
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1993

New Algorithms for Minimizing the Longest Wire Length During New Algorithms for Minimizing the Longest Wire Length During

Circuit Compaction Circuit Compaction

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Hung-Yi Tu

Report Number:
93-013

Hambrusch, Susanne E. and Tu, Hung-Yi, "New Algorithms for Minimizing the Longest Wire Length During
Circuit Compaction" (1993). Department of Computer Science Technical Reports. Paper 1031.
https://docs.lib.purdue.edu/cstech/1031

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Algorilhmica (£991) 17; 426-448

Algorithmica
@ 1997 Spnnger·Vcl'IIS Nc.wYorklrK:.

,

..

I
i,

)
I

New Algorithms for Minimizing the Longest Wire
Length During Circuit Compaction l

s. E. Hambrusch2 and Hung-Yi Tu3

Abslracl. Consider the problem of performing onc-dimensionol circuit ~mpac[ion for a layout containing
nh horizontal wires and n layout cells. We present Dew and efficient cons[raint-graph-bas~ algorithms lor
generatingacompacled layout in which eilhcnbelenglh oflhc longestwircsor auser-specil1ed uadcofffunction
between the layoul widlh Bnd Ihe longesl wire lenglh is minimized. Bolli algorithms have. an O(nh ' 11 logn)
running time. The concept employed by our a1gorilhms is that of assigning speeds to the layoul eells. Speeds
are computed by performing path computations in subgraphs of the conslraint graphs. A compacled layoul is
generated over a number of iterations. with each ilemtion first delermining speeds and then moving the layout
elements 10 the right according 10 die computed speeds. Each ilernlion produces a better layout and after at
most n • nh ilerations die finallay(lut is produced.

Key Words. Analysis of alg(lrithms. Circuit lilYoU(, Compaction, Lay(lut widdi. lAIogest wire length, Path
compUIali.ons.

,",;' .;"

'.. :''', ,·..',t' ~.~duction. Circuit compaction is the process of converting a_sym~~~c ,~ay_~'tit'
.into an actual layout that satisfies the design rules and minimizeS a set of objective
functions [5]. [9]. One-dimensional compaction allows layout elemetl:ts to slide in one
direction only and is often preferred over computationally intractable two-dimensional
compaction. Consider performing one-dimensional compaction along the horizontal di­
rection. Layout elements are now allowed to slide horizontally as long as no consttaint
is violated and the relative order of the layout elements is preserved. The length of a
horizontal wire can change during this process. A layout generated by most conventional
width:'minimizing compaction algorithms contains unnecessarily long horizontal wires.
Controlling the wire length is crucial in circuit deSign [41. [9]. [101. [13J. In this paperwe .
present new and efficient algorithms for minimizing the length of the longest horizontal
wires during one-dimensional compaction and for minimizing a given tradeoff function
betWeen the length of the longest wires and the width of the layouL

Assume we are given a layout containing nh horizontal wires. n.u vertical wi~t and
rectilinear polygonal layout components composed of nr vertical edges. We present an
O(n. ·n logn)-time algorithm for generating a layout which minimizes the length of the
longest wires and for which, among all layouts having the same minimum wire length,

I This research was supponed in part by DARPA under Contrnct DABT63-92.C·0022. The views and con­
c!usi(lns conUlined in Ihis paper arc those of the authors 8l1d should not be interpreted as rep(CSCnting (lfficial
policies. expressed or implied. of the U.S. g(lVemmcnt.
2 DepaJtmcntofComputer Sciences. Purdue University. West Lafayette, IN 47907, USA. sch@cs.purdue.cdu.
3 Department (lfCompUler Scieflce and InfontiaLion Management. Providence University. Taichung. Taiwan.
~epublic ofChina.

Received December 10. 1994; revised October IS, 1995". Communicated by A S. LaPaugh.

New AlgoriLhms for Minimizing the Longesl Wire Lenglh During Circuil Compaction 427

one of minimum width is generated, Il ::: 2nh + nu+ 1Z r • We also consider the problem
of generating a layout minimizing a specified tradeoff between !.he longest wire length
and the layout width. More precisely, given a tradeoff function O! • W + f3 •L between
the layout width Wand the longest wire length L, and constants a, P > 0, we present
an O(n/, . n logn)-time algorithm for minimizing a . W +P . L.

We briefly sketch the approach underlying our algorithms. A configuration ofa layout
assigns to the leftmost edge of every layout component and every wire an x-position in
the layout area. We assume thaL the input is a feasible configuration (i.e., [he x-positions
associated with the layout components result in a layout satisfying the constraints).
From this initial configuration, We generate a configuration minimizing the longest wire
length or a tradeoff function over a number of iterations. Each iteration produces a
feasible configuration with smaller longest wire length or a smaller tradeoff function
value, respectively. The relevant constraints and distances are represented by graphs.
Within the area of compaction methods our algorithms are viewed as constraint-graph­
based solutions [5]. A new configuration is generated from the previous one by moving
layoutelements to the right. A crucial parameter in this movement is the speed ofa layout
element. In the algorithm minimizing the longest wire lenglh, speeds are computed by a
longest-path computation and in the tradeoff algorithm by a shortest~path computation.
In the longest wire minimizing algorithm the movement to lhe right reduces the length
of longest wires. At the same time, it can increase the length of wires that are originally
not the longest ones and it changes distances between layout elements. One iteratiQn:, ;".~.:",,;.,; iI''''

stops when a nonlongest wire turns inLo a lot:-gest wire or any further movement would d1' ;;.' '! :~. ':1 c,"

violate constfaints. If a further reduction in the longest wire length is possible, the ne>i:t~: ~.~..;:~~:::.!.- ~.,

iteration continues the movement with updated speeds. The scenario for the trade:offr ;: '.,' ,,',!., .. .'.~. :'
minimizing algorithm is similar. For both compaction problems, a final configuration is
fmand after at most Il,. 'Il iterations. The O(llh 'lIlogn)-time bound is achieved by using
data structures to perform updates and by perfonning computations on demand.

The best previously known algorithm for minimizing the longest wire length follows
from [6]. The algorithm described in that paper uses a different approach and, when
translated into our framework, it gives O(logL . (nt, + rzr) . Il) time, where L is the
longest wire length in the initial layout. Ignoring constants, our algorithm can be viewed
as faster for log n < (1 + Ilr /1!I,) . log L. Other compaction algorithms minimizing the
layout width. the longest wire length, or the total wire length are described in [2J-[7].
[II], [13], and [15J. None of these algorithms can be used to optimize a tradeofffunction
between the layout width and the longest wire length.

The paper is structured as follows. In Section 2 we state relevant definitions. In
Section 3 we discuss our approach for the algorithm minimizing the longest wire length.
Section 4 describes how to compute the speeds and how to detennine the points in time
when new speeds have to be computed. In Section 5 we present an O(n~ . n2)-time
algorithm and in Section 6 we show how to reduce the running time (0 0(1111 . Il log n).
In Section 7 we discuss how to generate a configuration minimizing a given tradeoff
funclion. Sections 8 and 9 conclude.

2. Preliminaries and Definitions. In this section we give notation and define the dif­
ferent graphs used by our algorithms. Throughout [his paper the wires of a layout are
partitioned into horizontal wires and vertical wires according to the following rules. A

428

,u)

s. E. Hambrusch ~nd Hung-Yi Tu

o",

UO'__--,,2I-01S

".I .

(e) (d)

'"

Fig. I. (a) A layout. (b) The cells of the layout, (c) The distnnce grnpl'l orthe layout. (d) The wire grnph of the
layout (e) The speed graph of the layout.

horizontal wire is a horizontal segment of maximum length connecting layout campoR
Rents and vertical wires. Every wire segment not belonging to a horizontal wire forms
a vertical wire. For example, the layout shown in Figure I(a) contains five horizontal
wires and seven vertteal wires. Observe that the endpoint of a vertical wire is incident to
either a layout component or a horizontal wire. No endpoint of anol.her wire is incident
to any other position of a vertical wire.

We group layout dements into cells as follows. Partition (he layout components and
vertical wires into maximal sets, so that each set represents one rigid object that moves
as one entity. One such rigid objecl induces one cell of the layout. In addition, if an
~ndpoinlof a horizontal wire is not connected to a layout component, then this endpoint

New Algorilhrns for Minimizing the Longes[Wire Ll!nglh During Circuil Compaction 429

induces a rectangular cell. Such a cell has width aand its height equals the width of the
horizontal wire. Figure l(b) shows the cells induced by the layout of Figure l(a). Cells
U l 2, Ul3 , U14• and UIS are cells induced by the endpoints of horizontal wires HI, H2.
and H3, respectively. Having an endpoint of a horizontal wire that is not connected to a
layout component induce a cell simplifies our algoritlun.

Let n be the number ofcells in configuration C. n ~ 2n/l +Il u +Il ro In our algorithms
the infonnation about configuration C is represented by two directed, weighted, n-vertex
graphs, rhedistancegraplzGd = (Vd. Ad) and the wire graph G w = (Vw• A w). The wire
graph records the length of (he longest wire between cells. The distance graph models
constraints between cells. In related literature this graph is also called the constraint
graph. throughout this paper we assume lhat a constraint between two cells is induced
by visibility and that lhe weight of t1w arc is the distance between two cells. When the
constraints ~ome from visibility between cells, the distance graph is a planar graph.and.
as a consequence, it has 0 (n) arcs. However, no step ofour algorithms makes use of the
planarity. Our algorithms can handle other inequalities sp~cified by a user or generated
by a CAD system. Any constraint graph consisting of 0 (0) arcs can be used and will
give the same running time_

We next define visibility and distance between cells. Since cells move to the right.
we only need to capture visibility to the right of a cell. A cell Vj is visible from a cell Vi
if and only if one can draw a horizontal line connecting Ui and Uj starting at a position
Xl and ending at_position X2. XI < X2. so that no position between XI and X2 on this
horizontal line is Occupied by a cell. Every such horizontal line between two cells has
a length of X2 -.x.: The'disttl.llce between Vj and Uj is the minimum over all lengths
associated with horizontal lines connecting the two cells and inducing Visibility between
them.

In both the distance and the wire graph the vertices correspond to the cells of con­
figuration C (we,thu;:; have Vd = Vw). Vertex Ui of either the distance or the wire graph
represents cell Ui , I ::: ; :S 11. The arcs and weights in the dista.nce graph are formed as
follows. When cell UJ is visible from cell Ui. the distance graph contains the arc (U,. Uj);
Le., the arc from vertex Uj to venex Uj. Its weight, d(Ui. Uj), is set to the distance between
Ui and Uj in configuration C.

In addition, we add the following arcs not corresponding to visibility between cells.
These arcs are incident to cells induced by horizontal wires not connected [0 layout
components. Let H be a horizontal wire for which one of the endpoints is not connected
to a layout component. Let v,.p,l and Vup.r be Ihe leftmost and rightmost vertical wire
incident to H. respectively, and lying above H. Observe that no such vertical wire may
exist or that Vup.l and V;,p,r may be identical. Vertical wires Vdw•1 and Vdw.r are defined
in (he analogous way for the vertical wires lying below H. Assume the left endpoint
of H is not connected to a layout component and let Vi be the cell induced by the left
endpoint of H. If cell Vj contains vertical wire l'r.p.l (resp. Vdw'/), we include the arc
(Ui. Uj). Its weight d(lli •.Uj) is set (0 the distance between the left endpoint of H and
vertical wire V,lp.1 (resp. Vdw.I). Observe that at least one of these two arcs has a weight
of O. Arcs (u". 1/,). (u 12. 1/2). (u ". u10). and (u 14, U II) of the distance graph shown in
Figure 1(c) are created according to these rules_ Assume now thaI the right endpoint of
His not connected to a layout component and (halcen Vj is the cell induced by the right
endpoint. Then, if Vup•r (resp. Vdur•r) is contained in cell VJ' we include the nrc (Uj. Ui)

430 s. E. Hambl1lsch and Hung-Vi Th

and set it') weight accordingly. Arcs (u). un). (U4. u 13), and (u n. U IS) of Figure l(c) am
created in this way_

The arcs of the wire graph Gw are formed as follows. Arc (u/. Uj) is in Aw ifcell Uj is
visible from cell Ui and there exists at least one horizontal wire having its left endpoint
incident to Vj and its right endpoint incident to Uj _The weight of tlIis arc, w(Uj, Uj), is
set to the length of the longest such wire between Ui and Uj. Figure led) shows the wire
graph of the layout in Figure leu). Ow contains at mostllil arcs and every arc of the wire
graph is also an arc of the distance graph. When layout components are not restricted to

be rectangles. lhe weights associated with the two arcs can be different. In Figure I the
longest wire connecting cells U16 and U17 has lenglh 7, but the distance between U l6
and Ul7 is 4. Throughout,. let Hi.) represent the longest wire connecting cells Vj and Vj

so that the left endpoint of lhis horizonlal wire is incident to Ui and its right endpoint is
incident to Vj. From now on we assume that among all wires connecting two cells Vj

and V}t all but the longest one have been removed.
Given 8 configuration. its distance graph and wire graph can be built in 0 (nh +

(Il Ll + Jlr)JOg{llv + lIr») time. This can be done, for example, by sorting the layout
components according (0 their vertical edges and using aplane-sweep approach. together
with balanced tree operations [12], [14].

As already stated, we generate new configurations by moving cells to the right with·
certain speeds. The speeds are; specified in the speed assignment. A speed assignment
assigns to every cell Vi a ~onriega~iye.re,al ~Ulp.ber speed(UI). I .:s i :s Jl. Ourlongestwire
minimizing algorithm uses t.~e, c,qn~pt ota legal speed assignment. A speed assignment
isJ~gal for configuration C ~he,~':·,_,

(i) If d(u" Uj) = O,then speed(V,) < speed(Uj).
Cii) If Bi .j is a longest wire in C and w(u" IIj) # O. then speed(U,) > speed(Vj).

Condition (i) guarantees that, when (he distance between Uj and V) is zero. moving cells
Vj and Vj according to their legal speeds keeps the relative order between Vj and Vj in
the horizontal direction. It also keeps Vj from overlappiog with V, (which would happen
if V, would have a larger speed). Condition (ii) guarantees that the length of a longest
wire decreases. Since arcs of the distance graph having weight a and arcs of the wire
graph corresponding to longest wires determine the legality of a speed assignment, we
represent these arcs in a separate graph, the speed graph. The speed graph is used for
determining a legal speed assignment in the wire minimizing algoritlun.

The speed graph G, = (V,. A,) is a directed grnph whose arcs have either weight
oor 1. It has Vs = Vd U {us). where Us is a source vertex, and arc set As is formed as
follows. For every vertex Uj in Vd we include the arc (us> Ui) of cost O. For every arc
Cu" Uj) of weight 0 in the distance graph, the speed graph contains the arc (II,. IIj) of
costa. If (Ui. Uj) is an arc in the wire graph Gw representing a longest wire in (he layout,
the speed graph conlains the arc (Uj. Ui) having cost I. Observe that for an arc (UI. Uj)

coming from the wire graph we reverse the direction or the arc in the speed graph. The
length of a path from Uor to Uj is the sum of the costs of (he arcs on the path.

Assume there exislS a legal speed assignment forconfiguration Cand the longest wire
length in C is not zero. Moving the cells to the right according to the speeds specified
by n legal speed assignment changes wire lenglhs and distances between cells. Most
importantly, the length of the longest wires is reduced. Cells continue moving to the

New Algorilhms foc Minimizing the Longesl Wire Lenglh During Circuil Compllction 431

right until one of the following two events happens:

(i) an arc (u;, Uj) having a positive weight in distance graph turns into an arc of weight
O. i.e., a nonzero distance between two cells becomes zero, or

(li) a wire Hj •j which is not a longest wire before the movement to the right turns into
a longest wire.

We refer to the first event as a distance event and to the second one as a wire event. The
earliest time at which either event occurs is called the event lime for configuration C. At
event time. the speed assignment is no· longer legal. However. there could exist another
legal speed assignment that continues to reduce Ihe length of the longest wires. If one
exists, we find it and keep moving cells to the right according to the new legal speeds.
Otherwise, the current configuration is one having the minimum longest wire length.

3. Correctness of Overall Approach. In this section we establish the relationship
between a legal speed assignment and a configuration in which the longest wire length
is a minimum. This relationship is crucial to the correctness of our algorithm_

LEMMA 3.1. Let C be a cOJ1figuration. The longest wire length in C is not minimized if
and only if there exists a legal speed assignment/orC.

PROOF. Assume there exists a legal speed assignmentfQ(configuration C. By moving
the cells according to the associated speeds, the longesi';.lie iength is reduced. Thus the
longest wire length could not have been minimized in C.

Assume now that the longest wire length is not minimized in C. Let xe(Ut) be the
x-position of. the leftmost vertical edge of cell U; in configuration C. Let C* be a con­
figuration in which the longest wire length is a minimum and xc(Ui) ~ xc' (Ui) holds
for every cell Ui' By shifting the cells of a configuration minimizing the longest wire
length to the right such a configuration C· can always be generated. We next show that
setting speed(Ui) = xc·(U;) - xc(U;), I ~ i ~ II, resulls in a legal speed assignment
for configuration C.

Assume that the distance between Vj and Vj is 0 in C. This implies that cell Vi
contains a vertical edge ej and cell UJ contains a vertical edge ej, such that ej is visible
from e, and the distance between er and ej is O. In configuration C*, ej is still visible
from ej. The distance between e; and ej in C· is larger than or equal to O. Hence,
XC,(Ui) - xc(U;) ~ xc,(Uj) - XC(Uj) and thus speed(Ui) ~ speed(Uj). Let Hi.j
be a horizontal wire of maximum lenglh in configuralion C. Recall that Hi.j has its left
endpoint incident to cell Vi and its righlendpoint incident to Vj. The length ofwire Hi.j in
configurationC is larger than inC*. Hence, wehavexc·(Ui)-xc(Uj) > xc·(Uj)-xc(Uj)

and speed(UI) > speed(Uj) follows. Both conditions for a legal speed assignment are
thus satisfied. 0

There can exist many legal speed assignments for a particular configuration C. Our
algorithm detennines a legal speed assignment by performing a single-source longest­
path computation in lhe speed graph. Assume that the speed graph contains no positive

432 s. E. Hambrusch and Hung-Yi Tu

cycle. Let £(u;) be the length of the longest path from source Us to vertex Ui and let
p = (us, Ukl' •.• I Uks = Uj} be the associated path. Intuitively, path P implies that one
can "traver' from cell Ukr to cell Vi using C(Ui) longest wires. By "travel" we mean that
there exists a path from Uk] to Uj in the speed graph that corresponds to moving from
cell Uk. to cell Uj along £(Uj) horizontal wires of maximum length, through the interior
of cells, and from one cell to another cell as long as the distance between these two cells
is O. Moving every cell V" on path P to the right with a speed of L(u,,), 1 ::; r ::; I,
reduces the length ofevery longest horizontal wire associated with an arc in palh P. The
next lemma gives a formal argument showing that setting speeds equal [0 the longest
path entries results in a legal speed assignment.

LEMMA 3.2. Let Gsbe the speed graph of configuration C. gas contains no positive
cycle, selting speed(Uj) = £(Ui). l ~ i :::: n, results if! a [egalspeed assignmentforC.

PROOF. Let (Ui, Uj) be an arc of cost a in Gs . Since Gs contains no cycle of positive
cost; we have L(u,) ::; L(uj). Setting speed(Vj) = £(ui) andspeed(V;l = L(u,) gives
speed(V,),::; speed(Vjl.

Assume now that (Uj. Ui) is an arc ofcost 1 in the speed graph. The arc is inducei:l by a
longest wire having a left endpoint incident to cell Vi and a right endpoint incident to cell
-Vj. Sin~·~ere·exi.$ts no cycle of positive length, Gscannot contain a path from Uj to uJi"; '.-' i, .:: ',;,: . ;'-..

We thus'Mve-L(uil ->-L(ujl + I. Setting speed(Vjl = £(Uj) and "peed(V,) = .c(u,}:-,;,''''-''''·
•-gives sp~.d(ri,)- > ·speed(Vj). Hence, both conditions for a legal speed assignment' are- -:",,,,,, "

satisfied. - , - - ' D'i'

In order to use the existence of a positive cycle as the indication that no legal speed
assignment exists, we need to prove the following lemma.

LEMMA 3.3. Let Gs be the speed graph ofconfiguration C.//Gs cofltaillS a cycle of
positive cost, then ILO legal speed assignment exists.

PROOF. Assume P = (Uip HIli Uj3' .•• , Ui,_I' u;p U/1) is a positive cycle in Gs - P con­
tains at least one arc, say (Uii , UijiJ. of cost I. By definition of G s , arc (Uij' Uij+l)

corresponds to a longest wire with a left endpoint incident to cell Viji-! and a right end­
point incident to cell Vj,. Assume there exislS a legal speed assignment for C. Then,
we have speed(V'j~,l > speed(V'j)' This implies speed(V,,) ::; speed(V,,) ::; .,. ::;
speed(ViJ) < speed(Uij+,) ~ • - - ~ speed(Ui,) ~ speed(Uil), which is not possible.
Hence, no legal speed assignment can exist for C. 0

We summarize the discussion in the following theorem.

THEOREM 3.1. There exists a legal.'ipeedassignmentforC ifandoll/Y ifthe speedgraph
olC contains no positive cycle. gna positive cycle exists, setting speed(Uj) = .c(Ui),
I ~ i ::5 n. gives a legal speed assignment.

New Algorithms for Minimizing lhe Longest Wire LengtlJ. During Circuil Compaction 433

4. Finding a Legal Speed Assignment and the E¥enl Time. In this section we first
give an algorithm for detennining a kgal speed assignment for a given configuration C
and then describe how to detennine the event time induced by the legal speed assignment.

As described in the previous section, we determine a legal speed assignment by
perfonning a single-source longest~path computation on the speed graph with vertex Us

as the source. The entries speed(uj) are computed similar to the Bellman-Ford algorithm
[I] f9f solving a single-source shortest-path problem on a graph with negatiye weights.
We use lhe technique ofrelaxation, in which the speed-en~es (and thus the length of the
longest paths) are progressively increased. An arc (Ui, Uj) in speed graph Gs is relaxed
if

speed(Ui) < speed(Uj)

speed(Ui) < speed(Uj)

when

when

Cost(Ui. Uj) = 0,

COSI(Ui. Uj) = 1.

Figure 2 gives a description of the algorithm, to which we refer as algorithm LEGAL­
SPEED. Since veIrex Us has an arc of cost 0 to every other vertex in speed graph Gs •

we initialize speed(Ui) = 0 for every cell Ui and put all arcs of G~ in a first-in-first-out
queue Q. When an arc CUi, Uj) is extracted from queue Q. arc (Ui, Uj) is checked, and
updates in speed-entries and insertions into queue Q are perfonned (as done in steps 5­
11 of Figure 2). Speed graph Os contains at mostnh arcs having cost I, where nh is the
number of horizontal wires in configuration C. Hence, if the length of the longest path
from source u~ to a vertex exceeds n". speed graph Gs contains a positive cycle and
algorithm LEGAL-SPEED lenninates without generating a legal speed assignment.

The running time of algorithm LEGAL-SPEED is bnunded by O(n - nJ,) which is
shown as follows. Let Cj be the number of arcs incident to vertex Uj in Os. When the
speed of Uj (or, equivalently, the length of the longest path from Us to Uj) is increased,

Algorithm LEGAL-SPEED,

lnpul: A speed graph G~ = (V.n A3).

Output: A legal speed assignment_

I. Q ~ A,;
2. for U; E Y.t do spe.ed(Ui) f- OJ
3_ while Q l' 0 do

begin
4. (Ui. Uj) +- dequeue(Q);

r reJa.xation *1
5. speedold(Uj) +- speed(Uj);
6. ifcost(u;,Uj) = 0 and Bpecd{Ud > speed(Uj) then ~peed(Uj) 4- .speed(Udj
7. ifcost(u;,Uj) = 1 and .speed(Uj) ~ speed(Uj} then speed(Uj) - speed(Vd + 1;
8. if spced(Uj) > nh then no legal spC<!d assignment exisLs;
g. if speed(Uj) > speed"fd(UJ) then
10. for every (Rj. Uk) E A~ do enqueue(Q, (Uj. Uk));
11. for every (Uk.Uj) E A~ do enqueue(Q.(lI/".,Uj))i

1* end of relaxation II:I
end of while;

Fig. 2. Algorithm LEGAL-SPEED.

434
·-

S. E. Hambrusch and Hung-Yi Tu

all arcs incident to Uj are inserted into Q and are checked in a later iteration. This takes
O(Cj) time. The speed of a cell is increased at most nh times, and thus the total time
spent on checking the arcs incident to Uj is O(Cj . nh)' The overall running time of
algorithm LEGAL-SPEED is thus O(L;~I Cj . nh) = O(n· 111')_ This time bound uses
the assumption tbat the number of arcs in the speed graph is 0(11). For a speed graph
containing m arcs, the bound is 0 (m . n/r).

Assume that a legal speed assignment has been determined for configuration C. The
remainder of this section describes how to determlne the associated event time in Oen +
nil) time. Let td be the earliest time at which a distance event occurs and let tID be the
earliest time at which a wire event occurs. The event time is then min{td. twl. Consider
first the comput3tion Ofld' Let (Uj, Uj) be an arcoflhe distance graph with d(Ui. Uj) > 0
and speed(Ui) > speed(Uj). The z.ero time Zli.j of arc (Ui, Uj) is defined as the time at
which the distance between Ui and Uj turns 0 when these cells move to the right with
speeds speed(Ui) and speed(Uj), respeclively; i.e.,

d(u" "j)
Z.li.i = .

speed(U,) - speed(Uj)

Time td is determined by computing the zero time for each nrc of the speed graph and
then selecting the minimum among them; i.e., td = min(ul"uJ)eA~{zti,j), where

. At = [("i, "j)l(u" "j) E Ad, d(ui, "j) > 0 and speed(U,) > speed(Uj)}.

"," Sin~ q~' 'contains O(n) arcs. this is done in D(n) time. "'I i,-

_ : Co~:Sider nOw the computation of lw_ Let (Ui. Uj) be an arc of the wire graph'repre'- . .,
..... senting horizontal wire Hi,i inC. We define lengthi,i(l) to be the linear function ,,-,-. '.',,:' .

lengthi.j(t) = W(Ui, "j) +r . (speed(Uj) - speed(Ui».

The value of lengthi.j(l) represents the length of wire B i•i at time t when cells Ui

and Uj move to the right according to speeds speed(Ul) and speed(Uj), respectively. If
speed(Ui) > speed(Uj). the length of wire H'.j reduces and thus the slope of function
lellgth,.j(t) is negative. On the other hand, if speed(U,) < speed(Uj). the length of wire
H"j increases and the slope of lellgthi.j(t) is positive. When speed(U,) = speed(Uj),
the length of wire H'.j does not change and the slope is O. Let ENV(/) be the upper
envelope of all length functions; Le .•

ENV(t) = max lellgth, j(t).
'1II.uj)eA.. .

Then lw is the minimum of ENV(t). Figure 3 shows the length functions of eight hori­
zontal wires. The uppcrenvelope of !.he length functions is indicated by the dashed line.
The minimum of ENV(/) can be obtained in O(n.) time [8]. Since our line segments
have a special stnlcture, the minimum ofENV(I) can be detennined by a simpler method
having the same time bound as follows.

The way legal speed assignments are detennined implies that for every horizontal
wire H,.j whose length is reduced, we havespeed(Ul) ~ speed(Uj) + I. Thus, the slope
of Lenglhj •j is not larger than -1_ Furthennore. there exists at least one longest wire,
say Hi.j • for which speed(Ui) = speed(Uj) + 1, and thus the slope of lellgth'.j(r) is
-I. This implies that ENV(t) contains only one line segment of negative slope and that

New Algorilhms Cor Minimizing lhc Longest Wire Lenglh During Circuit Compaclion

length iiI)

the function with slope -1

/

rw

Fig. 3. The lengrh i . j (I) funclions.

r

435

this line segment has slope -I. Let L(C) be the length of Ihe longest horizontal wire
in configuration C and let lengthL(l) = L(C) - t. The minimum of the upper envelope
occurs at the intersectiolJ.,QJ/~fJgt.hLa).y~i.tha function lenglhp,q (I) ofnonnegatlve slope.
We thus consider all wires·:H,;,,;wil~~peedCU.) =" speedCU,) and determine for each
one Ihe time at whichlerigrh,.(I) "intersects lellgth•.qCt). We refer 10 this time as the
imersection time of wire Hp,iJ.: .!he intersection time can easily be detemlined in 0(1)
time and hence the minimum ofthe upper envelope ENV(t) i~ determined in D(nll) lime.

5. A Longest Wire Minimizing Algorithm. In this section we describe an 0 (1L~ •n2)_

time algorithm for generating a configuration which minimizes the length of the longest
wires. The algorithm perfonns at most"" . n iterations, with each iteration generating
a configuration having smaller longest wire length. Let Cj be the configuration at the
beginning of lhe ith iteration, i ::: I. Also, let G~. G~. and G~ be the distance graph,
wire graph, and speed graph of C;, respectively. For the first iteration this infonnation is
generated from the initial configuration C.

The ilh iteration perfonns lhe following sleps. We use algorithm LEGAL-SPEED
described in the previous section to determine a legal speed assignment for configuration
Ci , ifone exists. Ifno legal speed assignment exists (or the length of the longest horizontal
wire is 0), the algorithm terminates with C;. Assume that a legal speed as~ignmentexists
and let speedj (.) be the computed entries. Using these entries, we compute the event lime
te.i for configuration Ci and then move every cell Vj distance t~.i . speed; (Uj) to the right.
We point out that, since the quantities Ie.; . speedi(Uj) are not guaranteed to be integers,
compaction is not done on an integer grid. The movcmenL to the right results in a new
configuration Cj +[. We complete the ith iteration by determining graph~ G~+I. G~+I,

and G~+J . From the bounds given in the previous section, it follows that one it,eration
is completed in 0 (11h • I') lime. The remainder of this ~ection shows thal after al most
nit • If iterations no further reduction in the longe~t wire length is possible.

.' ,-,
. '-':

., '. ,"

436 s. E. Hambrusch nnd Hung-Yi Th

First, we show that the speed ofa cen does not decrease from one iteration to the next.
Assume that neither G~ nor G~+I contain a positive cycle. Let P = (U.T• Uk, • .. _, Uk, =
Uj) be a longest path from Us to Uj in speed graph G~. One can thus travel in Cj from cell
Uk, to cell Uj by traversing speed; (Uj) longest horizontal wires. In Lemma 5.1 we show
that every arc on such a longest path P is also an arc in speed graph G~+l. This implies
that the speed-entries do not decrease from one iteration to the next. Observe that path
P may not be a longest path from Us to Uj in G~+I (an even longer path many now exist).

LEMMA 5.1. If neither G~ nor G~+1 contaill a positive cycle, thell speedj(Uj) :s
speedi+1(Uj)/or every cell Uj. 1 :5 j ~ fl.

PROOF. LetP = (U,hUt••... ,Ut's = Uj) be a longest path from Us tOUj inG~_We first
show that every arc on P is also an arc in G~+I. Assume (uu , llb) is an arc of cost 1 in
P. Arc (uu, Ub) in G~ implies that there exists a longest wire Hb•a connecting cell Ub
to cell U. in C,. From algorithm LEGAL-SPEED and the fact that P is a longest path
it follows that speed,(Ub) = speedi(Uu) + 1. If cells Ub and Ua are moved for t time
units. the length of wire Hb.a reduces by exactly t. Hb.a remains a longest wire and thus
arc (u ll • Ub) is an arc of cost I in G~+I.

Assume now that (uD• Ub) is an arc of cost 0 in P. The existence of ace (uu, Ub) in G~

implies that the distance between cells Ua and Ub in c,onfiguration Ci is O. From algorithm. ..
LEGAL-SPEED and the fact that P is .along~l.path .. it follows that speed,(U.) =
speed/CUb). Hence, after moving U. and U. to th.e .tight, the distance between U. and
,Ub remains O. Thus. arc (uD• Ub) is still an",arc,p(~ost 0 in.G~+I. Speed graph G~+1 is

_obtained from G~ by arc additions and arc deletions~ Since no arc on a longest path is
deleted and the addition of arcs cannot decrease the length of the longest path from Us

to a vertex, it follows thatspeed,(Uj) < speed,+! (Uj). 0

We show that the algorithm tenninates in at most nil ·Il iterations by showing lha[in
every iteration chere exists at least one cell Uj with speed; (Uj) < speedj+, (Uj). Since
the speed ofa ceU is bounded by n,r, the claimed bound ofnh .1l follows immediately.

LEMMA 5.2. Assume the.reex;sts a legalspeedassignmellljorcolljigurationC; QndCi + l •

respectively. Theil there exists at least one cell Uq such that speedj(Uq) < speed;+1 (Uq).

PROOF. The ilh iteration lenninates when either a distance event or a wire event occurs.
Assume a distance event occurred. Then there exists one arc, say (up, uq), that is not
in speed graph G~, but is an ate of cost 0 in G~+I. This implies that ~peedi(Up) >
speed,(U.). By Lemma 5.1, we have speed; (Up) < speedi+I(Up). Since the (i + I)st
iteration generates a legal speed assignment and the cost of (up, flq) is 0 in G~+I •we have
speedi+1(Up) ~ speedi+l (Uq). Combining these three inequalities gives speed; (Uq) <

speedi+1(Uq).
Assume now that a wire event terminated the ith iteration. [n lhis case there exists an

arc (up. uq) that is not in G~, but which is an arc of cost J in G.~+I. The arc corresponds
to a horizontal wire Hq •p which is not a longest wire in (he ith iterntion, but is a longest
wire in the (i + I)sl iteration. Thus, speediCU.) ::; speed,(Up). By Lemma 5.1, we have

New Algorithms for Minimizing !.he Longest Wife Lenglh During Circuil Compaction 437

.•. ,~ .i,: .~,"

.!Jpeedi(Up) .::: speedi+1(Up), and in the (i + l)st iteration we have speedi+J (Up) <
speed,+! (Uq). The inequality speed,(Uq) < speed'+1 (Uq) follows. 0

We summarize the above discussion in the following theorem.

D-IEOREM 5.1. Given a configuration and its distance graph and wire graph, a config­
uration minimizing Ihe longest wire length ca" be generated in 0 (flY, • 11

2
) time. where

nl. is the number ofhorizontal wires and n is the number ofcells in the layout.

6. Improving the Running Time. In this section we describe our O(IlIl·rr)ogn)-time
longest wire minimizing algorithm. The aIgorilhm performs. as the algorithm sketched in
the previous section, up to IZII • n iterations. However, it updates. rather than recomputes,
the data structures and infonnation for the ith iteration from the ones used in the (i - I)st
iteration.

We assume the ith iteration starts at time It'.i-l and ends at time f~,i. with fc,o = O. The
quantity 't',i-I is thus added whenever zero times and intersection times are computed in
the ith iteration. We maintain zero rimes giving the next distance event and intersection
times giving the next wire event in heaps 1£z and 1£/, respectively_ The speed graph used
in an iteration is gene~ated from the one used in the previous iteration by performing
arc deletion~,and arc additions. Every arc change is checked as to whether it causes a" ,.. ,'.
change in the ;peed entries. Let d,(uj, uo) and Wi (Uj. uoJ be the weight of arc (Uj, Uo)' ,.
in diStance graph G~ and '~lre graph G~. respectively. We do not explicitly generate aft
thedi a~d. Wi enmes. When the weighlofan arc is needed, we compute it in 0(1) time.

The i th iteration generates two arc sets, Dj and Ai' Arc set D; contains arcs which
are in speed graph G~, but not in speed graph G~+l. Ai contains arcs which are nOl in
G~. but in G~+l. Thus. speed graph G~+I is obtained from G~ by deleting the arcs in set
Vi and adding the ones in set Ai' At the beginning of the ith iteration, i ::: 2. we have
the following information:

• n legal speed assignment for G~-(I

• heap 1lz storing the zero times and heap 1l/ sloring the intersection times for the
speed; entries, and

• event time tc.i-I (Le., the time at which the (i - l)st iteration terminated.) and arc sets
Ai_I and Di _ l ·

In the first iteration we build G~ and G~ from the initial configuration C. Speed
graph G; is obtained from G~ and G~. We use the algorillun described in Section 4 to
detennine the speed l entries in O(n'l • n) time. Heap 1{,z containing the zero times is
crealed in 0(1l) time. Let l.(C) be the length of the longest wire in configuration C and
let [eng/hl. (I) = L(C) - t. For every wire Hi.k we detennine the time at which function
lenglhi,k(l) and function [eng/h/_ (I) intersect. These intersection times are the entries of
heap 1l/. Heap 1tJ is created in o(nil) time. Event time Ie. I and arc sets A1 and VI can
easily be detennined within the O(llh . n) time allowed for the first iteration. Assume
i ~ 2. In the ith iteration we perfonn the rollowing steps:

I. Generate ~peed graph G~,

'. i : -1

438 S. E. Harnbrusch and Hung-Yi Th

2. Determine a legal speed assignment for G~.

3. Updat~ heaps 1tz and 1tr to reffecE the new speed assignment.
4. Determine event time te.; terminating the ith iteration and arc sets Ai and D;.

In the following we describe each one of the four sleps in more detail. Speed graph
G~ is created from speed graph G~-I by adding the arcs that are in Ai_J and deleting the
ones that are in Di _ l _

Consider next the computation of the speed, entries. From Lemma 5.1 we know that
the speed ofa cell cannot decrease. An increase in the speedofa cell is caused by an arc
in Ai - I - Every arc in Ai_I is considered and its effect on the speed entries is determined.
This is done by perfonning relaxation on arcs of the speed graph. Observe that deleting
the arcs in Dj _I from speed graph G~-1 does not cause a chnnge in the speed entries. We
start the updating of the speed entries by putting the arcs in Ai-l into a lirst-in-first-out
queue Q. Assume we initialize speed,(Uj) = speedi_1CUj), 1 ::: j < n. Of course,
this initialization is not performed explicitly. For each arc CUj, Uk) extracted from Q we
perform steps 5-11 of algorithm LEGAL-SPEED (given in Figure 2). The computation
of the speedj entries is completed once Q is empty.

Once the legal speed assignment for G~ has been determined, heaps 1iz and 1i[are
updated in the third step ofthe ilh iteration. Consider first heap Hz. Every elementof1tz
corresponds to an arc of the distance graph inducing a zero time. Recall that the zero tim~

, is defined for an arc in the distance graph whos~ ~,eight decreases during the ith iteration.
The zero time represents the time the arc. weight ~.r:ns'.9;Let CUj. Ut,) be an arc of the
dist8nce graph. If the speed of cell Vj ortha~of c~l1. V.is,increased in the second step of

_the ith iteration, then the zero time associateq.wjlh m:c (Uj. ud may need to be updated.
'Assume (Uj, Uk) is such an arc with d'(Uj. Uk) > 0 and 'speed, (Uj) > speed,(Uk). We
delete arc (Uj. ut> and its old zero time from 'Hz (if it is present in Ihe heap 1tz), and
then insert the arc with a new zero time of

i __""",;;;d:;.'("u:Lj :.-,U:::k:.:)---;=;-;-zt'k =ld_l +
,. ' speed/(Uj) - speed,(Uk)

into 1tz. where di (Uj , Uk) is the distance between cells Vj and Uk in the beginning of ith
iteration. In order to compute ztj,l: we need the value ofdl (ujo Uk)' As already slated, we
do not explicitly compute all dj and Wi entries in the Hh iteration. The value ofdi(ujo Uk)

is computed in 0(1) time, when needed, as follows. Assume thallhe pth iteration, where
p < i, was the last iteration in which either the speed of ceH Vj or Uk was increased.
Whenever the speed of a cell increases, we update the dp entries of all the arcs incident
to this cell. This implies that at the end of the pth iteration we did compute and record
the entry dp+! (ul> ud. Recall that dp+1(Uj. Uk) represenlS the distaucc hetween cells Uj
and Uk at the beginning of the (p + l)st iteration. During iterations p + t, ...• ; - I the
speed of neither Uj nor Uk was increased. Then

d'(Uj. Uk) = dp+1 (Uj.u,) + (speedp(Uk) - speed,(Uj)) x (1,,1-1 -I"p)'

The weights of the wire graph are dctennined in an analogous way.
Consider now heap 1t/. It records, for every wire Hj.k having a nondccrea':iing wire

length, the inlersection time; i.e., the time when functions lellgthj.dO and length l • in­
tersect. Analogous to heap 1tz, the intersection time of a wire Hj,k can change only

New Algorithms foc Minimizing lhe Longest Wire Lenglh During Circuil Compaclion 439

,. "

when the speed of Uj or Uk increases. If this happens. we check whether an eritry in 1tI

needs to be updated and. jf so, update the corresponding intersection time. The length.
Wj(Uj, Uk) of wire Hj.k needed for computing the intersection time is obtained in 0(1)
time as already described above. This concludes the description of the third step of the
ith iteration.

The last step of the ith iteration 'detennines the event time te.; and arc sets Ai and Vi.
Event time Ie.; is computed by determining the minimum in each heap and choosing the
minimum among the two. Arc set Ai contains the arcs to be added to G~ in order to obtain
G~+1 . We claim that set Ai is fonned by the arcs in heaps Hz and 1t] causing event time
te ,;- Assume (uj. Uk) is an arc in Ai. First we consider the case in which (Uj, Uk) is in
Ai because the distance between cells Ui and Uk is positive in the ith iteration. but turns
oat the end of the ith iteration. Arc (ujo Uk) induces a distance event tenninating the
ith iteration. This implies that the zero time associated with arc (Uj. Uk) is a minimum
in heap 'Hz. On the·other hand, if (ujI Uk) is in A; because wire Hk.j. which is not a
longest wire in the ith iteration, turns into a longest wire at the end of theith iteration,
then (Uj. Uk) induced a wire event tenninating the ith iteration. Hence, the intersection
time associated with Hk.j is a minimum in heap 11.1• Set A, is thus formed by the arcs in
heaps 'Hz and 1iI causing event time le.i. We delete these arcs from the heaps and place
lhem into Ai.

Arc set Di contains the arcs to be deleted from G~ and is obtained as follows. Assume
(Uj, u,) is an arc in D,. Assume first that (Uj, u,) has castO in speed graph G;. For the
;arc to be in DI> we need to have speed,(Uj) < speed,(U,). Arc (Uj. U,), may or. may
not have been an arc in speed graph G~-I. If it was in G~-I,_.we h~~ .fPf!el!-i-t (Uj) =
speedi _ 1(Uk); if it was not, we had speedi _ 1(Uj) > speedi _ 1(~k),.-·[~ ~ither situation.
in order tn have speed/(Uj) < speed,(U,), the speed of one of the· cells must have
been increased in the ith iteration. Consider now the case when (Uj. u;a has cost 1 in
G~. Since wire Ht •j is no longer a longest wire at the start of the (i + l)st iteration,
we have speed,(U,) ~ speed,(Uj) + 2. At the end of the (i - l)st iteration we had
speedi _ 1(V,) :5 speed'_1 (Vj) + I. Hence. the speed of at least one of the cells was
increased in lhe ith iteration_ Arc set Dr" can Ihus be found during the second step of the
ith ileration. (For the sake ofclarity, we place the discussion of finding D; into the fourth
step.) Whenever the speed of a cell increases. we check whether an arc in G~ incident to
Ihe corresponding vertex ofthe cell is to he deleted from the speed graph. This concludes
the description of the last step of the ith iteration.

The following theorem summarizes the above discussion.

THEOREM 6.1. Given a configuration, its distance graph. and its wire graph. a con­
figuration minim;z.ing the longest wire length can be generated in O(nh . n logn) time,
where nh is the number o/horizontal wires alld n is the number ofcells in the layout.

PROOF. The algoritlun is described above and it remains to be shown that it achieves the
claimed running time. From Section 5 it follows that the algorithm performs at mostnh ·11

iterations. We show that the total work done in all iterations is bounded by D(n.·n log n).
The work done in the first iteration is obviously bounded by O(nh . n). The total work
done in all the remaining iterations is delermined as follows.

Assume that the algorithm terminates after m iterations. ff an arc (Uj. Uk) is added

440 S. c. Hnmbrusch and Hung-Yi Tu

into Di • the speed of at least one of Uj or Uk increased. Since lhe speed of a cell cannot
exceed nil. we have IT=I jDil ~ fJfr . n. If (Ujl Uk) is an arc included in Ai. it was either
not in G; or it got deleted in some earlier iteration. Hence, L;'~I lAd = O(nll . n).
Speed graph G; is generated in 0(1 A,-II + ID,_ d) time. Thus, the total work done for
generating the speed graphs is bounded by O(L:;~ IAi-d + ID,-d) = O(n" . n).

Consider the total work done for updating the speed entries. Let Cj be the maximum
number of arcs incident to vertex Uj in a speed graph (during all iterations)_ When the
speed of Uj increases, the aces incident to Uj are checked for increases in the speed
entries. Since the speed of a cell is bounded by 1211 and the total number of arcs in the
speed graph is O(n), the total work done for updating the speed entries is bounded by
OCLJ=I Cj • nJ,) = O(n . n/r)'

When the speed of a cell Uk increases, entries in 1lz .andlor 1£1 may need 10 be
updated_ Using an argument identical to the one above, heaps 1tz and 1il are updated
O(nh . n) times throughout all iterations. The total work for updating the heaps is thus
bounded by 0 (II" 'II' (log II+ !ogn/<)) = 0 (n" ·Illogll). After completing the updating
of heaps 7-lz and ?it in an iteraLion, event time fe.i is found in 0 (1) time. Finally, the
tomI work done for generating all Dj-sets is E~I ID;I = 0(1111 ·n). The total work done
for generating all Ai-selS is L;~I IA i I . log n = 0 (nil' IZ 10g11), where the log It comes
from the min-deletions performed on the heaps. This completes our discussion of the
O(n/r ·It log '1) running time. D

Let Cj be the configurati6n'generiited by our algorithm and let L(Cj) be the length
of the longest wire'.'in CJ :, ,Con~guration C, may not have minimum width among all
configurations havinirmil'lilnWRlongest wire length. There exist a number of algoriLhms
for generating a layout of minimum width from a given feasible configuration, subject
to not exceeding a given upper bound on llie horizontal wire length. For example, by
adding arCs corresponding to the upper bound of wire length to llie distance graph
and performing a compaction which positions cells as far to the left as possible, a
configuration minimizing the widlh can be generated in an additional O(nlogll) time.

7. A 'fiadeoffBetween Wire Length and Layout Width. In Ihis section we consider
how to generate a layout minimizing a tradeoff function between the width and the longest
wire length. For any configuration C, let W(C) be its width and let L(C) be its longest
wire length. Given an initial configuration and two constants a and fJ. a. f3 > 0, we are to
determine a configuration C· such that a . W(C') +p. L(C') sa· W(C') +p. L(C'), for
any otherconfiguration ct. We call a configurationC· minimizing Lhe tradeoff function an
oplimal configuration. We present an algorithm for generating an optimal configuration
in O(nl, . It logn) time. The overall approach is similar to the one used for minimizing
the longest wire length. We generate C· over a number of iterations. willi each iteration
computing speeds and moving cells according to the speeds. The resulting configuration
has a smaller tradeoff function value. After at most "JI • " iterations, C· is generated.

From now on, ins!ead of minimizing a- W(-)+P ·L(·), we minimize y. WO+L(·),
where y = alfJ. We start by describing some of the differences in the definitions and
data struClures. First, we add to the initial configuration two fictitious cells Uo and U/I+1•

These two cells have a height equal [0 the height of the layout and a width of O. Cell

, "

.-'.,: .-

New Algorilhms for Minimizing the Longes!. Wire Length During Circuit Cornpaclion 441

,

,
·

l.\

I H, H,
· I

ql

·
q

I q
H '---,

. , .. , .,

,: : -!'- ,.

'-" ~,,' ,-'
~ .. ',;,.

Fig. 4. (a) A min.widL:h configuration. (b) The speed graph of lhe layout shown in (3). (c) The next rnm-width

configuration generu.led by our algorithm.

Uo is positioned immediately to the left of the leftmost cell, and Un+1 is positioned
immediately to the right of the rightmost cell. The distance between Uo and Un+1 is
the width of the configuration. When we refer to a configuration, we always mean a

configuration containing Va and UII+I.
Distance graph and wire graph remain as defined in Section 2. The speed graph differs

from the one defined in Section 2 in that we do not add a source vertex U,fo Instead, the
vertex associated with cell Uo is used as the source. Observe that vertex Uo has arcs only
to vertices corresponding to cells that are distance 0 from cell Vo· Figure 4(b) shows the
speed graph of the layout shown in Figure 4(al·

We call a configuration C a min-width configuration if width Wee) is a minimum
among all configurations having a longest wire length of at most LeCl. Min-width
con6gurations are crucial to our tradeoff function algorithm because they give us the

442 s. E. Hambrusch and Hung-Yi Tu

following information: given a min-width configuration C, if we want to reduce y .
W(C) +L(C) by decreasing the layout width, the length of a longest wire must increase.
For example. Figure 4(a) shows a min-width configuration in which HI and H2 are the
longest wires. If we want to decrease the layout width of lhis configuration, the length
of either HI or H2 or both must increase.

OUf tradeoff function algorithm generates first a configuration having minimum
longest wire length and minimum width (among all configurations having minimum
longest wire length). Let Cf be this configuration. C, is, by definition, a min-width
configuration. Starting with Cf. we generate C· over a number of iterations, with each
iteration generating a configuration having a smaller tradeoff function value. We achieve
this reduction by increasing the longest wire length and reducing the layout widtlL New
configurations are generated by moving cells to the right. The movement to the right
is now controlled by a value-reducing speed assignment. A speed assignment is value­
reducing for configuration C when:

(i) If d(Ui, Uj) = 0 in distance graph Gd. then speed(Ui) ::; speed(Uj).
(ii) speed(Uo) > speed(Un+I): i.e.• the layout width decreases.

(iii) LetC! be the configuration generated from Cby moving cell Uj distance (·speed(U;)
to the right, 0 < i ::; " + l. There exists n t such that y . W(C) + L(C) >
y . W(C') + L(C').

-Ire is a min-width configu~ation, the existence ofa value-reducing speed assignme'dtfor :'.
:' e implies thalanotherfeasible configuration with asmallertradeofffunction value canbe; .~:, .
.{g~·p.erateo·by;~oving the cells ofC to the right according to the associated value-redItcj'rig'~::' ~....... '.."

"/~peeds-~. . \,':1./";.,""_

We determine a value-reducing speed assignment by performing a single~source

shortest-path computation in the speed graph. Let S(u,) be the length of the sbortest
path from Uo to"j in the speed graph. Intuitively. the existence of a shortest path from Uo
to u; implies that in order to tnlvel from UD to Ui. one has to go through at least S(Ui)
longest wires. When decr~sing the layout width. the increase in the length of the longest
wire should be as smail as possible. We thus distribute the increase evenly among the
S(Uj) longest wires on the shortest path from Uo to Ui' For example. Figure 4(a) shows
a min-width configuration in which HI and Hz are the longest wires. If we want to de­
crease the layout widlh of this configuration, the length of either H, or Hz or both must
increase. The increase is minimized by increasing HI and H2 evenly. Figure 4(c) shows
the min~width configuration generated by evenly distributing the increase between H,
and H2.

Before describing our algorithm we prove the following relevant lemmas concerning
min-width configuration.

LEMMA 7.1. C is a min-width configuration ifand only if there exists a pafhfrom Uo to
U,,+l in/he speed graph oiC.

PROOF. Let C be a min-width configuration. Assume there exists no path from Uo to
Iln+I· We can then partition the vertex sel of Gs into two subsets, Vo and Vn+(, such that
Vo conrains IlO. VII+1 contains /tn+!, and there exists no arc from a vertex in Vo to a vertex
in VII+I in speed graph Gs . The partition oflhe vertices into Voand Vn+l implies that the

New Algorithms ror Minimizing lh~ Longest Wire Length During Cin:uil Compaction 443

•

layout width can be reduced by moving £he cells corresponding to the vertices in Vo to
the right. Doing so does not increase the length of the longest wires. This contradicts our
assumption that Cis a min-width configuration. Hence, ifCis a min-width configuration,
there exists a path from Uo to Un+(in speed graph Gs • On the other hand, if C is not
a min-width configuration, we can partition the cells in C into two groups So and Sn+1
such that So contains Uo• Sn+J contains Un+1> and moving the cells in So to the right
reduces the layout width without increasing the length of the longest wires. This implies
that there is no arc from a vertex in the set of vertices induced by the cells in So to a
vertex in the set of vertices induced by the cells in SIJ+1. Hence, if C is not a min-width
configuration, there exists no path from Uo to Un+1 in Gs- 0

In our longest wire minimizing algorithm we used the existence of positive cycles in
the speed graph as the tenninatiiIg condition of our algorithm. The tennination condition
for the tradeoff problem is based on a relationship between the shortest path from cell Uo
~o cell Un +1 and y, the quantity from the tradeoff function. The following two lemmas
give this condition and state how a value-reducing speed assignment is obtained.

LEMMA 7.2. Let C be a min-widthconfiguration./fy ·S(Un+l) .:5 I, no value· reducing
5peed assignment exists for C.

. ..

PROOF. Assume a value-reducing:':spde'4~ :a:s:slg~n\eiit exists when y . S(un+I) < 1.
Let P be the shortest path from ub':to'·#;~.llil iIi~the sPeed graph Gs of configuration C.
By Lemma 7.1 we know that such<'3."padtexists in: a min-width configuration. Enuy
S(U

II
+!) represents the minimum number of longest wires that need to be used when

traveling from cell Uo to cell Un+1- Let t be a value satisfying the third condition of a
value-reducing speed assignment and let cr be the associated configuration. In C1 the
layout width decreases and the longest wire length increases. The sum of the increases
in length of the wires conesponding to the arcs on P is at least W(C) - W(C'). This
implies that there exists at least one wire corresponding to an arc in P whose the length
is increased by at least W(Cl - W(C'))/S(u.+,). Such a minimum increase would be
obtained when the decrease in the width (and thus the sum of the increases in length
of the wires corresponding to the arcs on P) is evenly distributed between the S(Un+l)
longest wires on path P. Hence,

> 0,y . W(C) + L(C) - (y . W(C') + L(C'))

y. (WeC) - W(C')) >

y>

L(C') _ L(C) '" W(C) - WeC') ,
8(u.+I)

1

which contmdicts the assumption y . S(un+!) .:5 I. o

Next we show that, given a min-widlh configuration C with y .S(Un+l) > 1, a value­
reducing speed assignment can be determined by performing a single-source shortest­
path compulaEion in the speed graph.

444 s. E. Hambruscb and Hung-Yi Tu

LEMMA 7.3. £etC be a min-width configuration. qy. S(Un+,) > I. a value-reducing
speed assignmemfor C is obtained by selling speed(Uj) = nil - S(Uj) if there exists a
pathfram Uo to Uj in the speed graph o/C. and by setting speed(Uj) = 0 otherwise.

PROOF. Assume that (Uj. ud is an arc in speed graph Gs with COSlCUj, Uk) = O. Since
S(Uj) and S(Uk) represent the length of the shortest path from Uo to Uj and Uk.. re­
spectively, we have S(Uj) ::: Stu,). Thus, speed(Uj) = II" - S(Uj) S nh - Stu,) =
speed(U~J. and the first condition of a value-reducing speed assignment is satisfied.
Since S(u.+I) > 0, we have speed(Uo) = II, - 0> nh - S(u.+I) = speed(Un+l) and
satisfy the second condition of a value-reducing speed assignment.

Assume me cells in configuration C are moved to the right according to computed
speeds. Let I be the first moment in time in which a nonzero distance between cells
becomes zero or a nonlongest wire turns into a longest wire. Let Cr be the configuration
generaled from C by moving every cell U, distance speed(U,) . t 10 the right. The layout
width decreases hy (speed(Uo) - speed(Un+l)) . I. The longest wire length increases hy

L(C') - L(C) = " max"" {(speed(Uj) - speed(U,))· II S I.
H,.; IS 3. long~t wire ID C

It is easy to see that for every longest w~re Hi.j we have speed(Uj) - speed(Uj) :5 1.
Moreover, if Hi.j is a longest wire corresponding to an arc on the shortest path from Uo
to un+l in G" lhen speed(Uj) - speed(Ui) = I. We thus have

y . W(C) + L(C) - (y . W(C') + L(C')) _ y. (speed(Uo)C,",ipeed(Un+I)) . I

+ L(C) - L(C')

> y. (speed(Uo) - speed(Un+ l)) • t - I

> (y ·S(u.+,) -1)·/

> O.

Hence, the third condition of the value-reducing speed assignment is satisfied. 0

We are now ready to describe the algorithm. Its first step generates, from an initial
configuration C. a configuration of minimum longest wire length using the algorilhm
described in Section 6. We then minimize the width of this configuration. Let Cf be
the reSUlting min-width configuration. Next we add cells Va and Un+1 to C/. A final
configuration is generated from Cf over a number of iterations. wilh each iteration
generating a configuration having a smaller layout width, a larger longest wire length.
and a smaller tradeoff function value. Let C; be the configuration at the beginning of the
ith iteration, i .::: I. Initially, C1 = Cf' In the ith iteration, we perform a single-source
shortest-path computation on G~. If y . S(UIl+I) ~ I or S(un+!) = 0, Cj is Ihe final
configuration. Otherwise, we compute value-reducing speeds ns described in Lemma 7.3.
Using lhese speeds, we compute event time td and move cell UJ distance t~.i .speedj(Uj)
to the right, 0 :5 j 5: rz + 1. The movement results in a new configuration C;+I.

Again, the event time is the earliest time al which either a distance or wire event
occurs. The definition of a distance event is as for the wire length minimizing algorilhm;
Le., it is the earliest time at which a nonzero distance between cells becomes zero.

New Algorilhms for Minimizing the Longest Wife Length During Circuit Cc.mpaction 445

The longest wires get longer during the movement to the right. The wire event is the
point in time at which a nonlongest wire turns into a longest wire. Let, as in Section 4,
length;.j (t) = w(u" Uj)+t· (speed(Uj) - speed(U;)) for horizontal wire H;.j. Different
from Section 4, we let lengthL (t) = L(C) + /. The intersection time of wire B i•i is the
lime at which functions lengthi,j and lengthL(t) intersect. The minimum intersection
time gives the next wire event.

In the following we prove that our tradeoffalgorithm does generate an optimal config­
uration. It is easy to see that an optimal configuration is also a min-width configuration_
(In an optimai configuration it is not possible to decrease the longest wire length without
increasing the width.) Let C· be an optimal configuration. If there exist different combi­
nations of width and longest wire length resulting in the same minimum tradeofffl!Dction
value, we choose C* so that !.he longest wire length is a minimum among all these con­
figurations. Assume our tradeoff algorithm tenninates after k iterations and generates
configuration Ci + l . We first prove that every Cj generated by our tradeoff algorithm is
a min-width configuration, and then prove that L(C,+,) = L(C"). A straightforward
consequence of these two lemmas is that W(e,HI) = W(C·) and thuSCk+1 is an optimal
configuration.

LEMMA 7.4. Every configuratioll Cj gene,:ated by our tradeoffalgorithm is a min-width
configuration. 1 <i :5 k+ 1:_

PROOF. We prove ~·~~.~i~~·;~_~Y~J.~4·~~lionon i. Configuration Cr is generated by the
algorithm described' in:.S~t~O_!1;? and i~ a min-width configuration. Assume that C; is a
min-width configuration. Let P be ashortest path from "0 to UII+1 in speed graph G~.
According to the speed-assignment method used in our tradeoff algorithm, if longest
wire Ho,b is associated with an arc (UbI uo) of cost 1 on path p. then Ho.b is still a
longest wire in Ci+(. Thus (Ub, ua) is also an arc of cost 1 in speed graph G~+I . On the
other hand, if the distance between two cells Ua and Ub is 0 in Cj and (u fl , Ub) is an arc
of cost 0 on P, then speedj(Ua) - speedj(Ub) = 0 and thus (Uti, Ub) is also in G~+I.
Hence, P is still in G;+I, although it is possible that P is no longer the shortest path
from "0 to U'I+I in G~+I. Thus. by Lemma 7.1, Ci +1 is a min-width configuration. 0

Recall that, in addition to every configuration Ci being a min-width configuration. we
know the following aboul C; and CH ,: the width of C, is larger than that ofC,+! and the
length of the longest wires in Cj is smaller than that in configuration Ci+l •

LEMMA 1.5. Assume the tradeoffalgorithm tenninates after k iterations alld gellerates
mi,,-width configuration Ck+I. The'l L(CI.:+1) = L(C*).

PROOF. First we show that if L(C,+,) < L(C'), then there exists a value-reducing speed
assignment for Ck+ l • This contradicts our assumption that CHI is the final configuration
generated by the algorithm_ Letxcl+, (Uj) and Xc' (Uj) be the x-positions of the leftmost
vertical edge of cell Uj in configurations C,+[and C', respectively. Without loss of
genernlity. we can assume, similar to Lemma 3.1, that XCI ... (Uj) ::: xc· (Uj) for every
cell Vj. We now show that seHing speed(Uj) = xc' (Uj) - XCl+1 (Uj) results in a value-

;.•'.". i
.,: ;1'
, '. ,
.:'~-'-~-·i

446 S. E. Hilmbrusch and Hung-Yi 1lJ

.'

reducing speed assignment for configuration C.HI. Showing that lhe first candidon of a
value-reducing speed assignment is satisfied is done as in the proof of Lemma 3.1 and
is omitted. Since both Ck+ 1 and C* are min-width configurations and L (C.t+I) < L(C*),
we have

W(Ck+l) = xc..,(U"+,) -xc••,CUo) > xc,(U"+1) -xc·CUo) = W(c")

and speed(Uo) > speed(Un+I). The second condition of a value-reducing speed as­
signment is thus satisfied. FinaIly, if every cell in Ck+l moves distance speed(Uj) =
xc,(Uj) - xc,(Uj) to Ibe right, configuration C' is generated. Hence, setting t = 1 re-
sults in a configuration of a smaller tradeoff function value and the third condition of
a value-reducing speed assignment is satisfied. Hence, C.HI has a value-reducing speed
assignment, and thus L(Ck+,) < L(C') is not possible.

Assume that L(Ck+I) > L(C'). We prove Ibat our tradeoff algorithm would have
generated C* before generating Ck+ I , contradicting the optimality of C*. Let Cj and
CHI, I .::: i < k, be two configurations generated by OUr tradeoff algorithm such that
L(C,) < L(C') < L(C'+J). Note that L(C,) = L(C') is not possible. If this would be the
case, Cj and C· would have the same tradeoff function value (since both are min-width
configurations). The tradeoff function value associated with Ci+1 is smaller than that of
Ci , contradicting the optimality ofC*. Let C' be the configuration generated from Ci by
"moving every cell Vj distance speed; (Uj) . t to the right. Assume mat the ith iteration
slaIts at time t; and terminates at time IHI' The melhod used for computing the speedS .: : -.
implies that, for any time t with Ii ::5 / ~ tHI. C' is a min-width configuration:TWitlf·-" " 'oJ "

. L(C') = L(C) + I. This implies that there exists a 1 such that L(C') = L(C') nnd·tiiJ~ ...
. W(C') = W(C'). Since speed, is a value-reducing speed assignment specified in Iberth· ':,
iteration. Ci+I can be generated from C' by moving cells to the. right according to the
speeds specified by speed,. Hence, we have y. W(C'+I) +L(C'+I) < y. W(C')+L(C').
In summary, we have

y. W(C,+,) + L(C;+J) < Y . W(C') + L(C') = y . W(C') + L(C'),

which contradicts the optimality of C'. This concludes the argument showing L(C» =
L(C'). 0

Using arguments similar to the ones used in the proofs of Lemmas 5.1 and 5.2, itean
be shown that the speed of a cell does not decrease and that the speed of at least one
cell increases from one iteration to the next. The speed of each cell is again bounded by
nih and thus the tradeoff algorithm tenninates in O(n . nh) iterations. By determining
the speed graph, the shortest path infonnation, and the next event time for each iteration
without using data from previous iterations, we can generate Ci+l from Cj in 0 (n log n)
time. This results in an 0 (llh .112 log n)-time algorithm. By using an approach similar to
the one described in Section 6. we can perform the iterations by generating the graphs and
shortest-path entries through updates, rather than recomputations. Using this approach
allows us la state the following Iheorem.

THEOREM 7.1. Given a cOlljigllratiolJ. itsdislQflce. wire, aJldspeedgraph, a configura­
tion minimizing the tradeofffunction y . W (.) +L(·) can be generated bl 0(1111 . 1llog n)
time.

N~w'Algori(hms for Minimizing [he Longest Wire Length During Circuit Compaclion 447

As already sta.ted, if different optimal configurations exist, our algorithm generates
an optimal configuration having smallest longest wire length. The described tradeoff
algorithm terminates when y . S(un+[) < 1. If we change the termination rule to
y . S(Un+l) < 1, an optimal configurntion having minimum width among all optimal
configurations is generated. The o (nil ,,,Iogn) time bound does not change.

8. Extensions. In this section we briefly discuss a number of extensions and describe
how our algorithms can be modified to handle them.

First, given a configuration C and a bound W. our algorithm minimizing the longest
wire length can be used to detennine a configuration C" having width at most Wand
whose longest wire length is a minimum among all such configuration'i. Let C!Crl be the
configuration in which every cell is positioned as far to the left as possible. Cleft can easily
be generated in O(n log II) time. If W(C1efi;) > W, then there exists no configuration
having width less than or equal to W. Assume that W (Cleft) ::5 W. We add to C1cfl a
u-shaped cell that "encloses" all other cells. The two vertical segments of this U-shaped
cell have a height equal to the height of the layout and a width of O. The horizontal
segment of this u-shaped cell has a height of a and a width equal to W. We then apply
our longest wire minimizing algorithm to the configuration containing the u-shaped cell.
The geJ;lerated configuration has width W and minimizes the length of I:he longest wire~. .

:: 'ReIno~fug. the u-shaped cen from this configuration gives C*. -'. ~:. {r':"·,,- :- '.~._

-'. J"'. ;A~6.t,her:natural extension is to associate with each horizontal wire an upper-and.';·::: ~.<

';..,,'. :#}~r~,bhu~d and to require that the length of every wire in the final configuratioif'll~~"'f,,~

tietWcei{theSE two bounds. Both of our algorithms can be used to solve this version.,6f .
the compaction problem. We describe the necessary changes only for the longest wire
minimizing algorithm. The definition of a legal speed assignment and the construction
of Ihe speed graph are changed to capture the upper and lower bounds as follows. If
the length of wire Hi.; equals its upper bound, then we add the condition spe.ed(Uil 2:
speed(Uj). This guarantees that the length of the wire does not continue to increase.lfthe
length of the wire equals ils lower bound, we add the condition speed(Uj) ~ speed(Uj)

in order to guarantee that the wire length docs not continue lo decrease.. A wire Hi,i
whose length equals it'i upper bound induces arc (Uj. Ui) with weight 0 in the speed
graph. A wire Hi.; whose length equals its lower bound induces arc (Ui. If;) with weight
oin the speed graph. Conditions on the upper and lower bounds can induce events which
stop movement to the right. Lower bounds on the wire length can cause a distance event.
Upper bounds on the wire length can cause a wire event The algorithm then operates as
described. Assume we have nil upper bounds and III lower bounds. If these bounds are
only on horizontal wires, we have nil + III = o (nIl) and (he overall lime bound remains
O(Uh . tllogn). If upper and lower bound constraints exist also belween cells and the
constraint graph contains In arcs (with every upper and lower bound including one arc),
the time bound is 0 «"1/ + u, + n/l)m logm).

During the longest wire length and the tradeoffalgorithms, the length oflhe horizontal
wires changes, but the algorilhms do not insert jogs into vertical wires. The positions in
the verHcal wires where jogs might be useful can be bounded in terms of Ilv and Ilr • More
precisely, the total number of positions in vertical wires where ajog might be beneficial
is O(nll(n lJ + //r». These positions can be determined before the compaction algorithm

448

,,
s. E. Hambrusch and Hung-Yi 1\1

is invoked. Hence, by splitting the nv vertical wires into O(n l1 (n ll + nr»vertical wires
and running our algorithms on the resulting configuration, jogs can be introduced.. Of
course, doing this does not guarantee any bound on the total number ofjogs introduced.
The overall running time is now O(nll(n v+ flr)n log n) withn = O(nll(nu+nr) +nil).

9. Conclusions. In this paper we presented a new approach for minimizing the longest
wire length during one-dimensional compaction_ This approach is based on assigning
speeds to celJs. Moving the cells to the ~ght according to the computed speeds reduces
the longest wire length. Longest path entries were used to compute lhe speeds, and
characterizations were given as to when the movement has to be stopped. We used a
similar approach to detennine a combination of layout width and longest wire length
that minimizes a given tradeoff function between these two quantities. An algorithm that
is able to trade longest wire length for layout width is novel in layout compaction.

Acknowledgmenls. We would like to thank the referees for their valuable and helpful
comments.

References

'.:' : ~', ... :' ~ .. [I J
; ... 'T ', .."c··,

[2]
~'; ~ ;>. ~:.

,
" [J]

[4)

(5)
[6J

[7]

(8)

[9]

(10)

[II]

(12)
(13)

[I4J

1151

T. H. Cormen, C. E. Leiscrson, Dnd R. L. Rivcsl..fntrodUf::r;on 10 Algorl/lrms. MIT· Press; Carnb~dge.

MA.I990. . , .
S. Gao. M. Kaufmann, and E M. Maley. AdYances in homotopic layOlIl c.ompac[iQn.,Proceedj(lg~~flhe
1989 ACMSymposiwtl on Parallel Algori,limsandArchilec.ltlreJ. pages 273-2ti. '1989.
s_ E. Hambrusch and H. Y. Tu. Minimizing lotal wire lcngtlt during I-dimcnsio~a.t co~paction.lNI'E­
GRAT/ON.tire VLSI Journal. 14(2}:113-144, [992.
J. F. Lee and C. K. Wong. A performance-aimed cell compaclor with llutomalic jogs. IEEE Tronsac/ions
on Compmer·Aided Desigll oflnregmted Cireu;ls and Syslems, 11(12):1495-1507. December 1992.
T. Lcngauer. Combi/latorial Algorithms/or Integrated Circuit lAyoul. Wiley, New York, [990.
Y. Z. Liao and C. K. Wong. An algorithm to compact a VLSI symbolic layout wilb mixed constraints.
IEEE Transactions on Compllter-Aided Design o/Imegrated Circuirs aruJ. Systems, 2(2):62-69, April
1983.
D. Marple. A hiemrchy prl:Scrving hierarchical compactor. Proceedings oftire 27th ACMIIEEEDesi8n
Automalio" Conference, pages 375-381. 1990.
N. Megiddo. Linear-time algorithms for linear programming in RJ andrclated problems. SIAMJournal
Otl Computing. 12(4):759-775. November 1983.
D. A. Mlynski and C. H. Sung. LaYOUt compaclron.ln T. OhlSuki, edilor. Layout Design alld Verification.
pages 199-235. Elsevier, Amsletdam, 1986.
A. R, Newton. Symbolil: l::J.y(lUI and procedural design. In G. DeMicileJi, A. Sangiovanni.VinceIllelli,
and P. Antognetti. edilors. Desig/J Systemsfor VL,S1 Circuirs, pages 65-1 12. Martinus Nijhoff. Boston,
MA,1987.
A. Onozawu. Layout COmplll:lion wilh auraccive and repulsive consusinlo;. Proceedi/lgs of the 27,1,
ACMnEEE Design Automation Confere/lce, p:lges 369-374. 1990,
F. P. Preparata and M, I. Shamos. Computational Geometry. Springer.Verlag. New York. 1985.
W. L. &:hiele. Improved compaction by minimized length of wires. Proceedings a/rhe 20th ACMIIEEE
Desig,. AlItomatiolJ COlljerr.mce. pages I:! I-I 21, 1983.
M. Sehlnc, F. Luccio. P, Maeslrini, D. T. Lee, nnd C. K. Wong. A visibility problem in VLSI layoul
compaclion. In F. P. Prepilfilla. editor. AdpQIJces in Compriting ResearcJl: VLSI Theor)', pages 259-282.
JAI Prc.~s, Greenwich, CT. 1984.
B, X. Wcis and D. A. Mlynski. A graph-thcorclic appmach to the relative. placemenl pmblem. IEEE
Tra/lsactions all Circuits and Systems. 35(3):286--293. 1988. ~

r,

	New Algorithms for Minimizing the Longest Wire Length During Circuit Compaction
	Report Number:
	

	tmp.1307986960.pdf.YnNw3

