View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1993

New Algorithms for Minimizing the Longest Wire Length During
Circuit Compaction

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Hung-Yi Tu

Report Number:
93-013

Hambrusch, Susanne E. and Tu, Hung-Yi, "New Algorithms for Minimizing the Longest Wire Length During
Circuit Compaction" (1993). Department of Computer Science Technical Reports. Paper 1031.
https://docs.lib.purdue.edu/cstech/1031

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4971637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

BT

[——

N #+=93-.013

arithmica (997} 17;: 42644 . -
Pleerfmis G i T8 Algorithmica

© 1997 Springer-Yeslng New York Inc.

New Algorithms for Minimizing the Longest Wire
Length During Circuit Compaction!

S. E. Hambrusch? and Hung-Yi Tu?

Abstract. Consider the problem of performing one-dimensions] circuit Eompaction for a layout containing
ny horizontal wires and n layout cells. We present new and cfficient constraint-graph-based algorithms for
generating acompacied layoutin which eitherthe length of the langest wires ar auser-specified tradeoff function
between the layout width and the longesi wire length is minimized. Both algorithms have an O (ny, « nlogn)
running time. The concept employed by our algorithms is that of assigning speeds to the layout cells. Speeds
are computed by performing path computations in subgraphs of the constraint graphs. A compacted layoul is
generated over a number of iterations, with each iteration first determining speeds and then inoving the [ayout

* elements lo the right according to the computed speeds. Each iteration produces a better layout and after at

most 1 - Ay, iterations the final layout is produced.

Key Words. Analysis of algorithms, Circuit layout, Compaction, Layout width, Lungm wire lcnglh Path

.., computations.

o l I.ntroductlon. Circuit compaction is the process of converting a. symbohc layout' K
into an actual layout that satisfies the design rules and minimizes a set of objective

functions [5], [9]. One-dimensional compaction allows layout elements to slide in one
direction only and is often preferred over compntatiorally intractable two-dimensional
compaction. Consider performing one-dimensional compaction along the horizontal di-
rection. Layout elements are now allowed to slide horizontally as long as no constraint
is violated and the relative order of the layout elements is preserved. The length of a
horizontal wire can change during this process. A layout generated by most conventional
width-minimizing compaction algorithms contains unnecessarily long horizontal wires.

Controlling the wire length is crucial in circuit design [4], [9], {10], £13]. In this paper we -

present new and efficient algorithms for minimizing the length of the longest horizontal
wires during one-dimensional compaction and for minimizing 2 given tradeoff function
between the length of the longest wires and the width of the layout.

Assume we are given a layout containing n; horizontal wires, n, vertical wires, and
rectilinear polygonal layout components composed of n, vertical edges. We present an
O(ny, -n log n)-time algorithm for generating 2 layout which minimizes the length of the
longest wires and for which, among all layouts having the same minimum wire length,

| This research was supgorted in part by DARPA under Contract DABT63-92-C-0022. The views and con-
clusions contained in this paper are those of the authors and should not be interpreted as representing official
policies, expressed or implied, of the U.S. government,

2 Department of Computer Sciences, Purdue University, West Lafaystte, IN 47907, USA. seh@cs. purdue.cdu.
3 Department of Computer Science and Information Management, Providence University, Taichung, Taiwan,
Republic of China.

Received December 10, 1994; revised October 15, 1995, Communicated by A_ S. LaPaugh.

New Algorithms for Minimizing the Longest Wire Length Duning Circuil Compaction 427

one of minimum width is generated, n < 2ry -+ n, + n,. We also consider the problem
of generating a layout minimizing a specified tradeoff between the longest wire length
and the layout width. More precisely, given a tradeoff function oz - W 4+ § - L between
the layout width W and the longest wire length L, and constants o, § > 0, we present
an O(n, - n logn)-time algorithm for minimizing e - W+ g - L.

We briefly sketch the approach underlying our algorithms. A configuration of a layout
assigns to the leftmost edge of every layout component and every wire an x-position in
the layout area. We assume thal the input is a feasible configuration (i.e., the x-positions
associated with the layout components resuit in a layout satisfying the constraints).
From this initial configuration, we generate a configuration minimizing the longest wire
length or a tradeoff function over a number of iterations. Each iteration produces a
feasible configuration with smaller longest wire length or a smaller tradeoff function
value, respectively. The relevant constraints and distances are represented by graphs.
Within the area of compaction methods our algorithms are viewed as constraint-graph-
based solutions [5]. A new configuration is generated from the previous one by moving
layout elements to the right. A crucial parameter in this movement is the speed of a layout
element. In the algorithm minimizing the longest wire length, speeds are computed by a
longest-path computation and in the tradeoff algorithm by a shortest-path computation.
In the longest wire minimizing algorithm the movement to the right reduces the length

of longest wires. At the same time, it can increase the length of wires that are originally

not the longest ones and it changes distances between layout elements. One iteratiof : (oo
stops when a nonlongest wire turns into a longest wire or any further movement would .. « o - 7
violate constraints. If a further reduction in the [ongest wire length is possible, the next: «...cr5. 5, .
iteration continues the movement with updated speeds. The scenario for the tradeoffi: . .:ycir s o

minimizing algorithm is similar. for both compaction problems, a final configuration is
Found after at most ny, - n iterations. The O (14, - 1t log n)-time bound is achieved by using
data structures to perform updates and by performing computations on demand.

The best previously known algorithm for minimizing the longest wire length follows
from [6]. The algorithm described in that paper uses a different approach and, when
translated into our framework, it gives O(log L - (n), + n,) - n) time, where L is the
longest wire length in the initial layout. Ignoring constants, our algorithm can be viewed
as faster for logn < (1 + n./n;) - log L. Other compaction algorithms minimizing the
layout width, the longest wire length, or the total wire length are described in [2]{7],
{117, [13],and [15]. None of these algorithms can be used to optimize a tradeoff function
between the layout width and the longest wire length.

The paper is structured as follows. In Section 2 we state relevant definitions. In
Section 3 we discuss our approach for the algorithm minimizing the longest wire length.
Section 4 describes how to compute the speeds and how to determine the points in time
when new speeds have to be computed. In Section 5 we present an O(n? - n?)-time
algorithm and in Section 6 we show how to reduce the running time to O(ny, - nlog n).
In Section 7 we discuss how to generate a configuration minimizing a given tradeoff
function. Sections 8 and 9 conclude.

2. Preliminaries and Definitions. In this section we give notation and define the dif-
ferent graphs used by our algorithms. Throughout this paper the wires of a layout are
partitioned into horizontal wires and vertical wires according to the following rules. A

428 S. E. Hambrusch and Hung-Yi Tu

] | (]
PV T

Fif]

rl's'l

[| B

(e}

Fig. 1. (a) A layout. (b) The cells of the layout, {c) The distance graph of the layout, {d) The wire graph of the
layaut, () The speed graph of the layout.

horizontal wire is a horizontal segment of maximum length connecting layout compo-
nents and vertical wires. Every wire segment not belonging to a horizontal wire forms
a vertical wire. For exampie, the layout shown in Figure 1(a) contains five horizontal
wires and seven vertical wires. Observe that the endpoint of a vertical wire is incident to
either a [ayout component or a horizontal wire, No endpoint of another wire is incident
to any other position of a vertical wire.

We group layout elements into cells as follows. Partition the layout components and
verlical wires into maximal sets, so that each set represents one rigid object that moves
as one entity. One such rigid object induces one cell of the layout. In addition, if an
endpoint of a horizontal wire is not connected to a layout component, then this endpoint

New Algorithms for Minimizing the Longest Wire Length During Circuit Compaction 429

induces a rectangular cell. Such a cell has width 0 and its height equals the width of the
horizontal wire. Figure 1(b) shows the cells induced by the layout of Figure 1(a). Cells
Uz, Uss, Ura, and Ujs are cells induced by the endpoints of horizontal wires ,, H>,
and Hs, respectively. Having an endpoint of a horizontal wire thal is not connected to a
layout component induce a cell simplifies our algorithm.

Let n be the number of cells in configuration C, n < 2ny, + n,, -+ 1. In our algorithms
the information about configuration C is represented by two directed, weighted, n-vertex
graphs, the distance graph G4 = (V4. Ag) and the wire graph G, = (V,, A,). The wire
graph records the length of the longest wire between cells. The distance graph models
constraints between cells. In related literature this graph is also called the constraint
graph. Throughout this paper we assume that a constraint between two cells is induced
by visibility and that the weight of the arc is the distance between two cells. When the
constraints come from visibility between cells, the distance graph is a planar graph.and,
as a consequence, it has O (i) arcs. However, no step of our algorithms makes use of the
planarity. Our algorithms can handle other inequalities specified by a user or generated
by a CAD system. Any constraint graph consisting of O(r) arcs can be used and will
give the same running time.

We next define visibility and distance between cells. Since cells move to the right,
we only need to capture visibility to the right of a cell. A cell Uj; is visible from a cell U;
if and only if one can draw a horizontal lire connecting U; and U; starting at a position
x; and ending at.position x5, x; < xp, so that no position between x; and x; on this
horizontal line is occupied by a cell. Every such horizontal line between two cells has
a length of x; — xy. The distance between U; and Uj; is the minimum over all lengths
associated with horizontal lines connecting the two cells and inducing visibility between
them.

In both the distance and the wire graph the vertices comespond to the cells of con-
figuration C (we thus have Vy = V,;). Vertex u; of either the distance or the wire graph
represents cell U;, 1 <i < n. The arcs and weights in the distance graph are formed as
follows. When cell Uj is visible from cell U;, the distance graph contains the arc («;, u;),
i.e., the arc from vertex u; to veriex u;. Its weight, d (u;, u;), is set to the distance between
U; and U; in configuration C.

In addition, we add the following arcs not corresponding to visibilily between celis.
These arcs are incident to cells induced by horizontal wires not connected (o layout
components. Let H be a horizontal wire for which one of the endpoints is not connected
to a layout component. Let V,,; and V,, . be the leftmost and rightmost vertical wire
incident to H, respectively, and lying above H. Observe that no such vertical wire may
exist or that V,,; and V,p, - may be identical. Vertical wires Vy,; and Vy, . are defined
in the analogous way for the vertical wires lying below H. Assume the left endpoint
of H is not connected to a layout component and let U; be the cell induced by the left
endpoint of H. If cell U; contains vertical wire Vi, (resp. Vigw1), we include the arc
(27, u;). Its weight d(u;, u;) is set to the distance between the left endpoint of H and
vertical wire V,p (resp. Vi,). Observe that at least one of these two arcs has a weight
of 0. Arcs (u 3, 1t1), (12, tt2), (t14, #10), and (u)4, uy)) of the distance graph shown in
Figure 1(c) are created according to these rules. Assume now that the right endpoint of
H is not connected to a layoul component and that cell U; is the cell induced by the right
endpoint. Then, if Vyp,» (resp. Vau) is contained in cell U}, we include the arc (u;, u7)

430 S. E. Hambrusch and Hung-Yt Tu

and set its weight accordingly. Arcs (u3, u13), (14, 113), and (411, u15) of Figure 1(c) arc
created in this way.

The arcs of the wire graph G, are formed as follows. Arc (i, ;) is in A, if cell Ujis
visible from cell U; and there exists at least one horizontal wire having its left endpomt
incident to U; and its right endpoint incident to U;. The weight of this arc, w(u;, i), is
set to the length of the longest such wire between U and U;. Figure 1(d) shows the wire
graph of the layout in Figure [(a). G,, contains at most 1z, arcs and every arc of the wire
graph is also an arc of the distance graph. When layout components are not restricted to
be rectangles, the weights associated with the two arcs can be different. In Figure | the
longest wire connecting cells Uis and U} has length 7, but the distance between U g
and Uy is 4. Throughout, let H; ; represent the longest wire connecting cells U; and U;
so that the left endpoint of this horizontal wire is incident to U; and its right endpoint is
incident to U;. From now on we assume that among all wires connecting two cells U;
and U, all but the longest one have been removed.

Given a configuration, its distance graph and wire graph can be built in O (ny, +
(1y + n,)log{n, + n,)) time. This can be done, for example, by sorting the layout
components according to their vertical edges and using a plane-sweep approach, together
with balanced tree operations [12], [14].

As already stated, we generate new configurations by moving cells to the right with
certain speeds. The speeds are spemﬁed in the speed assignment. A speed assignment
assignstoevery cell U; anonnegatlvc real number speed(U;), 1 < i < n.Ourlongestwire
minimizing algorithm uses the concepl of a legal speed assignment. A speed assignment
is legal for configuration € when :

(i) Ifd(u;, u;) =0, then speea'(U,) < speed(U)
(i) If H;,; is a longest wire in C and w(u;, ;) # 0, then speed(U;) > speed(U;).

Condition (i) guarantees that, when the distance between {/; and U; ; is zero, moving cells
Ui and U; according to their legal speeds keeps the relative order between U; and U in
the horizontal direction. It also keeps U; from overlapping with U; (which would happen
if U; would have a larger speed). Condltlon (ii) guarantees that the length of a longest
wire decreases. Since arcs of the distance graph having weight 0 and arcs of the wire
graph corresponding to longest wires determine the legality of a speed assignment, we
represent these arcs in a separate graph, the speed graph. The speed graph 1s used for
determining a legal speed assignment in the wire minimizing algorithm.

The speed graph G; = (V;, A;) is a directed graph whose arcs have either weight
Oor L. Ithas V; = V; U {u,], where u; is a source vertex, and arc set A; is formed as
follows. For every verlex u; in Vy we include the arc (u;, «;) of cost 0. For every arc
(ui, u;) of weight O in the distance graph, the speed graph contains the arc (i;, u;) of
cost 0. If (u;, u;) is an arc in the wire graph G, representing a longest wire in the layout,
the speed graph contains the arc («;, u;) having cost |. Observe that for an arc (u;, u 1)
coming from the wire geaph we reverse the direction of the arc in the speed graph. The
length of a path from u; to u; is the sum of the costs of the arcs on the path.

Assume there exists a legal speed assignment for configuration C and the longest wire
tength in C is not zero. Maving the cells to the right according to the speeds specified
by a legal speed assignment changes wire lengths and distances between cells. Most
importantly, the length of the longest wires is reduced. Cells continue moving to the

New Algorithms for Minimizing the Longest Wire Length During Circuit Compaction 431

right until one of the following two events happens:

(i) anarc (u;, u;) having a positive weight in distance graph turns into an arc of weight
0, i.e., a nonzero dislance between two cells becomes zero, or
(i) a wire H; ; which is not a longest wire before the movement to the right turns into
a longest wire.

We refer to the first event as a distance event and to the second one as a wire event. The
earliest time at which either event occurs is called the event time for configuration C. At
event time, the speed assignment is no longer legal. However, there could exist another
legal speed assignment that continues to reduce the length of the longest wires. If one
exists, we find it and keep moving cells to the right according to the new legal speeds.
Otherwise, the current configuration is one having the minimum longest wire length.

3. Correciness of Overall Approach. In this section we establish the relationship
between a legal speed assignment and a configuration in which the longest wire length
is a minimum. This relationship is crucial to the cormrectness of our algorithm.

LEMMA 3.1. Let C be a configuration. The longest wire length in C is not minimized if
and only if there exists a legal speed assignment forC. - - . -~

PROOF. Assume there exists a legal speed assign mcnt fqr conﬁguratlon C. By moving
the cells according to the associated speeds, the lon gest wire length is reduced. Thus the
longest wire length could not have been minimized in C.

Assume now that the longest wire length is not minimized in C. Let x¢{(U;) be the
x-position of. the leftmost vertical edge of cell U; in configuration C. Let C* be a con-
figuration in which the longest wire length is 2 minimum and x¢(U;) < xc:(U;) holds
for every cell U;. By shifting the cells of a configuration minimizing the longest wire
length to the right such a configuration C* can always be generated. We next show that
setting speed(U;)} = xe-(U;) — xc(U;), 1 < i < n, results in a legal speed assignment
for configuration C.

Assume that the distance between U; and Uj is 0 in C. This implies that cell U;
contains a vertical edge ¢; and cell U; contains a vertical edge e;, such that e; is visible
from ¢; and the distance between ¢; and ¢; is 0. In configuration C*, &; is still visible
from ¢;. The distance between ¢; and ¢; in C* is larger than or equal to 0. Hence,
x¢-(Up) — Xc(Up) < xe(U) — xc(U;) and thus speed(U;) < speed(Uy). Let H;
be a horizontal wire of maximum length in configuration C. Recall that H; ; has its left
endpoint incident to cell U; and its right endpoint incident to U;. The length of wire H; ; in
configuration C is larger than in C*. Hence, we have x¢- (U;) —xc (Us) > xe-(U;)—xc(U))
and speed(U;) > speed(Uj;) follows. Both conditions for a legal speed assignment are
thus satisfied. 0

There can exist many legal speed assignments for a particular configuration C. Our

algorithm determines a legal speed assignment by performing a single-source longest-
path computation in the speed graph. Assume that the speed graph contains no positive

432 S. E. Hambrusch and Hung-Yi Tu

cycle. Let L(u;) be the length of the longest path from source u, to vertex u; and let
P = (us, Wy, ..., g, = u;} be the associated path. Intuitively, path P implies that one
can “travel” from cell Uy, to cell U; using L£(u;) longest wires. By “travel” we mean that
there exists a path from u;, to u; in the speed graph that corresponds to moving from
cell Uy, to cell U; along £(u;) horizontal wires of maximum length, through the interior
of cells, and from one cell to another cell as long as the distance between these two cells
is 0. Moving every cell Uy, on path P to the right with a speed of L(ur), 1 < r <,
reduces the length of every longest horizontal wire associated with an arc in path P. The
next lemma gives a formal argument showing that setting speeds equal to the longest
path entries results in a legal speed assignment.

LEMMA 3.2. Let G; be the speed graph of configuration C. If G, contains no positive
cycle, setting speed(U;) = L{(u;), | < < n, results in a legal speed assignment for C.

PrOOF. Let (u;, #;) be an arc of cost 0 in G;. Since G, contains no cycle of positive
cost; we have L(u;) < L(u;). Setting speed(U;) = L(u;) and speed(U;) = L(u;) gives
speed(U;),. < speed(U;).

Assume now that («;, ;) is an arc of cost 1 in the speed graph, The arc is induced by a
Iongest wire having a left endpoint incident to cell U; and a right endpoint incident to cell

-U;. Since there €xists no cycle of positive length, G, cannot contain a path from u; touj. " ey o B
We thus have: £(u;) > L(u;) + 1. Setting speed(U;) = L{u;) and speed(U;) = .C(u,)
.- gives speed(t}) >’ speed(U). Hence, both conditions for a legal speed assignmerit arc-'.'-_‘-"‘-'f'f"" R
satisfied.” - ° R

In order to use the existence of a positive cycle as the indication that no legal speed
assignment exists, we need to prove the following lemma.

LEMMA 3.3. Let G, be the speed graph of configuration C. If G contains a cycle of
positive cost, then no legal speed assignment exists.

PROOF. Assume P = (u;,, ty,, Uiy, ..., &,_, Wi, 4;,} 1s a positive cycle in G;. P con-
tains at least one arc, say (u;, u;,,), of cost 1. By definition of G, arc (i, uy,y,)
corresponds to a longest wire with a left endpoint incident to cell U;;,, and a right end-
point incident to cell U . Assume there exists a legal speed assignment for C. Then,
we have speed(U;,,) > speed(U; ;). This implies speed(U;)} < speed(U;,) < -+ <
speed(U;) < speed('m) < --.. 5 speed(U;,) < speed(U;), which is not possible.
Hence, no legal speed assignment can exist for C. O

We summarize the discussion in the following theorem.

THEOREM 3.1. There exists a legul speed assignment for C if and only if the speed graph
of C contains no positive cycle. If no positive cycle exists, setting speed(U;) = L(u;),
| <i < n, gives a legal speed assignment.

New Algorithms for Minimizing the Longest Wire Length During Circuil Compaction 433

4. Finding a Legal Speed Assignment and the Event Time. In this section we first
give an algorithm for determining a legal speed assignment for a given configuration €
and then describe how to determine the event time induced by the legal speed assignment.
As described in the previous section, we determine a legal speed assigrment by
performing a single-source longest-path computation on the speed graph with vertex u;
as the source. The entries speed(u;) are computed similar to the Bellman—Ford algorithm
[1] for solving a single-source shortest-path problem on a graph with negative weights.
We use the technique of relaxation, in which the speed-entries (and thus the length of the
longest paths) are progressively increased. An arc (i;, ;) in speed graph G is relaxed
if
speed(U;) < speed(U;) when cost(u;, u;) =0,
speed(U;) < speed(U;) when cost(u;, ;) = 1.

Figure 2 gives a description of the algorithm, to which we refer as algorithm LEGAL-
SPEED. Since vertex u, has an arc of cost 0 to every other vertex in speed graph Gy,
we initialize speed(U;) = 0 for every cell U; and put all arcs of G; in a first-in-first-out
queue . When an arc (u;, ;) is extracted from queue @, arc (;, &;) is checked, and
updates in speed-entries and insertions into queue @ are performed (as done in steps 5—
11 of Figure 2). Speed graph G, contains at most r; ascs having cost 1, where ny, is the
number of horizontal wires in configuration €. Hence, if the length of the longest path
from source u, to a vertex exceeds ny, speed graph G; contains a positive cycle and
algorithm LEGAL-SPEED terminates without generating a legal speed assignment.
The running time of algorithm LEGAL-SPEED is bounded by O(r - n;) which is
shown as follows. Let ¢; be the number of arcs incident to vertex u; in G;. When the
speed of U; (or, equivalently, the length of the longest path from u; to u;) is increased,

Algorithm LEGAL-SPEED:

Inpul: A speed graph G, = (V;, 4,).
Outpul: A legal speed assignment.

1. Q— Ay
2. for u; € V, do speed{U;} ~ 0,
3. while Q@ #0do
begin

4. (i, uj) « dequeue(Q);
/* relaxation */
speedy1q{U;) — speed(U;);
if cost(u;,u;) = 0 and speed(U;) > speed(U;) then speed(U;) — speed(U:);
if cost(u;,u;) = 1 and speed(U;) < speed(U;) then speed(U;) «— speed(Ui) + 1;
if speed(U;) > ny then no legal speed assignment exists;
if speed(U;) > speedoia(U,) then
0. for every (u;,uc) € A. do enqueune(Q, (u;, ut));
1 for every (ux,u;) € &, do enqueue(Q. (1, u;));

/* end of relaxation */
end of while;

SR meo

Fig. 2. Algorithm LEGAL-SPEED.

434 S. E. Hambrusch and Hung-Yi Tu

all arcs incident to u; are inserted into @ and are checked in a later iteration. This takes
O{c;) time. The speed of a cell is increased at most n; times, and thus the total time
spent on checking the arcs incident to u; is O{(¢; - ny). The overall runring time of
algorithm LEGAL-SPEED is thus O (3 7 ¢j - ns) = O(n » n,). This time bound uses
the assumption that the number of arcs in the speed graph is O(x). For a speed graph
containing m arcs, the bound is O (m - n,).

Assume that a legal speed assignment has been determined for configuration C. The
remainder of this section describes how to determine the associated event time in O (n +-
ny) time. Let 74 be the earliest time at which a distance event occurs and let +,, be the
earliest time at which a wire event occurs. The event time is then min{z,, ty}. Consider
first the computation of 17, Let (x;, u;) be an arc of the distance graph with d(u;, ;) > 0
and speed(U;) > speed(U;). The zero time zt; .j of arc (u;, u;) is defined as the time at
which the distance between U; and U; tumns 0 when these cells move to the right with
speeds speed(U;) and speed(U;), respectively; i.e.,

d(u;. !&j)
speed(U;) — speed(U;)

Time ¢ is determined by computing the zero time for each arc of the speed graph and
then selecting the minimum among them; i.e., £y = min,, wpEA {zt:,;), where

2 j=

Ad = [(ui, up)l(u;, u;) € Ay, d(u;, uj) > 0 and speed(U;) > speed(U -

Smce Gs contains O (n) arcs, this is done in O(n) time. R
' Con51der now the computation of £,,. Let (u;, ;) be an arc of the wire grap‘l repre-. < -

scntmg horizontal wire H; ; in C. We define length, _j{t) to be the linear function '
length; ;(t) = w(u;, u;) + 1 - (speed(U;) — speed(Uy)).

The value of length; ;(¢) represents the length of wire H;, ; at time ¢ when cells U;
and U; move to the right according to speeds speed(U;) and speed(U;), respectively. If
speed(U;) > speed(U;), the length of wire H; ; reduces and thus the slope of function
length; ;(1) is negative. On the other hand, if speed(U;) < speed(U;), the length of wire
H; ; increases and the slope of length; (¢} is positive. When speed(U;) = speed(U;),
the length of wire H; ; does not change and the slope is 0. Let ENV(¢) be the upper
envelope of all Iengrh functlons ie.,

ENV(t) = max length, (0.

G sy)ed

Then #,, is the minimum of ENV(r). Figure 3 shows the length functions of eight hori-
zontal wires. The upper envelope of the length functions is indicated by the dashed line.
The minimum of ENV(¢r) can be obtained in O(n,) time {8). Since our line segments
have a special structure, the minimum of ENV(r) can be determined by a simpler method
having the same time bound as follows.

The way legal speed assignments are determined implies that for every horizontal
wire H;, ; whose length is reduced, we have speed(U;) > speed(U;) + 1. Thus, the slope
of Iengfh, j 18 not larger than —1. Furthermore, there exists at least one longest wire,
say H; j, for which speed(U;) = speed(U;) + 1, and thus the slope of length; j{) s
~1. This implies that ENV/(¢) contains only one line segment of negative slope and that

New Alporithms for Minimizing the Longest Wire Length During Circuit Compaclion 435

length; (1)

the function with slope -1

'

Fig. 3. The lengrly; ; (1) functioss.

this line segment has slope —1. Let L(C) be the length of Ihe longest horizontal wire
in configuration C and let length, (t) = L(C) — ¢. The minimum of the upper envelope
occurs at the intersection of, length, (t) with a function length, , (1) of nonnegative slope.
We thus cénsider all wires: Hp g: with ,speed(Up) < speed(Uq) and determine {or each
one the time at which length(t) ‘Intersects !eugrhp g(1). We refer to this time as the
intersection time of wire HP 4. The intersection time can easily be determined tn O(1)
time and hence the minimum of the upper envelope ENV (f) is determined in O (n,) Lime.

5. A Longest Wire Minimizing Algorithm. In this section we describe an O (12 -n2)-
time algorithm for generating a configuration which minimizes the length of the longest
wires. The algorithm performs at most ny, - # iterations, with each iteration generating
a configuration having smaller longest wire length. Let C; be the configuration at the
beginning of the ith iteration, i > L. Also, let G, G%, and G' be the distance graph,
wire graph, and speed graph of C;, respectively. For the first iteration this information is
generated from the initial configuration C.

The ith iteration performs the following steps. We use algorithm LEGAL-SPEED
described in the previous section to determine a legal speed assignment for configuration
C;, if one exists. Ifno legal speed assignment exists (or the length of the longest honzontal
wire is 0), the algorithm terminates with C;. Assume that a legal speed assignment exists
and let speed; () be the computed entries. Using these entries, we compule the event time
t.; for configuration C; and then move every cell U; distance . ; - speed; (U;) to the right.
We point out that, since the quaalities z, ; - speed; (U;) are not guaranteed to be integers,
compaction is not done on an integer grid. The movement to the right results in a new
configuration C;;. We complete the ith iteration by detcrmining graphs G, GiH,
and G+, From the bounds given in the previous section, it follows that one iteration
is completed in O (ny, - m) time. The remainder of this section shows that afier at most
ny - u iterations no further reduction in the longest wire length is possible.

436 S. E. Hambrusch and Hung-Yi Tu

First, we show that the speed of a cell does not decrease from one iteration to the next,
Assume that neither G? nor G*! contain a positive cycle. Let P = (ug, iy, ..., ug, =
u;) be a longest path from us to u; in speed graph G:. One can thus travel in C; from cell
Uy, tocell U; by traversing speed; (U) longesthonzontal wires. In Lemma 5.1 we show
that every arc on such a longest path P is also an arc in speed graph Gi¥L. This implies
that the speed-entries do not decrease from one iteration to the next. Observe that path
P may not be a longest path from u; to #; in G'*' (an even longer path many now exist).

LEMMA 5.1. If neither G} nor Git' contain a positive cycle, then speed,(U;) <
speed;, | (U;) for every cell U;, 1 < j < n.

PROOF. LetP = {us, ug,, ... Ui, =H ,) be a longest path from u, to u; in G'. We first
show that every arc on P is also an arc in G""' Assume (., «tp) is an arc of cost 1 in
P. Arc (g,) in G implies that there exists a longest wire Hy, ; connecting cell U,
to cell U, in C;. From algorithm LEGAL-SPEED and the fact that P is a longest path
it follows that speed,;(U,) = speed;(U,) + 1. If cells U, and U, are moved for 7 time
units, the length of wire Hj, o reduces by exactly ¢. Hy, , remains a longest wire and thus
arc (4, 4p) is an arc of cost I in G+,
Assume now that (u,, u;) is an arc of cost 0 in P. The existence of arc (i, 4p) in G"
_ implies that the distance between cells U, and U}, in configuration C; is 0. From algonthm
- LEGAL-SPEED and the fact that P is a longest path. it follows that speed;(U,) =
speed;(Up). Hence, after moving U, and U, to the right, the distance between U, and
.Uy remains 0. Thus, arc (u,, u3) is still an arc of cost 0 in.G*!. Speed graph Git! is
‘obtained from G by arc additions and arc deletions. Since no arc on a longest palh is
deleted and the addmon of arcs cannot decrease the length of the longest path from u;
to a vertex, it follows that speed; (U;) < speed; . (U;). O

We show that the algorithm terminates in at most #,, - n iterations by showing that in
every iteration there exists at least one cell U with speed; (U;) < speed; (U;). Since
the speed of a cell is bounded by #;, the claimed bound of #n;, - 1 foliows immediately.

LEMMA 5.2. Assume there exists a legal speed assignment for configurationC; and C; 4.,
respectively. Then there exists at least one cell U, such that speed;(U,) < speed; | (U,).

PROOF. The ithiteration terminates when either a distance event or a wire event occurs.
Assume a distance event occurred. Then there exists one arc, say {tp, ug), that is not
in speed graph G, but is an arc of cost 0 in Gi+'. This implies that speed;(U,) >
speed;(U,). By Lemma 5.1, we have speed; (U,) < speed; . (U,). Since the (i + 1)st
iteration generates a legal speed assignment and the cost of (i, 1) is 0 in G'*!, we have
speed;, | (Up) < speed; | (U,). Combining these three inequalities gives speed; (U,) <
speed; , (Uy).

Assume now that a wire event terminated the i th iteration. In this case there exists an
arc (up, u,) that is not in G¥, but which is an arc of cost | in G*', The arc corresponds
to a horizontal wire H, , which is not a longest wire in the /th iteration, bul is a longest
wire in the (7 4 1)st ileration. Thus, speed; (U,) < speed;(U,). By Lemma 5.1, we have

New Algorithms for Minimizing the Longest Wire Length During Circoit Compaction 437

speed;(U,) < speed;,(U,), and in the (i 4 I)st iteration we have speed;, (U;) <
speed; (U,). The inequality speed, (U;) < speed;,) (U,;) follows. [

We summarize the above discussion in the following theorem.

THEOREM 5.1. Given a configuration and its distance graph and wire graph, a config-
uration minimizing the longest wire length can be generated in O (n - n%) time, where
n, is the number of horizontal wires and n is the number of cells in the layout.

6. Improving the Running Time. In this section we describe our O (i, - 1 log n)-time
longest wire minimizing algorithm. The algorithm performs, as the algorithm sketched in
the previous section, up to ny, - n iterations. However, it updates, rather than recomputes,
the data structures and information for the {th iteration from the ones used in the (i — 1)st
iteration.

We assume the jth iteration starts at time ¢, ;—, and ends attime ¢, ;, with £, g = 0. The
quantity ¢, ;— is thus added whenever zero times and intersection times are computed in
the /th iteration. We maintain zero times giving the next distance event and intersection
times giving the next wire event in heaps Hz and H,, respectively. The speed graph used
in an iteration is generated from the one used in the previous iteration by performing
arc dclchons and arc addihons Every arc change is checked as to whether it causes a =
change in the speed entnes Let di{u;, u;) and w; (u;, u;) be the weight of arc (u;, u;)
in dlstance graph G', and wire graph G/, respectively. We do not explicitly generate all
the d; and w; entries. When the weight of an arc is needed, we compute it in O(1) time.

The ith iteration generates two arc sets, D; and A;. Arc set D; contains arcs which
are in speed graph G, but not in speed graph Gi*!. A; contains arcs which are not in
Gi, but in Gi+1, Thus, speed graph GT+! is obtained from G. by deleting the arcs in set
D; and adding the ones in set A;. At the beginning of the ith iteration, i§ > 2, we have
the following information:

" o alegal speed assignment for G-,

e heap Hz storing the zero times and heap 74, storing the intersection times for the
speed; entries, and

e event time £ ;_ (i.e., the time at which the (i — 1)st iteration terminated) and arc sets
A;-1 and D;_;.

[n the first iteration we build G} and G, from the initial configuration C. Speed
graph G! is obtained from G} and G. We use the algorithm described in Section 4 to
determine the speed,| entres in O(ny, - n) time. Heap z containing the zero times is
created in O(n) time. Let L(C) be the length of the longest wire in configuration C and
let lengrh, (1) = L(C) — 1. For every wire H;; we determine the time at which function
length; . (¢) and function length,; (¢} intersect. These intersection times are the entries of
heap H;. Heap H; is created in O(ny) time. Event time £.,) and arc sets A; and D can
easily be determined within the O(ny - n) time allowed for the first iteration. Assume
{ > 2. In the ith iteration we perform the [ollowing steps:

|. Generate speed graph G'.

438 5. E. Hambrusch and Hung-¥i Tu

2. Determine a legal speed assignment for G..
3. Update heaps Hz and H; to reflect the new speed assignment.
4, Determine event time /,; terminating the /th iteration and arc sets A; and D;.

In the following we describe each one of the four steps in more detail. Speed graph
G is created from speed graph G%~! by adding the arcs that are in A;_ and deleting the
ones thatare in D;_;.

Consider next the computation of the speed; entries. From Lemma 5.1 we know that
the speed of a cell cannot decrease. An increase in the speed of a cell is caused by an arc
in A;_,. Every arcin A;_, is considered and its effect on the speed entries is determined.
This is done by performing relaxation on arcs of the speed graph. Observe that deleting
the arcs in D;— from speed graph GI~! does not cause a change in the speed entries. We
start the updating of the speed entries by putting the arcs in A;_; into a first-in-first-out
queue Q. Assume we initialize speed;(U;) = speed; ,(U;), 1 < j < n. Of course,
this initialization is not performed explicitly. For each arc (uj, ug) extracted from O we
perform steps 511 of algorithm LEGAL-SPEED (given in Figure 2). The computation
of the speed; entries is completed once Q is empty.

Once the legal speed assignment for GZ has been determined, heaps 7z and H; are
updated in the third step of the ith iteration. Consider first heap Hz. Every element of Hz

. comresponds to an arc of the distance graph inducing a zero time. Recail that the zero timg
.. is defined for an arc in the distance graph whose weight decreases during the ;th iteration.
The zero time represents the time the arc weight tums 0:-Let (u;, u;) be an arc of the
distance graph. If the speed of cell U or that.of cell Uy is,increased in the second step of
. the ith iteration, then the zero time associated.withr arc («;, ux) may need to be updated.
"Assume (u;, uy) is such an arc with &; (;, u;) > 0 and speed;(U;) > speed,(Up). We
delete arc (i, ux) and its old zero time from Hz (if it is present in the heap Hz), and

then insert the arc with a new zero time of

di(u;, ug)
speed;(U;) — speed; (Uy)

Zf}‘k =l i-1 +

into Hz, where d; (u;, u;) is the distance between cells U; and Uy in the beginning of ith
iteration. In order to compute Zt;{.k we need the value of d; (7, uy). As already stated, we
do not explicitly compute all 4; and w; entries in the ith iteration. The value of d; (i iy UE)
is computed in O(1) time, when needed, as follows. Assume that the pth iteration, where
p < i, was the last iteration in which either the speed of cell U; or Uy was increased.
Whenever the speed of a cell increases, we update the d,, entries of all the arcs incident
to this cell. This implies that at the end of the pth iteration we did compute and record
the entry dp1 (1, u)- Recall that d,..; (u;, ug) represeats the distance between cells U;
and Uy at the beginning of the (p + 1)st iteration. During iterations p 4+ L, ...,i — I the
speed of neither U; nor U;, was increased. Then

di(uj. ug) = dpy1(uj, ue) + (speed, (Uy) — speed ,(U;)) X (teim1 — te,p)-

The weights of the wire graph are determined in an analogous way.

Consider now heap 7;. It records, for every wire H;, having a nondecreasing wire
length, the intersection time; i.c., the time when functions length; (1) and length;, in-
tersect. Analogous to heap Hz, the intersection time of a wire H; . can change only

New Algorithms for Minimizing the Langest Wire Eenglh Daring Circunit Compaction 439

when the speed of U; or Uy increases. If this happens, we check whether an entry in M,
needs to be updated and, if so, update the corresponding intersection time. The length
w;(u;, ux) of wire H;x needed for computing the intersection time is obtained in O (1)
time as already described above. This concludes the description of the third step of the
ith iteration.

The last step of the ith iteration determines the event time 7, ; and arc sets 4; and D;.
Event time £, ; is computed by determining the minimum in each heap and choosing the
minimum among the two. Arc set A; contains the arcs to be added to G in order to obtain
G+, We claim that set A; is formed by the arcs in heaps Hz and H; causing event time
;- Assume (u;, ux) is an arc in A;. First we consider the case in which (u;, uy) is in
A; because the distance between cells U; and Uy is positive in the /th iteration, but turns
0 at the end of the ith iteration. Arc (u;, ux) induces a distance event terminating the
ith iteration. This implies that the zero time associated with arc (u;, ;) is a minimum
in heap #z. On the other hand, if (4;, u.) is in A; because wire H; ;, which is not a
longest wire in the ith iteration, turns into a fongest wire at the end of the ith iteration,
then («;, uz) induced a wire event terminating the :th iteration. Hence, the intersection
time associated with Hy ; is a minimum in heap ;. Set A, is thus formed by the arcs in
heaps Hz and H; causing event time £, ;. We delete these arcs from the heaps and place
them into A;.

Arc set D; contains the arcs to be deleted from GE and is obtained as follows. Assnme
. (uJ, uy) is an arc in D;. Assume first that (&, ue) has costQ in speed graph G'. For the
arc to be in D;, we need to have speed; (U;) < speed;(U.). Arc (i), uy). may or.may
. not have been an arc in speed graph G If it was in G!~!, we had speed;_,(U;) =

- speed;_; (Uy); if it was not, we had speea' _1(U;) > speed;_, (Ug),.- In elther situation,
in order to have speed;(U;) < speed;(Uy), the speed of one of the-cells must have
been increased in the ith iteration. Consider now the case when (u;, u;) has cost 1 in
G!. Since wire Hy, ; is no longer a longest wire at the start of the ({ + 1)st iteration,
we have speed,(Uy) > speed;(U;) + 2. At the end of the (f ~ 1)st iteration we had
speed; _(Ur) < speed;_,(U;) + . Hence, the speed of at least one of the cells was
increased in the ith iteration. Arc set D; can thus be found during the second step of the
ith iteration. (For the sake of clarity, we place the discussion of finding D; into the fourth
step.) Whenever the speed of a cell increases, we check whether an arc in G, incident to
the corresponding vertex of the cell is to be deleted from the speed graph. This concludes
the description of the last step of the ith iteration.

The following theorem summarizes the above discussion.

THEOREM 6.1. Given a configuration, its distance graph, and its wire graph, a con-
figuration minimizing the longest wire length can be generated in O(n;, - nlogn) time,
where ny, is the number of horizontal wires and n is the number of cells in the layout.

PROOF. The algorithm is described above and it remains to be shown that it achieves the
claimed running time. From Section 5 it follows that the algorithm performs at most z, -2
iterations. We show that the total work done in all iterations is bounded by O(ny-n logn).
The work done in the first iteration is obviously bounded by O(n, - n). The total work
done in all the remaining iterations is determined as follows.

Assume that the algorithm terminates after m iterations. If an arc (u;, #;) is added

440 . 8. L. Hambrusch and Hung-Yi Tu

into D;, the speed of at least one of U; or Uj. increased. Since the speed of a cell cannot
exceed ny,, we have 3 ;1| | D:]| < ag - n. I (5, wg) is an arc included in A;, it was either
not in G or it got deleted in some earlier iteration. Hence, Y, |4;| = O(ny - n).
Speed graph G' is generated in Q(JA;_(| 4 | D;—;]) time. Thus, the total work done for
generating the speed graphs is bounded by O (37, |Ai—1] + |Dj—1]} = O(ny, - n).

Consider the total work done for updating the speed entries. Let ¢; be the maximum
number of arcs incident to vertex «; in a speed graph (during all iterations). When the
speed of u; increases, the arcs incident to u; are checked for increases in the speed
entries. Since the speed of a cell is bounded by n; and the total number of arcs in the
speed graph is O(n), the total work done for updating the speed entries is bounded by
O(Z i1 G5 -nn) = 0(n - ny).

When the speed of a cell U, increases, entries in Hz and/or H; may need to be
updated. Using an argument identical to the one above, heaps 7z and H; are updated
O(ny, - n) times throughout all iterations. The total work for updating the heaps is thus
bounded by O (ny, - - (logn +logny)) = O(ny -nlogn). After completing the updating
of heaps Hz and 7, in an iteration, event time ¢, ; is found in O(1) time. Finally, the
total work done for generating all D;-setsis Y ;. | |D;| = O(ny, - n). The total work done
for generating all A;-selsis Y ;| |A;| - logn = O(n,, - nlogn), where the log » comes
from the min-deletions performed on the heaps. This completes our discussion of the
O(m, -1 logn) running time. - a

Let Cy be the conﬁguratlon generated by our algorithm and let L(C/) be the length
of the longest wire: in’ Cr- Conﬁguratmn Cs may not have minimum width among all
configurations having miftimum]ongest wire length. There exist a number of algorithms
for generating a layout of minimum width from a given feasible configuration, subject
to not exceeding a given upper bound on the horizontal wire length. For example, by
adding arcs corresponding to the upper bound of wire length to the distance graph
and performing a compaction which positions cells as far to the left as possible, a
configuration minimizing the width can be generated in an additional O (1 log #) time.

7. A Tradeoff Between Wire Length and Layout Width. In this section we consider
how to generate a layout minimizing a tradeoff function between the width and the longest
wire length. For any configuration C, let W(C) be its width and let L(C) be its longest
wire length. Given an initial configuration and two constants e and 8, @, 8 > 0, we are to
determine a configuration C* such thater - W(C*)+ 8- L(C*) < a- W({C)+ 8- L(C'), for
any other configuration C’. We call a configuration C* minimizing the tradeoff function an
optimal configuration. We present an algorithm for generating an optimal configuration
in O(ny, - nlogn}) time. The overall approach is similar to the one used for minimizing
the longest wire length. We generate C* over a number of iterations, with each iteration
computing speeds and moving cells according to the speeds. The resulting configuration
has a smaller tradeoff function value. After at most n;, - u iterations, C* is generated.
From now on, instead of minimizing or- W(-) + 8- L(-), we minimize y - W{-) + L(-),
where ¥ = o/f. We start by describing some of the differences in the definitions and
data structures. First, we add to the initial configuration two (ictitious cells Up and Uyl
These two cells have a height equal 1o the height of the Iayout and a width of 0. Cell

New Algorithms for Minimizing the Longest Wire Length During Circuit Compaction 44|

H,

(a)

b : U
(3]

Fig. 4. (3} A min-width configuration. (b) The speed graph of the layout shown in (a). (¢) The next min-width
configuration generated by our algorithm.

Up is positioned immediately to the left of the leftmost cell, and U/, is positioned
immediately to the right of the rightmost cell. The distance between Up and Uy 18
the width of the configuration. When we refer to a configuration, we always mean 2
configuration containing Up and U1

Distance graph and wire graph remain as defined in Section 2. The speed graph differs
from the one defined in Section 2 in that we do not add a source vertex u;. Instead, the
vertex associated with cell Uy is used as the source. Observe that vertex g has arcs only
to vertices corresponding to cells that are distance 0 from cell Up. Figure 4(b) shows the
speed graph of the layout shown in Figure 4(a)-

We call a configuration C a min-width configuration if width W(C) is a minimum
among all configurations having a longest wire length of at most L{C). Min-width
configurations are crucial to our tradeoff function algorithm because they give us the

442 S. E. Hambrusch and Hung-Y1 Tu

following information: given a min-width configuration C, if we want to reduce y -
W(C) + L(C) by decreasing the layout width, the length of a longest wire must increase.
For example, Figure 4(a) shows a min-width configuration in which &, and H, are the
longest wires. If we want to decrease the layout width of this configuration, the length
of either H, or H, or both must increase.

Our tradeoff function algorithm generates first a configuration having minimum
longest wire length and minimum width (among all configurations having minimum
longest wire length). Let C; be this configuration. Cy is, by definition, a min-width
configuration. Starting with Cr, we generate C* over a number of iterations, with each
iteration generating a configuration having a smaller tradeoff function value. We achieve
this reduction by increasing the longest wire length and reducing the layout width. New
configurations are generated by moving cells to the right. The movement to the right
is now controlled by a value-reducing speed assignment. A speed assignment is value-
reducing for configuration C when:

() If d(u;, u;) = 0in distance graph G, then speed(U;) < speed(U;).
(1) speed(Up) > speed(U,..1): i.e., the layout width decreases.
(ili) LetC’ be the configuration generated from C by moving cell U; distance ¢ -speed(U;)
to the right, 0 < i < n 4 L. There exists a ¢ such that y - W(C) + L(C) >
y - W(C") + L(CY).

16 C is a min-width configuration, the existence of a value-reducing speed assignniér&f()r SO
- € implies that another feasible configuration with a smaller tradeoff function vatue cari TR
- 'genérated by:moving the cells of C to the right according to the associated value-reducing ="~ - -

~ispeeds: ot -l - VLR

We determine a value-reducing speed assignment by performing a single-soﬁrce
shortest-path computation in the speed graph. Let S(u;) be the length of the shortest
path from ug to u; in the speed graph. Intuitively, the existence of a shortest path from ug
to i; implies that in order to travel from Uy to U;, one has to go through at least S (u;)
longest wires. When decreasing the layout width, the increase in the length of the longest
wire should be as small as possible. We thus distribute the increase evenly among the
S(u;) longest wires on the shortest path from ug to 1;. For example, Figure 4(a) shows
a min-width configuration in which H, and H; are the longest wires. If we want to de-
crease the layout width of this configuration, the length of either | or &; or both must
increase. The increase is minimized by increasing &, and H; evenly. Figure 4(c) shows
the min-width configuration generated by evenly distributing the increase between H,
and Hz.

Before describing our algorithm we prove the following relevant lemmas concerning
min-width configuration.

LEMMA 7.1. Cis a min-width configuration if and only if there exists a path from ug to
iy in the speed graph of C.

PROOF. Let C be a min-width configuration. Assume there exists no path from ug to
itnt1- We can then partition the vertex set of G into two subsets, Vg and V,4(, such that
Vo contains wp, V1 contains i, 4, and there cxists no arc from a vertex in Vj to a vertex
in V41 in speed graph G;. The partition of the vertices into Vp and ¥, implies that the

New Algorithms for Minimizing the Longest Wire Length During Circuit Compaction 443

layout width can be reduced by moving the cells comesponding to the vertices in Vp to
the right. Doing so does not increase the length of the longest wires. This contradicts our
assumption that C is a min-width configuration. Hence, if C is a min-width configuration,
there exists a path from ug to u,4 in speed graph G;. On the other hand, if C is not
a min-width configuration, we can partition the cells in C into two groups Sp and S,
such that Sg contains Uy, S,y contains I/, and moving the cells in $p to the fght
reduces the layout width without increasing the length of the longest wires. This implies
that there is no arc from a vertex in the set of vertices induced by the cells in Sp to a
vertex in the set of vertices induced by the cells in S,+,. Hence, if C is not a min-width
configuration, there exists no path from ug to u,,5) in G.. O

In our longest wire minimizing algorithm we used the existence of positive cycles in
the speed graph as the terminating condition of our algorithm. The termination condition
for the tradeoff problem is based on a relationship between the shortest path from cell Uy
to cell U,41 and y, the quantity from the tradeoff function. The following two lemmas
give this condition and state how a value-reducing speed assignment is obtained.

LEMMA 7.2. Let C be a min-width configuration. If y - S{un41) < 1, no value-reducing
speed assignment exists for C.

PROOF. Assume a value- reducmg speed asSngnment exists when y - S(up4r) < L.
Let P be the shortest path from up'fo i; {4 in'the speed graph G; of configuration C.
By Lemma 7.1 we know that such*apath‘exists in 4 min-width configuration. Entry
S(u,41) represents the minimum number of Iongest wires that need to be used when
traveling from cell Up to cell Ui Let £ be a value satisfying the third condition of a
value-reducing speed assignment and let C* be the associated configuration. In C* the
layout width decreases and the longest wire length increases. The sum of the increases
in length of the wires corresponding to the arcs on P is at least W(C) — W(C’). This
implies that there exists at least one wire corresponding to an arc in P whose the length
is increased by at least W(C) — W(C’})/S (itn+1)- Such 2 minimum increase would be
obtained when the decrease in the width (and thus the sum of the increases in length
of the wires corresponding to the arcs on P) is evenly distributed between the $(up4.1)
Iongest wires on path P. Hence,

y-WE) +LEC) - -WEY+LE) > 0,

— f
y-WE - WE) > L) — L) 5 TEO—WED)
S(as1)
1
v= S(un+l) ‘
which contradicts the assumption ¥ - S(u,+1)} < [. (]

Next we show that, given a min-width configuration C with ¢ - S(p41) > 1, a value-
reducing speed assignment can be determined by performing a single-source shortest-
path computation in the speed graph.

444 S. E. Hambrusch and Hung-Yi Tu

LEMMA 7.3. LetC be a min-width configuration. If y - S(y41) > 1, a value-reducing
speed assignment for C is obtained by setting speed(U;) = n;, — S(u ;) if there exists g
path from ug to u; in the speed graph of C, and by setting speed(U, ;) = 0 otherwise.

PROOF. Assume that (i, ux) is an arc in speed graph G, with cost(u;, uy) = 0. Since
S(u;) and S(u,) represent the length of the shortest path from ug to u; and uy, re-
spectively, we have S(u;) > S(uy). Thus, speed(U;) = ny, — Sup) < ny~8() =
speed(Uy}, and the first condition of a value-reducing speed assignment is satisfied.
Since S(un1) > 0, we have speed(Up) = ny, — 0 > nj, — S(Upy)) = speed(Upy) and
satisfy the second condition of a value-reducing speed assignment.

Assume the cells in configuration C are moved to the right according to computed
speeds. Let ¢ be the first mement in time in which a nonzero distance between cells
becomes zero or 2 nonlongest wire turas into a longest wire. Let C' be the configuration
generated from C by moving every cell U; distance speed(U;) - 1 to the right. The layout
width decreases by (speed(Up) — speed(Un4.1)) - £ The longest wire length increases by

LICY—~LEC) = max {(speed(U;) — speed(U;)) -t} < t.

H;.; is a longest wire io C

It is easy to see that for every longest wire H; ; we have speed(U;) — speed(U;) < 1.
Moreover, if H; ; is a longest wire corresponding to an arc on the shortest path from Hy
t0 Un41 in G, then speed(U;) — speed(U;) = 1. We thu; have

y-WEC +LEC) —(y - WEY+LIC'Y) = y - (speedWUq) == speed(Uy11)) - ¢

+ L(C) - L")

v - (speed(Up) — speed(Upy))) - t —t
(¥ - SCn1) = 1) - ¢

0.

Z
=

¥

Hence, the third condition of the value-reducing speed assignment is satisfied. |

We are now ready to describe the algorithm. Its first step generates, from an initial
configuration C, a configuration of minimum longest wite length using the algorithm
described in Section 6. We then minimize the width of this configuration. Let Cr be
the resulting min-width configuration. Next we add cells Up and U, to Cr. A final
configuration is generated from C; over a number of iterations, with each iteration
generating a configuration having 2 smaller layout width, a larger longest wire length,
and a smaller tradeoff function value. Let C; be the configuration at the beginning of the
ith iteration, i > 1. Initially, €, = Cy. In the ith iteration, we perform a single-source
shortest-path computation on GL. If y - S(upyy) < Vor S (¢24+1) = 0, C; is the final
configuration. Otherwise, we compute value-reducing speeds as described in Lemma 7.3.
Using these speeds, we compute event time ¢, ; and move cell U distance . ; -speed; (U})
to the right, 0 < j < r + 1. The movement results in a new configuration ...

Again, the event time is the earliest time at which either a distance or wire event
occurs. The definition of a distance event is as for the wire length minimizing algorithm;
i.e., it is the earliest time at which a nonzero distance between cells becomes zero.

New Algorithms for Minimizing the Longest Wire Length Duting Circuit Compaction 445

The longest wires get longer during the movement to the right. The wire event is the
point in time at which a nonlongest wire turns into a longest wire. Let, as in Section 4,
length; ;(t} = w(u;, u;)+1- (speed(U;) —speed(U;)) for horizontal wire H; ;. Different
from Section 4, we let length, (t) = L(C) + 1. The intersection time of wire H, .7 is the
time at which functions length; ; and length, (1) intersect. The minimum intersection
time gives the next wire event.

In the following we prove that our tradeoff algorithm does generate an optimal config-
uration. It is easy to see that an optimal configuration is also a min-width configuration.
(In an optimal configuration it is not possible to decrease the longest wire length without
increasing the width.) Let C* be an optimal configuration. If there exist different combi-
nations of width and longest wire length resulting in the same minimum tradeoff function
value, we choose C* so that the longest wire length is a minimum among all these con-
figurations. Assume our tradeoff algorithm terminates after k iterations and generates
configuration Cg;. We first prove that every C; generated by oar tradeoff algorithm is
a min-width configuration, and then prove that L(Cxy) = L{C*). A straightforward
consequence of these two lemmas is that W (Ce41) = W(C*) and thus Ci4 is an optimal
configuration.

LEMMA 7.4. Every configuration C; generated by our tradeoff algorithm is a min-width
configuration, | <i <k +1.
. el Cabolems Lol

PROOE. 'We prove this; lcﬁima by.induction on i. Configuration C, is generated by the
algorithm described in.Section. 6 ancl is a min-width configuration. Assume that C; is a
min-width couﬁguratlon Let P be & shortest path from #g to #,4 in speed graph G,
According to the speed-assignment method used in our tradeoff algorithm, if longcst
wire H,, is associated with an arc (up, u,) of cost 1 on path P, then Hpy is still 2
longest wire in Cp.q.1. Thus (i, #,) is also an arc of cost | in speed graph G'+' On the
other hand, if the distance between two cells U, and U is 0 in C; and (u,, ug,) is an arc
of cost 0 on P, then speed;(U,) — speed;(Us) = 0 and thus (ua, u5) is also in G+,
Hence, P is still in Gi*!, although it is possible that P is no longer the shortest path
from ug 10 #,4) in G+, Thus, by Lemma 7.1, Ci,t is a min-width configuration. O

Recall that, in addition to every configuration C; being a min-width configuration, we
know the following about C; and C;.,: the width of C; is larger than that of ;) and the
length of the longest wires in C; is smaller than that in configuration C;..;.

LEMMA 7.5. Assume the tradeoff algorithm terminates after k iterations and generates
min-width configuration Cy,. Then L(Cr4.1) = L{C*).

PROOE. First we show that if L{Ci+.1) < L(C*), then there exists a value-reducing speed
assignment for Cy.| . This contradicts our assumgption that Cy is the final configuration
generated by the algorithm. Let x¢,,, (U;) and x¢- (U;) be the x-positions of the leftmost
vertical edge of cell U; in configurations Cgy; and C*, respectively. Without loss of
genenlity, we can assume, similar to Lemma 3.1, that x¢,,, (U;) < xe-(U;) for every
cell U;. We now show that setting speed(U;) = xc- (U;) — x¢,,(U;) results in a value-

446 S. E, Hambrusch and Hung-Yi Tu

reducing speed assignment for configuration Cy4. Showing that the first condition of 2
value-reducing speed assignment is satisfied is done as in the proof of Lemma 3.1 and
is omitted. Since both Cy1 and C* are min-width configurations and L (Crp() < L),
we have

W(Cre1) = x¢,y (Uni1) — xc,, (Vo) > xe2 Unpr) — xe (Up) = W(C*)

and speed(Up) > speed(U,+)). The second condition of a value- ~reducing speed as-
signment is thus satisfied. Fmally. if every cell in (| moves distance speed(U;) =
xg+(U;) — x¢,(U;) to Lhe right, configuration C* is generated. Hence, setting ¢t = 1 re-
sults In a configuration of a smaller tradeoff function value and the third condition of
a value-reducing speed assignment is satisfied. Hence, Cxy| has a value-reducing speed
assignment, and thus L(Cry) < L(C*) is not possible.

Assume that L(Cgs1) > L(C*). We prove that our tradeoff algorithm would have
generated C* before generating Cpy, contradicting the optimality of C*. Let C; and
Cey1, | < i < k, be two configurations generated by our tradeoff algorithm such that
L(C;) < L(C*) < L(Ciy.1)- Note that L(C;) = L(C”) is not possible. If this would be the
case, C; and C* would have the same tradeoff function value (since both are min-width
configurations). The tradeoff function value associated with Ciy1 is smaller than that of
Ci, contradicting the optimality of C*. Let C" be the configuration generated from C; by
moving every cell U; distance speed; (U;) - ¢ 1o the right. Assume that the /th iteration .
starts at time f; and terminates at time ¢;.,.,. The method used for computing the speeds g

_implies that, for any time ¢ with 4 < ¢ < 3, C' is a min-width configuration "wt#." R
" L(C} = L(C) +¢. This implies that there exists a ¢ such that L(C') = L(C*) and thus "~ - '

“W(C') = W(C"). Since speed; is a value-reducing speed assignment specified in the fth- -
iteration, C;4; can be generated from C' by moving cells to the right according to the
speeds specified by speed;. Hence, we have y - W(Ciy1) + L(Ciy1) < ¥ -W(C)+ L(C!).
In summary, we have

YV -WCi) + L(Ciy)) <y - W)+ L(IC') =y - W(C*) + L(C"),

which contradicts the optimality of C*. This concludes the argument showing L(C;) =
L(C*). 0

Using arguments similar to the ones used in the proofs of Lemmas 5.1 and 5.2, it can
be shown that the speed of a cell does not decrease and that the speed of at least one
cell increases from one iteration to the next. The speed of each cell is again bounded by
ny, and thus the tradeoff algorithm terminates in O(n - n,,) iterations. By determining
the speed graph, the shortest path information, and the next event time for each iteration
without using data from prewous iterations, we can generate ;. from C; in O (n logn)
time. This results in an O (s, - > log n)-time algorithm. By using an approach similar to
the one described in Section 6, we can perform the iterations by generating the graphs and
shortest-path entries through updates, rather than recomputations. Using this approach
allows us Lo statc the following theorem.

THEOREM 7.1. Given a configuration, its distance, wire, and speed graph, a configura-
tion minimizing the tradegff function y - W(-) + L(-) can be generaied in O(ny-nlogn)
time.

New' Algorithms for Minimizing thie Longest Wire Length During Circuit Compaction 447

As already stated, if different optimal configurations exist, our algorithm generates
an optimal configuration having smallest longest wire length. The described tradeoff
algorithm terminates when y - S(un+1) < L. If we change the termination rule to
y - S{uz41) < 1, an optimal configuration having minimum width among all optimat
configurations is generated. The O(ny, - n logn) time bound does not change.

8. Extensions. In this section we briefly discuss a number of exiensions and describe
how our algorithms can be maodified to handle them.

First, given a configuration C and 2 bound W, our algorithm minimizing the longest
wire length can be used to determine a configuration C* having width at most W and
whose longest wire length is 2 minimum among all such configurations. Let Cie be the
configuration in which every cell is positioned as far to the left as possible. Cyer, can easily
be generated in O(nlogn) time. If W(Cis) > W, then there exists no configuration
having width less than or equal to W. Assume that W(Cpen) < W. We add to Ciep @
Li-shaped cell that “encloses” all other cells. The two vertical segments of this U-shaped
cell have a height equal to the height of the layout and a width of 0. The horizontal
segment of this U-shaped cell has a height of 0 and a width equal to W. We then apply
our longest wire minimizing algorithm to the configuration containing the U-shaped cell.
The generated configuration has width W and minimizes the length of the longest w1res

'Removmg the U-shaped cell from this configuration gives C*. R } el
. Another Ratural extension is to associate with each horizontal wirc an uppcr and, eI
""'.'Iower bound and to require that the length of every wire in the final configuratioi hés

between these two bounds. Both of our algorithms can be used to solve this version-of .
the compaction problem. We describe the nccessary changes only for the longest wire
minimizing algorithm. The definition of a legal speed assignment and the construction
of the speed graph are changed to capture the upper and lower bounds as follows. If
the length of wire H;,; equals its upper bound, then we add the condition speed(U;) =
speed(U;). This guarantees that the length of the wire does not continue to increase. If the
length of the wire equals its [ower bound, we add the condition speed(U;) < speed(Uy)
in order to guarantee that the wire length does not continue to decrease. A wire H;
whose length equals its upper bound induces arc (u;, #;) with weight O in the speed
graph. A wire H;,; whose length equals its lower bound induces arc («;, i) with weight
0 in the speed graph. Conditions on the upper and lower bounds can induce events which
stop movement to the right. Lower bounds on the wire length can cause a distance event.
Upper bounds on the wire length can cause a wire event. The algorithm then operates as
described. Assume we have n,, upper bounds and #; lower bounds. If these bounds are
only on horizonta! wircs, we have n,, + n; = O(ny,) and the overall lime bound remains
Oy - 1 logn). If upper and lower bound constraints exist also belween cells and the
censtraint graph contains m arcs (with every upper and lower bound including one arc),
the time bound is O ((n, 4 ny + 1) logm).

During the longest wire length and the tradeoff algorithms, the length of the horizontal
wires changes, but the algorithms do not insert jogs into vertical wires. The positions in
the vertical wires where jogs might be useful can be bounded in terms of n, and r2,. More
precisely, the total number of positions in vertical wires where a jog might be beneficial
is On,(n, + n,)). These positions can be determined before the compaction algorithm

448 - 5. E. Hambrusch and Hung-Yi Tu

is invoked. Hence, by splitting the n, vertical wires into O(n,(n, + n,)) vertical wires

and running our algorithms on the resulting configuration, jogs can be introduced. Of

course, doing this does not guarantee any bound on the total number of Jogs introduced.
The overall running time is now O(n,(n, + n,)nlogn) withn = Ony(ny +n,) +ny).

9. Conclusions. In this paper we presented 2 new approach for minimizing the longest
wire length during one-dimensional compaction. This approach is based on assigning
speeds to cells. Moving the cells to the right according to the computed speeds reduces
the longest wire length. Longest path entries were used to compute the speeds, and
characterizations were given as to when the movement has to be Stopped. We used a
similar approach to determine a combination of layout width and longest wire length
that minimizes a given tradeoff function between these two quantities. An algorithm that
is able to trade longest wire length for layout width is novel in layout compaction.

Acknowledgments. We would like to thank the referees for their valuable and helpful
comments.

References

. [11 T. H. Cormen, C. E. Leiscrson, and R. L. Rivest. Introduction o Algoritiuns. MIT-Press; Cambridge,
MA.IQQD. . I
[2] S.Gao, M. Kaulmann, and E. M. Maley. Advances in homaolopic layout compgetion. Proceedingsof the
1989 ACM Symposiwn on Parailel Algorithms and Architeciures. pages 273—2'32_. , 198?'.
3] S.E. Hambrusch and H. Y. Tu. Minimizing 1otal wire length during I-dimensional compaction. INTE-
GRATION, the VLSI Journal, 14(2):113-144, 1992,
{4) J.F Leeand C_K. Wong. A performance-atimed cell compaclor with automatic jops. JEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 11{12):1495-1507. December 1992,
(5] T.Lengaver. Cambinatorial Algarithms for Iniegrated Circuir Layour. Wiley, New York, [990,
(6} Y.Z. Liaoand C. K. Wong. An algorithm to compact a VLSI symbolic layout with mixed constraints.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2(2):62-69, April
1983.
[71 D.Marple. A hierarchy preserving hiecaschical campaclor. Proceedings of the 27th ACM/IEEE Design
Automation Conference, pages 375-381, 1990.
[8] N.Megiddo. Lincar-time algotithms for linear programming in 8> and related problems, SIAM Journal
on Computing, 12(4):759-775, November 1983,
[9] D.A.Miynskiand C.H. Sung. Layout compaciion. In T. Ohtsuki, editor, Layout Design and Verification,
pages 199235, Elsevier, Amsterdam, 1986.
[10} A.R. Newton. Symbalic layout and procedural design. In G. DeMicheli, A. Sangiovanni-Vincemelli,
and P. Antognetd, editors, Design Systens for VLSI Circuirs, pages 65~112, Marinus Nijhoff, Boston,
MA, 1987,
[11] A. Onozawa, Layout compaction with attractive and repulsive constraints, Proceedings of the 27th
ACM/IEEE Dexign Automatian Conference, pages 369-374, 1990.
[12] FEF.Preparata and M. I. Shamos. Camputational Geometry. Springer-Verlag, New York, 1985,
113] W.L. Schiele. Improved compaction by minimized length of wires. Proceedings of the 20th ACM/IEEE
Design Automation Conference, pages 121-121, 1983.
f14] M. Sching, E. Luccio. P, Maestrini, D. T. Lee, and C. K. Wong. A visibility problem in VLSI layout
compaction. In F. P. Preporata, editor, Advances in Compting Research: VLSI Theory, pages 259-282,
JAI Press, Greenwich, CT, 1984.
[13] B. X. Weis and D. A. Mlynski. A graph-theoretic approach 1o {he relative placement problem. IEEE
Transaciions on Circuits and Systems, 35(3):286-293, 1988.

	New Algorithms for Minimizing the Longest Wire Length During Circuit Compaction
	Report Number:
	

	tmp.1307986960.pdf.YnNw3

