs. The i-th graph in this sequence differs from

the (i + 1)-st one in the weights associated with s-edges. The shortest path tree for the i-th

graph determlnes the changes in the weights of the s-edges. Solving single source problems

faster by aUowing a larger preprocessing time is dearly useful in this context.

In Section 2 we show how to determine the shortest path tree rooted at s in O(n log- n) time

with an O(nlogn) preprocessing time. This algorithm allows us to determine in O(n log'" n)

time the shortest path tree after the weights of an arbitrary number of s-edges have been

changed. We also show that the single source shortest paths problem on an s·graph can be

solved in O(nv'logn) time without preprocessing. During the layout compaction algorithm

2

described in [4] the weights associated with the s-edges decrease. In Section 3 we show that.

if the weight of a single s-edge decreases. the resulting shortest path tree can be determlned

in O(n) time. This algorithm requires an O(nlogn) preprocessing time.

2 Handling a set of weight changes

In this section Wf'. describe our algorithm for solving the single source problem on an s-graph

in O(n log- n) time with O(n logn) preprocessing. As already stated, this algorithm will allow

liS to solve one instance of a single source problem in O(n log- n) time after the weights of the

,~-edges have. been modified. Our overall approach is similar to the one Ilsed in [2]. We start

by describing the concepts needed to understand the algorithm.

As in [2], we assume that a planar graph G has already been transformed so that no vertex

has degree greater than 3. A suitable r-division divides G into 0(n/r) regions, where a region

contains two types of vertices, boundary vertices and interior vertices. A region contains

at most r vertices and O(VTJ boundary vertices. Furthermore, each boundary vertex is

contained in at most three regions, and any region that is not connected consists of connected

components, all of which share boundary vertices with exactly the same set of either one or

two connected regions. A suitable r-division can be found in O(n log r + -!};.Iog n) time {2,

Lemma 4].

Frederickson's basic algorithm consists of two phases, a preprocessing phase and a search

f)hasL Let r be a given parameter. For two boundary vertices 11 and w belonging to the same

region Ri' let d j (1I,w) be the length of the shortest path from 11 to w lying entirely within

region Ri. The preprocessing step computes, for each region Ri' the shortest path between

every pair of its boundary vertices. The search phase consists of two parts, the main thrust

and the mop-up. For each boundary vertex v, let p(v) be the current shortest distance from

source s to v, with p(s) = 0 and p(v) = 00 initially. At each iteration of the main thrust, the

vertex 11 with minimum p(v) is chosen. For every boundary vertex w in region Ri' p(w) is

updated; i.e., p(w) = min {p(w), p(v) + d;('V, w)}. At the termination of the main thrust, the

length of the shortest path from the source s to each boundary vertex is known. The mop-up

determines the shortest path distances from the source s to the interior vertices.

3

The time complexity is E:'stablished as follows. Using Dijkstra's algorithm [1] for deter

mining the shortest paths between every pair of the boundary vertices results in O(nJTlog r)

time for all regions. Using data structures and techniques described in [2], the main thrust

can be accomplished in O(n + -;};logn) time. The mop-up takes O(rlogr) time for each

of the 0(~) regions, yielding O(nlogr) time altogether. Choosing r::::;: IQ;fQ~n results in an

O(n~Jloglogn) time algorithm for the single source problem in a planar graph. To

obtain Frederickson's O(n..jlij'g'1i) time bound, the described approach is generalized to two

levE:'ls of subdivisions. Another type of generalization to log- n levels yields the O(nlog- n)

time algorithm. and the clever use of a decision tree technique, together with three levels of

subdivisions, give the O(n) time algorithm. Both of these algorithms require an O(nlogn)

preprocessing time.

We now return to the single source shortest path computation in s-graphs. Let G be the

planar graph obtained by removing from G" vertex s and the incident $-edges. Our overall

approach is to find suitable r-divisions for G and to adapt the planar shortest path algorithm

so that the existence of the .~-edges is taken into account.

Let log(k) n = log log ... Iog n, for 1 S; k S; log~ n. We next describe a k-Ievel algorithm
~

k

solving the. single source problem on G" in O(n log(k) n) time with O(n logn) preprocessing.

For J.: = 1. we simply lise Dijkstra's algorithm. For J.: ~ 2, the algorithm operates on k levels

of subdivisions. Let Ti = (log(i) n)2, for 1 S; i S; k, and let Ri,i be the j-th region in the level

i subdivision. We view G as the single region forming the level 0 subdivision Le., G = ~,I'

The [lreprocessillg necessary for the k·level algorithm involves only graph G and is as in {2,

Section 7J. The preprocessing step determines fQr every region Ri,i of a level i subdivision a

suitable r'+I-subdivision, 0 S; i < k. For every pair of boundary vertices v and w of region

Ri,) it determines the length of the shortest path between v and w lying within region Ri,i'

The search phase of the k-Ievel algorithm consists of an initialization step, a main thrust,

and a mop-up step. Let G,,(i,j) he the subgraph of G" induced by the vertices in region Ri,i

and vertex s. For any two boundary vertices v and w in region Ri,), let di,i(v, w) be the length

of the shortest path from v to w in G,,(i,j). For any boundary vertex u in region RI ,,, let

Pi(u) be the length of the shortest path from s to 1L in subgraph G,,(l,j). We also refer to

4

the Pi(')-entries as the restricted distances.

The initialization step computes for every boundary vertex u of region Rt,i the restricted

distance pA·u). The objective of the main thrust and the mop-up step is to compute the final

p(·)·entries, i.e., the value of the shortest path from s to every vertex in G3 • We initialize

the p(·)-entries for level 1 boundary vertices u with p(u) = mintleRl .} {Pi(u)} and with 00 for

every other vertex. We then run the main thrust on the level 1 boundary vertices. After the

main thrust the length of the shortest path from s to any level 1 boundary vertex is know.

In order to determine the p(-)-entries for the interior vertices of the level 1 subdivision, the

mop-up step proc.eeds as follows. It modifies the weights of the s-edges of every graph G3 (1,j)

so that for pvpry boundary vertex u of re?;ion Rl,i the weight of the ed?;e (5, u) equals p(u).

This modification can introduce new edges or decrease existing weights. We then apply to

each so modified graph G~(l,j) the search phase of the (k - i)-level algorithm. Observe that

all the subdivisions and shortest path entries (i.e., di,i(',')-entries) between boundary vertices

needed by the search phase of the (k - l)-level algorithm have already been determined by the

preprocessing step of the k-level algorithm. We are now ready to prove the following result.

Theorem 2.1 Givw an source-deplanarized graph, the shortest path tree rooted at source s

can be determined in D(n log- n) time with D(n log n) preprocessing.

Proof: We show that the k-Ievel algorithm described above solves the problem in D(n log(k) n)

time with D(n log n) preprocessing. The claimed time bound follows for k = log- n. The cor

rectness of the k-le.vel algorithm follows from the above discussion. The D(n log n) time bound

for generating the k levels of subdivisions in the preprocessing phase follows from [2, Section

7]. The shortest path information between boundary vertices ofregion Rk,i is obtained by ap

plying Dijkstra's algorithm to each region Rk,i of the level k subdivision. This uses D(n log n)

time for k = l, and for k ~ 2 D(,*n log rk) = D(ny'Tklogrk) time which is D(n logn). The

di,j(',')-entries representing the shortest path distances between boundary vertices of region

Ri,j for 1 ~ i < k are obtained by using the entries computed for the level (i - 1) subdivision

and applying the main thrust. This uses D(Ti) time per level i region and thus D(n) time for

all level i regions. Hence, the total preprocessing time is bounded by D(nlogn).

5

In order to compute the restricted distances Pi(u) for every boundary vertex u of region

R1.j, we apply the search phase of the (k-I)-level algorithm to subgraph G,,(I,j). All the sub

divisions and di.j(·,·)-entries needed have already been computed by the preprocessing phase

of the I.:-level algorithm. The search phase of the (k -I)-level algorithm costs O(TllogU.:-I) rd

time per region and O(n log(k) n) time totally for all nlT1 regions. Applying the main thrust

to all level 1 boundary vertices costs O(n) time. In the mop-up step we apply the search

phase of the (I.: - I)-level algorithm to every subgraph G,,(l,j) whose edge weights have been

modified. This costs O(nlog(k)n) time for all nlTt graphs. In total, the search phase uses

O(nlog(k)n) time. 0

Assume we are solving the shortest path problem on a sequence of s-graphs which differ

III the weights associated with the $-edges. It follows that, after O(nlogn) preprocessing

time, every shortest path tree can be determined in O(n log- n) time. When we only solve one

instance of a shortest path problem on an s-graph, we are interested in balancing preprocessing

and search time and minimizing the total time. This is done by using the 2-level algorithm

with Tl =logn and r2 = (loglogn)2 which results in a total time ofO(n00gn).

3 Handling a single weight decrease

When the single source problem is solved during the VLSI layout compaction algorithm de

scribed in [4], the weights of the s-edges decrease. Let G" and G~ be two s-graphs that differ

only in the weight associated with one s-edge. In this section we describe an algorithm that,

given the shortest path tree for G", generates the shortest path tree for G~ in O(n) time. Our

algorithm requires a one-time preprocessing cost of O(n log n).

Let (s, u) be the s-edge having weight w"'u in G" and weight w~,u in G~ with w"'u > w~,u'

Let (; be again the planar graph obtained from Gs (resp. G~) by removing the ~~-edges. If the

all pairs shortest path information for graph G is available, the length of the shortest path

from source oS to every node 11 in G~ can be determined in O(n) time. Hence, it easy to solve

the problem in O(n) time using O(n2) preprocessing time and O(n2) space. Recall that the

aU-pair shortest paths problem in a planar graph can be solved in O(n2) time {2, Theorem 6].

In order to reduce the preprocessing time and the space 1 assume that the single source

6

shortest path information for (;5 with s being the source is available. In order to generate the

single source shortest path information for G~ we perform a shortest path computation on G

with u as the source. A single source computation on a planar graph can be performed in

O(n) time with a one-time expense of an D(n log n) preprocessing time [2, Theorem 5J. This

algorithm uses D(n2c(logloglog71)~) space, for some constant c.

The details of our algorithm are now as follows. We preprocess G so that any single

source computation on it can be performed in D(n) time. This preprocessing of G consists of

determinin!i!; three levels of subdivisions, building a decision tree for each region of the level 3

subdivision, and computing for every pair of boundary vertices of a region the length of the

shortest path lyin?; within this region. These computations can be done in D(nlogn) time

as described in [2]. The preprocessing step also includes the computation of the p-entries

associated with Ga. These entries can be computed, for example, in D(n..;Iogn) time using

the 2-level algorithm mentioned in the last paragraph of Section 2.

The objective of the search phase is the computation of the shortest path entries for G~.

Let p'(V) be the length of the shortest path from s to v in graph G~. In order to determine

the p'-entries we perform a single source shortest path computation on G with u being the

source. Let p,,(v) be the length of the shortest path from u to v in G. The p'-entries can now

be compnte_d as follows:

p'(v) = min {p(v), w;,u + purv)).

Theorem 3.1 Given a source-deplanarized graph, the change in the shortest paths distances

caused by a sequence of on-line changes with each change decreasing the weight of one s-edge,

can be determined in D(n) time per change with an D(n log 71) preprocessing time.

Proof: We \lse the method described above. The time bound is established as follows.

Generating the shortest path tree for G with u as the source is done in D(n) time [2, Theorem

6]. The value of the pi-entries is then generated in another D(n) steps. Thus, the search phase

has an overall D(n) time bound. 0

7

References

[l] A. Aho. J. Hopcroft, and J. Ullman. Tht: Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

[2] G.N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.

SIAM J. Computing, 16(6):1004-1022, December 1987.

[3] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. JOU1'11ul of ACM, 34(3):.'596-615, 1987.

[4] S. E. Hambrusch and H.- Y. Tu. A framework for I-d compaction with forbidden region

avoidance. Computational Geome171J: Theory and Applications, 1(4):203-226. April 1992.

[5] C.E. Leiserson and J .B. Saxe. A mixed-integer linear programming problem which is

efficiently solvable. Joul7Ial of Algorithms, 9(1):114-128, March 1988.

8

	Shortest Path Computations in Source- deplanarized Graphs
	Report Number:
	

	tmp.1307986960.pdf.SDNRD

