Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1985

A Distributed Shortest Path Algorithm for a Planar Network

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Report Number:
85-527

Frederickson, Greg N., "A Distributed Shortest Path Algorithm for a Planar Network" (1985). Department of
Computer Science Technical Reports. Paper 446.
https://docs.lib.purdue.edu/cstech/446

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

‘A DISTRIBUTED SHORTEST PATH ALGORITHM
FOR A PLANAR NETWORK*

Greg N. Frederickson
CSD TR 527 Revised July 1988

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

* This research was supported in part by the National Science Foundation under Grants MCS-
3201085, DCR-8320124 and CCR-8620271, and by the Office of Naval Research under conract

N00014-86-K-0689.

Abstract.

An algorithm is presented for finding a single source shortest path tree in a
planar undirected distributed network with nonnegative edge costs. The number of
messages used by the algorithm is O (n>") on an n-node network. Dismibuted algo-
rithms are also presented for finding a breadth-first spanning tree in a general network,
for finding a shortest path tree in a general network, for finding a separator of a planar

network, and for finding a division of a planar network.

Key words and phrases. breadth-first search, diswibuted network, message compiex-

ity, planar network, planar separator, single source shortest paths.

1. Introduction

Consider a problem in which the information necessary for its soluton is distri-
buted among the nodes of a network. A fundamental qﬁestion in distributed computa-
tion is how to solve the problem, using a2 minimum number of messages to route the
information. In particular, suppose that the problem is a graph problem abour the net-
work itself, in which initially each node has knowledge only about its neighbors. An
algorithm could always route all information to a particular node and then solve the
problem directly. But this approach would use O (mn) messages, where n is the
number of nodes and m the number of edges. Certain problems can be handled more
efficiently, as for example that of finding a minimum spanning tee of the network,
which can be done with only O(m + n log n} messages {GHS]. In this paper we
present communicaton-efficient algorithms for several other basic graph problems,

including finding a shortest path wee in a distributed network.

Several papers [AR, Fm, T] have investgated the message complexity for the all
pairs shortest paths problem, with the best solution requiring O (mn) messages. As far
as the message complexity, this is no better than the straightforward approach men-
toned above. We concentrate on the single source problem in an undirected network
with nonnegative edge weights, and present two efficient algorithms for this problem.
The first generates a single source shortest path tree in a general network, using O (n?)
messages. Qur main, and more interesting, result concerns the case in which the net-
work is planar, for which we give an algorithm that uses O (n?'>) messages. In achiev-
ing this bound we also solve three problems of independent interesi. First we present a
simple algorithm to find a breadth-first spanning mee of a general nerwork, using

O ml?) messages. This algorithm uses O(n:"‘r2) messages on a planar network,
g g

since m is O(n) for such a network. A previous algorithm in [G] uses
0 (n37 + n¥3m?3) messages, and more recent algorithms use O (n¥°log n + m) and
O (m 2o n loglog ") messages [AG1, AG2). Second, we present a distributed algorithm
that finds a separator of a planar network using O (n log n) messages if a breadth-first
tree is already given. Third, we present a distributed algorithm that finds a division of a
planar network into regions satisfying a size bound on each region and a size bound on

the total number of nodes shared by regions.

We make the following assumptions about our model. A message will carry a
constant number of "words" along one link of the nerwork. In particular, a message
contains the name of one node and/or one number representng the sum of the costs of
edges of some simple path in the network. Computadon tme at a node will be
assumed to be small in comparison with message transmission time, and thus will be
ignored. Each processor will have a sufficiently large memory so that message
buffering will not cause problems. Arbitrarly long delays can be encountered in the
processing of a message by a node. However, no messages are lost, communication is

error-free, and messages are handled in a first-in first-out fashion.

Our algorithms were designed with the goal of reducing the number of mes-
sages. However we also analyze the time performa.ncé of the algorithms. We define
time as the length of the longest sequence of messages, where each message in the
sequence cannot be sent until the predecessor in the sequence has been received. Here
we assume that messages can be simultaneously received and sent from different
input/output ports at the same time. Thus this measure of time will correspond to the
time used by the algorithm if every message transmission is completed in unit ome. In

all of our algorithms except the one for finding a divison of the network into regions,

the time complexity is the same as the message complcxiiy.

A preliminary version of this paper appeared in [Fs2].

2. Simple algorithm for finding a breadth-first search tree

We first sketch a nawural way to generate a breadth-first search tree using O (12)
messages and time, and then modify it to give an algorithm which uses O (n m /2)
messages and time. The simplest way o generate a breadth-first tree is one level at 2
time, so that every node on level { must be identified before attempting to identify any
node on level i+1. Iniaally level(s) is 0, where 5 is the root, and level (v) is n for every
other vertex v. The current frontier will be the set of all nodes with highest level
number less than #. Initially the current frontier will contain just the root. The search
is synchronized by the root, using edges in the current portion of the breadth-first tree.
The computation consists of phases, each involving three activities: 1) a broadcasr from
the root to the nodes at the current fronder, 2) the exploration carried out from nodes at

the frontier, and 3) the echo, which notifies the root that the exploration is complete.

Let f be the level number of nodes at the current frontter. The root initiates the
broadcast by sending a forward(f) message to each of its children in the current por-
tion of the breadth-first tree. When a node at level less than f in the tree receives a

Sforward(f) message, it sends a forward(f) message to éach of its children.

Exploration is performed as follows. When a node v at level f receives a
forward(f) message, it sends an explore(f+1) message to each adjacent node w,
except its parent in the breadth-first tree. Node v assumes that each such w is its child
in the breadth-first wee. The first explore message received by a node w determines its

parent. In this case a reverse message is sent by w back to its parent v. For each

additional explore message received by w, it sends back a negarive message to the
sender. A node receiving a negative message removes the sender from its list of chil-

dren.

The echo is handled as follows. Each node that teceives an explore (f +1) mes-
sage will have sent either a reverse or a negative message to each node from which it
recetved the explore message. Each node at a level less than f+1 waits until it has
received a reverse message for each forward or explore message that it sent. If it is not
the root, it then sends a reverse message to its parent. Termination for the algorithm
can be achieved by artaching a bit o cach reverse message, indicating if any nodes

were discovered at level f +1i. -

The total number of messages due to all exploration is O (m), since at most two
explore messages, plus matching reverse messages, are sent along each edge. There are
O(n>) messages due to synchronization, since there are O (n) phases, with each of
O (n) edges in the current breadth-first wee carrying one message in each of the broad-
cast and echo. Thus the total number of messages is O(n2). The time is bounded as
follows. A broadcast of forward (f) will take ume f~1, an exploration will take con-
stant time, and the echo time f —1, which is O (n) time per phase. Since there are O (n)

phases, each following the preceding one, the time is O (n 2).

If the network is sparse, there is a more efficient approach. The idea is to have
fewer synchronization phases by extending the breadth-first tree ! levels at a tirme
between synchronization phases, where / is 2 parameter to be specified later. This basic
idea has also appeared in [G], but was not taken full advantage of in that paper. As

before, the activities in a phase are broadcast, exploration, and echo.

Messages used in exploraton will be of the form explore(j, k), where &

indicates the number of levels that can be explored from the current node, and ; indi-
cates the index of the next level. Nodes at the current frontier, level f, will send out
explore (f +1, I) messages. Note that the first message to reach a node will not neces-
sarily determine the node’s parent in the final breadth-first tree, since an explore mes-
sage could come along later on a shorter path from some node on the fronder. Assume
that level (w) =< and parent(w) = nil initially for eacﬁ'-node w except the root. Sup-
pose an explore(j, k) message is received at a node w. If j = level (w), then the
explore (j, k) message did not identify a shorter path to w than that previously known,
and a negarive (j) message is retumed to indicate this fact. If a node v receives a
negative (j) message from node w, and leve! (v) is still j—1, then w should be removed

from the list of children of v.

If node w receives an 'exp!ore (J, k) message from v, where j < level (w), then a
shorter path to w has been found. If parent{(w) # nil, a negative (level (w)) message is
sent to this parent. In any case, level (w) is reset to j, parens (w) is reset to v, and the
list of children of w is reset to be the adjacency list of w, with v removed. If k=1, then
a reverse (j) message is sent to v. If k>1, then an explore(j+1, k—1) message is sent

to each node on this list.

Let j be the current value of level (w). Node w will ignore any reverse (j°) or
negarive (j') message with j > j+1. If w has received negative (j+1) or reverse (j+1)
messages from each node to which it sent an explore (j+1, k—1) message, it sends a

reverse (j) message to parent (w).

The echo is handled as before.

Theorem 1. A breadth-first wee can be found in a distributed network of ~ nodes and

m edges using O (n m?) messages and tme.

Proof. The above algorithm will correctly find a breadth-first search mee. Suppose that
at the beginning of phase / that the first il levels of the tree have been correctly con-
sttucted. Nodes whose correct level number should be if+1 will eventually receive an
explore (if+1, /) message from some node on the frontier. If a node w receives an
explore (j, k) message, where j is its correct level number and k£ > 1, then an
explore (j+1, k—1) message will be sent to every neighbor of w except its parent, and
thus the level number of any neighbor will be at most j+1. Then it follows by induc-
tion on the level number from the fronder that all nodes at levels i{+! through (+1){
will be correctly added to the tree. Whenever an incorrectly labeled node receives its
correct level number, the node is removed from the iist of children of its previous
parent. Thus it follows that the list of children at each node will be correct. By induc-
tion on £, each correctly labeled node w will receive a negative or reverse message
from each node that it had included inidally on its list of children at the time that w

was correctly labeled. Thus one can conclude that each phase will terminate.

The number of messages that are used is bounded as follows. Since at most two
explore (j, k) messages are sent along each edge, for k=1, 2, -+ , [, the total number
of messages due to exploration is O(/m). Since there are O(n/l) synchronization
phases, there are O (n*/{) messages due to synchronizaton, With [/ chosen to be

2, we achieve the desired result for messages. A longest sequence of messages

nim
during one phase will contain f—1 forward messages, ! explore messages, and a
corresponding number of reverse messages. Thus O(n) time will be used per phase,

over O (n/!) phases, or O (mm ?) in total. O

3. Distributed algerithm for finding a planar separator

We describe an algorithm for finding a separator in a planar distributed network,
given a breadth-first search tree of the network. Qur algorithm is an adaptation of the
method of Lipton and Tarjan [LT1] for finding a separator in a planar graph. To make
their algorithm communication efficient, at crucial points in the algorithm we use
several variants of binary seah’:h that are suitable for distributed computation. Follow-
ing [LT1], the vertices have nonnegative vertex costs summing to no more than 1. The
algorithm must partton the vertices of the graph into three sets A, B, and C such that
no edge joins a vertex in A with a vertex in B, neither A nor B has total cost exceeding
2/3, and C contains no more than 2v¥2vVn vertices. We assume that each vertex has a

list of the edges incident on it in clockwise order around the node.

For convenience we call the algorithm in [LT1] algorithm PS. If some vertex v
has cost at least 1/3, then take C ={v} and B =@. If the total cost of all vertices is
less than 1/2, then take B = C =J. Otherwise, PS does the following on a connected
graph. Given a breadth-first search tree, algorithm PS first finds the largest level /;
such that the total cost of all vertices on levels 0 through /;—1 is at most 1/2. In a dis-
wributed setting we can accomplish this by performing a binary search for 1/2, probing
at level numbers. Each test of a level number / involves broadcasting a message out
along the breadth-first search tree up through level !, and accumulating the cost of
nodes at level ! or lower on the retum sweep. Since each broadcast uses O (n) mes-
sages and O (n) time, determining /; uses O (n log n) messages and time. Let &k be the
number of nodes in levels O through /;. The value of k can be computed by a broad-

cast and echo in the breadth-first tree.

Let L{{) be the number of vertices on level /. Algorithm PS determines a level

lo where I1— Wk] <lg <1 and L({g) +2(/;—1g) <2VK. In a distributed seming, we
can do the following. If {;— ¥k | < 0, choose lg = 0. Orherwise, perform a search of
the (closed) interval [/;— ¥k |, {,] similar to binary search. Let [z, »] be the curent
interval. If @ = b, then choose /g =a. If a < b, then consider level [= [_(a+b)f21.
Level / can be tested by sending out one broadcast in the breadth-first tree, and accumu-
lating on the return the number of nodes L{[a, {~1]) and L({/, #]) in the intervals
{a, I-1] and {{, b], resp. Compute the following two averages, and determine which of
the two is no larger than the other (they could be equal): (L([a, [-1])
+Xi7t20-)) /(~a) and (L([, b]) + 3.2, 2(—i)) /(b—I+1). Continue search-

ing recursively within the corresponding interval.

It is easy to see that the above procedure finds a level /j such that
L{lg) +2(I;—1p) is at most k. If 1= |Vk | < 0, then I < tVk |-1, and thus
L{g)+2(ly—g) £2 [Vk |-1. Otherwise the average of L(I) +2(/,—!) over levels
[-Vk <l <, is initially less than 2k, and the average of the quantity L (f) + 2({/,—{)
for those levels excluded on any one step is no smaller than the average of those levels
retained. O (log n) levels are tested, for a total of O (n log n) messages and time. A
similar approach finds a level [, where [|+1</, <+ [Vn—4k | and

Ll) +20—11-1) € 2Vn—&.

Algorithm FS next deletes vertices at levels [, and larger, and contracts vertices
at levels O through /y to a single vertex. Since the network topology cannot be
changed, we instead reassign the cost of each of these ;-nodcs to be 0. Then for each
node v, we record the parent of v in the tree, and the total cost of all descendants of v,
including v itself. This can be accomplished within the framework of a broadcast-echo

in the breadth-first tree.

Algorithm PS then trianguiates the faces of the embedding of the graph. Again
we cannot modify the network explicitly, but instead will traverse the network in a
fashion that is consisient with a particular triangulation. (The triangulation, or more
properly, a subset of the edges of a triangulation, will be induced as the traversal
proceeds.) Given the triangulation, algorithm PS chooses a nontree edge which induces
a cycle with respect to tree edges. We similarly choose some nontree edge in the net-
work. (We are assuming that the network contains at least one cycle. Otherwise there
is a simpler, and more message-efficient, method 1o find a separator.) Algorithm PS
then determines which side of the cycle contains vertices of greater cost, and denotes
this side as the inside of the cycle. Again, we can pcrfc;rm this task using a broadcast-
echo in the breadth-first tree. (I the root is inside the cycle, reroot the tree at some
cycle vertex.) Each node in the cycle can be labeled as being on the cycle by this

broadcast,

If the cost inside the cycle exceeds 2/3, algorithm PS shrinks the cycle itera-
tively as follows. Let (v;, w;) be the nontree edge that induces the current cycle. Algo-
rithm PS identifies the triangle inside the cycle that has edge (v;, w;). Call the third
vertex of the triangle y. If either (v;, y) or (v, w;) is a mee edge, then (v;,), w;i,p) is set
to the nontree edge among the two. If v;, is a child of v; in the wee, then the cost of

Viy1 1S subtracted from the cost inside the cycle, and similarly with w;,, and w;.

If neither (v, y) nor (y, w;) is a wee edge, then algorithm PS determines the tree
path from y to the (v;, w;) cycle by following the parent pointers from y. Lert z be the
vertex on the (v;, w;) cycle reached by this search. The cost of this path, excluding ver-
tex z, is computed. Then algorithm PS computes the cost inside the (v;, ¥) and (¥, w;)

cycles as follows. Each tree edge incident on, and inside of a cycle, is incident on a

10

vertex that contains the total cost of a subtree inside the cycle. The algorithm inter-
leaves the operations involved in scanning edges inside the (v;, y) cycle, with those in
scanning edges inside the (y, w;) cycle, until it has scanned all tree edges incident on,
and inside of, one of these cycles. Once the cost inside one cycle is known, the cost
inside the other cycle can be determined by subtracting the cost inside one cycle and
the cost of the path from the cost of the (v;, w;) cycle. The edge inducing the cycle
whose inside has larger cost then becomes (v;;1, w;,1). This approach guarantees the

linear dme performance claimed for algorithm PS.

We handle the shrinking of the cycle as follows.l Let p (v;) be the node preced-
ing v; on the cycle. Let the direction around vertex v; from (v;, w;} to (v;, p (vi)), on
the inside of the cycle be called insidewise. Assume that a search process is at node v;.
The process will carry as data the names of the nodes v; and w;, the position of edge
(vi» w;) in the adjacency list of v; (or the position (v;, w;) would occupy if there were
such an edge}, and the current cost inside of the cycle. The process should choose the
next edge (v;, y) in an insidewise direction around v; from (v;, w;). If (v;, y) is a tree
edge, then we choose (y, w,-)_ as (Viy1, wis1)- In this case we move the search process
to vi¢y. Note that the edge (¥, w;) may not exist in the Inctwork, but can be viewed as
part of the partial triangulation generated so far. If (v, y) is not a tree edge, then send

a message from v; 10 y to determine if there is a tree edge from y to w;. If so, choose
(vi, ¥) as (Vig1, Wisr)-

In the case that neither (v;, y) nor (y, w;) is a ree edge, we find the path from y
to z as above, by sending a process up the tree from y until it encounters a node z on
the cycle. Nodes on the path from y to z will be labeled as cycle nodes. However, to

find the cost inside the (v;, y) and (y, w;) cycles, we cannot perform efficiently the par-

11

ticular type of interleaving discussed above because of the cost of synchronization. We
economize on communication by performing half of a one-sided binary search, as fol-
lows. We use a bound on the number of operations performed in examining each cycle,
which is initially set to some small constant. Starting at z, we check twee edges inside
one cycle, until the bound on operations is exhausted, and then retumn to z and do the
sare in the other cycle. Checking tree edges corresponds to summing the weights of
the children inside the cycle. If neither cycle is completed, double the bound and
repeat. This approach can be seen to require messages proportional to the smaller of
the number of messages used to handle either of the two cycles alone. By an argument
similar to that giving the linear time for algorithm PS, this portion of our algorithm can
be seen to use a linear number of messages altogether. When (v;,q, w;;1) has been

determined, shift the search process to y if v;, =y.

Upon completion, the separating set will consist of the nodes on the cycle

between levels /j and /4, plus all nodes on levels [and /,.

Theorem 2. Let G be a planar distributed network of n nodes. A separator for G of
size at most 2¥2V¥r can be found using Of{n logr + B;(n)) messages and
O (n log n + B4(n)) time, where B, (n) and B4(n) are the number of messages and the

time necessary to find a breadth-first search tree in a planar graph.

Proof. Correctness of our algorithm is based in large part on the correctness of the
Lipton and Tarjan procedure, which we have been calling PS. We concentrate our dis-
cussion on those parts of our algorithm that are not just a straightforward translation of
PS. As argued previously, levels {3 and !, sadsfied the required bounds on level

number and number of nodes between levels. As pointed out above, nodes that would

12

have been pruned or contracted together in PS are assigned weight 0 in our algorithm.
As discussed, a triangulaton sufficient for the search process can be inferred as the
search process progresses. Thus the movement of the search process in our algorithm

will mimic the movement of the search process in PS. Correctness then follows.

We next discuss the performance bounds. There will be at most 2 nodes on
every level in the cycle. Thus the number of nodes on levels /g through /; will be at
most 2vk, and the number of all other nodes in the separator will be at most 2vVn ~k.
Thus the total number of nodes in the separator is at most 2(\!f?+ﬂ) <2v2n. The

bound on the dme and message complexity follows from the previous discussion. O

4. Regions and boundary nodes

Qur shortest path algorithm in the planar network makes use of a division of the
planar network into regions [Fsl1]. A region consists of two types of nodes, boundary
nodes and interior nodes. An inrerior node is contained in exacdy one region and is
adjacent to nodes only in its own region. A boundary node is shared among at least
two regions and is adjacent to interior nodes of each of these regions. To generate
appropriate regions, we make use of our distributed version of the planar separator

algorithm,

To be able to use the regions efficiently in our shortest paths application, it is
convenient to have the degree of every node bounded by some small constant. While
many networks may satisfy this constraint, it is possible that there are nodes of rather
large degree in some networks. We solve this problen{ by having any node of degree
greater than 3 split logicaily (not physically) into a subgraph of nodes and edges of

degree 3. A well-known transformation in graph theory [H, p. 132] may be used to do

i3

this. Consider a planar embedding of the network. For each node v of degree d > 3,
where wo, *+- ,wg_ is a cyclic ordering of the nodes adjacent to v in the planar
embedding, replace v with new nodes vg, - ,v4_;. Add edges { (Vi»V (i+1)mod 4)
li=0, - -+ ,d~1}, each of distance 0, and replace the edges {(w;,v)1i=0, - ,d-1}
with {(w;,v) [i=0, - -+ ,d—=1}, of corresponding distances. From a corollary of Euler’s
formula [H], the number of nodes in the resulting network will be less than six tmes
the number of vertices in the original network. Note that in any distributed algorithm
the processor at node v will perform an emulation of the algorithm on the logical nodes
Vo, * 2 Vdo-

(Given a parameter r, we show how to generate connected regions with O (r)
nodes each, and O (n/¥r) boundary nodes in total. Each region will have as an index
an integer between 1 and n. Initially, label all nodes as being in region n. Then apply
the following recursive procedure with arguments n as the number of nodes, n as the

number of interior nodes, and »# as the label.

We now describe the recursive procedure, with parameters size n” of the region,
and label L of the region. If n” < r, then return. Otherwise, do the following. Apply
the separator algorithm to the network with all node weights equal to 1/#°, yielding sets

A, B and C. Let C” be the set of vertices in C not adjacent to any vertex in A_y B, and

letC” =C -C".

Identify the connected components Ay, Aq; -+, A; in Ay By C’. This can
be done as follows. Inidally give each vertex in Ay By €’ a null label, and set { o
0. Perform an inorder traversal of the breadth-first search tree. Whenever a node is
encountered with a aull label, increment i, reset its label to i, and make it the leader of

component A4;. Perform a broadcast within the set of all nodes with nuff label that can

14

be reached along a path of nodes with null label. Label each such node with ;. On the
echo of this broadcast, compute the number of nodes in this component, and store this
in the leader. When this broadcast is complete, continue the inorder aversal. Once
the traversal is complete, interior nodes in all components have been identified, except
that some nodes in C” may not be adjacent to interior nodes in two different regions.
Any node v in C*” adjacent to a node in A; and not adjacent to a node in A; for j#i, can
be removed from C* and included in A;. This test can be performed on the nodes of
C’ one at a time in any order, so that we perform an inorder traversal of the breadth-
first tree, and handle such nodes in inorder. Region { will have as interior nodes the
nodes in A; that were interior in the input network. The boundary nodes will be the
remaining nodes in A; and those nodes in C’/ that are adjacent to some nede in A;.
Note that by our construction of regions, the subnetwork induced on the interior nodes
of any region is connected. Since each resulting region will be a proper subset of

Al C’ or B C, each region will contain fewer than 2r’/3 + 242 Vn" nodes.

Two additional tasks need to be done. First, each node in a component should
query its neighbors to find out which neighbors are in the same component. Once each
node has this information, the component can be handled logically as a whole network

in any recursive calls of the procedure on the component.

Second, the labels of the new regions must be formed. Initalize count to L
minus the number of interior nodes in the input network, and start an i.norder traversal.
When Ithe leader of a component A; is encountered, perform a broadcast within the
corponent to obtain an updated count of the number #; of nodes in the component, and
the number #’; of interior nodes in the component. Reset count w0 be count + n’;, and

broadcast this value as the label of the component. The component is thus set up itself

15

as a region. Once a component has been handled, resume the inorder maversal. The

time and messages for generating the labels can be seen to be O (n).

Once the new regions have been identified and labeled, the procedure is applied
concurrently to each new region. We note that our approach shares some similarides

with an approach for the nondistibuted case that is described in [LT2].

Lemma 1. An n-node planar distributed network can be divided into connected regions
with no more than r nodes each, and O (m"f;) boundary nodes in toral, using
O (n(log n)* + B (n)log n) messages, and O (n log n + B,(n)) time, where B (n) and
By (n) are the number of messages and the time to find a breadth-first search tree in a

planar network.

Proof. The number of boundary nodes follows from the results in [Fs1]. By Theorem
2, the number of messages and the tme to find a planar separator will be
O(n log n + B1(n)) and O (n log n + By(n)), respectively. Given the planar separator,
the messages and time to find and augment and label the regions will be O(n). The
recurrence for the number of messages will thus be, for sufficiently large =,

M(n) < nlogn+Bi(n)+ 3, (M(n)), where max; {n;} <2n/3+242Vx,
2{. n; <n+4v2Vn, and n; is the number of nodes in A;. The additive term of 4¥2Vn

results from the fact that every node is of degree at most 3, and thus each boundary
node can be counted as a member of at most 3 regions. The claimed bound on mes-
sages is the solution to the recurrence. Since the procedure is applied concurrently to
the new regions, the recurrence for the time will be, for sufficiently large =,
T(n) < nlogn+Bqy(n)+ T(max; (n;}), where max; {n;} <2n/3+2¥2Vn. The

claimed bound on tme is the soluton to the recurrence. U

16
5. Finding a single source shortest path tree

Our algorithms are based on Dijkstra’s single source shortest paths algorithm
[D]. Dijkstra’s algorithm performs a search of a graph that proceeds in phases. Each
vertex v whose shortest distance d(s, v) from the source s is not known, is said to be
open, and the currently known shortest distance p(v) from the source to v is maintained.
Initially, s is closed and all other vertices are open, p(s) =0, p(v) = ¢ (s, v) for every
neighbor v of 5, and p(v) = <= for every other vertex v. In each phase, the open vertex v
with minimum p(v) is closed, and the shortest distances p(w) are updated for all w such
that there is an edge (v, w). For any vertex v = s with p(v) < oo, the name of the ver-
tex parent(v) is maintained, where p(v) =p(parent(v)} + ¢ (parent(v),v). Note that
paren:(v) is closed. When all vertices have been closed, the p values represent shortest
distances from s, and the parent pointers encode a shoﬁcst path tree rooted at 5. A

natural implementation [J] of this algorithm maintains the distances p(v) in a heap.

We first discuss a straightforward implementadon of Dijkstra’s algorithm on a
network. We define the current shortest path tree as the set of nodes v with p(v) < oo,
plus the edges (parent(v), v) for each v = s in this set. Note that any nonleaf node in
this wee is closed. For each open node v, the value p(v) is maintained, along with
parent(v). For each closed node v, p(v), parent(v), and the children of v are main-
tained. The heap will be maintained in the current shortest path tree. Let minval (v) be
the minimum p(u) of any open node u that is a descendant of v in the current shortest
path tree. Let minnode (v) hold the corresponding node u. Node v will maintain
minval (v), minnode (v). At the conclusion of the compu-tation, each node will know its

parent and its children in the shortest path tree.

The inidalization is performed as follows. Every node v not adjacent to the

17

source § sets p(v) to e=. Source § sets p(s) to 0, and copies its adjacency list to be its
list of children. Source s notifies each child w to set p(w) to ¢ (s, w), parent(w) to s,
and rminval (w) to p(w). Source s sets minval(s) to p(w”) and minnode (s) 1o w’, where
w’ is a child of s with smallest p value. Once the inidalization is complete, the compu-

tation proceeds in phases.

A phase starts when the source s selects minval (s), which equals p(v) for some
v = minnode (s). The source then initiates a broadcast in the current shortest path tree
by sending a close (v) message to each of its children. When a closed node u receives
the close(v) message, it will set minval () to e and minnode(u) to 0, and send a
close (v) message to each of its children. When node v Ireceives a close (v) message, it
marks itself as closed, sets its list of children to its adjacency list minus its parent, and
sets minval (v) to o= and minnode (v) to 0. It then computes disr (w) = p(v)+c (v, w) for
each child w. It then sends an explore (dist (w)) message to each child w. When a node
w Teceives an explore (x) message, it compares x with p(w). If x 2 p(w), then a
update (=, 0) message is retumed to v, and an updare (p(w), w) message is sent to
parent(w) in response to a close (v) message that w received from parent (w). Other-
wise, the value p(w) is updated, parent (w) is set to v, and an update (x, w) message is
returned to v. If w had a parent previously, then a updare (=, 0) message is sent to this

parent in response to a close (v) message.

The echo, along with the adjustrnent of the heap, is handled as follows. When
an open node w #v not adjacent to v receives a close (v) message, it returns an
update (p(w), w) message. A node u that receives an updare (x, r) message from w will
do the following. If x < minval (©), it will then reset minval (u) to x and minnode (1) to

t. Otherwise, if x =eo and w is open, then w is removed from the list of children.

18

(Thus the message update (=o, 0) from an open node plays the same role as the negative
message in our algorithms for finding a breadth-first search mee.) Node u will wait
undl it has received an update (x, 1) message from each node w to which it sent a
close(v) or explore message. If wus=s, it will then retum an
update (minval (u), minnode (1)) message to its parent. When s has received messages
from of all of its children in the tree, it will begin the next phase if minnode (s) # 0,
and will terminate the algorithm otherwise. Note tha-t termination occurs when all

nocdes have been closed.

Theorem 3. A shortest path ee can be found in a distributed network of n nodes and

nonnegative edge costs using O (n?) messages and time.

Proof. We argue by induction on the number of phases that the above adaptadon of
Dijksira’s algorithm correctly computes the current shortest path tree and the heap
embedded within it. Clearly the current shortest path.trec and the heap are set up
correctly prior to the first phase. Assume that the tree and the heap are correct prior to
phase i. We shall argue that they are correct after completion of phase i. By definidon
of minval (s) and v = minnode (s), the algorithm chooses the correct node to close. The
broadcast ensures that each open node rteceives the close (v) message. Node v notifies
each neighbor w other than parent (v), allowing for w to update p(w). It is clear that
each neighbor w of v updates p(w) correctly. Also, w sends a response to the message
it received from v, and to its parent if it was already in the current shortest path tree.
Thus w will have the correct parent in the current shortest path tree at the end of phase
I.

i

The values in the heap are adjusted correctly by the following argument. When

19

open nede w # v not adjacent to v responds to a close (v) message, it sends its p(w)
value to its parent. When v receives the close (v) message during the broadcast, it sets
minval (v) 10 . On the echo, node v determines the smallest p(w) among the neigh-
bors w that acrually become children of v. When a closed node u received the close (v)
message during the broadcast, it set minval (u) to . On the echo, node u determines
the smallest p value forwarded to it by its surviving children. It forwards this p value,
along with the corresponding node name, to its parent. Thus the tree and the heap are

correct at the end of phase i.

When all nodes in the current shortest path wee are closed, then

minnode (s) = 0, and the algorithm will terminate.

The time and the number of messages used can be seen to be O (n?) by argu-

ments similar to those for the simple breadth-first search strategy discussed earlier. U

We next consider a more involved implementation of Dijkstra’s algorithm,
which will use a(n?') messages for a planar nerwork. The idea, following [Fsl], is to
conduct the iterative search on a carefully selected subset of nodes. The subset of
nodes will be the boundary nodes of a division. Let a constrained shortest path from u
to v be a path of shortest length from « to v constrained to contain no boundary nodes
as intermediate nodes in the path. Let d'(4, v) be the length of such a path. Inidally,
the source s is closed, and all other nodes are open. In addidon, p(s) =0, and
p(v) =d'(s, v). The search proceeds by constructing a current shortest path wee, and
maintaining a heap within it, using minval and minnode fields at each node. However,
only boundary nodes will be chosen 10 be closed, and thus all leaves in the curreat

shortest path tree will be boundary nodes. (Interior nodes on shortest paths to closed

20

boundary nodes will also be marked as closed.)

Preprocessing is needed to find a division, and to identify the boundary nodes.
Additional preprocessing will then determine constrained shoriest paths between all
pairs of boundary nodes. During the search, when a boundary node v is closed, p(w)
must be updated for all boundary nodes w such that a constrained shortest path from v
to w exists. At the end of the search, the current shortest path tree includes each boun-
dary node. Postprocessing then determines the location of each remaining node in a

shortest path tree.

We now present the distributed version of this algorithm. We do the following
preprocessing. Find a division of a planar network, with » = 2’3, Within each region,
route a description of the region to each node. For each region, once a node within the
region possesses a description of the region, the node performs the following computa-
tions. Let a constrained shorrest path tree in a region be a shortest path tree con-
strained so that no boundary node other than the root can have children in the tree.
(This can be enforced by performing the shortest path computation on a directed graph,
with no outgoing arcs from any of the boundary nodes other than the designated root.)
Such a constrained tree exists, since the subnetwork induced on the set of interior nodes
of the region is connected. A boundary node computes a constrained shortest path ree
rooted at it. An interior node computes for every boundary nede of its region a con-
strained shortest path tree roéted at that boundary node. A standard single source shor-
~ test path algorithm can be used for these computations. Obviously, no messages are
used in these latter computations, once each node has a description of the region. The

result of this preprocessing is that each node knows the following inforrnation. A

boundary node for the region will know the length of a constrained shortest path to

21

each other boundary node of the region, along with the first edge on a constrained shor-
test path to any other node in the region. An interior node will know its set of children

in the constrained shortest path tree rooted at any boundary node of the region.

Given this preprocessing, the search pordon of the algorithm proceeds by build-
ing a current shoriest path tree. The initializaton for the search is as follows. Every
boundary node v not contained in a region containing the source s sets p(v) to oo
Source s sets p{s) o 0. If s is an interior node, then the current shortest path tree is ini-
tialized to be the constrained shoriest path tree for 5. If s is a boundary node, then the
current shortest path tree is initialized to be the union of the conswained shortest path
trees for s in each of its regions, with any boundary node that is in more than one of
these regions informing its parent in all but one of its trees to delete it as a child. In
either case, any interior node should be deleted if it does not have a boundary node as a
descendant, and the p, minval and minnode values should be set appropriately. Each
node also has an ancestor field, that gives the name of the lowest proper ancestor that is

a boundary node. Once the initialization is complete, the search proceeds in phases.

A search phase starts when the source s selects minval (s), which equals p(v) for
some v = minnode(s). The source then initiates a broadcast in the current shortest path
tree by sending a close (v) message to each of its children. When a node u that is
closed or is an interior node receives a close (v) message, it sets minval (i) to o= and
minnode (u) to 0, and sends close (v) to each of its children. In addition, if « is an inte-
rior node that is open and minnode (u) = v, then u should mark itself as closed. When
nede v receives a close (v) message, it marks itself as closed, and sets its list of children
as follows. Node v concatenates the lists of children of v in the constrained shortest

path trees rooted ar v in each region in which v is a boundary node. It deletes

22

parernt(v) from this list. Node v then sets minval (v) to = and minnode (v) to 0, and
computes dist (w) =p(v) + ¢ (v, w) for each child w. An explore(dist (w), v) message

is sent to each child w.

When an interior node u receives an explore (x, v) message from a node i, it
does the following. (Note that node # may already be in the current shoriest path tree,
and thus already have a list of children.) If paren:(u) is undefined, node u sets
parent (1) to ¢, its ancestor (1) to v, and takes as its list gf chiidren its list of children in
the constrained shortest path tree rooted at v within the region. For each node w in the
list of children, it computes dist (w) =x + c(u,w), and sends w an explore (dist (w), v)
message. If parent(u) is defined, node u seis its tentanve parent to be f, its tentative
ancestor to be v, and takes as its tentative list of children its list of children in the con-
strained shortest path tree rooted at v within the region. For each node w in the tenta-
tve list of children, it computes dist(w)=x +c(u,w), and sends w an
explore (dist (w), v) message. (Note that we could determine at this point whether the
tentative list of children should supplant the current list of children, by maintaining and
comparing a p value for 4 with x. However, to aid in the synchronization of the algo-
rithm, we allow explore messages and close messages to penewmate to all boundary

nodes in the regions containing node v.)

When a boundary node u receives an explore (x, v) message from a node ¢, it
does the following. It compares x with p(x). If x = p(u), then an update (==, 0, v) mes-
sage is returned to 1. Otherwise, the value p(u) is updated, and if u already has a
parent, then an update (e, 0, ancesror (1)) message is sent to this parent in response to
a close (v) message. In the case in which x was less than p(u), node u also then sets

parent (1) to t, and ancestor (4) to v. In either case, node # may share more than one

23

region with node v, and thus # must wait until explore messages have been received
through each of these regions. Once the necessary number of messages have been
received, an update (p(u), u, ancestor (u)) message is sent to parent (i) in response [0
either a close (v) message (if the parent (u) has remained unchanged) or in response to

an explore message (if the parent (1) has changed).

The echo, along with the adjustment of the heap, is similar to the echo for the
previous shortest path algorithm. When an open boundary node w v not in a region
containing v receives a close (v) message, it retums an update (p(w), w, ancestor (w))
message. Consider a node u s v that sent out close (v) messages but no explore mes-
sages. When it receives an update (x, ¢, V) message from node w it does the following.
If x < minval (u), it will reset minval (4) to x and minnoq'e (u) o 1. Otherwise, if x is =
and w is open, then w is deleted from the list of children. Once node u has received
update messages in response to all close messages that it sent, if u s 5, it will then

return an update (minval (u), minnode (1), ancestor (1)) message to parent ().

Consider a node u that sent out explore messages. When u receives an
updare (x, 1, V') message from a node w, it does the following. If x < minval (1), then
it resets minval (1) to be x and minnode (u) to be 1, and if « # v and v’ # ancestor (1) it
reassigns its list of children to be its tentative list of children, sends an
update (=, 0, ancestor (u)) o parent(u), and then resets parent (i) to be the tentative
parent and ancestor (i) 1 be the tentadve ancestor, Otherwise, if x is == and w is open,
then if u = v or v' = ancesior (u) then w is deleted from the list of children, and if © # v
and v’ # ancestor (1) then w is deleted from the tentative list of children. Node u will
wait untl it has received update messages in response to all explore and close messages

that it sent. If u#s, it will then refurn an

24

update (minval (1), minnode (1), ancestor (u)) message to parent(u). As before, when
s has received messages from of all of its children in the tree, it will begin the next
phase if mirnode (s) = 0, and will terminate the search otherwise. Note that termination

of the search occurs when all boundary nodes have been closed.

At termination of the search, the current shortest path tree will contain ail boun-
dary nodes as closed nodes. Other nodes may be incorporated into the shortest path
tree by performing postprocessing in each region concurrendy., A modified version of
our distributed version of Dijkstra’s algorithm can be used in each region, described as
follows. Shortest distances are known to the boundary nodes, but not in general to the
interior nodes. An appropriaie tree is needed to contain the heap, and to make efficient
broadcast possible. We initialize this. tree to be 2 spanning wee in which the root is an
arbitrary interior node of the region and each boundary node is a leaf. Each boundary
node « will have p(u) = d(s, u), and the interior nodes in the inidal wee will have no p
value, since they are purely for communicadon. As Dijkstra’s algorithm progresses,
each intertor node u will be added a second tme to the tree, and this time it will be
assigned a p value. Termination of the shortest path algorithm will occur when the
source has been notified by each region that postprocessing within the region is com-

pleted.

Theorem 4. A shortest path tree can be found in a planar distributed network of n

nodes and nonnegative edge costs using O (n>3) messages and time.

Proof. Correctness of the algorithm follows from the correctness of the sequential
algorithm in [Fs1], and from establishing correctness of the distributed versions of the

preprocessing, search, and postprocessing. The preprocessing correctly sets up a divi-

25

sion, and computes constrained shortest path trees within each region of the division.
The correctness of the search is established in a fashion similar to that in the proof of
Theorem 3. We note the following addidonal points. First, the only leaves in the
current shortest path oee are boundary leaves. If any interior node has no boundary
nodes as descendants as a result of the search, then it can be shown by induction that
this node will have received update (oo, 0, V') messages from all of its children, and
thus will send an updaze (e, 0, V") message to its parent, which will cause it to be
deleted from its parent’s list of children. We also consider the case in which an interior
node u receives both a close and an explore message. It follows from the manner in
which explore messages are propagated that it can receive at most one explore message.
From the algorithm it is clear that close and explore messages are sent to the children
of u on the corresponding lists. We first argue that u cannot receive an updare message
back from the children to which it sent explore messages until after it has sent close
messages to the appropriate children. This follows, since the echo proceeds only from
boundary nodes, and these boundary nodes wait until they have received one close mes-
sage and in additon one explore message for each region that they share with v. The
same argument establishes that « cannot receive an updare message back from the chil-
dren to which it sent close messages untl after it has sent explore messages to the
appropriate children. We also argue that the reassignment of children o u on the echo
is correct in the situation that u had received both a close and an explore message.
Node u cannot receive an updare message with noninfinite minval back from both a
child to which it sent an explore message and a child to which it sent a close message.
This follows since to claim any current descendant of u {or a potential descendant of u
claimed by another node), the explore message to « must have identified a shorter path

to u than any previously known. Thus node & is appropdately handled. It is also not

hard to establish the correctness of the postprocessing.

We next discuss the time and message complexity of the algorithm. By
Theorem ! and Lemma 1, finding a division of the planar graph will use O (n/*log n)
messages and O (#3/2) time. In the rest of the preprocessing, broadcasting a description
of a region of size r; will use O (r;2) messages and time. This follows since there are
O (r;) nodes and edges in the region, each such item must be broadcast throughout the
region, at the cost of O (r;) messages per item. Since r; <r, and the total size of all
regions is O (n), the total number of messages will be O (nr)=0 (nS" 3) for broadcasting
descriptions of regions. For each phase of the search, there will be O (n) messages and
ome, Since there are O(m‘\/;) phases, the time and the number of messages used in
the search will be O (n°). In the postprocessing, the number of messages in a region
of size r; will be O (r;%). The total number of messages for the postprocessing is thus

0O (n5!3). |

Acknowledgment. The author would like to thank the referees for their helpful com-

ments.

References
[AR] 1. M. Abram and I. B. Rhodes, A decentralized shortest path algorithm, Proc.
16th Allerron Conf. on Comm., Conirol and Computing (1978) 271-277.

[AG1] B. Awerbuch and R. G. Gallager, A new distributed algorithm to find breadth
first search trees, JEEE Trans. on Inf. Theory 33 (1987) 315-322.

[AG2] B. Awerbuch and R. G. Gallager, Distributed BFS Algorithms, Proc. 26th [EEE
Symyp. on Foundations of Computer Science (October 1985) 250-256.

27

{D] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik I (1959) 269-271.

[Fsl] G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with
applications, STAM J. on Computing 16 (1987) 1004-1022.

[Fs2] G. N. Frederickson, A single source shortest patl;1 algorithm for a planar distri-
buted network, Proc. 2nd Symp. on Theoretical Aspects of Computer Science,
Saarbruecken, Germany (January 1983) 143-150.

(Fm] D. U. Friedman, Communication complexity of distributed shortest path algo-
rithms, LIDS-TH-886, Mass. Inst. Tech. (1979).

[G] R. G. Gallager, Distributed minimum hop algorithms, MIT technical report
LIDS-P-1175 (1982).

[GHS] R. G. Gallager, P. Humblet, and P. Spira, A disuibuted algorithm for minimum
weight spanning wees, ACM Trans. Prog. Lang. Sys. 5, 1 (January 1983) 66-
77.

(H] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. (1969).

[J] D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, J.
ACM 24, 1 (Janvary 1977) 1-13.

[LT1] R. . Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J.
Appl. Math. 36, 2 (April 1979) 177-189.

[LT2] R.J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, STAM
J. Comput. 9, 3 (August 1980) 615-627.

[T S. Toueg, An all-pairs shortest-path distributed algorithm, RC-8397, IBM T. J.
Wartson Res. Center (1980).

	A Distributed Shortest Path Algorithm for a Planar Network
	Report Number:
	

	tmp.1307986960.pdf.z88Q6

