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Abstract

Edge reductions model the ability of speeding up communication between processors in
a network. In this paper we consider performing edge reductions in a tree network so that
the diameter of the tree is minimized. The diameter is directly related to the time needed
to broadcast a message. In particular, fOr non-blocking message communication ignoring
start-up costs, the diameter corresponds to the broadcasting time. For an n-vertex tree T
and a quantity B, we present an O(n) time algorithm to determine edge reductions such
that the resulting tree has diameter at most B and the cost of the reduction is a minimum
(over all reductions resulting in a diameter of at most B).
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1 Introduction

Broadcasting a message in a network is a fundamental communication operation and broadcast­

ing algorithms for different communication models have been developed [1, 2, 5]. The objective

of a broadcasting algorithm is to minimize the time at which the message is received by the last

processor. The diameter of the network is one of the parameters having crucial impact on the

broadcasting time. For some communication models (e.g., non-blocking message broadcasting

ignoring the set-up cost), the diameter accurately represents the broadcasting time. For oth­

ers, the diameter is a lower bound which enters the actual broadcasting time along with other

parameters.

In this paper we consider where to place edge reductions in a tree network so that the

diameter of the resulting tree is a minimum. Edge reductions model the ability of speeding

up communication between vertices. Our work thus determines where to locate the faster

communication links in order to reduce the broadcasting time. Edge reductions in longest path

computations with applications in circuit layout and project management have been studied in

[4]. Edge reductions for blocking communication models are considered in [3].

Let T = (V, E) be an undirected, weighted, n-vertex tree representing a broadcasting net­

work. The weight of edge (i,j), w(i,j), represents the time needed for sending a message from

vertex i to vertex j. We assume w(i,j) ~ 0 and w(i,j) = w(j,i). Let d(i,j) be the length of

the path from i to j, where the length is the sum of weights of the edges. For vertex i, we use

Bi = maxl<j<nd(i,j) to denote the maximum time for completing a broadcast initiated at i.

The broadcasting cost of T, which is also the diameter of T, is BT = maxl<i<n{Br).

An edge reduction R assigns to every edge (i, j) a non-negative quantity r(i, j). The reduced

weight wr(i,j) of edge (i,j) is a function of the edge's weight and its reduction. An edge

reduction R is called a linear reduction if for every edge (i,j), r(i,j) is a non-negative real and

w,(i,j) = w(i,j) - r(i,j).

Given a reduction R for tree T, the reduced tree T R is obtained from T by replacing each edge

weight w(i,j) by its reduced weight wr(i,j). Let M(TR ) denote the cost of reduction Rj i,e.,

M(TR ) ~ L{i,j)EEr(i,j).

Given a tree T and a quantity B, B < BTl we describe an O(n) time algorithm to determine

an edge reduction R so that TR has broadcasting cost at most Band M(TR ) IS a illlillmum
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(over all linear reductions resulting in a broadcasting cost of at most B). In Section 2 we give

relevant characterizations of an optimal linear reduction. In Section 3 we describe the O(n)

time algorithm.

2 Characterizations of optimal reductions

In this section we give characterizations of optimal reductions which form the basis of the

O(n) time algorithm. As already stated, the diameter BT of tree T corresponds to the cost of

broadcasting a message in a non-blocking communication model. Consider all paths of length

BT in T. Let Tp be the subtree ofT containing the edges belonging to these longest paths. Let

VI, ... , VI be the leaves of Tp , l ~ 2. For the tree shown in Figure l(a), Tp corresponds to the

bold edges in l(b). Next, we define the absolute center in a tree.
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(a) Iree T with 6_T = 30 (b) Irees T and T-p with absolute center c (c) reduced lreelor 6",18

Figure 1: Trees T and Tp with BT = 30 and B = 18

The absolute center vertex c corresponds either to a vertex of the tree or a virtual vertex

on an edge. Center vertex c satisfies d(C,Vi) = BT/2 for all leaves vi.in Tp , 1 ~ i ~ 1. When

the absolute center corresponds to a position of an edge (a, b), we introduce a new vertex c in

Tp and T, remove edge (a, b) and add edges (a, c) and (c, b). The weights on the new edges are

set so that c satisfies the absolute center conditions. The center vertex can be found as follows.

Consider any longest path in tree T. Assume the endpoints of the path are x and y. Then,
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determine the vertex or create a virtual vertex c on the path such that d(c, x) = d(c, y) = B T /2.

Vertex c is unique for the chosen path. Furthermore, for any other longest path in T, vertex c

is also the center vertex. If this would not be the case, T would contain a path having length

greater than BT . Clearly, for all leaves u in T which are not in Tp we have d(c, u) :$; B T /2.

Figure l(b) shows tree T with its absolute center vertex c being a virtual vertex on edge (Ul, U2).

Each one of the three leaf vertices in Tp has distance 15 to vertex c.

Throughout, we use P(x, y) to denote the set of edges on the path from x to y. From the

context it will be clear whether the path is in T or Tp- Recall that given a target cost B, our

algorithm determines an edge reduction R of minimum cost so that the length of every path in

TR is at most B. We next characterize the length of the paths P(Vi, c) in an optimal reduction:

first for the case when Vi is a leaf of Tp and then for arbitrary leaves.

Lemma 1 There exists an optimal reduction R with dR(c, vi) = B/2 for eVeN) lea/vj in Tp ,

1 S j S I.

Proof: Let R- be an optimal reduction for which the lemma does not hold. Consider first the

case when there exists a leaf vi in Tp such that the length of the path from c to vi exceeds B /2;

i.e., dR-(c,vj) = B/2 + 0: for some j, I:$; j :$; 1, 0: > O. Let Vi be any other leaf in Tp such

that the path from Vi to Vj contains vertex c (at least one such vertex Vi exists). We then have

dR- (c, Vi) :$; B /2 - 0:. Further, for any leaf x of T such that the path from x to vi contains

vertex c, we have dR-(c,x) S; B/2 - 0:. Let e = (a,b) be the edge on path P(c,vd closest

to vertex Vi which has a reduction in R~. Choose a to be the vertex closer to c, as shown in

Figure 2. Since we have d(C,Vi) = BT/2 by the definition of c and we assume B < Br, such an

edge e exists. Let (3 = min{a,r-(e)}.

Consider the reduction R' obtained from R~ by decreasing the reduction on edge e by {3

(i.e., r'(e) = r~(e) - (3) and increasing the reduction on edges on the path from c to vi by (3.

Reduction R' performs this increase on edges as close to vertex c as possible. The increase can

occur on a single edge or on a number of edges. The remaining reductions of R' are as in R~.

We claim that R' is also an optimal reduction. Since its cost is equal to that of R-, we only

need to show that every path in Tn' has length at most B.

Assume TR , contains a path of length greater than B. Any such path must contain edge e

and it cannot contain all the edges on path P(c,Vj) that have received an additional reduction.
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Figure 2: Two possibilities for path P(x, Vi) when dR" (e,Vj) = B /2 + Q.

Let P(x, y) be a path with dR/eX, y) > B. Choose y such that P(y,Vi) does not contain edge c.

We can assume that y = Vi since (i) no edge on the path from b to Vi is reduced, (ii) Vi is a leaf

in Tp , and (iii) no path from b to a vertex w not containing edge e can have length exceeding

dR" (b, vd = deb, tIi). We distinguish between three possible positions for vertex x:

• Path P(x, vd does not contain center vertex c. Figure 2(a) illustrates this case. Since

dR" (c, vd ::; B /2 ~ 0', dR " (c, x) ~ B /2 - a, and the weight of edge e increases by (3 ::; 0,

we have dR!(x,vt}::; B - 0'. This contradicts our assumption that path P(x,y) exceeds

cost B in reduction R'.

• Path P(x, Vi) does contain c, but no edge on the path from c to Vi is in P(x, v.)_ We then

also have dR-(c,y)::; BI2 - a and contradict our assumption.

• Path P(x,v.) contains at least one edge on the path from c to Vi_ (Observe that it

cannot contain all edges having received additional reduction.) Recall that R' assigned

the additional reduction of cost (3 to edges as close to c as possible. Assume the path from

c to x experiences (31 of the reassigned reduction, (31 < (3. Let z be the lowest common

ancestor of x and Vi, as shown in Figure 2(b). Since dR" (c,z) = (31 and dIf(C1z) = 0, we

have dR' (z, x) = dR- (z, x) ::; B 12 - a + (311 and thus

dR'(x, v,) ~ dR'(c,v,) + dR,(z,x) :": (B/2 - '" + (3) + (B/2 - '" + (3,) < B.

This contradicts our assumption.
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It thus follows that reassigning a reduction of {3 from edge e to the specified edges on the path

P(c, Vj) does not create a path of length greater than B in TR,. Thus, R I is an optimal solution.

If R' satisfies the lemma, we are done. Otherwise, we apply the same argument to reduction

R'.

The second part of the proof considers the case when dR" (c, Vi) ::; B /2 for all leaves Vi in

Tp and there exists at least one leafvj with dn-(c,vj) < B/2. Choose Vj such that dR-(c,vj) =

B /2 - €, and € is a maximum over all vertices with dR- (c, Vi) < B /2.

Let e be the edge on path P(c,Vj) closest to vertex Vj which has a reduction in R-. Let

{3 = min{E,r*(e)}. Consider reduction R' obtained from R- by decreasing the reduction on

edge e by {3. Since R* is an optimal reduction, TR , must contain a path of length greater than

B. Let P(x,y) be such a path (which contains edge e). As already argued, we can assume that

y = Vj (since there are no reductions on the edges between Vj and edge e). Further, we know

that x does not correspond to a leaf vertex in Tp . If x were a leaf in Tp , dn" (c, x) ::; B /2 by

assumption. This implies that the length of path P(x, Vj) in R' could not exceed B.

To reduce the maximum path length in Tn' to B, we make reduction increases totaling {3

to edges in R' . When path P(x,Vj) does contain vertex c, we increase reductions on edges on

the path from c to x and as close to vertex c as possible. When path P(x, Vj) does not contain

vertex c, let z be the lowest common ancestor of Vj and x. We then increase reductions on

edges on the path from z to x and as close to vertex z as possible. Making this change to

reduction R' results in a new reduction R' having the same cost as R*. New reduction R' does

not contain a path exceeding length B. IfTR, would contain a path exceeding cost B, such a

path would be between some vertex wand vertex Vj, it would contain edge e, but not all edges

which received reduction increases. The existence of such a path implies the existence of a path

of length greater than B between wand x in Tn", which is not possible. Hence, R I is an optimal

solution. As stated for the first case, if R' satisfies the lemma, we are done. Othenvise, we

repeat the argument of reassigning reductions. After a finite number of iterations, we converge

to the desired reduction.

Lemma 2 There exists an optimal reduction R with dR(c,x)::; B/2 for every lea/x in T.

o

Proof: We only need to consider leaves x which are not in Tp (since the previous lemma covers

the leaves in Tp ). Assume there exists a leaf x with dR(c, x) > B /2. There exists at least one
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leafvp in Tp such that P(vp,x) contains vertex c. Since dR-(c,vp) = B/2, the path from vp to

x in R has cost > B, contradicting the assumption that R is an optimal solution. 0

Let U1, ••• ,Uk be the vertices adjacent to center c in Tp, k ;::: 2. Assume 0 < w(c, 11.1) <

w(c,ud, 1 ::; i ::; k. If w(c,ut} = 0, we make the children of 11.1 children of c and continue

with the resulting tree. Let B sE be the length of a second longest path from c to a leaf in T,

B/2 < BsE < BT/2. The next lemma partially characterizes where reductions take place in an

optimal solution by giving a lower bound on reductions placed on the edges in Tp incident to

c. In this characterization, only second longest paths from c to a leaf which are edge disjoint

from longest paths are of interest. Hence, if for every second longest path the edge incident to

vertex c is in Tp , we set B sE = O. Using this definition of EsE, let

/j = min{BT/2 - B", w(c, Ut)}.

For the tree shown in Figure 1 we have BT = 30 and B sE = O. The two second longest paths

from c to a leaf have cost 13, but each one of them contains an edge incident to c in Tp • We

thus have 0 = min{15,3} = 3.

Lemma 3 There exists an optimal reduction R with r(c, ud ;::: 0 for every i, 1::; i ::; k.

Proof: Let R* be an optimal reduction not satisfying Lemma 3, but satisfying Lemma 1. In

some sense, we generate the reduction satisfying Lemma 3 recursively as well as incrementally.

Assume first that all edges incident to c have r*(c,uj) > 0 and at least one edge (C,Ui) has

r(c,ui) =, < o. Choose edge (c,Uj) so that, is a minimum. Generate from T a new tree T'

with w'(c,Uj) = w(c,Uj) -,,1::; j::; k, and w'(u,v) = w(u,v) for all other edges ofT. Tree

T' has a diameter of BT - 2,. Next, obtain an optimal reduction R' satisfying Lemma 3 for

tree T'. Reduction R' can be turned into an optimal reduction for T satisfying Lemma 3 by

increasing the reduction on the edges which experienced a weight decrease.

The process described above cannot be applied when there exists an edge (c,ud with

r-(c,ui) = 0; i.e., edge (c,ud has no reduction in R*. We then generate from R* an optimal

reduction R' with r'(c,ud > o. Assume r-(c, Ui) = 0 and let vertex Vj be a leaf in Tp reachable

from Ui without going through vertex c. See Figure 3 for an illustration. Let e = (a, b) be the

edge closest to vertex Vj with r*(e) > O. Let (J = min{o,r*(e)}. We next generate reduction R'
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Figure 3: llIustration of a path with dR, (x, Vj) > B.

from R* by moving a reduction of cost {3 from edge e to edge (c, ud. Clearly, R' and R* have

the same cost. If every path in Tn' has length at most B, then R' is an optimal reduction.

Assume thus that TR, contains a path P(x,Y) with dR1(x,y) > B. Path P(x,y) contains

edge e, but not (C,Ui)' Choose y such that P(y,'Vj) does not contain edge e. We can again

assume that y = Vj' Let vertex z be the lowest common ancestor of vertices x and Vj in T. We

then have

and thus

dR-(Z,X) ~ dR,(z,x) > B12.

This implies that there exists a leaf x with dR " (e, x) > B /2. By Lemma 2 this cannot happen

and thus R' is an optimal reduction.

If f3 = 0, reduction R' is an optimal reduction satisfying Lemma 3. Otherwise, we repeat the

above procedure. If there exists an edge with r'(c, Uj) = 0, we repeat the process of reassigning

reductions. If all edges incident to c have nonzero reduction, we continue with a tree whose

edges incident to c have smaller weights. Generating the desired reduction for this tree allows

us to generate the desired reduction for the original tree. 0

3 Determining an optimal reduction

We now describe the O(n) time algorithm to determine, from a given tree T and a target

broadcasting cost B, a reduction R* such that TR " has broadcasting cost at most Band
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M(TR") is a minimum. The first step of the algorithm is to determine center vertex c and to

root the tree at c. To determine c, first root T at some arbitrary vertex, say r. Then, sweep up

from the leaves of T towards root r and determine the length of the longest path between any

two vertices. This quantity is BT . Next, use this path having length BT to identify or create

center vertex c. As described in Section 2, c is unique and it is the center vertex for all other

longest paths. We then root tree T at c and determine for every subtree rooted at a vertex v

the quantity L(v), the length of the longest path from a leaf (in the subtree) to vertex v. We

initialize r*(u, v) = 0 for every edge (u, v) in T. These preprocessing steps can be done in D(n)

time.

We first sketch an iterative approach for generating R- based directly on the characterization

of an optimal reduction given in Lemma 3. The resulting algorithm alters T and works with

Tp . We then describe how to translate this approach into an D(n) time algorithm which does

not explicitly generate subtree Tp , but works with the computed L(· )-entries. Let Ul, U2, _ .. , Uk

be the vertices adjacent to c in subtree Tp . Let 0 be the quantity defined before Lemma 3. We

then set r*(c,u;) = r"'(c,ui) + 0,1 $ i $ k. After these reductions are performed, one of two

events must have occurred.

Event 1: An edge (c, u;) has weight O. In this case, future reductions have to be performed

on other edges in the subtree rooted at tLj. Let al,a2, ... ,at be the vertices adjacent to vertex

Ui in Tp (excluding vertex c). We delete the edges (c,Uj), (uj,ad, ... ,(ui,a/) from T and Tp

and add the edges (c,ad, ... , (c,ad with w(c, a;) = w(Uj, a;}. In addition, we record that the

actual endpoints of every edge (c,a;) are Ui and aj and that reductions made on edge (c,ai)

correspond to reductions on edge (ui,a;). We then continue with the new T and Tp .

Event 2: New longest paths have emerged. In this case all edges (c, Ui) still have positive

weights, but the weight decrease on the edges incident to c resulted in a new tree Tp; i.e., edges

ofT which were not on a longest path before the reduction are now on a longest path. The new

edges in Tp include an edge incident to vertex c. This holds since a new longest path contains

vertex c and a previously unreduced edge incident to c. Hence, after the reductions on the

edges incident to c have been made and no edge has weight 0, we continue with new tree Tp in

which the number of edges incident to c receiving a reduction increased.

For the tree shown in Figure l(b), we initially have BT = 30 and 0 = 3. The first iteration

decreases the weights of edges (c,ut) and (C,U2) from 3 to O. Then, an event 1 is processed.
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The next iteration reduces the two incoming edges of vertex Ul and edge (U3, U2).

o

3

3

7

2

o

"2

o
c

6

(b) reduced tree for 8:=18

3
3 0

1

12 ",
3 3

15 C 0

3 3

12 "2 6

3

3
6

0 3
6 0

0

(a) tree T roofed at c

Figure 4: Tree T with BT = 30, B = 18, L(·)-entries are next to vertices in (a)

Using the approach driven by acting on either event 1 or event 2, the following O(n) time

algorithm emerges. First, observe that the edges receiving a reduction form a tree containing

vertex c. Further, if edge (u, v) receives a reduction and v is the parent of u, then every edge

on the path from v to c receives a reduction equal to the weight of the edge. If (u, v) receives a

reduction with r"'(u, v) < w( u, v), then no edge into vertex u receives a reduction. This allows us

to generate an optimal reduction R- by determining the reduction on every edge (u, v) directly

using:

(1)
{

w(u,v) if B(2 <:: L(u)
r'(u,v) ~ L(u) + w(u,v) - B(2 if L(u) < B(2 < L(u) + w(u,v)

o otherwise.

Figure 4(a) shows the tree from Figure 1 with the L(-)-entry for each vertex. For edge

(U21C), we have B/2 = 9 < 12 = L(U2) and thus edge (U2' c) receives a reduction of 3 (which

corresponds to a weight of 0). For edge (U3,U2), we have L(U3) = 6, 6 < 9 < 12, and edge

(U3, U2) receives a reduction of L(U3) + W(U3, U2) - B/2 = 3. Figure 4(b) shows the weights of

the reduced tree achieving diameter 18.
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the reduced tree achieving diameter 18.

After preprocessing, the reduction for one edge can be determined in 0(1) time. This results

in overall O(n) time. We point out that the algorithm determines the reductions as done in the

problem of finding edge reduction minimizing the longest path length in trees described in (4J.

However, the arguments as to why the approach is correct are different for the two problems.

From our discussion, we conclude:

Theorem 4 Given an n-vertex, weighted tree T and a target broadcasting cost B, we can

determine a minimum cost reduction R* with BTR." = B in O(n) time.
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