
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

Space-Efficient Message Routing in c-Decomposable Networks Space-Efficient Message Routing in c-Decomposable Networks

Greg N. Frederickson
Purdue University, gnf@cs.purdue.edu

Ravi Janardan

Report Number:
86-615

Frederickson, Greg N. and Janardan, Ravi, "Space-Efficient Message Routing in c-Decomposable
Networks" (1986). Department of Computer Science Technical Reports. Paper 533.
https://docs.lib.purdue.edu/cstech/533

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SPACE·EFFICIENT MESSAGE ROUTING
IN c~DECOMPOSABLENETWORKS

Greg N. Frederickson
Ravi Janardan

CSD-TR-615
July 1986

Revised December 1986

SPACE-EFFICIENT MESSAGE ROUTING IN c-DECOMPOSABLE NETWORKS

Greg N. Frederickson *
Ravi Janardan t

Department of Computer Science

Purdue University

West Lafayette, Indiana 47907

* The research of this a.uthor was supported in part by the National Science
Foundation under grant DCR-8320124, and by the Office of Naval Research on
contract N 00014-8&-K-0689.

t The research of this author was supported in part by the National Science
Foundation under grant DCR-8320124.

Abstract

Message routing strategies are given for any network that can be decomposed

by a separator of size at most a small constant c into two networks with the same

property. These strategies use a total of O(cnlogn) items of routing information,

keep node names to O(log n) bits, and still route along near-shortest paths. If the

names generated from a separator-based hierarchical decomposition of the network

alone are used, then the routing between any pair of nodes is along a path that

is at most 3 times longer than an optimal path. By augmenting the node names

with O(clogclogn) additional bits, the length of any message path is improved to

(2/ex) + 1 times the length of an optimal path, where a > 1 is the positive root of

the equation a r{c+l)/21 - ex - 2 = o.

Keywords and phrases. Distributed network, graph theory, k-outerplanar graph,

routing, separator, series-parallel graph, shortest paths.

1. Introduction

One of the primary functions in a distributed network is the routing of messages

between pairs of nodes. Assuming that a cost, or distance, is associated with each

edge, it is desirable to route along shortest paths. While this can be accomplished

using a complete routing table at each of the n nodes in the network, such tables are

expensive for large networks, storing a total of 0(n2) items of routing information.

Recent research has focused on identifying classes of network topologies for which

the shortest paths information at each node can be stored succinctly, if suitable

names are assigned to the nodes. Optimal routing schemes using a total of 8(n)

items of routing information have been given for networks such as trees, unit-cost

rings [SK,vLTIJ, complete networks, unit-cost grids [vLT2J, and networks at the

lower end of a hierarchy identified in !FJ1]. Unfortunately, the approach in the

above research does not yield a space-efficient scheme for even such a simple class

as the series-parallel networks. However, by shifting our focus to consider schemes

that route along near-shortest paths, we have been able to generate space-efficient

strategies for much broader classes of network topologies.

In this paper we present a near-optimal routing scheme that handles any net

work that can be decomposed by a separator of size at most a constant c into two

networks with the same property. Examples of such networks are the series-parallel

networks, for which c = 2, and the k-outerplanar networks, for k > 1 a constant,

for which c = 2k. We use a separator strategy to hierarchically decompose the net

work and generate names for the nodes. Our solution uses O(log n)-bit names and

O(cnlogn) items of routing information overall, where each item is O(logn) bits

long. If the names derived from the decomposition alone are used, then the length

1

of the routing between any pair of nodes is at most 3 times that of a corresponding

optimal routing. By augmenting the node names with O(clogclogn) additional

bits, we reduce this bound to 2 for c ::; 3 and to a value ranging from 2 to 3 as c

increases.

In related work IFJ2], two efficient schemes are given for general planar net

works. The first scheme uses O(logn)-bit names and 0(n 4/ 3) items to achieve a

bound of 3 on the routings. For any constant e, 0 < f < 1/3, the second sche::ne can

be set up to use O(n l+() items and achieve a bound of 7 on the routings, but at

the expense of O((I/e) logn)-bit names. These approaches also rely on separators

[LT,M] to decompose the network and generate the node names. However, owing

to the comparatively larger size of the separator, the techniques used are somewhat

different from those in the current paper.

A preliminary version of this paper appeared in [FJ3].

2. Preliminaries

Our approach can handle any class of c-decomposable graphs, defined as fol

lows. Let G be a graph with nonnegative weights on its nodes and let c be a

constant. A c-separator for G is a set C of at most c separator nodes whose re

moval partitions the remaining nodes into sets A and B, each containing at most

two-thirds the total weight and with no node in A adjacent to a node in B. If G

has a c-separator for every assignment of weights to its nodes, then so does every

proper subgraph of G. We say that G is c-decomposable. Examples of classes of

c-decomposable graphs are the series-parallel graphs (c = 2) and the k-ome.."'Planar

graphs, for k > 1 a constant (c = 2k). ¥ie give linear-time separator strategies for

these classes in a later section.

2

3. Hierarchical decomposition and naming

Given a. c-decomposable graph G we first show how to hierarchically decompose

it and generate the node names. The graph at level 0 is Go = G. Equal positive

weights are assigned to its nodes and it is then separated into the subgraphs G~o

and G~l induced on A UC and B UC respectively. To preserve distances between

nodes in C, each of these graphs is then augmented by a graph of size O(c 4) derived

from the other graph. This yields the level 1 graphs Goo and GOI • Let Gw be a

level i > 1 graph, where w is a binary string, and let the core of G w be the subgraph

of Gw excluding the nodes and edges introduced by augmentations done so far.

If the core of Gw has more than c nodes, then a pair of level i graphs G wo and

GW1 is generated from Gw as before, except that nodes not in the core of Gw are

given weight zero when finding a separator. Clearly, there are O(logn) levels in the

decomposition.

In general, let Gw be a level i graph for any i > o. If Gw is decomposed further,

then any separator node v of G w belonging to its core is a level i node. Otherwise,

the core of Gw contains at most c nodes and each core node is a level i node. For

w' a proper prefix of wand of length Y·, each separator node u of G w' is an ancestor

of v for level j. If u is in the core of Gw" then it is a core ancestor of v. We call

v a descendant oi u. Two level i nodes in the core of the same level i graph are

s£b/ings. Two nodes of G are related in the decomposition if one is a core ancestor

of the other or if they are siblings.

Each level i node oi G/oJ is given the name ~, along with an integer distinguisher

that is at most c. Clearly, the names a.re O(log n) bits long. This na.rcing has the

property that two nodes are rela.ted if and only if the distinguisher-free portions of

3

their names are identical or if one is a proper prefix of the other. For unrelated

nodes v and u, if 1 is the length of the longest common prefix, then v and u are

in the core of the same level I - 1 graph, but are in the cores of different level 1

graphs. Level I is called the separating level for v and u. It is used to determine an

appropriate core ancestor of the two nodes through which messages can be routed.

We now discuss how the augmentation is performed. Let G~o and G~l be the

graphs resulting from the separation of G w . G~o is augmented as follows to obtain

Gwo· Let C be the set of separator nodes of G w. A graph that is the union of the

shortest path trees Tv in Gw from each node v in C to the nodes in C - {v} is

constructed. The induced subgraph of this graph restricted to G ~l is inferred, and

then contracted by repeatedly replacing each degree 2 node not in C and its incident

edges by an edge of cost equal to the sum of the costs of the two edges removed.

Graph Gwo is the uni~n of the contracted graph and G~o' GW1 is similarly obtained

from G~l' In the augmented graphs, the distance between any two core nodes is

equal to the distance between them in G. Furthermore, for the chosen assignment

of zero weights to the noncore nodes and equal weights to the core nodes, both G wo

and Gw1 have c-separators.

As the following lemma shows, G wo and GW1 are not too large compared to

G~o and G~l' respectively.

,Lemma 1. The augmentation introduces fewer than c4 nodes and 3c4 /2 edges into

each of G~o and G~l'

Proof. 'We prove the claim. for G~o' Let J o be the graph with which G~o is

augmented to obtain Gwo. In worst case Jo is the contraction of the union of c

shortest path trees Tv. There are at most e(e -1) shortest paths in these trees, and

4

for each path there is a corresponding contracted shortest path in J o. If two shortest

paths in Jo meet, then they share a maximal subpath. We call the endpoints of this

subpath meeting nod,s. In worst case there are c(c-1)(c(c-1) -1)/2 < c'(c-1)' /2

meetings between different pairs of shortest paths.

We derive an upper bound on the sum of the degrees of the nodes in J o.

Starting with an empty graph, union in the shortest paths of J 0 one at a time.

Assign each node a degree when it is introduced into the graph for the first time.

Assign it degree 1 if it is in C, and degree 2 otherwise. Taken over all nodes in J 0,

this contributes 2([V(Jo) I -c) + c = 2 I V(Jo) I -c to the degree sum. IT two

shortest paths meet, then increase the degree of each of their meeting nodes by 1.

Thus the increase in the degree sum. due to all meetings between shortest paths is

less than c'(c - 1)'. Thus the degree sum is less than 2 IV(Jol I -c + c'(c - I)'.

Now each node in V(Jo) - C has degree at least 3, so that the degree sum

is at least 3([V(Jo) I -c) + c = 3 I V(Jo) I -2c. It follows that I V(Jol I -c <

c'(c _I)' < c'.

The number of edges in J0 is half the degree sum of Jo. Thus there are less

than IV(Jo) I -c/2 + c'(c - I)' /2 < 3c' /2 edges in Jo. I

Since a node introduced by the augmentation can later become a separator

node, we must distinguish between two types of ancestors, core and noncore. If u

is an ancestor of v, but not a core ancestor, then we call u a noncore ancestoT of v.

For the purposes of routing, we associate with each ancestor u. of v a core

ancestor of v, called the 51L.TTogate for u at v and denoted surTogatev(u). If u is a

core ancestor, then we take sUTrogatev(tt) to be U itself. If tL is a noncore ancestor,

then let j be the separating level for v and u, and let 'U' be a common ancestor for

5

level J' on a shortest (v,u)-path in the level J -1 graph whose core contains both v

and u. Then sUTTogatev(u) is just sUTTogatev(u l
).

4. Routing information at the nodes

A routing table is maintained, giving for each related node u the name

nexLnodev(u) of the next node on a shortest (v,u)-path in G. To route to 'tt,

v sends the message to w = nexLnodeu(u) over edge {v,w}. If wand u are unre

lated, then w will not have shortest paths information for 'tt. So v makes available

to w in the message header, the name milestoneu(u) of a common core ancestor of

wand u. through which the routing can proceed. Let J be the separating level for

wand u, and let y be a common ancestor for level J' on a shortest (w,u)-path in

the level J-1 graph whose core contains both wand u. Then milestonev(u) is just

sUTTogatew(y). The name milestonev(u) is stored at v.

Information is also stored at v to enable routing to unrelated nodes. Let v be a

level i node. For J' < i, if a is the closest ancestor of v for level J', then sUTTogatev (a)

is stored at v for level J. If v is the source of a message whose destination is an

unrelated node u, then v routes to 1.£ via the sUTTogateu(a) stored for the separating

level of v and 'fL.

The following theorem bounds the amount of routing information in the net

work.

Theorem 1. For any n-node c-decomposable graph, the above scheme uses a total

of O(cn log n) items of routing information.

Proof. Since each node has O(clogn) core ancestors, O(cnlogn) items are stored

for them overall. Since each node is a descendant of O(clogn) core ancestors,

6

O(cnlogn) items are maintained overall for descendants. Since each node has at

most c siblings, O(cn) items are maintained overall for siblings. I

5. The routing strategy

The routing from a source s to a destination d is as follows. The message header

contains separate fields for the milestone and the destination, both initially set to

d. The milestone field alone is reset, as necessary, during the routing. Let d I denote

the current name in the milestone field. Each node v participating in the routing

performs a routing action. This involves determining w = next...nodev(dl
), resetting

d' to milestonev(dl
) if wand dl are unrelated, and then sending the message to w.

If oS and d l = d are unrelated, then .s performs a routing action. Otherwise, let

l be the separating level for oS and d, and a the closest ancestor of s for levell. Node

s resets d' to oSurrogate,,(a) and performs a routing action. The two cases can be

distinguished using the names s and d. Each intermediate node different from the

current dl will find the latter in its routing table and thus can perform a routing

action. Eventually the message reaches the current d'. If d' is d, then the routing

terminates. Otherwise d l is reset to d and a routing action is performed. Note

that since the milestone field is always reset to a core ancestor of d, the previous

milestone need not be saved.

The following theorem provides an upper bound on the length of the routings

achieved.

Theorem 2. Let G be a c-decomposable graph. For any nodes sand d, let p(s, d)

denote the length of a shortest (s, d)-path in G and let p(s, d) denote the length of

the (s, d)-path generated in the above scheme. Then the performance bound of the

7

scheme is p(s,d)(p(s,d) S 3.

Proof. If sand d are related then the routing is along a shortest (05, d)-path. This

is because every node participating in the routing performs a routing action with

respect to the milestone, which is always on a shortest (s, d)-path. Otherwise, let a'

be sUTTogate8(a), and consider the first occasion a milestone a" is reached, where

all is possibly a'. Since all is a common core ancestor of sand d, by the above

reasoning the routings from oS to a" and from all to d are both along shortest paths.

Thus

p(s,d) =p(s,aU) +p(aU,d)

S p(s,aU) + p(aU, a') + p(a',d)

= p(s,a') + p(a', d), since all is on a shortest (s,a')-path

S p(s,a') + p(a',a) + p(a,d)

= p(s,a) + p(a,d), since a' is on a shortest (s,a)-path

S p(s,a) + p(a,s) + p(s,d)

< 3p(s,d), since, by OUI choice of a, p(s,a) S p(s,d). I

In fact, the bound of 3 is approachable. Let a* different from a be the ancestor

on a shortest (s,d)-path and let a" = at = a. Let p(s,a) = p(s,d) - p(a*,d),

and let p(a,d) = pta,s) + p(s,d) = 2p(s,d) - p(a",d). Then p(s,d)(p(s,d) =

(3p(s,d) - 2p(a",d))(p(s,d) approaches 3 as p(a",d) becomes vanisbingly small.

6. Improving the performance bound

In the previous scheme, a performance bound of 3 was obtained by choosing

the closest ancestor of s. To improve this bound, we encode additional information

8

in the node names and use it to refine the choice of an ancestor. The rest of the

routing strategy is the same.

Let v be a level i node, i ~ 1. For each j < i, instead of storing at v the

name sUTTogatev(a) for the closest ancestor of v for level j, we store the names u

and sUTTogatev(u) for each ancestor u of v for level J". This introduces a total of

O(cnlogn) additional items.

Node v's name is augmented with information about the relative magnitudes

of its distances from its ancestors for level j. Two pieces of information are encoded

for each ancestor, with the information for different ancestors appearing in the

lexicographic order of the names assigned to them from the decomposition. The

first specifies its position in an ordering of the ancestors by nondecreasing distances

from v, with ties broken lexicographically. The second piece of information is as

follows. Let 0: > 1 be a function of c to be specified later. For each ancestor a'

with index p' in the above ordering by distances, let a" -be the ancestor with the

smallest index p" > p', such that p(v, at) S (l/a)p(v;a"). Then, in addition, p" is

encoded in v's name for at. If a" does not exist, then zero is recorded for a' . All

this information can be encoded using at most 2c1og c bits per level J., As there

are at most loga/2 n = 1.71 logn levels, the total number of additional bits encoded

into v's name is 3.42Iogclogn.

From the ancestors of sand d for separating level l, an appropriate ances

tor is chosen at s as follows, Clearly, if there are ancestors at and a" such that

p(s, a'l < p(s, a") and p(d, a') < p(d, a"), then a" can be eliminated. Using the m
formation encoded in its name and that of d, s determines a subset of the ancestors

in which no ancestor eliminates another. (These ancestors will be known in terms of

9

their positions in the above lexicographic ordering. However, s can determine their

names, since the names of its ancestors at each level are available.) Let aI, a2,"" ah

be the h $; c such ancestors, indexed in increasing order of their distances from s.

Denote p(s,ai) by Xi and p(d,ad by Vi, 1 $; i $; h. Thus Xl < X2 < ... < Xh.

Furthermore, since no ancestor eliminates another, we have Yl > V2 > ... > Vh.

Let m be an integer parameter, 1 ::5 m ::5 h, to be specified later. If there

exists a minimum index i, 1 < i < m, such that Xi ::5 (I/O:)Xi+l, then s chooses ai.

Otherwise, if there exists a maximum index i, m < i < h, such that Vi ::5 (I/O:)Yi_I'

then s chooses ai. Otherwise s chooses am_ As demonstrated in the proof of the

following theorem, the appropriate choice for m is l(h + 1)/2J.

Theorem 3. For any c-decomposable graph, the performance bound of the above

scheme satisfies p(s, d)/p(s, d) ::5 (2/a) + 1, where a: > 1 is the positive root of the

equation o:f(c+I)/21 - a: - 2 = O.

Proof. From the proof of Theorem 2, the length of the generated routing is at

most the sum of the distances from sand d to the chosen ancestor. It follows that

if there is a shortest (s,d)-path through this ancestor then the routing is optimal.

Thus assume that there is no shortest (s, d)-path through the chosen ancestor, and

that there is one through aq , 1 ::5 aq ::5 h.

Case 1: ai, 1 ::5 i < m, is chosen in the scan over the x's.

(a) Suppose that i < q. Then since Xi..,.l < x q and Xi ::5 (I/O:)Xi';-ll we have

10

Xi < (1(a)xq • Thus,

~ (2xq(a)((xq+ Yq) + 1

< (2(a) + 1.

(b) Suppose that i > q. Since Xj > {l/O:)Xi+l. 1 ~ j < i, it can be shown

inductively that Xi < ai-qxqo

< (ci-qxq + Yq}J(Xq + Yq), from above, and since Yq > Yi

< m-2_a .

Case 2: ai, m < i :5 h, is chosen in the scan over the V's.

(al If i > g, then similar to Case l(a) it can be shown that p(s,d)(p(s,d) ~

(2(a) + 1.

(b) Suppose that i < q. Then Vi < aq-iYq holds. Similar to Case 1(b) it can

be shown that pes, dJ(pes, d) < ah - m - l .

Case 3: am is chosen by default.

(a) If m > q, then we have X m < a=-Qxq1 and as in Case 1(b) it can be shawn

that p(s,d)(p(s,d) < am-I.

(b) If m < q, then we have Yrn < a.q-mYq, and as in Case 1(b) it can be shown

that p(s,d)(p(s,d) < ah - m •

From the above it follows that

p(s,d)(p(s,d) < max {(2(a) _H,am-"ah - m}.

11

For m = L(h + 1)/2J we have a m- l ~ a h - m ~ arlo-11/2l. The larger of (2/a) + 1

and aJ(C-l)/21 is minimized when a > 1 is the positive root of(2/a)+1 = a[(.:-I)/21,

Le., a r(c+l)/21 - 0:: - 2 = o. I

For small values of c the above theorem yields performance bounds that are

appreciably better than 3. For instance, if cis 2 or 3, then pes, d)J p(s, d) :S 2j if c is 4

or 5, then p(s,dJfp(s,d) :5 2.32. These performance bounds are approachable. Let

al be the chosen ancestor and suppose that there is a shortest (5, d)-path through

a,. Let X, = (l/a)x, and Y, = X, + X, + y,. Then p(s,d)/p(s,d) approaches

(2/0:) + 1 as Y2 becomes vanishingly small.

Figure 1 illustrates schematically the improved routing algorithm for a 5

decomposable graph. There are just four ancestors al. a2, as and a4 to choose

from, since the unnamed ancestor is eliminated by as. For this example, a ~ 1.52,

m = 2, and the shortest (5, d)-path is through a2. In the routing algorithm, the

scan over the x's is inconclusive. The scan over the y's first succeeds at Y3, since

Y3 = 6 and (l/a)y, = 6.6. Thus a3 is chosen, yielding a routing that is 21/14 =

1.5 times longer than the optimal.

7. Separator strategies

We give linear-time algorithms to find a 2-separator in series-parallel graphs

and a 2k-separator in k-outerplanar graphs. Assume without loss of generalit)r

that the graph is simple, i.e. , any two nodes are joined by at most one edge, and

biconnected. These conditions can be always be enforced, without affecting shortest

paths, by deleting all but the least cost edge joining any pair of nodes, and by

suitably introducing edges of large cost.

Series-parallel graphs

12

Two edges in a graph are series if they are the only edges incident with a node,

and parallel if they join the same pair of nodes. A series-parallel graph is recursively

defined as follows [D]. An edge is a series-parallel graph. The graph obtained by

replacing any edge in a series-parallel graph either by two series edges or by two

parallel edges is series-parallel. A two-terminal series-parallel graph is a graph with

two distinguished nodes called terminals and is defined recursively as follows. Any

edge is a two-terminal series-parallel graph, the terminals being its endpoints. If

HI and Hz are two-terminal series-parallel graphs, then so is the graph H obtained

either by identifying one of the terminals of HI with one of the terminals of H 2 or by

identifying them in pairs. In the former case the terminals of H are the unidentified

terminals of HI and H 2 , while in the latter they are the identified terminals. With

every two-terminal series-parallel graph G can be associated a binary structure tree

[VTL]. Each leaf of the tree represents an edge of G. IT v is an internal node of the

tree with children vIand Vz representing the two-terminal series-parallel graphs

HI and Hz, then v represents the two-terminal series-parallel graph H obtained

as above from HI and Hz. The root of the tree represents G. Since every series

parallel graph is two-terminal series-parallel for an appropriate choice of terminals

[D], a structure tree can be associated with it.

Given any assignment of nonnegative weights to the nodes of a series-parallel

graph G, where the weights sum to unity, a 2-separator can be found as follows.

Construct a structure tree for G with root r, as described in [VTLJ. For each node

x in the tree, let W(x) be the sum of the weights of the nodes mtile series-parallel

graph represented by x. For each non-leaf node, let the heavy child be the one with

the larger W(.), ties broken arbitrarily.

13

Initially, set x to r. While x is not a leaf of the structure tree and W(x) > 2/3,

reset x to its heavy child. When this step terminates, let C be the set of terminals

of the series-parallel graph represented by x. Let A consist of the remaining nodes

of this graph and let B be V(G) - (A UC). It may be verified that A, Band C

satisfy the conditions for a 2-separator.

Theorem 4. A 2-separator of an n-node series-parallel graph can be found in O(n)

time.

Proof. The structure tree can be constructed and searched in 0 (n) time. I

k-Outerplanar graphs

The k-outerplanar graphs are defined as follows [Bl. Consider a plane embed

ding of a planar graph. The nodes on the exterior face are layer 1 nodes. For i > 1,

the layer i nodes are those that lie on the exterior face of the embedding resulting

from the deletion of all layer j nodes, J. < i. A plane embedding is k-outerplane if it

contains no node with layer number exceeding k. A planar graph is k-outerplanar

if it has a k-outerplane embedding.

Let G be a k-outerplanar graph and G* a k-outerplane embedding of G. Given

any assignment of nonnegative weights to the nodes of G, where the weights sum

to unity, a 2k-separator can be found as follows. The interior faces of G* are first

triangulated. Each interior face whose boundary consists of nodes all with the same

layer number is triangulated arbitrarily. Each interior face whose boundary consists

of both layer i and layer i +1 nodes, 1 ::; i < k, is triangulated by repeatedly adding

an edge joining a layer i -:- 1 node to a layer i node. The resulting embedding, G~,

is also k-outerplane, with each layer i -+- 1 node adjacent to at least one layer i node.

The desired separator is found in G;".

14

At all times, the algorithm maintains a path P of length at most 2k in G 6.,

which disconnects 0'6. into two regions. The algorithm repeatedly modifies P until

the total weight of the nodes in each region is at most 2/3. Initially, P consists

of a single edge joining a pair of level 1 nodes. In general, P has layer 1 nodes as

endpoints and is such that from one end to the other, the layer numbers of its nodes

first increase monotonically and then decrease monotonically, possibly with a single

pair of consecutive nodes of the same layer number.

For each region bounded by P, determine the sum of the weights of the nodes

contained in the region. Let the hwvy region be the one with the larger total weight,

ties broken arbitrarily. If the heavy region has weight exceeding 2/3 then modify

P as follows.

Let v be a node on P of highest layer number and u the neighbor of v on P with

the higher layer number, ties broken arbitrarily. Let PI and P2 be the subpaths of

P on either side of edge {v,u}, where v is an endpoint of PI and u an endpoint of

P2• Consider the face in the heavy region whose boundary contains edge {v,1£} and

let w be the third node on this face. For some i, 1 :S i < k, the layer numbers of v,

1£ and w must each be either i or i + 1. There are two cases of interest.

If the layer number of w exceeds the layer number of at least one of v and u,

then reset P to the path consisting of PI, {v, w}, {w, u} and P2 • If the heavy region

now has total weight exceeding 2/3 then modify P recursively.

Otherwise, let P a be a path in the heavy region from w to the exterior face

such that the layer numbers of its nodes decrease monotonically. Such a path can

be found because eam layer i -+- 1 node is adjacent to at least one layer i node,

1 S i < k. Furthermore, P g can always be picked so that it is either node-disjoint

15

from both PI and P2, or meets one of these paths at a node, and contains the

segment of this path from the meeting point to the exterior face. Determine the

total weight of the nodes contained in the region bounded by PI. {v,w} and Pa.

Likewise for the region bounded by P2 , {1£, w} and Pa. Without loss of generality

assume that the former region is the heavy region. If P a and PI share no nodes,

then reset P to the path consistin~ of PI, {v,w} and Pa• Otherwise, let z be the

first node common to PI and Pa and let e be an edge incident on z from the cycle

consisting of the (z, v)-subpath of Pll the edge {v, w} and the (w, z)-subpath of Pa.

Reset P to the path consisting of PI, {v,w} and Pa, with e deleted. If the heavy

region now has total weight exceeding 2/3, then modify P recursively.

Eventually a path P is found such that the heavy region has total weight at

most 2/3. It can be shown inductively that P is a disconnecting path for G6, hence

for G*, and has at most 2k nodes. Let C be the set of nodes on P, A be the set of

the nodes in the heavy region and B be V(G) - (A UCJ.

Theorem 5. A 2k-separator of an n-node k-outerplanar graph can be found in

O(nJ time.

Proof. Given the embedding G*, represented using the data structure of [LTJ, the

layer numbers can be computed in O(n) time IBJ. The triangulation can also be

done in O(n) time. The time to successively modify paths is as follows. Consider

any path P in the algorithm.. The node v of highest layer number is identified at

the time P is formed. The nodes u and w can be identified in constant time.

If the layer number of w exceeds the layer number of at least one of v and

tL , then P can then be modified and the weight of the heavy region determined in

constant time. The node of highest layer number on the resulting path is w. Charge

16

this cost to edge {v,w}, which is eliminated from the heavy region. Thus the total

time for all paths modified in this fashion is O(n).

Otherwise we find P and determine as follows which of the two regions, one

bounded by Ph {v,w} and Ps , and the other by P2 , {u,w} and Ps, is the heavy

region. Accumulate the weight of the two regions by alternately examining one

node from each region, stopping when one of the regions has been exhausted. To

do this efficiently perform a depth-first search in each region in incremental fashion,

Le., search in one region until a node has been added to the depth-first search tree,

then suspend the search in this region and resume it in the other region. As the

graph is planar, the time for this is proportional to the size of the exhausted region.

Since the weight of the exhausted region is known, the weight of the other region

can be computed, and the heavy region determined. P is then reset appropriately.

The node of highest layer number on the resulting path is one of v, tL and w.

The time to thus modify P is proportional to the size of the exhausted region.

Charge this cost to the nodes in the region that is not the heavy region. This results

in constant charge per node. Since each of these nodes is charged at most once and

then eliminated, the total time for all paths modified this way is O(n).•

8. Set-up time for routing schemes

A class of graphs is uniformly sparse and contractable if for any graph in the

class, every subgraph of the graph has a number of edges proportional to the number

of nodes, and any contraction of the subgraph is also in the class. Consider any

uniformly sparse and contractable clas:s of c-decomposable graphs with a linear-time

c-separator algorithm. For any n-node graph G from this class, we show that our

schemes can be set up in O(cn(log n) 2 -7- c4 n log n) time. IT G is planar, then a setup

17

time of D(cn(log n)3/2 +c2n log n+ c4 n(log n)l/2) can be realized. Examples of such

graphs G are the series-parallel and k-outerplanar graphs.

We first establish upper bounds on the total number of noncore nodes and

core nodes generated in decomposing G down to graphs of core size at most c. Let

NC(n) be the total number of noncore nodes, counting each occurrence of a node

as a noncore node. Thus

NC(n) = 0, for n = c

NC(n) < NC(an) + NC«(I- a)n) + c<, for n > c, where 1/3::; a::; 2/3.

By an inductive proof, NC(n) :S c3n - c4 •

Let C (n) be the total number of core nodes contained in all cores of size greater

than c, counting each occurrence of a node as a core node. Thus

C(n) = 0, for n= c

C(n) < C(an-c) +C«I-a)n-c)+n

< n + C(an) + C((I- a)n), for n > c, where 1/3 ::; a ::; 2/3.

By an inductive argument, C(n)::; 1.09(nlogn- (Iogc)n).

We first analyze the setup time for the scheme with performance bound 3. The

time for doing the decomposition and naming is as follows. Let G w be any graph

in the decomposition with a total of n w nodes. Note that Gw is in the same class

as G. If Gw is a level i-I graph with more than c core nodes, then the time to

separate it and name the resulting level i graphs and level i nodes is O(n w). The

augmentation of the level i graphs involves computing at most c shortest path trees

in Gw~ which can be done in O(cnw lognw), i.e., O(cnw logn) time, using the algo

rithm from lJJ. A.s n w = care....size(Gw) -;- noncore....size(Gwl, where core--size(Gw)

and noncare--size(Gw) respectively denote the number of core and noncore nodes in

18

GW1 the time for Gw is O(clogn(core_size(Gw) + noncore.....size(Gw)). The time for

all graphs Gw is obtained by summing each term over the G w • From the bounds on

C(n) and NC(n), this is O(cn(logn)' + c'nlogn). Any graph Gw with c or fewer

core nodes is not decomposed further. The total time to name the core nodes in all

such graphs G w is O(n).

The time for setting up shortest paths information between all related nodes is

as follows. Let v be a level i node resulting from the decomposition of level i-I graph

Gw • For each descendant (resp. sibling) tL in the core of C w , nextJ1.odeu(u) can be

determined by constructing a shortest path tree in C w , rooted at v. Simultaneously,

next..nodeu(v) can be set up for the core ancestor (resp. sibling) v. Arguing as

before, the time for this is O(cn(logn)2 + c4n logn).

For a graph Gw with c or fewer core nodes, next...nodeu(u) can be set up for any

pair v and u of core nodes in O(cnw lognw), i.e., O(cnw logn). The time for all.Gwis

O(l:all G
w

cnw]ogn), i.e., O(clogn l:all G
w

(coTe-size(Gw) + noncoTuize(Gw)).

The first term contributes O(n) and the second O(c 3n). Thus the total time is

O(c'nlogn).

For any level i node v, the closest ancestor and the corresponding surrogate

for each level j < i can be found as follows. Consider the ancestors of v for level j.

From the shortest path computations, the distance from v to each core ancestor

is known. To compute the distance to a noncore ancestor a, let p < j be the

separating level for v and a. Minimize p(v, a') + p(a', a) over all common ancestors

a' of t· and a for level j'. Since j' < j, the distances p(v,a') and p(a',u) will be

available ror all ancestors (;/, wnether core or noncore.

This process also yields oSuTTogateu(u) for each noncore ancestor u. Let a' be

19

the ancestor for level/ that minimizes p(v,a') + p(a',a). Then sUTTogatelJ(a) is

just sUTTogatelJ(aT Recall that for a core ancestor, the surrogate is the ancestor

itself. After the distances to all ancestors of v for level j have been determined, the

names of the closest ancestor and the corresponding surrogate are stored at v.

The time to compute the distance from v to each noncore ancestor a for level j

is O(c), hence O(c2
) for all noncore ancestors. Thus the time for all closest ancestor

and surrogate computations at v is O(c 2 Iogn), hence O(c2 nlogn) at all nodes.

The milestone information can be set up as follows. Let v be a level i node

resulting from the decomposition of a level i -1 graph G w • Let u be a core node of

Gw related to v, and suppose that w = nexLnodelJ(u) and U are UllIelated. Let j be

the separating level for wand u, and y their common ancestor for level j minimizing

p(w, y) + ply, u). Then milestone.(u) is just surrogatew (y). If nextftode.(v) and

v are UllIelated, then milestoneu(v) can simultaneously be set up at u.

The time to set up milestone'IJ(u) is O(c) for each node U , hence

O(c core..size(Gw)) for all U in the core of Gw • Since there are O(c) level i nodes v

for GWI the milestones at all these nodes can be set up in O(c 2 corc..size(Gw)) time.

Thus, the total time for level i , obtained by summing over all level i -1 graphs G Wl

is O(c2n). Summed over all levels i, this is O(c 2nlogn).

IT G w is a graph with at most c core nodes, then milestone information can be

set up as above for any pair of core nodes. The time per pair is O(c), hence O(c 3)

for all pairs. Since there are O(n/c) such graphs G WI the total time for all graphs

Gw is O(c2n).

It follows that the total setup time for the basic scheme is O(cn(logn)2+---- --

c4.n logn). For planar graphs, the faster algorithm from [F] may be used in lieu of

20

the algorithm from P] for determining shortest paths. This leads to a setup time of

O(en(log n)3/2 + e2n log n + e4n(log n) 1/2). For series-parallel graphs, a setup time

of O(nlogn) can be achieved, using a result from [HT] which allows single-source

shortest paths to be computed in O(n) time.

The analysis for the improved scheme is as follows. The time for doing the

decomposition and naming, and for setting up shortest paths information, mlle

stones and surrogates is as before. The time to encode the additional information

into the name of a level i node v is as follows. A lexicographic ordering of all the

nodes, based on the names assigned from the decomposition, can be generated in

O(n log n) time using a radix sort. From this ordering, a lexicographic ordering of

of the ancestors of v for any level i < i can be inferred in O(e) time. Since the

distances from v to the ancestors are known, the distance ordering can be generated

and the corresponding information encoded into v's name in O(cloge) time. Fur

thermore, given o:(e), the information about the relative magnitudes of distances

can be determined in O(e) time, and encoded in v's name in a(e log c) time. Thus,

the time per level for v is O(cloge), hence O(clogclogn) for all levels. Taken over

all nodes this is O((clogc)nlogn).

Thus the overall setup time is O(cn(logn) 2 + c'n logn). It is O(cn(logn)3(2 +

c2nlogn + e4n{Iogn) 1/2) for planar networks, and O((cloge)nlogn) for series

parallel networks.

We thus have the following theorem.

Theorem 6. Let G be any graph from a uniformly sparse and contractable class

of c-decomposable graphs with a linear-time c-separator algorithm. The basic and

improved routing schemes can be implemented in G in O(cn(logn) 2 + c4 n log n)

21

time. If G is planar then the time is O(cn(logn)3/2 + c2 nlogn + c4.n (logn)l/2). I

22

IFJ1]

[FJ2]

[FJ3]

[H]

[HT]

References

[B] B.S. Baker, "Approximation algorithms for NP-complete problems on planar
graphs" 1 Proceedings of the 24th IEEE Annual Symposium on Foundations of
Computer Scz"encf, 1983, pp. 265-273.

[Dj R.J. Duffin, "Topology of series-parallel networks", Journal of Mathematical
Applications, Vol. 10, NO.2, 1965, pp. 303-318.

[F] G.N. Frederickson, "Fast algorithms for shortest paths in planar graphs, with
applications}', CSD-TR-486 (revised), Purdue University, April 1985. (An ear
lier version appeared as: "Shortest path problems in planar graphs" , Proceed
ings althe 24th Annual IEEE Symposium on Foundations of Computer Science,
1983, pp. 242-247.)

G.N. Frederickson and R. Janardan, Optimal message routing without com
plete routing tables, Proceedings of the 5th Annual ACM SIGACT-SIGOPS
Symposium on Pr£n~£ples of Dz"str£buted Computing, Calgary, August 1986, pp.
88-97.

G.N. Frederickson and R. Janardan, Efficient message routing in planar net
works, CSD-TR-638, Purdue University, November 1986.

G.N. Frederickson and R. Janardan, "Separator-based strategies for efficient
message routing" , Proceed£ngs of the 27th Annual IEEE Symposz"um on Foun~

dations of Computer Sc£ence, Toronto, October 1986, pp. 428-437.

F. Harary, Graph Theory, Addison-Wesley, ReadingMA, 1969.

R. Hassin and A. Tamir, "Efficient algorithms for optimization and selection
on series-parallel graphs", SIAM Journal on Algebraic and Dz"screte Methods,
Vol. 7, No.3, July 1986, pp. 379-389.

[J1 D.B. Johnson, "Efficient algorithms for shortest paths in sparse networks",
Journal of the ACM, Vol. 24, NO.1, January 1977, pp. 1-13.

[LT] R.J. Lipton and R.E. Tarjan, "A separator theorem for planar graphs", SIAM
Journal on Applied Mathematics, Vol. 36, No.2, April 1979, pp. 177-189.

[M]

[SKI

[vLT1J

G. Miller, "Finding small simple cycle separators for 2-connected planar
graphs", Proceedings of the 16th Annual ACM Symposium on Theory of Com
puting, 1984, pp. 376-382.

N. Santoro and R. Khatib, "Labelling and implicit routing in networks",
The Computer Journal, Vol. 28, No.1, February 1985, pp. 5--8.

J. van Leeuwen and R.B. Tan, "Routing with compact routing tables", Tech
nical Report RUU-CS-83-16, Department of Computer Science, University of
Utrecht, The Netherlands, November 1983.

23

[vLT2] J. van Leeuwen and R.B. Tan, "Interval routing", Technical Report RUU-CS
85-16, Department of Computer Science, University of Utrecht, The Nether
lands, May 1985.

[VTL] J. Valdes, R.E. Tarjan and E.L. Lawler, "'The recognition of series-parallel
digraphs", SIAM Journal on Computing, Vol. 11, No.2, May 1982, pp. 298
313.

24

6 16 10 7 5

164315

Figure 1. Example of a routing choice in the improved

scheme for a c -decomposable network, with c = 5.

	Space-Efficient Message Routing in c-Decomposable Networks
	Report Number:
	

	tmp.1307986960.pdf.E64ju

