
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1985

A Distributed Shortest Path Algorithm for a Planar Network A Distributed Shortest Path Algorithm for a Planar Network

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Report Number:
85-527

Frederickson, Greg N., "A Distributed Shortest Path Algorithm for a Planar Network" (1985). Department of
Computer Science Technical Reports. Paper 446.
https://docs.lib.purdue.edu/cstech/446

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

•

A DISTRIBUTED SHORTEST PATH ALGORITHM
FOR A PLANAR NETWORK'

Greg N. Frederickson
CSD TR 527 Revised July 1988

Department of Computer Sciences
Purdue Universi[J

West Lafayene, IN 47907

... TIlis research was supponed in part by the National Science Foundation under Grants MCS­
8201083. DCR.8320124 and CCR-8620271, and by the Office of Naval Research under conE:ract

NOOO14-86-K-0689.

Abstract.

An algorithm is presemed for finding a single source shortest path tree in a

planar undirected distributed network with nonnegative edge COSlS. The number of

messages used by the algorithm is 0 (n 513) on an n-node network.' Distributed algo­

rithms are also presemed for finding a breadth-first spanning tree in a general network,

for finding a shortest path tree in a general network, for finding a separaEOr of a planar

network, and for finding a division of a planar network.

Key words and phrases. breadth-first search, disaibuted network, message complex­

ity, planar network, planar separator, single source shortest padls.

1

1. Introduction

Consider a problem in which the information necessary for its solution is distri­

buted among the nodes of a network. A fundamental question in distributed computa­

tion is how [0 solve the problem, llSing a minimum number of messages [0 route the

information. In particular, suppose that the problem is a graph problem abom the net­

work itself, in which initially each node has knowledge only about its neighbors. An

algorithm could always route all infonnation to a particular node and then solve the

problem directly. But this approach would use 0 (mn) messages, where n is the

number of nodes and m me number of edges. Cenain problems can be handled more

efficiently, as for example that of finding a minimum spanning tree of the network,

which can be done with only 0 (m + n log n) messages [GHS]. In this paper we

present communication-efficient algorithms for several other basic graph problems,

including finding a shortest pam cree in a distributed network.

Several papers [AR, Frn, TJ have investigated the message complexity for the all

pairs shortest paths problem, with the best solution requiring a (mn) messages. As far

as the message complexity, this is no better than the straightforward approach men­

tioned above. We concentrate on the single source problem in an undirected network

with nonnegative edge weights, and present two efficient algorithms for this problem.

The first generates a single source shortest path tree in a general ne[Work, using a (n 2)

messages. Our main, and more interesting, result concerns the case in which the net­

work is planar, for which we give an algorithm that uses a (n 5f3
) messages. In achiev­

ing this bound we also solve lhree problems of independent interest. First we presem a

simple algorithm to find a breadth-first spanning cree of a general nerwork, using

a (n m 112) messages. This algorithm uses a (n 312) messages on a planar network,

2

since m 15 0 en) for such a network. A previous algorithm in [G] uses

o (n S/5 + n U3m 2/3) messages. and more recent algoritluns use 0 (n 8/5log n + m) and

o (m2"log n loglog n) messages [AGI, AG2]. Second, we present a distributed algorithm

rb.at finds a separator of a planar network using 0 (n log n) messages if a breadth-first

tree is already given. Third, we present a distributed. algorithm that finds a division of a

planar network into regions satisfying a size bound on each region and a size bound on

the total number of nodes shared by regions.

We make the following assumptions about our model. A message will carry a

constant number of "words" along one link: of the network. In particular, a message

contains the name of one node and/or one number representing the sum of the COStS of

edges of some simple pam in the network. Computation time at a node will be

assumed to be small in comparison with message transmission time, and thus will be

ignored. Each processor will have a sufficiently large memory so that message

buffering will not cause problems. Arbitrarily long delays can be encountered in the

processing of a message by a node. However, no messages are lost, communication is

error-free, and messages are handled in a first-in first-out fashion.

Our algorithms were designed with the goal of reducing the number of mes­

sages. However we also analyze the time performance of the algorithms. We define

time as the length of the longest sequence of messages, where each message in the

sequence cannot be sent until the predecessor in the sequence has been received. Here

we assume that messages can be simultaneously received and sent from different

input/output ports at me same time. Thus this measure of time will correspond [0 the

time used by the algorithm if every message transmission is completed in unit time. In

all of our algorithms except the one for finding a divison of the network into regions,

3

the time complexiry is the same as the message complexity.

A preliminary version of this paper appeared in [Fs2].

2. Simple algorithm for finding a breadth-first search tree

We first sketch a natural way [0 generate a breadth-first search tree using 0 (n 2)

messages and time, and then modify it to give an algorithm which uses 0 (n m t/2)

messages and time. The simplest way [0 generate a breaddl-first tree is one level at a

rime, so that every node on level i must be identified before attempting to identify any

node on level i+1. Initially level (s) is 0, where s is the root, and level (v) is n for every

other vertex v. The current fronIier will be me set <;>f all nodes with highest level

number less than n. Initially the current frontier will contain just the root. The search

is synchronized by the root, using edges in the current portion of the breadth-first tree.

The computation consists of phases, each involving three activities: 1) a broadcast from

the root to the nodes at me current frontier, 2) the exploration carried out from nodes at

the frontier, and 3) the echo, which notifies the root that the exploration is complete.

Let f be the level number of nodes at the current frontier. The root initiates the

broadcast by sending a forwardC f) message to each of its children in the current por­

tion of the breadth-first tree. When a node at level less than f in [he tree receives a

jorwardC f) message, it sends aforwardC f) message to each of its children.

Exploration is performed as follows. When a node v at level f receives a

forward(f) message, it sends an exploreCj+l) message to each adjacent node w,

except its parent in the breadth-first tree. Node v assumes that each such w is its child

in the breadth-first rree. The first explore message received by a node w determines its

parent. In this case a reverse message is sent by w back to its parent v. For each

4

additional explore message received by w, it sends back a negative message (0 me

sender. A node receiving a negative message removes the sender from its list of chil­

dren.

The echo is handled. as follows. Each node that receives an explore (f +1) mes­

sage will have sent either a reverse or a negative message to each node from which it

received. the explore message. Each node at a level less than f +1 waits until it has

received a reverse message for each forward or explore message that it sem. If it is not

the root, it then sends a reverse message [0 its parent. Termination for the algoriIhm

can be achieved by attaching a bit to each reverse message, indicating if any nodes

were discovered at level f +1. .".

The total number of messages due to all exploration is 0 (m), since at mOSt rwo

explore messages, plus matching reverse messages, are sent along each edge. There are

O(n2
) messages due to synchronization, since there are O(n) phases, with each of

o (n) edges in the current breadth-first cree carrying one message in each of the broad­

cast and echo. Thus the total number of messages is a (n 2). The time is bounded as

follows. A broadcast of forward (f) will take time f -1, an exploration will take conw

stant time, and the echo time f -1, which is 0 (n) time per phase. Since there are a (n)

phases, each following the preceding one, the time is 0 (n 2).

If the network is sparse, there is a more efficient approach. The idea is [0 have

fewer synchronization phases by extending the bread[h-first cree 1 levels ar a time

between synchronization phases, where l is a paramerer [0 be specified la[er. This basic

idea has also appeared in [0], but was nm taken full advantage of in that paper. As

before, the activities in a phase are broadcast, exploration, and echo.

Messages used in exploration will be of the form explore (j, k), where k

5

indicates the number of levels that can be explored from the current node, and j indi-

cates the index of the next level. Nodes at the current frontier, level f, will send out

explore(f +1, l) messages. Note that the first message to ~each a node will nor neces-

sarily determine the node's parent in the final breadth-first tree, since an explore rnes-

sage could come along later on a shorter path from some node on me frontier. Assume

that levei(w) =00 andparent(w) = nil initially for each node w except the rOOt. Sup-

pose an explore(), k) message is received at a node w. If j;;:: level (w), then the

explore (J, k) message did nor identify a shorter path to w than that previously known,

and a negative (j) message is returned [0 indicate this fact. If a node v receives a

negative (j) message from node w, and level (v) is still j -1, then w should be removed

from the list of children of v.

If node w receives an explore (j, k) message from v, where j < level (w), then a,

shorter path to w has been found. If parent (w) ;;!: nil, a negative (level (w)) message is

sent to this parem. In any case, level(w) is reset to j, parent(w) is reset to v, and the

list of children of w is reset to be the adjacency list of W, with v removed. If k=l, men

a reverse{j) message is sent [0 v. If k>l, then an explore(j+l, k-l) message is sent

to each node on this list.

Let j be the current value of level (w). Node w will ignore any reverse U') or

neganve{j,) message with j' >)+1. If w has received negative (j+l) or reverseU+l)

messages from each node to which it sent an explore(j+l, k-l) message, it sends a

reverse (j) message to parent(w).

The echo is handled as before.

Theorem 1. A breadth-first tree can be found in a distributed network of n nodes and

6

m edges using a(n m 112) messages and time.

Proof. The above algorithm will correctly find a breadth-first search rree. Suppose that

at the beginning of phase i that the first il levels of the tree have been correctly con~

structed. Nodes whose correct level number should be if +1 will eventually receive an

explore (il+l, l) message from some node on dIe frontier. If a node w receives an

explore U, k) message, where j is its correct level number and k > 1, then an

explore U+I, k-l) message will be sent to every neighbor of w except its parent, and

rhus the level number of any neighbor will be at most j+l. Then it follows by induc­

tion on the level number from the frontier that all nodes at levels il+l through (i+1)/

will be correctly added to the tree. Whenever an incorrectly labeled node receives its

correct level number, the node is removed. from the list of children of its previous

parent. Thus it follows that the list of children at each node will be correct. By induc­

tion on k, each correctly labeled. node w will receive a negative or reverse message

from each node that it had included initially on its list of children at the time that w

was correctly labeled. Thus one can conclude that each phase will terminate.

The number of messages that are used is bounded as follows. Since at most two

explore (j, k) messages are sent along each edge, for k=l, 2, ... , I, the total number

of messages due to exploration is 0 (1m). Since there are 0 (nil) synchronization

phases, there are 0 (n 2{ I) messages due to synchronization. With I chosen to be

nlm 112, we achieve the desired. result for messages. A longest sequence of messages

during one phase will contain f -1 forward messages, f e."(plore messages, and a

corresponding number of reverse messages. Thus 0 (n) time will be used per phase,

over 0 (n/ /) phases, or 0 (nm 1I2) in total. 0

7

3. Distributed algorithm for finding a planar separator

We describe an algorithm for finding a separator in a planar discributed network,

given a breadth-first search tree of the network. Our algorithm is an adaptation of the

method of LiptOn and TaIjan [LTl] for finding a separator in a planar graph. To make

their algorithm communication efficient, at crucial points in the algorithm we use

several variants of binary search that are suitable for distributed. computation. Follow­

ing [LTl], the vertices have nonnegative vertex COStS sununing to no more than 1. The

algorithm must partition the vertices of the graph into three sets A, B. and C such that

no edge joins a vertex in A with a vertex in B, neither A nor B has total cost exceeding

2/3, and C contains no more than 2...fi-.rn vertices. We assume that each vertex has a

list of the edges incident on it in clockwise order around the node.

For convenience we call the algorithm in [LTI] algorithm PS. If some vertex v

has COSt at least 1/3, then take C = {v} and B = 0. If the total cost of all vertices is

less rhan 1/2, then take B = C = 0. Otherwise, PS does me following on a connected

graph. Given a breadth-first search tree, algorithm PS.tlrst finds the largest level i 1

such that the total cost of all vertices on levels a through i 1-l is at most 1/2. In a dis­

tributed setting we can accomplish this by· performing a binary search for 1/2, probing

at level numbers. Each rest of a level number I involves broadcasting a message out

along the breadth-first search tree up through level i, and accumulating the COSt of

nodes at level i or lower on me return sweep. Since each broadcast uses 0 (n) mes­

sages and 0 (n) time, determining 11 uses 0 (n log n) messages and time. Let k be the

number of nodes in levels a through i r . The value of k can be computed by a broad­

cast and echo in the breadth-first tree.

Let L (l) be the number of vertices on level i. Algorithm PS determines a level

8

10 where 1,- L;Ik J" 10" I, and L(lo) +2(1'-[0)" 2;1k. In a distributed serring, we

can do the following. If '1- L~ J < 0, choose '0 = O. Orherwise, perform a search of

the (closed) interval [1,- L;Ik J, I tl similar to binary sean;h. Let [a, b] be the current

interval. If a = b, then choose 10 = a. If a < b, then consider level 1= Ra+b)/21.

Level! can be tested by sending out one broadcast iIi the breadth-first tree, and accumu­

lating on the return the number of nodes L ([a, [-I]) and L ([I, b]) in the intervals

[a, I-I] and [I, bJ, resp. Compute the following two averages, and detennine which of

the two is no larger than the other (they could be equal): (L ([a, [-I])

+ L~:', 2(1,-i)) I(I-a) and (L([l, b]) + I,~=I 2(1,-i)) I(b-[+I). Continue sean;h­

fig recursively within the corresponding interval.

It is easy to see that the above procedure finds a level 10 such that

L(lo)+2(1,-[0) is at most 2;1k. If [,-L;lkJ<o, then 1,,,L;lkJ-l, and thus

L(lo) + 2(1,-10)" 2 L;Ik J-l. Otherwise the average of L(I) + 2(1,-1) over levels

I ,-;Ik ,,[" [, is initially less than 2;1k, and the average of the quantity L (I) + 2(1,-[)

for those levels excluded on anyone step is no smaller than the average of those levels

retained. 0 (log n) levels are tested, for a total of 0 (n log n) messages and time. A

similar approach finds a level /2 where [1+1 $;/2 51 1+ i-v'n-k 1 and

L(l2) + 2(12-[,-1)" 2-Yn-k.

Algorithm PS nex[deletes vertices at levels /2 and larger, and contracts vertices

a[levels 0 through /0 to a single vertex. Since the network [Opology canner be

changed, we ins[ead reassign the cost of each of these nodes to be O. Then for each

node v, we record [he pareO[of v in the tree, and the total cost of all descendants of v,

induding v itself. This can be accomplished within [he framework of a broadcast-echo

in the breadth· first tree.

9

Algorithm PS then triangulates the faces of the embedding of the graph. Again

we cannot modify the network explicitly, but instead will traverse the network in a

fashion that is consistent "Yith a particular triangulation. (The rriangulation, or more

properly, a subset of the edges of a triangulation, will be induced as the traversal

proceeds.) Given the triangulation, algorithm PS chooses a nontree edge which induces

a cycle with respect to tree edges. We similarly choose some nontree edge in the net­

work. (JVe are assuming that the network contains at least one cycle. Otherwise there

is a simpler, and more message-efficient, method. to find a separator.) Algorithm PS

then detennines which side of the cycle contains vertices of greater cost, and denotes

this side as the inside of the cycle. Again, we can perform rhis task using a broadcast­

echo in the breadth-first tree. (If the foot is inside the cycle, reroot the tree at some

cycle vertex.) Each node in the cycle can be labeled as being on the cycle by this

broadcast.

If the cost inside the cycle exceeds 2/3, algorithm PS shrinks the cycle itera­

lively as follows. Let (vj, Wi) be the nontree edge that induces the current cycle. AlgOR

rithm PS identifies the triangle inside the cycle that has edge (Vi. Wj). Call the third

vertex of the triangle y. If either (Vj, y) or (Y, Wi) is a tree edge, then (Vi+l, Wi+l) is set

to the nontree edge among the two. If Vi+l is a child of Vi in the tree, then the COSt of

Vj+l is subtracted from the COSt inside the cycle, and similarly with Wi+l and Wi'

If neither (Vi, y) nor (y, Wi) is a tree edge, then algorithm PS determines the tree

path from y to the (Vi, Wi) cycle by fonowing the parent poimers from y. Let z be the

vertex on the (Vi, Wi) cycle reached by this search. The cost of this path, excluding ver­

tex z, is computed. Then algorithm PS computes the cost inside the (Vi, y) and (Y, Wi)

cycles as follows. Each tree edge incidem on, and inside of a cycle, is incidem on a

10

vertex that contains the total cost of a subtree inside the cycle. The algorithm inter­

leaves the operations involved. in scanning edges inside me (Vi, y) cycle, with those in

scanning edges inside the (Y, Wj) cycle, until it has scanned all tree edges incident on,

and inside of, one of these cycles. Once the cost inside one cycle is known, the cost

inside the oilier cycle can be determined by subtracting the COSt inside one cycle and

the cost of the path from the cost of the (Vi, Wi) cycle. The edge inducing the cycle

whose inside has larger cost then becomes (1'i+1> Wi+l)' This approach guarantees the

linear time perfonnance claimed for algorithm PS.

We handle the shrinking of the cycle as follows. Let P (Vi) be the node preced­

ing Vi on the cycle. Let the direction around vertex Vi from (Vi. Wi) to (Vi, P (Vi», on

the inside of the cycle be called insidewise. Assume mat a search process is at node Vi_

The process will carry as data the names of the nodes Vi and Wi, the position of edge

(vi, Wi) in the adjacency list of Vj (or the position (Vi, Wi) would occupy if there were

such an edge), and the current cost inside of the cycle. The process should choose the

next edge (Vj, y) in an insidewise direction around Vi from (Vi, Wi). If (Vi, y) is a tree

edge, then we choose (Y, Wi) as (Vi+l' Wi+l)' In this case we move the search process

to Vi+l. Note that the edge (Y, Wi) may not exist in the network, but can be viewed as

part of the partial triangulation generated so far. If (Vi, -y) is not a tree edge, then send

a message from Vi to y to detennine if there is a tree edge from y to Wj. If so, choose

(Vi. y) as (Vi+l' Wi+l).

In the case that neither (Vi, y) nor (Y, Wi) is a tree edge, we find the path from y

to z as above, by sending a process up the tree from y until it encounters a node z on

the cycle. Nodes on the path from y [0 z will be labeled as cycle nodes. However, [0

find the COSt inside the (Vi, y) and (Y, Wi) cycles, we cannot perform efficiently the par-

11

ncular type of interleaving discussed above because of the cost of syncluonization. We

economize on communication by perfonning half of a one-sided. binary search, as fol­

lows. We use a bound on the number of operations performed in examining each cycle,

which is initially set to some small constant. Starting at Z, we check cree edges inside

one cycle, until the bound on operations is exhausted, and then rerum to z and do the

same in the other cycle. Checking tree edges corresponds to summing [he weights of

the children inside the cycle. If neither cycle is completed, double the bound and

repeat. This approach can be seen to require messages proportional to [he smaller of

the number of messages used to handle either of the two cycles atone. By an argument

similar to that giving the linear time for algorithm PS, this portion of our algorithm can

be seen to use a linear number of messages altogether. When (Vi+l' Wi+l) has been

determined, shift the search process to y if vi+l = y.

Upon completion, the separating set will consist of the nodes on the cycle

be[Ween levels 10 and 12, plus all nodes on levels 10 and 12.

Theorem 2. Let G be a planar distributed network of n nodes. A separator for G of

size at most 2-./2{fl can be found using a (n log n + B 1(n)) messages and

a (n log n + B 2 (n)) time, where B I (n) and B2(n) are the number of messages and the

time necessary to find a breadth-first search tree in a planar graph.

Proof. Correctness of our algorithm is based in large part on the correctness of the

Lip[Qn and TaIjan procedure, which we have been calling PS. We concentrate our dis­

cussion on llIose parts of our algorithm that are not just a straighnorward translation of

PS. As argued previously, levels 10 and 12 satisfied [he required bounds on level

number and number of nodes between levels. As pointed out above, nodes that would

12

have been pruned or contracted together in PS are assigned weight 0 in our algorithm.

As discussed, a triangulation sufficient for the search process can be inferred as the

search process progresses. Thus the movement of the search process in our algorithm

will mimic the movement of the search process in PS. Correctness then follows.

We next discuss the perfonnance bounds. There will be at most 2 nodes on

every level in the cycle. Thus the number of nodes on levels 10 through /1 will be at

most 2{k, and the number of all other nodes in the separator will be at most 2-.Jn -k.

Thus the total number of nodes in the separator is at most 2C-.fk+Vn-k)'; 2..J2Fn. The

bound on the dme and message complexity follows from the previous discussion. 0

4. Regions and boundary nodes

Our shortest path algorithm in me planar network makes use of a division of the

planar network into regions [Fs1]. A region consists of two types of nodes, boundary

nodes and interior nodes. An interior node is contained in exacdy one region and is

adjacent to nodes only in its own region. A boundary node is shared among at least

two regions and is adjacent to interior nodes of each of these regions. To generate

appropriate regions, we make use of our distributed version of the planar separator

algorithm.

To be able to use the regions efficiently in our shonest paths application, it is

convenient to have the degree of every node bounded by some small conStant. While

many networks may satisfy this constraint, it is possible that there are nodes of rather

large degree in some networks. We solve this problem by having any node of degree

greater than 3 split logically (not physically) into a subgraph of nodes and edges of

degree 3. A well-known rransfonnation in graph theory [H, p. 132] may be used to do

13

this. Consider a planar embedding of me network. For each node v of degree d > 3,

where WQ, ••. ,Wd_l is a cyclic ordering of the nodes adjacent to v in the planar

embedding, replace v with new nodes Yo,'" ,vd_l .. Add edges {(Vi,V(i+l)modd)

li=O,··· ,d-lJ, each of distance 0, and replace the edges {(w"v)li=O,··· ,d-lJ

with {(Wi, 'Vi) [i =0, ... •d-l}, of corresponding distances. From a corollary of Euler's

fOITI1ula [H], the number of nodes in the resulting network will be less than six. times

the number of vertices in the original network. Note that in any distributed algorithm

the processor at node v will perform an emulation of the algorithm on the logical nodes

Given a parameter T" we show how to generate connected regions with 0 (r)

nodes each, and 0 (n/~) boundary nodes in [Oral. Each region will have as an index

an integer between 1 and n. Initially, label all nodes as being in region n. Then apply

the following recursive procedure with aIgumems n as the number of nodes, n as the

number of interior nodes, and n as [he label.

We now describe the recursive procedure, with parameters size n' of the region,

and label L of the region. If n' $ r, then return. Otherwise, do the fonowing. Apply

the separator algorithm to the network with all node weights equal to lin', yielding sets

A, B and C. Let C' be the set of vertices in C not adjacent to any vertex in AU B, and

let C n = C - ct.

Identify the connected components At, A 2 ;··· , Aq in AU BU ct. This can

be done as follows. Initially give each vertex in AU BU C' a null label, and set i [0

O. Perform an inorder traversal of the breadth~first search tree. Whenever a node is

encountered with a null label, increment i, reset its label to f, and make it [he leader of

component Aj. Perform a broadcast within the set of all nodes with null label that can

14

be reached along a path of nodes with null label. Label each such node with i. On the

echo of this broadcast, compute me number of nodes in this component, and store this

in the leader. WJten this broadcast is complete, continue the inorder traversal. Once

the traversal is complete, interior nodes in all components have been identified, except

that some nodes in C" may not be adjacent to interior nodes in two different regions.

Any node v in C" adjacent to a node in Ai and not adjacent [0 a node in A j for I::t:i, can

be removed from C II and included in Ai_ This test can be perfonned on the nodes of

C" one at a time in any order, so that we perform an inorder traversal of the breadth­

first tree, and handle such nodes in inarder. Region i will have as interior nodes the

nodes in Ai mat were interior in the input network. The boundary nodes will be the

remaining nodes in Ai and those nodes in Cn that are adjacent to some node in Ai.

Note mat by our construction of regions, the subnetwork induced on the interior nodes

of any region is connected. Since each resulting region will be a proper subset of

AU C' or B U C', each region will contain fewer than 2n'/3 + 2{2{i{ nodes.

Two additional tasks need to be done. First, each node in a component should

query its neighbors to find out which neighbors are in the same component. Once each

node has this information, the component can be handled logically as a whole network

in any recursive calls of the procedure on the componem.

Second, the labels of the new regions must be formed. Initialize count to L

minus the number of interior nodes in the input network, and start an inorder traversal.

When the leader of a component Ai is encountered, perform a broadcast within the

component to obtain an updated count of the number nj of nodes in the component, and

the number n'j of interior nodes in the component. Reset count to be courlC + n'i, and

broadcast this value as the label of [he component. The component is thus set up itself

15

as a region. Once a component has been handled, resume the inorder rraversal. The

time and messages for generating the labels can be seen to be 0 (n').

Once the new regions have been identified and labeled, the procedure is applied

concurrenrly to each new region. We note that our approach shares some similarities

with an approach for the nondistributed case that is described in [LTI].

Lemma 1. An n-node planar distributed network can be divided into connected regions

with no more than r nodes each, and 0 (n/{T) boundary nodes in total, using

o (n (log n)2 + B I (n)log n) messages, and 0 (n log n + B 2 (n)) time, where B I (n) and

B 2 (n) are the number of messages and the time to find a breadlh-first search tree in a

planar network.

Proof. The number of boundary nodes follows from the results in [psI]. By Theorem

2, the number of messages and the time to find a planar separator will be

o (n log 11 + B 1(n» and 0 (n log n + B 2(n», respectively. Given the planar separa[Qf,

the messages and time [0 find and augment and label me regions will be 0 (n). The

recurrence for the number, of messages will thus be, for 5ufficienLly large n,

M(n) S n log n +B1(n) + L;. (M(n,)),, where max, rnJ S 2n/3 + 2..f2,r,;,

L· nj ::; n + 4-./2-/;, and ni is the number of nodes in Aj. The additive term of 4-./2(;;,

results from me fact mat every node is of degree at most 3, and thus each boundary

node can be counted as a member of at most 3 regions. The claimed bound on mes-

sages is the solution to the recurrence. Since me procedure is applied concurrently to

me new regions, the recurrence fOf me time will be, for sufficiendy large n,

T(n) ~ nlogn+B 2(n)+T(max,rnJ), where rnax,rn;}~2n/3+2..f2,r,;. The

claimed bound on rime is the solution [0 the recurrence. 0

16

5. Finding a single source shortest path tree

Our algorithms are based on Dijksrra's single source shortest paths algorithm

[0]. Dijksrra's algorithm performs a search of a graph mat proceeds in phases. Each

vertex v whose shortest distance d (s. v) from the source s is not known, is said to be

open, and the currently known shortest distance p(v) from the source to v is maintained.

Initially, s is closed. and all other vertices are open, pes) = 0, p(v) = c (s, v) for every

neighbor v of s, and p(v) = 00 for every oilier vertex v. In each phase, the open vertex v

with minimum p(y) is closed, and the shortest distances pew) are updated for aU w such

that there is an edge (v, w). For any vertex v :;t:. s with p(v) < 00, the name of the ver­

tex parenr(v) is maintained, where p(v) = p(parent(v» + c (parent(v), v). Note that

parem(v) is closed. When all vertices have been closed, the p values represent shortest

distances from s, and the parent pointers encode a shortest path tree rooted at s. A

natural implementation [1] of this algorithm maintains the disrances p(v) in a heap.

We first discuss a srraightforward implementation of Dijkstra's algorithm on a

newark. We define the currenr shortest pach Cree as the set of nodes v with p(v) < OQ,

plus the edges (parenr (v), v) for each v :;f:. S in this set. Note that any nonleaf node in

this tree is closed. For each open node v, the value p(v) is maintained, along with

parent(v). For each closed node v, p(v), parent(v), and the children of v are main­

tained. The heap will be maintained in the current shortest path tree. Let minval (v) be

the minimum p(u) of any open node u that is a descendant of v in the current shortest

path tree. Let minnode (v) hold the corresponding node u. Node v will maintain

minval (v), minnode (v). At the conclusion of the computation, each node will know its

parent and its children in the shortest path cree.

The initialization is peIfOImed as follows. Every node v not adjacent to the

17

source s sets p(v) to 00. Source s sets pes) to 0, and copies its adjacency list [0 be its

list of children. Source s notifies each child w [0 set pew) to c(s. w), parenc(w) [0 S,

and minval (w) to pew). Source s sets minval(s) to p(w~) and minnode (5) to w', where

w' is a child of s with smallest p value. Once the initialization is complete, the compu­

tation proceeds in phases.

A phase stans when the source s selects minval (s), which equals p(v) for some

v = mjnnode (s). The source then initiates a broadcast in the current shon:est path tree

by sending a close (Y) message to each of its children. When a closed node u receives

the c/ose(v) message, it will set minval(u) to 00 and.minnode(u) to 0, and send a

close (v) message to each of its children. When node v receives a close (v) message, it

marks itself as closed, sets its list of children to its adjacency list minus its parent, and

sets minval (v) to 00 and minnode (v) to O. It then computes disc (w) = p(v)+c (v, w) for

each child w. It then sends an explore (disC (w)) message to each child w. When a node

w receives an explore (x) message, it compares x wim pew). If x;?: pew), then a

updace(=,O) message is returned to v, and an updace(p(w), w) message is sent to

parem(w) in response to a close (v) message that w received from parenc(w). Other­

wise, the value pew) is updated, parenc(w) is set to v, and an update (x, w) message is

returned to v. If w had a parent previously, then a update (=, 0) message is sent to this

parent in response to a close (v) message.

The echo, along with the adjustment of the heap, is handled as follows. When

an open node w:;!: v not adjacent to v receives a close (v) message, it returns an

updace (p(w), w) message. A node u mat receives an updace (x, c) message from w will

do the following. If x < minval (u), it will then reset minval (u) to x and minnode (u) to

c. Othenvise, if x = = and w is open, then w is removed from the list of children.

18

(Thus the message update (00, 0) from an open node plays the same role as the negative

message in our algorithms for finding a breadth-first search cree.) Node u will wait

until it has received an update Cx, r) message from each node w to which it sent a

close (v) or explore message. If u *" S, it will then return an

update (minval (u), minnode (u» message to its parent. When s has received messages

from of all of its children in the tree, it will begin the next phase if minnode(s) * 0,

and will tenninate the algorithm otherwise. Note that tennination occurs when all

nodes have been closed.

Theorem 3. A shones[path tree can be found in a distributed network of n nodes and

nonnegative edge costs using 0 (n 2) messages and time.

Proof. We argue by induction on the number of phases that the above adaptation of

Dijksrra's algorithm correctly computes the current shortest path tree and me heap

embedded within it. Clearly the current shortest path tree and the heap are set up

correctly prior to the first phase. Assume that the tree and the heap are correct prior to

phase i. We shall argue that they are correct after completion of phase i. By definition

of minval (s) and v = minnode (s), the algorithm chooses the correct node to close. The

broadcast ensures that each open node receives the' close (v) message. Node v notifies

each neighbor w other than parenr(v), allowing for w to update pew). It is clear that

each neighbor w of v updates pew) correcdy. Also, w sends a response [0 [he message

it received from v, and to its parent if it was already in [he current shortest path cree.

Thus w will have the correct parent in the current shortest path cree at the end of phase

i.

The values in the heap are adjusted correctly by [he following argument. When

19

open node w *- v not adjacent to v responds to a close (v) message, it sends its pew)

value to its parent. When v receives the close (v) message during the broadcast, it sets

minval (v) to 00. On the echo, node v determines the smallest pew) among the neigh­

bors w that acrually become children of v. When a closed node u received the close (v)

message during the broadcast, it set minval (u) to 00. On the echo, node u determines

the smallest p value forwarded [0 it by its surviving children. It forwards this p value,

along with the corresponding node name, to its parent. Thus the tree and the heap are

correct at the end of phase j.

When all nodes in the current shortest path tree are closed, then

minnode (s) = 0. and the algorithm will terminate.

The time and the number of messages used can be seen to be 0 en 2) by argu­

ments similar to those for the simple breadth-first search strategy discussed earlier. 0

We next consider a more involved implementation of Dijksrra's algorithm,

which will use o(n2
) messages for a planar network. The idea, following [FsI], is to

conduct the iterative search on a carefully selected subset of nodes. The subset of

nodes will be the boundary nodes of a division. Let a constrained shortest parh from u

to v be a path of shortest length from u to v constrained to contain no boundary nodes

as intermediate nodes in the path. Let d'(u, v) be the length of such a path. Initially,

the source s is closed, and all other nodes are open. In addition, p(s) = 0, and

p(v) = d'(s, v). The search proceeds by constructing a current shortest path tree, and

maintaining a heap within it, using minval and minnode fields at each node. However,

only boundary nodes will be chosen to be closed, and thus all leaves in the current

shortest path tree will be boundary nodes. (Interior nodes on shortest paths to closed

20

boundary nodes will also be marked as closed.)

Preprocessing is needed [0 find a division, and to identify the boundary nodes.

Additional preprocessing will men determine constrained. shortest paths between all

pairs of boundary nodes. During the search, when a boundary node v is closed, p(w)

must be updated for all boundary nodes w such that a consrrained shortest path from v

to wexists. At the end of the search, the current shortest path tree includes each boun­

dary node. Postprocessing then determines the location of each remaining node in a

shortest path tree.

We now present the disttibuted version of this algorithm. We do the following

preprocessing. Find a division of a planar network, with r = n2/3. Within each region,

route a description of the region to each node. For each region, once a node within the

region possesses a description of the region, the node performs the following compura­

nons. Let a constrained sfwrrest pmh tree in a region be a shortest path cree con­

strained so that no boundary node other than the root can have children in the tree.

(This can be enforced by performing the shortest path computation on a directed graph,

with no outgoing arcs from any of the boundary nodes orner than the designated root.)

Such a constrained tree exists, since the subnetwork induced on the set of interior nodes

of the region is connected. A boundary node compmes a constrained shortest path tree

romed at it. An interior node computes for every boundary node of its region a con­

strained shortest path tree rooted at that boundary node. A standard single source shor­

test path algorithm can be used for these computations. Obviously, no messages are

used in these latter computations, once each node has a description of the region. The

result of this preprocessing is that each node knows the following information. A

boundary node for the region will know the length of a consrrained shortest path to

21

each other boundary node of the region, along wiili me first edge on a constrained shor­

test path to any other node in the region. An interior node will know its set of children

in the consrrained shonest path tree rooted at any boundary node of the region.

Given this preprocessing, the search porrion of the algorithm proceeds by build­

ing a current shonest path tree. The initialization for the search is as follows. Every

boundary node v not conrained in a region containing the source s sets p(v) to 00,

Source s sets p(s) to O. If s is an interior node, then the current shortest path tree is ini­

tialized. to be the constrained shortest path tree for s. If s is a boundary node, then the

current shortest path tree is initialized. to be the union of the constrained shortest path

trees for s in each of its regions. with any boundary node that is in more than one of

these regions informing its parent in all but one of its trees to delete it as a child. In

either case, any interior node should be deleted if it does not have a boundary node as a

descendant, and the p, minval and minnode values should be set appropriately. Each

node also has an ancestor field, that gives the name of the lowest proper ancestor that is

a boundary node. Once the initialization is complete, me search proceeds in phases.

A search phase stans when the source s selects minval (s), which equals p(v) for

some v = minrwde(s). The source then initiates a broadcast in the current shortest path

cree by sending a close (v) message to each of its children. When a node u that is

closed or is an interior node receives a close (v) message, it sets minval (u) to 00 and

minnode (u) to 0, and sends close (v) to each of its children. In addidon, if u is an inte­

rior node that is open and minnode (u) = v, then u should mark itself as closed. When

node v receives a close (v) message, it marks itself as closed, and sets its list of children

as follows. Node v concatenates the lists of children of v in me constrained shorrest

path trees rooted at v in each region in which v is a boundary node. It deletes

22

parent(v) from this list. Node v then sets minval (v) to 00 and minnode (v) [0 0, and

computes disc (w) = p(v) + c (v, w) for each child w. An explore (dist(w), v) message

is sent [0 each child w.

When an interior node u receives an explore (x, v) message from a node I, it

does the following. (Note that node u may already be in the current shortest path tree,

and thus already have a list of children.) If parenc(u) is undefined, node u sets

parenr(u) to t, its ancestor(u) to v, and takes as its list of children its list of children in

the constrained shortest path tree rooted at v within the region. For each node w in the

list of children, it computes disI(W) =x + c(u,w), and sends w an exp/ore (disr (w), v)

message. If parent(u) is defined, node u sets its tentative parent to be t, irs tentative

ancestor to be v, and takes as its tentative list of children its list of children in the con­

strained shortest path tree rooted at v within the region. For each node w in the tenta­

tive list of children, it computes dist(w) =x + c(u,w), and sends W an

explore (disc (w), v) message. (Note that we could determine at this point whether the

tentative list of children should supplam the current list of children, by maintaining and

comparing a p value for u with x. However, to aid in the synchronization of the algo­

rithm, we allow explore messages and close messages to penetrate to all boundary

nodes in the regions containing node v.)

When a boundary node u receives an explore (x, v) message from a node c, it

does the following. It compares x with p(u). If x ~ p(u), then an update (00, 0, v) mes­

sage is returned to c. Otherwise, the value p(u) is updated, and if u already has a

parent, then an updale(oo, 0, ancestor(u» message is sent to [his parent in response to

a close (v) message. In the case in which x was less than p(u), node u also then sets

parenr(u) to c, and anceswr(u) to v. In either case, node u may share more than one

23

regIOn with node v, and thus u must wait until explore messages have been received

through each of these regions. Once the necessary number of messages have been

received, an update (pCu), u, ancestor(u)) message is sent to parem(u) in response to

eimer a close (v) message (if the parent(u) has remained unchanged) or in response to

an explore message (if the parent (u) has changed).

The echo, along with the adjusanent of the heap, is similar to the echo for me

previous shon:est pam algorithm. When an open boundary node w 7': v not in a region

containing v receives a close (v) message, it returns an update (p(w), W, ancescor(w))

message. Consider a node U 7: v that sem our close (v) messages but no explore mes~

sages. When it receives an update (x, t, v') message from node w it does the following.

If x < minval (u), it will reset minval (u) to x and minnode (u) [0 c. Otherwise, if x is 00

and w is open, then w is deleted from the list of children. Once node u has received

update messages in response [0 all close messages that it sent, if u :¢: s, it will then

return an update (minval (u), minnode (u), ancestor (u)) message to parent(u).

Consider a node u that sent out explore messages. When u receives an

update (x, I, VI) message from a node w, it does the following. If x < minval (u), then

it resets minval(u) to be x and minnode(u) to be t, and if u *" v and v':¢: ancescor(u) it

reassigns its list of children to be its tentative list of children, sends an

update (00, 0, anceslor(u)) to parent(u), and then resets parent(u) to be the tentative

parent and ancesror(u) to be the tentative ancestor. Otherwise, if x is 00 and w is open,

then if u =v or v' =ancesror(u) then w is deleted from the list of children, and if u *" v

and v':¢: ancesror(u) [hen w is deleted from the tentative list of children. Node u will

wait until it has received update messages in response to all explore and close messages

that it sent. If u *" S, it will then return an

24

updace (minval (u), minnode(u), ancesror(u)) message to parenc(u). As before, when

s has received. messages from of all of its children in the tree, it will begin the next

phase if minnode (s) :;= 0, and will tenninate the search mherwise. Note that termination

of the search occurs when all boundary nodes have been closed.

At tenmnation of the search, the current shortest path tree will contain all boun­

dary nodes as closed. nodes. Other nodes may be incorporated into the shortest path

tree by performing postprocessing in each region concurrently. A modified version of

our distributed version of Dijkstra's algorithm can be used in each region, described as

follows. Shortest distances are known to the boundary nodes, but not in general to the

interior nodes. An appropriate tree is needed to contain the heap, and [0 make efficient

broadcast possible. We initialize this. tree to be a spanning [fee in which the root is an

arbitrary interior node of the region and each boundary node is a leaf. Each boundary

node u will have p(u) = des, u), and the interior nodes in the initial [fee will have no p

value, since they are purely for communication. As Dijkstra's algorithm progresses,

each interior node u will be added a second time to the tree, and this time it will be

assigned a p value. Tennination of the shortest path algorithm will occur when the

source has been notified by each region that postprocessing within the region is com­

pleted.

Theorem 4. A shonest path tree can be found in a planar distributed network of n

nodes and nonnegative edge COStS using 0 (n 5/3) messages and time.

Proof. Correctness of the algorithm follows from the correctness of the sequential

algorithm in {Fsl], and from establishing correctness of the distributed versions of the

preprocessing, search, and postprocessing. The preprocessing correctly sets up a divi-

2S

sian, and computes constrained shonesr path trees wiiliin each region of the division.

The correctness of the search is established in a fashion similar to that in the proof of

Theorem 3. We note the following additional points. First, the only leaves in the

current shortest path cree are boundary leaves. If any interior node has no boundary

nodes as descendants as a result of the search, then it can be shown by induction that

mis node will have received updace (00, 0, v') messages from ali of its children, and

thus will send an updace (00, 0, Vi) message to its parent, which will cause it to be

deleted from its parent's list of children. We also consider the case in which an interior

node u receives both a close and an explore message. It follows from the manner in

which explore messages are propagated that it can receive at most one explore message.

From the algorithm it is clear that close and explore messages are sent to the children

of u on the corresponding lists. We first argue that u cannot receive an update message

back from the children to which it sent explore messages until after it has sent close

messages to the appropriate children. This follows, since the echo proceeds only from

boundary nodes, and these boundary nodes wait until they have received one close mes­

sage and in addition one explore message for each region that they share with v. The

same argument establishes that u cannot receive an update message back from the chil­

dren to which it sent close messages until after it has sent explore messages to the

appropriate children. We also argue that the reassignment of children to u on the echo

is correct in the situation that u had received both a close and an explore message.

Node u cannot receive an updace message with noninfinite minval back from both a

child to which it sent an explore message and a child to which it sent a close message.

This follows since to claim any current descendant of u (or a potential descendant of It

claimed by another node), the explore message to u must have identified a shorter path

to u than any previously known. Thus node u is appropriately handled. It is also not

26

hard [0 establish the correctness of the postprocessing.

We next discuss the rime and message complexity of the algorithm. By

Theorem 1 and Lemma 1, finding a division of the planar graph will use 0 en 31210g n)

messages and a (n 312) time. In the rest of the preprocessing, broadcasting a description

of a region of size ri will use a(r?) messages and time. This follows since there are

o (ri) nodes and edges in the region, each such item must be broadcast lhroughout the

region, at the cost of a (rj) messages per item. Since ri $: r, and the total size of all

regions is a (n), the total number of messages will be 0 (nr)=O (n 5/) for broadcasting

descriptions of regions. For each phase of the search, there will be 0 (n) messages and

rime. Since there are 0 (nIW) phases, the time and the number of messages used in

the search will be 0 en 5/3). In the postprocessing, the number of messages in a region

of size rj will be a(r/). The total number of messages for the postprocessing is thus

o (n 5l3). 0

Acknowledgment. The author would like to mank: the referees for their helpful com-

rnents.

References

[AR] J. M. Abram and 1. B. Rhodes, A decentralized shortest path algorictun, Froc.
16th Allerron Conf on Corrun., Control and Computing (1978) 271-277.

[AG1] B. Awerbuch and R. G. Gallager, A new distributed algorithm to find breadth

first search trees, IEEE Trans. on In! Theory 33 (1987) 315-322.

[AG2] B. Awerbuch and R. G. Gallager, Distributed BFS Algorithms, Proc. 26th IEEE

Symp. on Foundations of Computer Science (October 1985) 250-256.

27

[D] E. W. Dijkstra, A nme on two problems in connexion wirh graphs, Numerische
Mathematik 1 (1959) 269-271.

[psI] G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with
applications, SIAM J. on Compating 16 (1987) 1004-1022.

[Fs2] G. N. Frederickson, A single source shortest path algoridlm for a planar distri~,
bmed network, Proc. 2nd Symp. on Theoretical Aspects of Computer Science,
Saarbruecken, Germany (January 1985) 143-150.

[Fro] D. U. Friedman, Communication complexity of distributed shortest path algo­
rithms, LIDS-TH-886, Mass. Inst. Tech. (1979).

[G] R. G. Gallager, Distributed minimum hop algorithms, MIT technical report
LIDS-P-I175 (1982).

[GHS] R. G. Gallager, P. Humhlet, and P. Spira, A disrtibuted algotithm for minimum
weight spanrting trees, ACM Trans. Prog. Lang. Sys. 5, I (January 1983) 66­
77.

[H] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass. (1969).

[1] D. B. Johnson, Efficient algorirhms for shortest paths in sparse networks, 1.
ACM 24, I (January 1977) 1-13.

[LTl] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J.
Appl. Math. 36, 2 (Aptil 1979) 177-189.

[LT2] R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM
1. Compat. 9, 3 (August 1980) 615-627.

[1] S. Toueg, An all-pairs shortest-path distributed algorithm, RC-8397, IBM T. 1.
Warson Res. Center (1980).

	A Distributed Shortest Path Algorithm for a Planar Network
	Report Number:
	

	tmp.1307986960.pdf.z88Q6

